
Chapter 2
Fundamentals of Nonlinear Systems

In this chapter, we review some fundamental concepts and properties of nonlinear
control systems that will be referred to in the subsequent chapters. In Sects. 2.1
and 2.2, we summarize the stability and robust stability concepts and the funda-
mental Lyapunov’s stability theory. In Sect. 2.3, we establish some lemmas for the
analysis of adaptive control systems. In Sect. 2.4, we introduce the concept of input-
to-state stability of nonlinear control systems. In Sects. 2.5 and 2.6, we introduce
the changing supply function technique and its applications to two classes of sta-
bilzation approaches. In Sect. 2.7, we present the small gain method in the context
of input-to-state stability. The notes and references are given in Sect. 2.8.

The materials in Sects. 2.1 and 2.2 are standard in nonlinear control literature and
hence all proofs of results in these sections are omitted. Sections 2.3–2.7 do contain
some new ingredients and detailed proofs are provided for those results which are
considered non-standard.

2.1 Stability Concepts

In this section, we study the stability concepts for the general non-autonomous system
described by (1.1) while viewing the autonomous systems as a special case of (1.1).
To guarantee the existence of the unique solution x(t) to the system (1.1) satisfying
an initial condition (see Theorems 11.1 and 11.2 in the Appendix), it is assumed
throughout the chapter that the function f (x, t) in (1.1) is piecewise continuous in
t and locally Lipschitz in x for all t ≥ t0 ≥ 0 and all x ∈ R

n . A constant vector
xe ∈ R

n is said to be an equilibrium point of the system (1.1) if

f (xe, t) = 0, ∀t ≥ t0 ≥ 0.

If a nonzero vector xe is an equilibrium point of (1.1), then one can always introduce
a new state variable x̂ = x − xe and define a new system ˙̂x = f (x̂ + xe, t) which
has x̂ = 0 as its equilibrium point. Thus, without loss of generality, one can assume
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16 2 Fundamentals of Nonlinear Systems

that the origin of R
n , i.e., x = 0, is an equilibrium point of the system (1.1). With

respect to the equilibrium point at the origin, various stability concepts are defined
below.

Definition 2.1 The equilibrium point x = 0 of the system (1.1) is

(i) Lyapunov stable (or stable) at t0 if for any R > 0, there exists r(R, t0) > 0
such that ‖x(t)‖ < R for all t ≥ t0, and all ‖x(t0)‖ < r(R, t0).

(ii) unstable at t0, if it is not stable at t0.
(iii) asymptotically stable (AS) at t0 if it is stable at t0, and there exists δ(t0) > 0

such that ‖x(t)‖ → 0 as t → ∞ for all ‖x(t0)‖ < δ(t0).
(iv) globally asymptotically stable (GAS) at t0 if it is stable at t0 and ‖x(t)‖ → 0

as t → ∞ for all x(t0) ∈ R
n .

Definition 2.2 The equilibrium point x = 0 of the system (1.1) is

(i) uniformly stable (US) if for any R > 0, there exists r(R) > 0, independent of
t0, such that ‖x(t)‖ < R for all t ≥ t0, and all ‖x(t0)‖ < r(R).

(ii) uniformly asymptotically stable (UAS) if it is uniformly stable, and there exists
δ > 0, independent of t0, such that, for all ‖x(t0)‖ < δ, ‖x(t)‖ → 0 as t → ∞
uniformly in t0, i.e., for any ε > 0, there exists T > 0, independent of t0, such
that, for all ‖x(t0)‖ < δ, ‖x(t)‖ < ε whenever t > t0 + T .

(iii) uniformly globally asymptotically stable (UGAS) if it is uniformly stable, and
for any ε > 0, and any δ > 0, there exists T > 0, independent of t0, such that,
for all ‖x(t0)‖ < δ, ‖x(t)‖ < ε whenever t > t0 + T .

In Definition 2.2, US, UAS, UGAS can be equivalently stated in terms of class
K, class K∞ and class KL functions described as follows.

Definition 2.3 A continuous function γ : [0, a) �→ [0,∞) is said to belong to class
K if it is strictly increasing and satisfies γ (0) = 0, and is said to belong to class K∞
if, additionally, a = ∞ and limr→∞ γ (r) = ∞.

Definition 2.4 A continuous function β : [0, a) × [0,∞) �→ [0,∞) is said to
belong to class KL if, for each fixed s, the function β(·, s) is a class K function
defined on [0, a), and, for each fixed r , the function β(r, ·) : [0,∞) �→ [0,∞) is
decreasing and lims→∞ β(r, s) = 0.

Definition 2.5 The equilibrium point x = 0 of the system (1.1) is

(i) US if there exist a class K function γ and δ > 0, independent of t0, such that
‖x(t)‖ ≤ γ (‖x(t0)‖) for all t ≥ t0, and all ‖x(t0)‖ < δ.

(ii) UAS if there exist a class KL function β and δ > 0, independent of t0, such
that ‖x(t)‖ ≤ β(‖x(t0)‖, t − t0) for all t ≥ t0, and all ‖x(t0)‖ < δ.

(iii) UGAS if there exists a classKL functionβ, independent of t0, such that‖x(t)‖ ≤
β(‖x(t0)‖, t − t0) for all t ≥ t0, and all x(t0) ∈ R

n .
(iv) exponentially stable (ES) or globally exponentially stable (GES) if it is UAS or

UGAS with
β(r, s) = kre−λs, k ≥ 1, λ > 0.
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For an autonomous system of the form (1.2), if x(t) is the solution of (1.2) satis-
fying the initial condition x(t0) = x0, then x̂(t) = x(t + t0) is the solution of (1.2)
satisfying the initial condition x̂(0) = x0. Therefore, one can always assume t0 = 0
for an autonomous system. Moreover, for an autonomous system, if the equilibrium
point is stable (or AS, GAS) at t0, it is also US (or UAS, UGAS).

A typical non-autonomous system whose equilibrium point is GAS but not UGAS
is given as follows.

Example 2.1 Consider a first order time-varying system

ẋ = − x

1 + t
, x ∈ R. (2.1)

It can be verified that, for any initial state x(t0) with any initial time t0 ≥ 0, the
solution of (2.1) is

x(t) = x(t0)
1 + t0
1 + t

, ∀t ≥ t0.

Observe that the equilibrium point x = 0 is US and GAS. But, for given ε > 0
and δ > 0, in order to make ‖x(t)‖ < ε for all ‖x(t0)‖ < δ, t must be greater than
T = δ(1 + t0)/ε−1. Since this T cannot be made independent of t0, the equilibrium
point is not UGAS.

