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Abstract. Molecular docking is a widely-employed method in structure-
based drug design. An essential component of molecular docking pro-
grams is a scoring function (SF) that can be used to identify the most
stable binding pose of a ligand, when bound to a receptor protein, from
among a large set of candidate poses. Despite intense efforts in developing
conventional SFs, which are either force-field based, knowledge-based, or
empirical, their limited docking power (or ability to successfully identify
the correct pose) has been a major impediment to cost-effective drug dis-
covery. Therefore, in this work, we explore a range of novel SFs employing
different machine-learning (ML) approaches in conjunction with physic-
ochemical and geometrical features characterizing protein-ligand com-
plexes to predict the native or near-native pose of a ligand docked to
a receptor protein’s binding site. We assess the docking accuracies of
these new ML SFs as well as those of conventional SFs in the context
of the 2007 PDBbind benchmark datasets on both diverse and homoge-
neous (protein-family-specific) test sets. We find that the best performing
ML SF has a success rate of 80 % in identifying poses that are within
1 Å root-mean-square deviation from the native poses of 65 different pro-
tein families. This is in comparison to a success rate of only 70 % achieved
by the best conventional SF, ASP, employed in the commercial docking
software GOLD. We also observed steady gains in the performance of the
proposed ML SFs as the training set size was increased by considering
more protein-ligand complexes and/or more computationally-generated
poses for each complex.

1 Introduction

1.1 Background

Bringing a new drug to the market is a complex process that costs hundreds of
millions of dollars and spans over ten years of research, development, and testing.
A fairly big portion of this hefty budget and long time-line is spent in the early
stages of drug design that involves two main steps: first, the enzyme, receptor,
or other protein responsible for a disease of interest is identified; second, a small
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molecule or ligand is found or designed that will bind to the target protein,
modulate its behavior, and provide therapeutic benefit to the patient. Typically,
high-throughput screening (HTS) facilities with automated devices and robots
are used to synthesize and screen ligands against a target protein. However, due
to the large number of ligands that need to be screened, HTS is not fast and
cost-effective enough as a lead identification method in the initial phases of drug
discovery [1]. Therefore, computational methods referred to as virtual screening
are employed to complement HTS by narrowing down the number of ligands
to be physically screened. In virtual screening, information such as structure
and physicochemical properties of a ligand, protein, or both, are used to esti-
mate both binding pose and/or binding affinity , which represents the strength of
association between the ligand and its receptor protein. The most popular app-
roach to predicting the correct binding pose and binding affinity (BA) in virtual
screening is structure-based in which physicochemical interactions between a lig-
and and receptor are deduced from the 3D structures of both molecules. This
in silico method is also known as protein-based as opposed to the alternative
approach, ligand-based, in which only ligands that are biochemically similar to
the ones known to bind to the target are screened.

In this work, our focus will be on protein-based drug design, wherein ligands
are placed into the active site of the receptor. The 3D structure of a ligand,
when bound to a protein, is known as ligand active conformation. Binding mode
refers to the orientation of a ligand relative to the target and the protein-ligand
conformation in the bound state. A binding pose is simply a candidate binding
mode. In molecular docking , a large number of binding poses are computationally
generated and then evaluated using a scoring function (SF), which is a mathe-
matical or predictive model that produces a score representing binding stability
of the pose. The outcome of the docking run, therefore, is a ligand’s top pose
ranked according to its predicted binding score as shown in Fig. 1. Typically,
this docking and scoring step is performed iteratively over a database containing
thousands to millions of ligand candidates. After predicting their binding poses,
another scoring round is performed to rank ligands according to their predicted
binding free energies. The top-ranked ligand, considered the most promising drug
candidate, is synthesized and physically screened using HTS.

The most important steps in the docking process are scoring ligands’ con-
formations at their respective binding sites and ranking ligands against each
other. These core steps affect the outcome of the entire drug search campaign.
That is because predictions of scoring functions determine which binding orien-
tation/conformation is deemed the best, which ligand from a database is con-
sidered likely to be the most effective drug, and the estimated binding affinity
(BA). Correspondingly, three main capabilities that a reliable scoring function
should have are: (i) the ability to identify the correct binding mode of a ligand
from among a set of (computationally-generated) poses, (ii) the ability to cor-
rectly rank a given set of ligands, with known binding modes when bound to
the same protein, and, finally, (iii) the ability to produce binding scores that
are (linearly) correlated to the experimentally-determined binding affinities of
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Fig. 1. Protein-ligand docking and ranking workflow.

protein-ligand complexes with known 3D structures. These three performance
attributes were referred to by Cheng et al. as docking power , ranking power ,
and scoring power , respectively [2]. We refer to the corresponding problems as
ligand docking , ligand ranking , and ligand scoring problems. In practice and in
all existing work, a single general SF is trained to predict protein-ligand BA
and then used in both the ligand docking and ranking stages to identify the
top pose and ligand, respectively. In this work, we propose docking-specialized
machine-learning SFs capable of predicting native poses more accurately than
the conventional BA-based SFs. These native-pose prediction models are used
as SF1 in Fig. 1. As for the second scoring round, designated by SF2 in Fig. 1, in
previous work we built accurate machine-learning SFs to score and rank ligands
against each other using their predicted binding affinities [3,4].