There is another method to draw the above conclusion. Consider a class KL
function

β(r, s) = r
1 + t0

1 + t0 + s

satisfying

‖x(t)‖ = β (‖x(t0)‖, t − t0) ,

thus, the equilibrium point x = 0 is GAS. But the function β depends on t0, and
it is impossible to find another class KL function β̄, independent of t0, such that
β(r, s) ≤ β̄(r, s), which concludes that the equilibrium point is not UGAS. In fact,
if this is not the case, we have

r
1 + t0

1 + t0 + s
≤ β̄(r, s),

and there exist a real number s∗ satisfying β̄(r, s∗) ≤ r/2. Thus, for any t0 ≥ 0,

r
1 + t0

1 + t0 + s∗ ≤ r

2
,

http://dx.doi.org/10.1007/978-3-319-08834-1_1
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i.e.,
t0 ≤ s∗ − 1,

which contradicts that t0 is an arbitrary nonnegative real number.

For a simple system such as (2.1), one may test the stability of its equilibrium point
from the analytical expression of its solution. However, it is usually impossible to
obtain the analytical solution to a complicated nonlinear system. Therefore, one may
have to turn to other indirect methods to test a system’s stability. Lyapunov’s stability
theory is one of the effective methods. Let us first introduce the Lyapunov’s stability
theory for the autonomous system (1.2). Suppose the function f (x) is continuously
differentiable with x in a neighborhood of the origin of R

n . Define the Jacobian
matrix of f (x) at the origin as

F = ∂ f

∂x
(0).

Then we have the following result.

Theorem 2.1 (Lyapunov’s Linearization Theorem) Consider the system (1.2).
The equilibrium point x = 0 is AS if all the eigenvalues of the matrix F have
negative real parts; and is unstable if at least one eigenvalue of the matrix F has
positive real part.

Remark 2.1 Theorem 2.1 cannot handle the case in which none of the eigenvalues
of the matrix F has positive real part, but at least one of them has zero real part, and
it does not tell whether the asymptotic stability is global or local.

Example 2.2 Consider a nonlinear system

ẋ = − sin x + x2. (2.2)

The Jocobian matrix (scalar) is F = −1. So, the system is locally asymptotically
stable. On the other hand, we have ẋ = − sin x + x2 > 0 if x ≥ 0.88. Therefore,
x(t) > x(0) ≥ 0.88, ∀t > 0, if x(0) ≥ 0.88. It implies that the system is not globally
asymptotically stable. The state trajectories of the system (2.2) are illustrated in
Fig. 2.1 with different initial state values. It shows that the state trajectory converges
to the equilibrium point if the initial state is x(0) = 0.80 or x(0) = 0.87, but it
diverges if the initial state is x(0) = 0.88.

On the other hand, the following Lyapunov’s direct theorem can handle the two
cases mentioned in Remark 2.1.

Theorem 2.2 (Lyapunov’s Direct Theorem) Consider the system (1.1). If there exists
a continuously differentiable function V : R

n × [t0,∞) �→ R
+ such that, for some

class K functions ᾱ and α, defined on [0, δ) for some δ > 0,

α(‖x‖) ≤ V (x, t) ≤ ᾱ(‖x‖) (2.3)

V̇ (x, t) := ∂V (x, t)

∂t
+ ∂V (x, t)

∂x
f (x, t) ≤ 0, ∀‖x‖ < δ, ∀t ≥ t0, (2.4)

http://dx.doi.org/10.1007/978-3-319-08834-1_1
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Fig. 2.1 Profile of state trajectories of the system in Example 2.2

then the equilibrium point x = 0 is US. If, (2.4) is replaced by

V̇ (x, t) ≤ −α(‖x‖), ∀‖x‖ < δ, ∀t ≥ t0, (2.5)

where α is a class K function defined on [0, δ), then the equilibrium point x = 0 is
UAS. Moreover, if δ = ∞, and ᾱ and α are class K∞ functions, then the equilibrium
point x = 0 is UGAS.

A continuously differentiable function V : R
n × [t0,∞) �→ R

+ satisfying (2.3)
and (2.4) is called a Lyapunov function for (1.1).

Example 2.3 Consider the system (2.2) again. Let V (x) = x2 whose derivative
along the system trajectory satisfies

V̇ (x) = 2x(− sin x + x2) = −2x2 + a(x)

for a(x) = 2x(x − sin x + x2). There exists a constant δ such that
|a(x)/x2| = 2|1 − sin x/x + x | < 1 for |x | < δ. As a result, |a(x)| < x2 for
|x | < δ, and hence V̇ (x) ≤ −x2. So, the system is locally asymptotically stable.

2.2 Robust Stability

In practice, a nonlinear system inevitably contains certain types of uncertainties such
as external disturbances and parameter perturbations. To describe these uncertainties,
we consider an uncertain nonlinear system of the following form:

ẋ = f (x, d(t)) (2.6)

http://dx.doi.org/10.1007/978-3-319-08834-1_1
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where d: [t0,∞) �→ D ⊂ R
l with D a non-empty set represents external unpre-

dictable disturbance and/or internal parameter variation. We assume that the func-
tion f (x, d(t)) is piecewise continuous in d and locally Lipschitz in x , and the
function d(t) is piecewise continuous in t . The system (2.6) is called a non-
autonomous/uncertain system if d is time-varying. Taking into account the uncer-
tainty d(t), the control system (1.4)–(1.6) can be written as

ẋ = f (x, u, d(t)) (2.7)

y = h(x, u, d(t)) (2.8)

ym = hm(x, u, d(t)). (2.9)

The closed-loop system composed of (2.7)–(2.9) with ym = hm(x, d(t)) and the
controller (1.11) is

ẋc = fc(xc, d(t)) (2.10)

where

xc =
[

x
ν

]
, fc(xc, d(t)) =

[
f (x, κ1(ν, hm(x, d(t))), d(t))

κ2(ν, hm(x, d(t)))

]
.

Example 2.4 In Example 1.1, if we replace the known external excitation cos t by
an unknown external disturbance d(t), then the system (1.3) can be expressed in the
form (2.6) with

f (x, d(t)) =
[

x2

−x1 − x3
1 + d(t)

]
.

For an uncertain system of the form (2.6), a constant vector xe ∈ R
n , independent

of the signal d(t), is said to be an equilibrium point of (2.6) if

f (xe, d(t)) = 0, ∀t ≥ t0.

As explained for the equilibrium point of (1.1), without loss of generality, one only
needs to consider the equilibrium point of the system (2.6) at the origin of R

n , i.e.,
x = 0.

For each fixed d(t), the uncertain system (2.6) reduces to the system (1.1). There-
fore, various stability concepts described in Definition 2.5 for the system (1.1) also
apply to the uncertain system (2.6). In this case, the functions β, γ , and the numbers
δ, k, λ in Definition 2.5 may depend on specific d(t). However, for some scenarios,
one may find the functions β, γ , and the numbers δ, k, λ in Definition 2.5 which
are independent of any d(t) ∈ D. To distinguish these two scenarios, we further
introduce the following robust stability concepts.

Definition 2.6 The equilibrium point x = 0 of the system (2.6) is robustly uniformly
asymptotically stable (RUAS) or robustly uniformly globally asymptotically stable

http://dx.doi.org/10.1007/978-3-319-08834-1_1
http://dx.doi.org/10.1007/978-3-319-08834-1_1
http://dx.doi.org/10.1007/978-3-319-08834-1_1
http://dx.doi.org/10.1007/978-3-319-08834-1_1
http://dx.doi.org/10.1007/978-3-319-08834-1_1
http://dx.doi.org/10.1007/978-3-319-08834-1_1
http://dx.doi.org/10.1007/978-3-319-08834-1_1
http://dx.doi.org/10.1007/978-3-319-08834-1_1
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(RUGAS) if it is UAS or UGAS with β and δ in Definition 2.5 independent of
d(t) ∈ D, or is robustly exponentially stable (RES) or robustly globally exponentially
stable (RGES) if it is ES or GES with k and λ in Definition 2.5 independent of
d(t) ∈ D.

An uncertain system whose equilibrium point at the origin is UGAS but not
RUGAS is given as follows.

Example 2.5 Consider the following system

ẋ = − 1

1 + d2 x, x ∈ R, d ∈ R. (2.11)

It can be verified that, for any initial state x(t0) with any initial time t0 ≥ 0, the
solution to (2.11) is

x(t) = x(t0) exp

( −1

1 + d2 (t − t0)

)
, ∀t ≥ t0.

Observe that

‖x(t)‖ = β(‖x(t0)‖, t − t0)

with

β(r, s) = r exp

( −1

1 + d2 s

)
.

Thus, the equilibrium point x = 0 is UGAS. But, the function β depends on d, and
it is impossible to find another class KL function β̄, independent of d, such that
β(r, s) ≤ β̄(r, s), which concludes that the equilibrium point is not RUGAS. In fact,
if this is not the case, we have

r exp

( −1

1 + d2 s

)
≤ β̄(r, s),

and there exist a real number s∗ satisfying β̄(r, s∗) ≤ r/2. Thus, for any d ∈ R,

r exp

( −1

1 + d2 s∗
)

≤ r

2
,

i.e.,

d2 ≤ s∗

ln 2
− 1,

which contradicts that d is an arbitrary real number.
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Remark 2.2 It can be seen that if d is within a compact set, e.g., d ∈ [−1, 1],
then the origin of (2.11) is RUGAS, since ‖x(t)‖ ≤ β(‖x(t0)‖, t − t0) holds for
β(r, s) = re−0.5s, independent of d. In general, if the range of d(t) is a compact
set, then UAS, UGAS, and GES of the equilibrium point x = 0 of the system (2.6)
imply RUAS, RUGAS, and RGES of the same equilibrium point, respectively.

The Lyapunov’s stability theory, i.e., Theorems 2.1 and 2.2 can be generalized to
the uncertain system (2.6). For example, the counterpart of Theorem 2.2 is stated as
follows.

Theorem 2.3 (Lyapunov’s Direct Theorem) Consider the system (2.6). If there exists
a continuously differentiable function V : R

n × [t0,∞) �→ R
+ such that, for some

class K functions ᾱ and α, defined on [0, δ) for some δ > 0,

α(‖x‖) ≤ V (x, t) ≤ ᾱ(‖x‖) (2.12)

V̇ (x, t) := ∂V (x, t)

∂t
+ ∂V (x, t)

∂x
f (x, d(t)) ≤ 0, ∀‖x‖ < δ, ∀t ≥ t0, (2.13)

for all d ∈ D, then the equilibrium point x = 0 is US. If, (2.13) is replaced by

V̇ (x, t) ≤ −α(‖x‖), ∀‖x‖ < δ, ∀t ≥ t0, (2.14)

where α is a class K function defined on [0, δ), then the equilibrium point x = 0 is
RUAS. Moreover, if δ = ∞, and ᾱ and α are class K∞ functions, then the equilibrium
point x = 0 is RUGAS.

Theorem 2.4 Suppose the conditions (2.12) and (2.14) in Theorem 2.3 are satisfied
with

α(‖x‖) = k1‖x‖c, ᾱ(‖x‖) = k2‖x‖c, α(‖x‖) = k3‖x‖c,

for some positive constants k1, k2, k3, and c. Then the equilibrium point x = 0 is
RES. Moreover, if δ = ∞, it is RGES.

2.3 Tools for Adaptive Control

In this section, we introduce some tools for adaptive control, including Barbalat’s
Lemma, LaSalle-Yoshizawa Theorem, persistent excitation criteria, and a parameter
convergence lemma.

Lemma 2.1 (Barbalat’s Lemma) Let α : [t0,∞) �→ R be a continuously differen-
tiable scalar function. If α(t) has a finite limit as t → ∞, and α̇(t) is uniformly
continuous over [t0,∞), then

lim
t→∞ α̇(t) = 0.
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As an application of Barbalat’s Lemma, we can obtain the following result.

Theorem 2.5 (LaSalle-Yoshizawa Theorem) Consider the system (2.6) where
f (x, d(t)) is locally Lipschitz in x uniformly in t. If there exists a continuously
differentiable function V (x, t) : R

n × [t0,∞) �→ R
+ such that

W1(x) ≤ V (x, t) ≤ W2(x)

V̇ (x, t) ≤ −α(x) ≤ 0, ∀x ∈ R
n, ∀t ≥ t0, (2.15)

where W1(x) and W2(x) are continuous positive definite and radially unbounded1

functions and α(x) is a continuous positive semidefinite function, then the state is
bounded and satisfies

lim
t→∞ α(x(t)) = 0.

Moreover, if α(x) is positive definite, then the equilibrium point x = 0 is UGAS.

Remark 2.3 By stating that f (x, d(t)) is locally Lipschitz in x uniformly in t , it
means that, for any x∗ ∈ R

n ,

‖ f (x, d(t)) − f (y, d(t)‖ ≤ L‖x − y‖ (2.16)

is satisfied for all x, y ∈ {x ∈ R
n | ‖x − x∗‖ ≤ r} for some r > 0 and for all

t ≥ t0. The Lipchitz constant L depends on x∗, but is independent of t . If f (x, d(t))
is locally Lipschitz in x , and D is a compact set, then, clearly, f (x, d(t)) is locally
Lipschitz in x uniformly in t .

Remark 2.4 Theorem 2.5 holds with W1(x) and W2(x) replaced by two class K∞
functions α(‖x‖) and ᾱ(‖x‖), respectively.

Example 2.6 Consider a second order nonlinear system

ẋ1 = −x1k(x1) + x2ω(t)

ẋ2 = −x1ω(t)

where x = [x1, x2]T ∈ R
2 is the state and ω(t) is a bounded continuous function.