1.2 Related Work

Most SFs in use today can be categorized as either force-field-based [5], empiri-
cal [6], or knowledge-based [7] SFs. Despite intense efforts into these conventional
scoring schemes, several recent studies report that the docking power of existing
SFs is quite limited. Cheng and co-workers recently conducted an extensive test
of sixteen SFs from these three categories that are either employed in main-
stream commercial docking tools and/or have been developed in academia [2].
The main test set used in their study consisted of 195 diverse protein-ligand
complexes and four other protein-specific test sets. In order to assess the dock-
ing power of all SFs, they generated 100-pose decoy sets for each protein-ligand
complex in the main test set. They defined the docking power of an SF as its rate
of success in identifying binding poses that are within a certain root-mean-square



18 H.M. Ashtawy and N.R. Mahapatra

deviation (RMSD) from the native pose over all complexes. Using this criteria,
three SFs were found to have a relatively higher level of accuracy when their
docking abilities were judged in three different experiments. These SFs are ASP
[8] in the GOLD [9] docking software, PLP1 [10] in Discovery Studio [11], and
the stand-alone SF DrugScore [12].

In this work, we will compare our novel ML SFs against these three and the
other thirteen SFs considered by Cheng et al. [2]. They used the four popular
docking programs LigandFit [13], GOLD, Surflex [14], and FlexX [15] to generate
diverse sets of decoy poses. Each of these tools employs different conformational
search algorithms for best poses. Namely, LigandFit relies on a shape-directed
algorithm, GOLD uses a genetic algorithm, Surflex is guided by a molecular-
similarity based algorithm, and FlexX employs an incremental construction algo-
rithm as a search engine [2]. They then combined the generated poses of each
program and selected a subset of 100 decoys according to a systematic clustering
procedure that will be explained in more detail in Sect. 2.3. The intention behind
using four different docking algorithms was to explore the conformational space
as thoroughly as possible and to avoid a potential sampling bias of this space if
only one program were to be used.

In previous work, we have presented BA-based ML models for the ligand
scoring and ranking problems [3,4]. However, the focus of this work is on the
ligand docking problem and we present docking-specialized ML SFs in which we
consider a more diverse collection of features and an explicit modeling of RMSD
of binding poses, which dramatically improve docking performance.

1.3 Key Contributions

Various nonparametric ML methods inspired from statistical learning theory
are examined in this work to model the unknown function that maps structural
and physicochemical information of a protein-ligand complex to a corresponding
distance to the native pose (in terms of RMSD value). Ours is the first work to
perform a comprehensive assessment of the docking accuracies of conventional
and machine-learning (ML) SFs across both diverse and homogeneous (protein-
family-specific) test sets using a common diverse set of features across the ML
SFs. We show that the best ML SF has a success rate of ∼80% compared to
∼70% for the best conventional SF when the goal is to find poses within RMSD
of 1 Å from the native ones for 195 different protein-ligand complexes. Such a
significant improvement (> 14%) in docking power will lead to better quality
drug hits and ultimately help reduce costs associated with drug discovery.

We seek to advance structure-based drug design by designing SFs that signif-
icantly improve upon the protein-ligand modeling performance of conventional
SFs. Our approach is to couple the modeling power of flexible machine learning
algorithms with training datasets comprising hundreds of protein-ligand com-
plexes with native poses of known high-resolution 3D crystal structures and
experimentally-determined binding affinities. In addition, we computationally
generate a large number of decoy poses and utilize their RMSD values from the
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native pose and a variety of features characterizing each complex. We will com-
pare the docking accuracies of several ML and existing conventional SFs of all
three types, force-field, empirical, and knowledge-based, on diverse and indepen-
dent test sets. Further, we assess the impact of training set size on the docking
performance of the conventional BA-based SFs and the proposed RMSD-based
models.

The remainder of the paper is organized as follows. Section 2 presents the
compound database used for the comparative assessment of SFs (Sect. 2.1), the
physicochemical features extracted to characterize the compounds (Sect. 2.2),
the procedure for decoy generation and formation of training and test datasets
(Sect. 2.3), and conventional SFs (Sect. 2.4) and the ML methods (Sect. 2.5) that
we employ. Next, in Sect. 3, we present results comparing the docking powers of
conventional and ML SFs on diverse (Sect. 3.2) and homogeneous (Sect. 3.3) test
sets, and analyze how they are impacted by training set size (Sect. 3.4). Finally,
we close with concluding remarks in Sect. 4.