The function k is assumed to be a continuously differentiable and strictly positive
function, i.e., k(x1) > ko > 0, ∀x1 ∈ R. The asymptotic property of the system is
analyzed as follows. Consider a lower bounded function V (x) = ‖x‖2. Along the
trajectory of the system, the derivative of V (x) satisfies

1 A function f (x) is called radially unbounded if f (x) → ∞ as ‖x‖ → ∞.
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V̇ (x) = 2x1 ẋ1 + 2x2 ẋ2 = 2x1 (−x1k(x1) + x2ω) + 2x2(−x1ω)

= −2x2
1 k(x1) ≤ 0. (2.17)

Applying Theorem 2.5 and Remark 2.3 gives limt→∞ x1(t) = 0.
The same conclusion can also be drawn by using Barbalat’s Lemma. The inequal-

ity (2.17) implies that V (x(t)) ≤ V (x(0)), ∀t ≥ 0, and hence that x(t) is
bounded. Let α(t) = V (x(t)). Its second derivative is α̈(t) = −[4x1k(x1) +
2x2

1 k′(x1)][−x1k(x1) + x2ω] which is bounded since x and ω are bounded. Hence,
α̇(t) is uniformly continuous in t . By Lemma 2.1, limt→∞ α̇(t) = 0 and hence
limt→∞ x1(t) = 0.

The following material is concerned with the so-called persistent exciting property
of a signal, which is widely used in the parameter convergence analysis in adaptive
control.

Definition 2.7 A bounded piecewise continuous function f : [0,∞) �→ R
n is said

to be persistent exciting (PE) if there exist positive constants ε, t0, T0 such that, for
any unit row vector c of dimension n,

1

T0

t+T0∫
t

|c f (s)|ds ≥ ε, ∀t ≥ t0. (2.18)

Lemma 2.2 A bounded piecewise continuous function f : [0,∞) �→ R
n is PE if

and only if there exist positive constants ε, t0, T0 such that

1

T0

t+T0∫
t

f (s) f T(s)ds ≥ ε2 I, ∀t ≥ t0. (2.19)

Proof “Only if": By Jensen’s inequality, i.e.,

(b − a)

b∫
a

[g(s)]2 ds ≥
⎛
⎝

b∫
a

g(s)ds

⎞
⎠

2

,

for any integrable real-valued function g, we have

c

⎡
⎣ 1

T0

t+T0∫
t

f (s) f T(s)ds

⎤
⎦ cT = 1

T0

t+T0∫
t

[c f (s)]2ds ≥
⎛
⎝ 1

T0

t+T0∫
t

|c f (s)|ds

⎞
⎠

2
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for any unit row vector c of dimension n. As f is PE, one has (2.18), and hence

c

⎡
⎣ 1

T0

t+T0∫
t

f (s) f T(s)ds

⎤
⎦ cT ≥ ε2 = c(ε2 I )cT,

which implies (2.19).
“If”: From (2.19), one has

1

T0

t+T0∫
t

c f (s) f T(s)cTds ≥ ε2,

or

t+T0∫
t

[c f (s)]2 ds ≥ T0ε
2

for any unit row vector c of dimension n. Since the function f is bounded, so is
c f (s), i.e.,

|c f (s)| ≤ R, ∀s ≥ 0

for a constant R. Let R1 = ε/
√

2, S1 = {s | |c f (s)| ≥ R1, t ≤ s ≤ t + T0} and
S2 = {s | |c f (s)| < R1, t ≤ s ≤ t + T0}. Then

S1 ∪ S2 = [t, t + T0], S1 ∩ S2 = ∅.

Moreover, since |c f (s)| is bounded and piecewise continuous, both S1 and S2 are
Lebesgue measurable. Denote the length of a Lebesgue measurable set S ⊂ [t, t+T0]
by |S|.2 Then 0 ≤ |Si | ≤ T0, i = 1, 2, and |S1 ∪ S2| = T0. Moreover,

T0ε
2 ≤

t+T0∫
t

[c f (s)]2 ds =
∫
S1

[c f (s)]2 ds +
∫
S2

[c f (s)]2 ds

≤
∫
S1

[c f (s)]2 ds + R2
1 |S2|.

The above inequality implies

2 That is, |S| is the Lebesgue measure on S [1].
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|S1|R2 ≥
∫
S1

[c f (s)]2 ds ≥ T0ε
2 − R2

1 |S2| = (T0 − |S2|/2)ε2 ≥ T0ε
2/2 > 0

and

|S1| ≥ T0ε
2/(2R2) > 0.

Next, we have

1

T0

t+T0∫
t

|c f (s)|ds ≥ 1

T0

∫
S1

|c f (s)|ds ≥ |S1|R1

T0
≥ ε3

2
√

2R2

which is (2.18) with ε replaced by another constant ε3/(2
√

2R2). From the definition,
f is PE. The proof is thus completed. ��
Example 2.7

1. Let f (t) be a nonzero constant function for all t ≥ 0. Then f (t) is PE.
2. Let f (t) = sin ωt with ω > 0. Let T0 = 2π/ω. Then

1

T0

t+T0∫
t

| sin ωs|ds = 2

π
.

Thus f (t) is PE.
3. The function f (t) = [sin ωt, cos ωt]T with ω > 0 is PE while f (t) =

[sin ωt, sin ωt]T is not.

Next, we will show another criterion for the PE condition.

Lemma 2.3 If a function f : [0,∞) �→ R
n has spectral lines at frequencies

ω1, · · · , ωn, that is,

lim
δ→∞

1

δ

t+δ∫
t

f (s)e− jωi sds = f̂ (ωi ) �= 0, i = 1, · · · , n

uniformly in t . Furthermore, f̂ (ωi ), i = 1, · · · , n, are linearly independent in C
n.

Then, f (t) is PE.

Proof Define the matrix

F(t, δ) = 1

δ

t+δ∫
t

⎡
⎢⎣

e− jω1s

...

e− jωns

⎤
⎥⎦ f T(s)ds
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and the matrix

F0 =

⎡
⎢⎢⎣

f̂ T(ω1)
...

f̂ T(ωn)

⎤
⎥⎥⎦ .

The matrix F0 is the limit of F(t, δ) as δ → ∞, uniformly in t . As F0 is nonsingular
by hypothesis, there exists a sufficiently large T0, such that, for δ ≥ T0, F(t, δ) is
invertible and

‖F−1(t, δ)‖ ≤ 2‖F−1
0 ‖, ∀t ≥ 0.

Now, for any unit row vector c ∈ R
n and any ω ∈ R, we have

1

δ

t+δ∫
t

[c f (s)]2ds = 1

δ

t+δ∫
t

|c f (s)e− jωs |2ds

≥
∣∣∣∣∣∣
1

δ

t+δ∫
t

c f (s)e− jωsds

∣∣∣∣∣∣
2

(by Jensen’s inequality, see the proof of Lemma 2.2). For ω = ω1, · · · , ωn , one has

1

δ

t+δ∫
t

[c f (s)]2ds ≥ 1

n

n∑
i=1

∣∣∣∣∣∣
1

δ

t+δ∫
t

c f (s)e− jωi sds

∣∣∣∣∣∣
2

= 1

n
‖F(t, δ)cT‖2 ≥ 1

n
‖F−1(t, δ)‖−2

and, for δ ≥ T0,

1

δ

t+δ∫
t

[c f (s)]2ds ≥ 1

4n
‖F−1

0 ‖−2.

As a result,

c

⎡
⎣ 1

T0

t+T0∫
t

f (s) f T(s)ds − ε2 I

⎤
⎦ cT ≥ 0, ε = ‖F−1

0 ‖−1/(2
√

n)

for any unit row vector c of dimension n, which implies (2.19). The proof is thus
completed. ��
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Example 2.8 Let

τ(t) =
�∑

k=1

Ak cos(ωk t + φk)

for some � > 0 where Ak’s are strictly positive real numbers and ωk’s are distinct
strictly positive real numbers. Let

f (t) = [τ(t), τ̇ (t), · · · , d(n−1)τ (t)/dt (n−1)]T.

Then f (t) is PE if n ≤ 2�.
In fact, τ(t) and f (t) can be rewritten as

τ(t) =
�∑

k=1

Ak[e j (ωk t+φk ) + e− j (ωk t+φk )]/2

and, respectively,

f (t) =

⎡
⎢⎢⎢⎢⎣

∑�
k=1 Ak[e j (ωk t+φk ) + e− j (ωk t+φk )]/2∑�

k=1 Ak[ jωke j (ωk t+φk ) + (− jωk)e− j (ωk t+φk )]/2
...∑�

k=1 Ak[( jωk)
n−1e j (ωk t+φk ) + (− jωk)

n−1e− j (ωk t+φk )]/2

⎤
⎥⎥⎥⎥⎦.

When n ≤ 2�, we can pick n distinct frequencies ω̂i and the corresponding φ̂i and
Âi as follows:

(ω̂i , φ̂i , Âi ) ∈ {(ω1, φ1, A1), (−ω1,−φ1, A1), · · · , (ω�, φ�, A�), (−ω�,−φ�, A�)},
i = 1, · · · , n.

It is easy to check that

f̂ (ω̂i ) = lim
δ→∞

1

δ

t+δ∫
t

f (s)e− j ω̂i sds =

⎡
⎢⎢⎢⎣

1
jω̂i
...

( jω̂i )
n−1

⎤
⎥⎥⎥⎦ Âi e

j φ̂i /2, i = 1, · · · , n.

Since the frequencies ω̂i , i = 1,· · ·, n, are distinct, the vectors f̂ (ω̂i ), i = 1, · · · , n,

are linearly independent in C
n . Then, f (t) is PE.

The PE property is useful in signal convergence analysis as illustrated in the
following lemma. This lemma will be used in Chap. 5 for studying adaptive control.

http://dx.doi.org/10.1007/978-3-319-08834-1_5
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Lemma 2.4 Consider a continuously differentiable function g : [0,∞) �→ R
n and

a bounded piecewise continuous function f : [0,∞) �→ R
n, which satisfy

lim
t→∞ gT(t) f (t) = 0. (2.20)

Then,

lim
t→∞ g(t) = 0 (2.21)

holds under the following two conditions:

(i) limt→∞ ġ(t) = 0;
(ii) f (t) is PE.

Proof Suppose (2.21) is not true. Then there exist a time sequence s1 < s2 < · · ·
satisfying si → ∞ as i → ∞ and a number δ1 > 0, such that ‖g(si )‖ > δ1. Under
(2.20) and the condition (i), for any δ2 > 0 and δ3 > 0, there exists a time t1, such
that,

|ġk(t)| ≤ δ2, ∀t ≥ t1, k = 1, · · · , n,

and
|gT(t) f (t)| ≤ δ3, ∀t ≥ t1.

Also, under the condition (ii),

t+T0∫
t

|c f (s)|ds ≥ ε1To, ∀t ≥ t1 (2.22)

for some constants T0 and ε1, independent of δ3.
As a result, one has

|gk(t + s) − gk(t)| ≤
t+s∫
t

|ġk(x)|dx ≤ δ2T0,∀0 ≤ s ≤ T0, ∀t > t1, k = 1, · · · , n.

Let f̄ be some real number such that ‖ f (t)‖ < f̄ ,∀t ≥ 0. Then, for any si > t1,

si +T0∫
si

|gT(s) f (s)|ds ≥
si +T0∫
si

|gT(si ) f (s)|ds −
si +T0∫
si

|[g(s) − g(si )]T f (s)|ds

≥ T0δ1ε1 − δ2T 2
0 f̄ .
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Since δ2 can be arbitrarily small,

si +T0∫
si

|gT(s) f (s)|ds ≥ ε2

for some positive ε2 independent of δ3. Thus, there exists a time s̄i ∈ [si , si + T0]
such that

δ3 ≥ |gT(s̄i ) f (s̄i )| ≥ ε2/T0.

Noting δ3 can be arbitrarily small leads to a contradiction. The proof is thus
completed. ��

This lemma gives the convergence condition of the function g(t) to the origin
based on the asymptotic condition (i) of ġ(t) and the PE condition (ii) of f (t). Both
conditions are indispensable as illustrated in the following examples.

Example 2.9 Let f (t) = [cos ωt sin ωt]T and g(t) = [− sin ωt cos ωt]T. The
condition limt→∞ gT(t) f (t) = 0 obviously holds and f (t) is PE. However,
limt→∞ g(t) = 0 is not true because limt→∞ ġ(t) = 0 is not.

Example 2.10 Consider a continuously differentiable signal g(t) = ca(t) for a
constant vector c ∈ R

2 and function a(t) satisfying limt→∞ ȧ(t) = 0. Suppose
limt→∞ gT(t) f (t) = 0 where f (t) is a bounded piecewise continuous function.

If f (t) is PE, we have limt→∞ g(t) = 0 for any c by Lemma 2.4.
If f (t) is not PE, e.g., f (t) = [cos ωt cos ωt]T, then limt→∞ g(t) = 0 is not

necessarily true. For example, when c = [1 − 1]T and a(t) = 1, the condition
limt→∞ gT(t) f (t) = 0a(t) = 0 still holds. But limt→∞ g(t) = [1 − 1]T �= 0.

2.4 Input-to-State Stability

In the previous sections, we have reviewed various stability concepts of the nonlinear
systems described by (1.1) and (2.6), respectively. In this section, we will further
consider the stability of the control systems described by (1.4) and (2.7). Since the
response of the system (1.4) or (2.7) is excited not only by the initial state x(t0)
but also by the input u(t), we need to generalize the stability concepts about an
equilibrium point to the so-called input-to-state stability of the system (2.7) while
keeping in mind that the system (1.4) can be viewed as a special case of (2.7) by
having d(t) = t .