2 Materials and Methods

2.1 Compound Database

We used the 2007 version of PDBbind [16], the same complex database that
Cheng et al. used as a benchmark in their recent comparative assessment of six-
teen popular conventional SFs [2]. PDBbind is a selective compilation of the Pro-
tein Data Bank (PDB) database [17]. Both databases are publicly accessible and
regularly updated. The PDB is periodically mined and only complexes that are
suitable for drug discovery are filtered into the PDBbind database. In PDBbind,
a number of filters are imposed to obtain high-quality protein-ligand complexes
with both experimentally-determined BA and three-dimensional structure from
PDB [2]. A total of 1300 protein-ligand complexes are compiled into a refined set
after applying rigorous and systematic filtering criteria. The PDBbind curators
compiled another list out of the refined set. It is called the core set and is mainly
intended to be used for benchmarking docking and scoring systems. The core
set is composed of diverse protein families and diverse binding affinities. BLAST
[18] was employed to cluster the refined set based on protein sequence similarity
with a 90 % cutoff. From each resultant cluster, three protein-ligand complexes
were selected to be its representatives in the core set. A cluster must fulfill the
following criteria to be admitted into the core set: (i) it has at least four members
and (ii) the BA of the highest-affinity complex must be at least 100-fold of that
of the complex with the lowest one. The representatives were then chosen based
on their BA rank: the complex having the highest rank, the middle one, and the
one with the lowest rank. The approach of constructing the core set guarantees
unbiased, reliable, and biochemically rich test set of complexes. In order to be
consistent with the comparative framework used to assess the sixteen conven-
tional SFs mentioned above [2], we too consider the 2007 version of PDBbind
which consists of a 1300-complex refined set and a 195-complex core set (with
65 clusters).
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2.2 Compound Characterization

For each protein-ligand complex, we extracted physicochemical features used
in the empirical SFs X-Score [6] (a set of 6 features denoted by X) and Aff-
iScore [19] (a set of 30 features denoted by A) and calculated by GOLD [9]
(a set of 14 features denoted by G), and geometrical features used in the ML
SF RF-Score [20] (a 36-feature set denoted by R). The software packages that
calculate X-Score, AffiScore (from SLIDE), and RF-Score features were available
to us in an open-source form from their authors and a full list of these features
are provided in the appendix of [4]. The GOLD docking suite provides a utility
that calculates a set of general descriptors for both molecules. The set includes
some common ligand molecular properties such as: molecular weight, number
of rotatable bonds, number of hydrogen bonds, solvent exposed descriptors, etc.
Protein-specific features are also calculated that account for the number of polar,
acceptor, and donatable atoms buried in the binding pocket. As a complex, two
protein-ligand interaction features are calculated which are the number of ligand
atoms forming H-bonds and the number of ligand atoms that clash with protein
atoms. The full set of these features can be easily accessed and calculated via
the Descriptors menu in GOLD.

2.3 Decoy Generation and Formation of Training and Test Sets

The training dataset derived from the 2007 refined set is referred to as the
primary training set (1105 complexes) and we denote it by Pr. It is composed of
the 1300 refined-set complexes of 2007, excluding those 195 complexes present
in the core set of the same year’s version. The proteins of both these sets form
complexes with ligands that were observed bound to them during 3D structure
identification. These ligands are commonly known as native ligands and the
conformation in which they were found at their respective binding sites are
referred to as true or native poses. In order to assess the docking power of SFs
in distinguishing true poses from random ones, a decoy set was generated for
each protein-ligand complex in Pr and Cr. We utilize the decoy set produced for
the core set Cr by Cheng et al. [2] using four popular docking tools: LigandFit
in Discovery Studio, Surflex in SYBYL, FlexX in SYBYL (currently in LeadIT
[21]), and GOLD. From each tool, a diverse set of binding poses was generated by
controlling docking parameters as described in [2]. This process generated a total
of ∼2000 poses for each protein-ligand complex from the four docking protocols
combined. Binding poses that are more than 10 Å away, in terms of RMSD
(root-mean-square deviation), from the native pose are discarded. The remaining
poses are then grouped into ten 1 Å bins based on their RMSD values from the
native binding pose. Binding poses within each bin were further clustered into
ten clusters based on their similarities [2]. From each such subcluster, the pose
with the lowest noncovalent interaction energy with the protein was selected as
a representative of that cluster and the remaining poses in that cluster were
discarded. Therefore, at the end of this process, decoy sets consisting of (10 bins
× 10 representatives =) 100 diverse poses were generated for each protein-ligand
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complex. Since we have access to the original Cr decoy set, we used it as is and
we followed the same procedure to generate the decoy set for the training data
Pr. Since we did not have access to Discovery Studio software, we did not use
LigandFit protocol for the training data. In order to keep the size of the training
set reasonable, we generated 50 decoys for each protein-ligand complex instead
of 100 as it is the case for Cr complexes. Due to geometrical constraints during
decoy generation, the final number of resultant decoys for some complexes does
not add up exactly to 50 for Pr and 100 for Cr. It should be noted that the
decoys in the training set are completely independent of those in the test set
since both datasets share no ligands from which these decoys are generated.