Again, we assume the function f (x, u, d(t)) is piecewise continuous in d and
locally Lipschitz in col(x, u), and the function d(t) is piecewise continuous in t .
And we use the notation Lm∞ to denote the set of all piecewise continuous bounded
functions u : [t0,∞) �→ R

m with the supermum norm

http://dx.doi.org/10.1007/978-3-319-08834-1_1
http://dx.doi.org/10.1007/978-3-319-08834-1_1
http://dx.doi.org/10.1007/978-3-319-08834-1_1
http://dx.doi.org/10.1007/978-3-319-08834-1_1
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∥∥u[t0,∞)

∥∥ := sup
t≥t0

‖u(t)‖.

For convenience, we also denote the supermum norm of the truncation of u(t) in
[t1, t2] with t0 ≤ t1 ≤ t2 as follows,

∥∥u[t1,t2]
∥∥ := sup

t1≤t≤t2
‖u(t)‖.

Definition 2.8 The system (2.7) is said to be input-to-state stable (ISS) if there exist
a class KL function β and a class K function γ , independent of t0, such that for
any initial state x(t0) and any input function u ∈ Lm∞, the solution x(t) exists and
satisfies

‖x(t)‖ ≤ max
{
β(‖x(t0)‖, t − t0), γ

(∥∥u[t0,t]
∥∥)} , ∀t ≥ t0. (2.23)

Since the control system (2.7) involves the uncertainty d(t), the functions β and
γ in Definition 2.8 may or may not depend on d(t). If the functions β and γ can be
made to be independent of the uncertainty d(t), then we have the following robust
input-to-state stability concept.

Definition 2.9 The system (2.7) is said to be robustly input-to-state stable (RISS) if
it is ISS in the sense of Definition 2.8 with β and γ independent of d(t) ∈ D.

Remark 2.5 We note that the functions β and γ are independent of t0 in the definition
of ISS or RISS. In other words, the concepts ISS and RISS implicitly include the fact
that they are uniformly with respect to the initial time t0. For an RISS system (2.7),
when the input u is held at zero, the solution starting from any initial state x(t0) for
any initial time t0 satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t − t0), ∀t ≥ t0.

Thus, the equilibrium point at the origin of the unforced system ẋ = f (x, 0, d(t))
is RUGAS.

Remark 2.6 In (2.23), since, for any x(t0) and any t0, β(‖x(t0)‖, t − t0) → 0 as
t → ∞, one has

lim
t→∞

∥∥x[t,∞)

∥∥ ≤ γ
(∥∥u[t0,∞)

∥∥) .
Due to this inequality, the class K function γ is called a gain function of (2.7).

Remark 2.7 There is an equivalent way to characterize the ISS property of (2.7) as
follows. There exist a class KL function β and a class K function γ such that for
any initial state x(t0) and any input function u ∈ Lm∞, the solution x(t) exists and
satisfies



32 2 Fundamentals of Nonlinear Systems

‖x(t)‖ ≤ β(‖x(t0)‖, t − t0) + γ
(∥∥u[t0,t]

∥∥) , ∀t ≥ t0.

This equivalence follows from the fact that max{β, γ } ≤ β + γ ≤ max{2β, 2γ } for
any pair β ≥ 0, γ ≥ 0.

The Lyapunov’s direct theorem can also be generalized to analyze the ISS property
of a system as described below.

Definition 2.10 Let V : R
n × [t0,∞) �→ R

+ be a continuously differentiable
function. It is called an ISS-Lyapunov function for the system (2.7) if there exist class
K∞ functions ᾱ, α, α, and a class K function ρ, such that

α(‖x‖) ≤ V (x, t) ≤ ᾱ(‖x‖)
V̇ (x, t) ≤ −α(‖x‖), ∀‖x‖ ≥ ρ(‖u‖)

for all x ∈ R
n , u ∈ Lm∞, t ≥ t0, and d ∈ D.

Theorem 2.6 If the system (2.7) has an ISS-Lyapunov function, then it is RISS with
a gain function α−1 ◦ ᾱ ◦ ρ, i.e., there exist a class KL function β and a class K
function γ = α−1 ◦ ᾱ ◦ ρ such that for any initial state x(t0) ∈ R

n and any input
function u ∈ Lm∞, the solution x(t) of (2.7) exists and satisfies (2.23).

The proof of Theorem 2.6 can be found in [2] (see the proofs of Theorems 4.18 and
4.19). Suppose V : R

n × [t0,∞) �→ R
+ is a continuously differentiable function,

for all x ∈ R
n , u ∈ Lm∞, t ≥ t0, and d ∈ D, the derivative of V along the trajectory

of ẋ = f (x, u, d(t)) satisfies

V̇ (x, t) ≤ −α(‖x‖) + σ(‖u‖) (2.24)

where α is some class K∞ function and σ some class K function. Let

ρ(s) = α−1(kσ(s))

with k > 1. Then

‖x‖ ≥ ρ(‖u‖) ⇒ σ(‖u‖) ≤ 1

k
α(‖x‖).

So, (2.24) gives

V̇ (x, t) ≤ −k − 1

k
α(‖x‖), ∀‖x‖ ≥ ρ(‖u‖)

for all x ∈ R
n , u ∈ Lm∞, t ≥ t0, and d ∈ D. Thus, V (x, t) is an ISS Lyapunov

function of (2.7). As a result, we obtain the following result.

http://dx.doi.org/10.1007/978-3-319-08834-1_4
http://dx.doi.org/10.1007/978-3-319-08834-1_4
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Theorem 2.7 Consider the system (2.7). If there exists a continuously differentiable
function V : R

n × [t0,∞) �→ R
+ such that, for some class K∞ functions ᾱ, α, α,

and some class K function σ ,

α(‖x‖) ≤ V (x, t) ≤ ᾱ(‖x‖)
V̇ (x, t) ≤ −α(‖x‖) + σ(‖u‖) (2.25)

for all x ∈ R
n, u ∈ Lm∞, t ≥ t0, and d ∈ D, then the system (2.7) is RISS with a gain

function α−1 ◦ ᾱ ◦ α−1 ◦ kσ for any k > 1.

To simplify the presentation, we use the following notation

V (x, t) ∼ {α, ᾱ, α, (σ1, · · · , σm) | ẋ = f (x, u, d)} (2.26)

to mean the following statement: there exist some class K∞ functions ᾱ, α, α, and
some class K functions σi , i = 1, · · · m, such that,

α(‖x‖) ≤ V (x, t) ≤ ᾱ(‖x‖)

V̇ (x, t) ≤ −α(‖x‖) +
m∑

i=1

σi (‖ui‖)

for all x ∈ R
n , u ∈ Lm∞, t ≥ t0, and d ∈ D. In particular, for a single input system

x = f (x, u, d), the notation (2.26) reduces to a simpler form

V (x, t) ∼ {α, ᾱ, α, σ | ẋ = f (x, u, d)}.

Example 2.11 Consider the system

ẋ = A(t)x + G(u, t), t ≥ t0 ≥ 0 (2.27)

where G(u, t) is a continuous function satisfying, for all u ∈ R and all t ≥ t0,
‖G(u, t)‖ ≤ q(‖u‖) for some class K function q. Suppose the system ẋ = A(t)x is
UAS, i.e., there exist symmetric positive definite matrices Q(t) and P(t) satisfying
0 < β1 I ≤ Q(t) ≤ β2 I,∀t ≥ 0 and 0 < α1 I ≤ P(t) ≤ α2 I,∀t ≥ 0, such that

Ṗ(t) + P(t)A(t) + A(t)T P(t) = −Q(t).

Let V (x, t) = xT P(t)x . Then, along the trajectory of (2.27),

V̇ (x, t) ≤ −‖Q(t)‖‖x‖2 + 2xT P(t)G(u, t)

≤ −(‖Q(t)‖ − 1/ε)‖x‖2 + ε‖P(t)G(u, t)‖2

≤ −(β1 − 1/ε)‖x‖2 + εα2
2q2(‖u‖).
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Let ε be such that l = β1 − 1/ε > 0 and let σ(‖u‖) = εα2
2q2(‖u‖). Then, we have

V̇ (x, t) < −l‖x‖2 + σ(‖u‖). (2.28)

Thus, the system (2.27) is ISS with a gain function

γ (s) =
√

α2k

α1l
σ(s) =

√
α2kε

α1l
α2q(s)

for any k > 1.

Example 2.12 As a special case of the above example, a linear time-invariant system

ẋ = Ax + Bu, t ≥ 0

where A is a Hurwitz matrix is ISS. Also, since ‖Bu‖ ≤ b‖u‖ for some b > 0, the
gain function is γ (s) = √

α2kε/(α1l)α2bs, which is a linear function.

Example 2.13 The following scalar system ẋ = −x + xu is not ISS. In fact, let
u(t) = 2 for all t ≥ 0. Then the response of the system with x(0) = x0 is x(t) = et x0,
which shows that the inequality (2.23) cannot hold.

Next, we further introduce two other concepts for the system (2.7) as follows.

Definition 2.11 The system (2.7) is said to have the robustly globally stable (RGS)
property, and the robustly asymptotic gain (RAG) property, respectively, if there exist
class K functions γ0 and γ , independent of d(t), such that for any initial time t0, any
initial state x(t0) ∈ R

n , any d(t) ∈ D, and any input function u ∈ Lm∞, the solution
x(t) exists and satisfies

∥∥x[t0,∞)

∥∥ ≤ max
{
γ0(‖x(t0)‖), γ

(∥∥u[t0,∞)

∥∥)} ,

and, respectively,

lim
t→∞

∥∥x[t,∞)

∥∥ ≤ γ
(

lim
t→∞

∥∥u[t,∞)

∥∥) .

These two concepts are of particular interest to autonomous control systems, e.g.,
the system (2.7) with d(t) = constant , since it is possible to show, for autonomous
control systems, the RISS property is equivalent to the RGS property plus the RAG
property (see, e.g., [3]), i.e.,

RISS ⇐⇒ RGS + RAG.

Example 2.14 Consider the linear time-invariant system

ẋ = Ax + Bu, t ≥ 0 (2.29)
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where A is Hurwitz and u(t) is piecewise continuous in t and limt→∞ u(t) = 0.
By Example 2.12, this system is ISS, and is thus of the asymptotic gain property.
Therefore, for any initial condition x(0), limt→∞ x(t) = 0.

However, for a non-autonomous control system (2.7), this equivalence does not
hold any more. Specifically, the implication

RISS ⇒ RGS + RAG

is true, but the other direction is not, i.e.,

RISS �⇐ RGS + RAG,

as shown in the following Example.

Example 2.15 Consider a non-autonomous system

ẋ = − x − u

1 + t
, x ∈ R, u ∈ L1∞. (2.30)

It can be verified that, for any initial state x(t0) with any initial time t0 ≥ 0, the
solution of (2.30) is

x(t) = 1 + t0
1 + t

x(t0) + 1

1 + t

t∫
t0

u(τ )dτ, ∀t ≥ t0.

On one hand,

|x(t)| ≤ |x(t0)| + ∥∥u[t0,∞)

∥∥ ,

hence,
∥∥x[t0,∞)

∥∥ ≤ max
{
2|x(t0)|, 2

∥∥u[t0,∞)

∥∥} . That is, the system (2.30) has RGS
property. On the other hand, for any ε > 0, there exists T1 ≥ t0 such that

∥∥u[T1,∞)

∥∥ ≤ lim
t→∞

∥∥u[t,∞)

∥∥+ ε.

And there exists T2 ≥ T1 such that

1 + T1

1 + T2
x(T1) ≤ ε.

Then, for any time t ≥ T2,

|x(t)| ≤ 1 + T1

1 + t
x(T1) + ∥∥u[T1,∞)

∥∥
≤ ε + lim

t→∞
∥∥u[t,∞)

∥∥+ ε
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hence, limt→∞
∥∥x[t,∞)

∥∥ ≤ limt→∞
∥∥u[t,∞)

∥∥ + 2ε. Letting ε → 0 yields that the
system (2.30) has the RAG property.

However, the system (2.30) is not RISS. If this were not the case, then

|x(t)| ≤ max
{
β(|x(t0)|, t − t0), γ

(∥∥u[t0,t]
∥∥)} , ∀t ≥ t0.

for some class KL function β and class K function γ , independent of t0. Let u(t) = 1
for all t ≥ t0, and x(t0) = 2γ (1). Then,

|x(t)| = 1 + t0
1 + t

2γ (1) + t − t0
1 + t

≤ max {β(2γ (1), t − t0), γ (1)} .

Choose a finite real number s∗ satisfying β(2γ (1), s∗) ≤ γ (1). Then

|x(t0 + s∗)| = 1 + t0
1 + t0 + s∗ 2γ (1) + s∗

1 + t0 + s∗ ≤ γ (1),

hence, (1 + t0)/(1 + t0 + s∗) < 1/2, i.e., t0 < s∗ − 1, which contradicts that t0 is
an arbitrary nonnegative real number.

2.5 Changing Supply Function

The ISS Lyapunov function V (x, t) is also called a supply function or a storage
function, and the pair (α, σ ) is called a supply pair. The ISS Lyapunov function is
not unique. It is possible to use the changing supply function technique to generate
an alternative ISS Lyapunov function with exploitable property. In most scenarios
encountered in this book, it is assumed that the range of uncertainties is represented
by a compact set D. In these scenarios, we usually consider an ISS Lyapunov function
V (x) not explicitly depending on t .