We develop two types of ML SFs in this work. The first type are trained
to predict binding affinities (BAs) and use these scores to distinguish promising
poses from less promising ones. The second set involves building SFs to predict
RMSD values explicitly. As it will be shown later, this novel approach has a
superior accuracy over conventional BA-based prediction. Accordingly, two ver-
sions of training and test data sets are created. The first version uses BA as the
dependent variable (Y = BA) and the size of Pr remains fixed at 1,105 while
Cr includes 16,554 complexes because it consists of native poses and a decoy
set for each pose. The dependent variable of the second version is RMSD (Y =
RMSD) and because both training and test sets consist of native and decoy
poses, the size of Pr expands to 39,085 while Cr still retains the 16,554 complex
conformations.

For all protein-ligand complexes, for both native poses and computationally-
generated decoys, we extracted X, A, R, and G features. By considering all
fifteen combinations of these four types of features (i.e., X, A, R, G, X ∪ A,
X ∪R, X ∪G, A∪R, A∪G, R∪G, X ∪A∪R, X ∪A∪G, X ∪R∪G, A∪R∪G,
and X ∪A∪R∪G), we generated (15 × 2 =) 30 versions of the Pr and Cr data
sets, which we distinguish by using the notation PrYF and CrYF to denote that
the data set is characterized by the feature set F and its dependent variable is
Y . For instance, PrBA

XR denotes the version of Pr comprising the set of features
X ∪ R (referred to simply as XR) and experimentally-determined BA data for
complexes in the Pr dataset.

2.4 Conventional Scoring Functions

A total of sixteen popular conventional SFs are compared to ML SFs in this study.
The sixteen functions are either used in mainstream commercial docking tools
and/or have been developed in academia. The functions were recently compared
against each other in a study conducted by Cheng et al. [2]. This set includes five
SFs in the Discovery Studio software [11]: LigScore, PLP, PMF, Jain, and LUDI.
Five SFs in SYBYL software [22]: D-Score, PMF-Score, G-Score, ChemScore, and
F-Score. GOLD software [9] contributes three SFs: GoldScore, ChemScore, and
ASP. GlideScore in the Schrödinger software [23]. Besides, two standalone scoring
functions developed in academia are also assessed, namely, DrugScore [12] and X-
Score [6]. Some of the SFs have several options or versions, these include LigScore
(LigScore1 and LigScore2), PLP (PLP1 and PLP2), and LUDI (LUDI1, LUDI2,
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and LUDI3) in Discovery Studio; GlideScore (GlideScore-SP and GlideScore-XP)
in the Schrödinger software; DrugScore (DrugScore-PDB and DrugScore-CSD);
and X-Score (HPScore, HMScore, and HSScore). For brevity, we only report the
version and/or option that yields the best performance on the PDBbind bench-
mark that was considered by Cheng et al.

2.5 Machine Learning Methods

We utilize a total of six regression techniques in our study: multiple linear regres-
sion (MLR), multivariate adaptive regression splines (MARS), k-nearest neigh-
bors (kNN), support vector machines (SVM), random forests (RF), and boosted
regression trees (BRT) [24]. These techniques are implemented in the following
R language packages that we use [25]: the package stats readily available in R
for MLR, earth for MARS [26], kknn for kNN [27], e1071 for SVM [28], ran-
domForest for RF [29], and gbm for BRT [30]. These methods benefit from some
form of parameter tuning prior to their use in prediction. The optimal parameter
values we use to build our models resulted from a grid search associated with
10-fold cross validation over the training set Pr and are provided in [4]. These
values are obtained based on PrBA

F for any given feature set F ; optimizing based
on PrRMSD

F yielded similar parameter values, therefore, for brevity, we do not
include them here. For every machine-learning method, we will be using these
values to build ML SFs in the subsequent experiments.

3 Results and Discussion

3.1 Evaluation of Scoring Functions

In contrast to our earlier work in improving and examining scoring and ranking
accuracies of different families of SFs [3,4], this study is devoted to enhancing
and comparing SFs in terms of their docking powers. Docking power measures
the ability of an SF to distinguish a promising binding mode from a less promis-
ing one. Typically, generated conformations are ranked in non-ascending order
according to their predicted binding affinity (BA). Ligand poses that are very
close to the experimentally-determined ones should be ranked high. Closeness is
measured in terms of RMSD (in Å) from the true binding pose. Generally, in
docking, a pose whose RMSD is within 2 Å from the true pose is considered a
success or a hit.

In this work, we use comparison criteria similar to those used by Cheng et al.
to compare the docking accuracies of sixteen popular conventional SFs. Doing
so ensures fair comparison of ML SFs to those examined in that study in which
each SF was assessed in terms of its ability to find the pose that is closest to the
native one. More specifically, docking ability is expressed in terms of a success
rate statistic S that accounts for the percentage of times an SF is able to find a
pose whose RMSD is within a predefined cutoff value C Å by only considering
the N topmost poses ranked by their predicted scores. Since success rates for
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various C (e.g., 0, 1, 2, and 3 Å) and N (e.g., 1, 2, 3, and 5) values are reported
in this study, we use the notation SN

C to distinguish between these different
statistics. For example, S2

1 is the percentage of protein-ligand complexes whose
either one of the two best scoring poses are within 1 Å from the true pose of a
given complex. It should be noted that S1

0 is the most stringent docking measure
in which an SF is considered successful only if the best scoring pose is the native
pose. By the same token and based on the C and N values listed earlier, the least
strict docking performance statistic is S5

3 in which an SF is considered successful
if at least one of the five best scoring poses is within 3 Å from the true pose.

3.2 ML vs. Conventional Approaches on a Diverse Test Set

After building six ML SFs, we compare their docking performance to the sixteen
conventional SFs on the core test Cr that comprises thousands of protein-ligand
complex conformations corresponding to 195 different native poses in 65 diverse
protein families. As mentioned earlier, we conducted two experiments. In the
first, BA values predicted using the conventional and ML SFs were used to rank
poses in a non-ascending order for each complex in Cr. In the other experiment,
RMSD-based ML models directly predicted RMSD values that are used to rank
in non-descending order the poses for the given complex.

By examining the true RMSD values of the best N scoring ligands using
the two prediction approaches, success rates of SFs are shown in Fig. 2. Panels
(a) and (b) in the figure show the success rates S1

1 , S1
2 , and S1

3 for all 22 SFs.
The SFs, as in the other panels, are sorted in non-ascending order from the
most stringent docking test statistic value to the least stringent one. In the
top two panels, for example, success rates are ranked based on S1

1 , then S1
2 in

case of a tie in S1
1 , and finally S1

3 if two or more SFs tie in S1
2 . In both BA-

and RMSD-based scoring, we find that the 22 SFs vary significantly in their
docking performance. The top three BA-based SFs, GOLD::ASP, DS::PLP1, and
DrugScorePDB::PairSurf, have success rates of more than 60 % in terms of S1

1

measure. That is in comparison to the BA-based ML SFs, the best of which has
an S1

1 value barely exceeding 50 % (Fig. 2(a)). On the other hand, the other six
ML SFs that directly predict RMSD values achieve success rates of over 70 %
as shown in Fig. 2(b). The top performing of these ML SFs, MARS::XARG,
has a success rate of ∼80%. This is a significant improvement (>14%) over
the best conventional SF, the empirical GOLD::ASP, whose S1

1 value is ∼70%.
Similar conclusions can also be made for the less stringent docking performance
measures S1

2 and S1
3 in which the RMSD cut-off constraint is relaxed to 2 Å and

3 Å, respectively.
The success rates plotted in the top two panels (Fig. 2 (a) and (b)) are

reported when native poses are included in the decoy sets. Panels (c) and (d) of
the same figure show the impact of removing the native poses on docking suc-
cess rates of all SFs. It is clear that the performance of almost all SFs does not
radically decrease by examining the difference in their S1

2 statistics which ranges
from 0 to ∼5%. This, as it was noted by Cheng et al. [2], is due to the fact that



24 H.M. Ashtawy and N.R. Mahapatra

Success Rate (%)
(a) C = 1, 2 and 3 Angstrom, N = 1 pose, Y = BA.

SYBYL::D−Score
kNN::XR

SYBYL::G−Score
DS::Jain

DS::PMF
SYBYL::PMF−Score

RF::XRG
MARS::XRG

SYBYL::ChemScore
DS::Ludi2

BRT::XARG
SVM::XAG

MLR::XARG
X−Score1.2::HMScore

GOLD::GoldScore
DS::LigScore2

SYBYL::F−Score
GOLD::ChemScore

GlideScore::SP
DrugScorePDB::PairSurf

DS::PLP1
GOLD::ASP

0 10 20 30 40 50 60 70 80 90 100

C = 1 Angstrom
C = 2 Angstrom
C = 3 Angstrom

Success Rate (%)
(b) C = 1, 2 and 3 Angstrom, N = 1 pose, Y = RMSD.

SYBYL::D−Score
SYBYL::G−Score

DS::Jain
DS::PMF

SYBYL::PMF−Score
SYBYL::ChemScore

DS::Ludi2
X−Score1.2::HMScore

GOLD::GoldScore
DS::LigScore2

SYBYL::F−Score
GOLD::ChemScore

GlideScore::SP
DrugScorePDB::PairSurf

DS::PLP1
GOLD::ASP

kNN::XG
BRT::G

MLR::XG
SVM::XAG
RF::XARG

MARS::XARG

0 10 20 30 40 50 60 70 80 90 100

C = 1 Angstrom
C = 2 Angstrom
C = 3 Angstrom

Success Rate (%)
(c) C = 2 Angstrom, N = 1 pose, Y =BA.

SYBYL::D−Score
kNN::XRG

SYBYL::G−Score
DS::PMF

SYBYL::PMF−Score
DS::Jain

RF::XRG
SVM::AG

BRT::XAG
MARS::XRG

DS::Ludi2
SYBYL::ChemScore

MLR::XRG
SYBYL::F−Score

X−Score1.2::HMScore
GOLD::GoldScore

DS::PLP1
DS::LigScore2

DrugScorePDB::PairSurf
GOLD::ChemScore

GlideScore::SP
GOLD::ASP

0 10 20 30 40 50 60 70 80 90 100

Native pose not included
Native pose included

Success Rate (%)
(d) C = 2 Angstrom, N = 1 pose, Y =RMSD.

SYBYL::D−Score
SYBYL::G−Score

DS::PMF
SYBYL::PMF−Score

DS::Jain
DS::Ludi2

SYBYL::ChemScore
SYBYL::F−Score

X−Score1.2::HMScore
GOLD::GoldScore

DS::PLP1
DS::LigScore2

DrugScorePDB::PairSurf
GOLD::ChemScore

GlideScore::SP
GOLD::ASP

kNN::XG
BRT::XRG

SVM::XAG
MLR::G

MARS::G
RF::RG

0 10 20 30 40 50 60 70 80 90 100

Native pose not included
Native pose included

Success Rate (%)
(e) C = 2 Angstrom, N = 1, 2 and 3 poses, Y = BA.

SYBYL::D−Score
kNN::XRG

SYBYL::G−Score
DS::PMF
DS::Jain

SYBYL::PMF−Score
RF::XRG

BRT::XAG
SVM::AG
DS::Ludi2

MARS::XRG
SYBYL::ChemScore

SYBYL::F−Score
MLR::XG

X−Score1.2::HMScore
GOLD::GoldScore

GOLD::ChemScore
DS::LigScore2
GlideScore::SP

DrugScorePDB::PairSurf
DS::PLP1

GOLD::ASP

0 10 20 30 40 50 60 70 80 90 100

N = 1
N = 2
N = 3

Success Rate (%)
(f) C = 2 Angstrom, N = 1, 2 and 3 poses, Y = RMSD.

SYBYL::D−Score
SYBYL::G−Score

DS::PMF
DS::Jain

SYBYL::PMF−Score
DS::Ludi2

SYBYL::ChemScore
SYBYL::F−Score

X−Score1.2::HMScore
GOLD::GoldScore

GOLD::ChemScore
DS::LigScore2
GlideScore::SP

DrugScorePDB::PairSurf
DS::PLP1

GOLD::ASP
kNN::XG

SVM::XAG
BRT::XRG
MLR::XG

MARS::XG
RF::RG

0 10 20 30 40 50 60 70 80 90 100

N = 1
N = 2
N = 3

Success Rate (%)
(g) C = 0 Angstrom, N = 1, 3 and 5 poses, Y = BA.

kNN::XRG
MARS::XRG

RF::XRG
SVM::XRG

BRT::XG
MLR::X

0 10 20 30 40 50 60 70 80 90 100

N = 1
N = 3
N = 5

Success Rate (%)
(h) C = 0 Angstrom, N = 1, 3 and 5 poses, Y = RMSD.

kNN::XG
BRT::XARG
SVM::XAG
RF::XARG

MLR::XARG
MARS::XARG

0 10 20 30 40 50 60 70 80 90 100

N = 1
N = 3
N = 5

Fig. 2. Success rates of conventional and ML SFs in identifying binding poses that are
closest to native ones. The results show these rates by examining the top N scoring
ligands that lie within an RMSD cut-off of C Å from their respective native poses.
Panels on the left show success rates when binding-affinity based (BA) scoring is used
and the ones on the right show the same results when ML SFs predicted RMSD val-
ues directly. Scoring of conventional SFs is BA-based in all cases and for comparison
convenience we show their performance in the right panels as well.
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some of the poses in the decoy sets are actually very close to the native ones. As
a result, the impact of allowing native poses in the decoy sets is insignificant in
most cases and therefore we include such poses in all other tests in the paper.

In reality, more than one pose is usually used from the outcomes of a docking
run in the next stages of drug design for further experimentation. It is useful
therefore to assess docking accuracy of SFs when more than one pose is consid-
ered (i.e., N > 1). Figure 2 (e) and (f) show the success rates of SFs when the
RMSD values of the best 1, 2, and 3 scoring poses are examined. These rates
correspond, respectively, to S2

1 , S2
2 , and S2

3 . The plots show a significant boost
in performance for almost all SFs. By comparing S2

1 to S2
3 , we observe a jump in

accuracy from 82 % to 92 % for GOLD::ASP and from 87 % to 96 % for RF::RG
that models RMSD values directly. Such results signify the importance of exam-
ining an ensemble of top scoring poses because there is a very good chance it
contains relevant conformations and hence good drug candidates.

Upon developing RMSD-based ML scoring models, we noticed excellent
improvement over their binding-affinity-based counterparts as shown in Fig. 2.
We conducted an experiment to investigate whether they will maintain a similar
level of accuracy when ML SFs are examined for their ability to pinpoint the
native poses from their respective 100-pose decoy sets. The bottom two panels,
(g) and (h), plot the success rates in terms of S1

0 , S3
0 , and S5

0 for the six ML
SFs. By examining the five best scoring poses, we notice that the top BA-based
SF, MLR::X, was able to distinguish native binding poses in ∼60% of the 195
decoy sets whereas the top RMSD-based SF, MARS::XARG, achieved a success
rate of S5

0 = 77% on the same protein-ligand complexes. It should be noted that
both sets of ML SFs, the BA- and RMSD-based, were trained and tested on
completely disjoint test sets. Therefore, this gap in performance is largely due
to the explicit modeling of RMSD values and the corresponding abundance of
training data which includes information from both native and computationally-
generated poses.

3.3 ML vs. Conventional Approaches on Homogeneous Test Sets

In the previous section, performance of SFs was assessed on the diverse test set
Cr. The core set consists of more than sixty different protein families each of
which is related to a subset of protein families in Pr. That is, while the train-
ing and test set complexes were different (at least for all the ML SFs), proteins
present in the core test set were also present in the training set, albeit bound to
different ligands. A much more stringent test of SFs is their evaluation on a com-
pletely new protein, i.e., when test set complexes all feature a given protein—test
set is homogeneous—and training set complexes do not feature that protein. To
address this issue, four homogeneous test sets were constructed corresponding to
the four most frequently occurring proteins in our data: HIV protease (112 com-
plexes), trypsin (73), carbonic anhydrase (44), and thrombin (38). Each of these
protein-specific test sets was formed by extracting complexes containing the pro-
tein from Cr (one cluster or three complexes) and Pr (remaining complexes).
For each test set, we retrained BRT, RF, SVM, kNN, MARS, and MLR models
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on the non-test-set complexes of Pr. Figure 3 shows the docking performance of
resultant BA and RMSD-based ML scoring models on the four protein families.
The plots clearly show that success rates of SFs are dependent on the protein
family under investigation. It is easier for some SFs to distinguish good poses
for HIV protease and thrombin than for carbonic anhydrase. The best perform-
ing SFs on HIV protease and thrombin complexes, MLR::XRG and MLR::XG,
respectively, achieve success rates of over 95 % in terms of S3

1 as shown in panels
(b) and (n), whereas no SF exceeded 65 % in success rate in case of carbonic
anhydrase as demonstrated in panels (i) and (j). Finding the native poses is even
more challenging for all SFs, although we can notice that RMSD-based SFs out-
perform those models that rank poses using predicted BA. The exception to this
is the SF MLR::XAR whose performance exceeds all RMSD-based ML models
in terms of the success rate in reproducing native poses as illustrated in panels
(c) and (d).

The results also indicate that multivariate linear regression models (MLR),
which are basically empirical SFs, are the most accurate across the four families,
whereas ensemble learning models, RF and BRT, unlike their good performance
in Fig. 2, appear to be inferior compared to simpler models in Fig. 3. This can be
attributed to the high rigidity of linear models compared to ensemble approaches.
In other words, linear models are not as sensitive as ensemble techniques to the
presence or absence of certain protein family in the data on which they are
trained. On the other hand, RF- and BRT-based SFs are more flexible and
adaptive to their training data that in some cases fail to generalize well enough
to completely different test proteins as seen in Fig. 3. In practice, however, it
has been observed that more than 92 % of today’s drug targets are similar to
known proteins in PDB [31], an archive of high quality complexes from which
our training and test compounds originated. Therefore, if the goal of a docking
run is to identify the most stable poses, it is important to consider sophisticated
SFs (such as RF and BRT) calibrated with training sets containing some known
binders to the target of interest. Simpler models, such as MLR and MARS, tend
to be more accurate when docking to novel proteins that are not present in
training data.

Sophisticated ML algorithms are not the only critical element in building
a capable SF. Features to which they are fitted also play an important role as
can be seen in Fig. 3. By comparing the right panels to the ones on the left, we
can notice that X-Score features (X) are almost always present in BA-based SFs
while those provided by GOLD (G) are used more to model RMSD explicitly.
This implies that X-Score features are more accurate than other feature sets
in predicting BA, while GOLD features are the best for estimating RMSD and
hence poses close to the native one.

3.4 Impact of Training Set Size

An important factor influencing the accuracy of ML SFs is the size of the train-
ing dataset. In the case of BA-based ML SFs, training dataset size can be
increased by training on a larger set of protein-ligand complexes with known
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Fig. 3. Success rates of ML SFs in identifying binding poses that are closest to native
ones observed in four protein families: HIV protease (a-d), trypsin (e-h), carbonic
anhydrase (i-l), and thrombin (m-p). The results show these rates by examining the
top N scoring ligands that lie within an RMSD cut-off of C Å from their respective
native poses. Panels on the left show success rates when binding-affinity based (BA)
scoring is used and the ones on the right show the same results when ML SFs predicted
RMSD values directly.
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binding affinity values. In the case of RMSD-based SFs, on the other hand,
training dataset size can be increased not only by considering a large number of
protein-ligand complexes in the training set, but also by using a larger number
of computationally-generated ligand poses per complex since each pose provides
a new training record because it corresponds to a different combination of fea-
tures and/or RMSD value. Unlike experimental binding affinity values, which
have inherent noise and require additional resources to obtain, RMSD from the
native conformation for a new ligand pose is computationally determined and is
accurate.

We carried out three different experiments to determine: (i) the response of
BA-based ML SFs to increasing number of training protein-ligand complexes,
(ii) the response of RMSD-based ML SFs to increasing number of training
protein-ligand complexes while the number of poses for each complex is fixed
at 50, and (iii) the response of RMSD-based ML SFs to increasing number of
computationally-generated poses while the number of protein-ligand complexes
is fixed at 1105. In the first two experiments, we built 6 ML SFs, each of which
was trained on a randomly sampled x% of the 1105 protein-ligand complexes in
Pr, where x = 10, 20, . . . , 100. The dependent variable in the first experiment
is binding affinity (Y = BA), and the performance of these BA-based ML SFs
is shown in Fig. 4(a) and partly in Fig. 4(d) (MLR::XARG). The set of RMSD
values from the native pose is used as a dependent variable for ML SFs trained
in the second experiment (Y = RMSD). For a given value of x, the number of
conformations is fixed at 50 ligand poses for each protein-ligand complex. The
docking accuracy of these RMSD-based ML models is shown in Fig. 4(b). In the
third experiment, all 1105 complexes in Pr were used for training the RMSD-
based ML SFs (i.e., Y = RMSD) with x randomly sampled poses considered per
complex, where x = 2, 6, 10, . . . , 50; results for this are reported in Fig. 4(c) and
partly in Fig. 4(d) (MARS::XARG). In all three experiments, results reported
are the average of 50 random runs in order to ensure all complexes and a vari-
ety of poses are equally represented. All training and test complexes in these
experiments are characterized by the XARG (=X ∪ A ∪ R ∪ G) features.

From Fig. 4(a), it is evident that increasing training dataset size has a positive
impact on docking accuracy (measured in terms of S1

1 success rate), although
it is most appreciable in the case of MLR::XARG and MARS::XARG, two of
the simpler models, MLR being linear and MARS being piecewise linear. The
performance of the other models, which are all highly nonlinear, seems to satu-
rate at 60 % of the maximum training dataset size used. The performance of all
six models is quite modest, with MLR::XARG being the only one with docking
success rate (slightly) in excess of 50 %. The explanation for these results is that
binding affinity is not a very good response variable to learn for the docking
problem because the models are trained only on native poses (for which binding
affinity data is available) although they need to be able to distinguish between
native and non-native poses during testing. This means that the training data
is not particularly well suited for the task for which these models are used.
An additional reason is that experimental binding affinity data, though useful,
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Fig. 4. Dependence of docking accuracy of ML scoring models on training set size
when training complexes are selected randomly (without replacement) from Pr and
the models are tested on Cr. The size of the training data was increased by including
more protein-ligand complexes ((a) and (b)) or more computationally-generated poses
for all complexes ((c) and (d)).

is inherently noisy. The flexible highly nonlinear models, RF, BRT, SVM, and
kNN, are susceptible to this noise because the training dataset (arising only from
native poses) is not particularly relevant to the test scenario (consisting of both
native and non-native poses). Therefore, the more rigid MLR and MARS models
fair better in this case.

When RMSD is used as the response variable, the training set consists of
data from both native and non-native poses and hence is more relevant to the
test scenario and the RMSD values, being computationally determined, are also
accurate. Consequently, docking accuracy of all SFs improves dramatically com-
pared to their BA-based counterparts as can be observed by comparing Fig. 4(a)
to Fig. 4(b) and (c). We also notice that all SFs respond favorably to increas-
ing training set size by either considering more training complexes (Fig. 4(b)) or
more computationally-generated training poses (Fig. 4(c)). Even for the small-
est training set sizes in Fig. 4(b) and (c), we notice that the docking accuracy
of most RMSD-based SFs is about 70 % or more, which is far better than the
roughly 50 % success rate for the largest training set size for the best BA-based
SF MLR::XARG.
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In Fig. 4(d), we compare the top performing RMSD SF, MARS::XARG, to
the best BA-based SFs, GOLD::ASP and MLR::XARG, to show how docking
performance can be improved by just increasing the number of computationally-
generated poses, an important feature that RMSD-based SFs possess but which
is lacking in their BA-based conventional counterparts. To increase the per-
formance of these BA-based SFs to a comparable level, thousands of protein-
ligand complexes with high-quality experimentally-determined binding affinity
data need to be collected. Such a requirement is too expensive to meet in prac-
tice. Furthermore, RMSD-based SFs with the same training complexes will still
likely outperform BA-based SFs.

4 Conclusion

We found that ML models trained to explicitly predict RMSD values significantly
outperform all conventional SFs in almost all testing scenarios. The estimated
RMSD values of such models have a correlation coefficient of 0.7 on average with
the true RMSD values. On the other hand, predicted binding affinities have a
correlation of as low as -0.2 with the measured RMSD values. This difference
in correlation explains the wide gap in docking performance between the top
SFs of the two approaches. The empirical SF GOLD::ASP, which is the best
conventional model, achieved a success rate of 70 % in identifying a pose that lies
within 1 Å from the native pose of 195 different complexes. On other hand, our
top RMSD-based SF, MARS::XARG, has a success rate of ∼80 % on the same
test set, which represents a significant improvement in docking performance. We
also observed steady gains in the performance of RMSD-based ML SFs as the
training set size was increased by considering more protein-ligand complexes
and/or more computationally-generated ligand poses for each complex.
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