Lemma 2.5 (Changing Supply Function) Suppose the system ẋ = f (x, u, d) has
an ISS Lyapunov function V (x), i.e.,

V (x) ∼ {α, ᾱ, α, σ | ẋ = f (x, u, d)}. (2.31)

Let α′ be a class K∞ function such that α′(s) = O[α(s)] as s → 0+.3 Then the
system ẋ = f (x, u, d) has another ISS Lyapunov function V ′(x), i.e.,

V ′(x) ∼ {α′, ᾱ′, α′, σ ′ | ẋ = f (x, u, d)}. (2.32)

3 The notation α′(s) = O[α(s)] as s → 0+ means lim sups→0+
[
α′(s)/α(s)

]
< ∞.
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In particular, the class K∞ functions ᾱ′ and α′ and the class K function σ ′ are given
by Algorithm 2.1.

Proof Let SN be the set of smooth non-decreasing functions defined over [0,∞)

that satisfy ρ(s) > 0, ∀s > 0 for ρ ∈ SN . Let

V ′(x) =
V (x)∫
0

ρ(s)ds (2.33)

where ρ ∈ SN . The statement (2.31) implies that

α′(‖x‖) ≤
α(‖x‖)∫

0

ρ(s)ds ≤ V ′(x) ≤
ᾱ(‖x‖)∫

0

ρ(s)ds ≤ ᾱ′(‖x‖) (2.34)

for some class K∞ functions α′ and ᾱ′.
We now show that, along the trajectory of ẋ = f (x, u, d),

V̇ ′(x) ≤ ρ(V (x))[−α(‖x‖) + σ(‖u‖)]
≤ −1

2
ρ(α(‖x‖))α(‖x‖) + ρ(ᾱ(α−1(2σ(‖u‖))))σ (‖u‖).

In fact, we consider the following two cases for the second inequality.

(i) α(‖x‖)/2 ≥ σ(‖u‖): In this case, the claim follows from the fact that
ρ(V (x))[−α(‖x‖) + σ(‖u‖)] is bounded from above by −ρ(V (x))α(‖x‖)/2,
and hence bounded from above by −ρ

(
α(‖x‖))α(‖x‖)/2.

(ii) α(‖x‖)/2 < σ(‖u‖): In this case, the following inequalities hold

ρ(V (x)) ≤ ρ(ᾱ(‖x‖)) ≤ ρ(ᾱ(α−1(2σ(‖u‖)))).

Since α′(s) = O[α(s)] as s → 0+, by Lemma 11.2 in the Appendix, it is always
possible to find a function ρ such that

1

2
ρ(α(s))α(s) ≥ α′(s). (2.35)

Also, there exists a class K function σ ′ such that

σ ′(s) ≥ ρ(ᾱ(α−1(2σ(s))))σ (s). (2.36)

The proof is thus completed. ��

http://dx.doi.org/10.1007/978-3-319-08834-1_11
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Algorithm 2.1

INPUT: α, ᾱ, α, σ, α′
OUTPUT: α′, ᾱ′, σ ′
STEP 1: Pick an SN function ρ satisfying (2.35).
STEP 2: Find the class K∞ functions α′ and ᾱ′ from (2.34).
STEP 3: Find the class K function σ ′ from (2.36).
STEP 4: END

Corollary 2.1 Suppose the system ẋ = f (x, u, d) has an ISS Lyapunov function
V (x), i.e.,

V (x) ∼ {α, ᾱ, α, σ | ẋ = f (x, u, d)}.

Then, for any smooth function �, the system ẋ = f (x, u, d) has another ISS
Lyapunov function V ′(x) such that

α′(‖x‖) ≤ V ′(x) ≤ ᾱ′(‖x‖)
V̇ ′(x) ≤ −�(x)α(‖x‖) + κ(u)σ (‖u‖). (2.37)

for a smooth function κ. In particular, the class K∞ functions ᾱ′ and α′ and the
smooth function κ are given by Algorithm 2.2.

Proof Following the proof of Lemma 2.5, it suffices to choose a function ρ ∈ SN
such that

1

2
ρ(α(‖x‖)) ≥ �(x) (2.38)

and to choose a smooth function κ such that

κ(u) ≥ ρ(ᾱ(α−1(2σ(‖u‖)))). (2.39)

The proof is thus completed. ��

Algorithm 2.2

INPUT: α, ᾱ, α, σ,�

OUTPUT: α′, ᾱ′, κ

STEP 1: Pick an SN function ρ satisfying (2.38).
STEP 2: Find the class K∞ functions α′ and ᾱ′ from (2.34).
STEP 3: Find the smooth function κ from (2.39).
STEP 4: END
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In many applications, we would like the supply pair α and σ to have the following
properties, i.e.,

lim sup
s→0+

s2

α(s)
< ∞, lim sup

s→0+

σ(s)

s2 < ∞. (2.40)

For convenience, we make the following explicit assumption.

Assumption 2.1 The system ẋ = f (x, u, d) has an ISS Lyapunov function V (x),
i.e.,

V (x) ∼ {α, ᾱ, α, σ | ẋ = f (x, u, d)}

and α and σ satisfy (2.40).

Remark 2.8 Let α(s) =∑n
i=1 ai sri be a polynomial with ai �= 0 and r1 < · · · < rn .

Then, the condition lim sups→0+ s2/α(s) < ∞ is satisfied if and only if r1 ≤ 2 and
the condition lim sups→0+ α(s)/s2 < ∞ is satisfied if and only if r1 ≥ 2.

Remark 2.9 Assumption 2.1 is slightly stronger than requiring the system
ẋ = f (x, u, d) be RISS viewing x as the state and u as the input. The RISS property
only implies the asymptotic stability of the equilibrium point x = 0 of the undriven
subsystem with u = 0. However, Assumption 2.1 may imply the exponential stabil-
ity of the equilibrium point of the undriven subsystem if all the functions α, ᾱ, and
α take the quadratic form.

Remark 2.10 Under Assumption 2.1, there exist smooth functions α0(x) and σ0(u)

such that

α0(x)α(‖x‖) ≥ ‖x‖2, σ0(u)‖u‖2 ≥ σ(‖u‖). (2.41)

On one hand, since α satisfies (2.40), there exits a constant l1 ≥ 1 such that
α(‖x‖) ≥ ‖x‖2/l2

1 for ‖x‖ ≤ 1, and since α is of class K∞, there exists a con-
stant l2 > 0 such that α(‖x‖) ≥ l2 for ‖x‖ ≥ 1. As a result, the first inequality of
(2.41) holds for any α0 satisfying

α0(x) ≥ l2
1 + 1

l2
‖x‖2.

On the other hand, since σ satisfies (2.40), we can define a function l : [0,∞) �→
[0,∞) such that l(s) = σ(s)/s2, ∀s > 0 and l(0) = lims→0+ l(s). Let σ0(u) be a
smooth function such that σ0(u) ≥ l(‖u‖). Then

σ0(u)‖u‖2 ≥ l(‖u‖)‖u‖2 = σ(‖u‖).

Under Assumption 2.1, Corollary 2.1 can be further specialized to the following
corollary.
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Corollary 2.2 Under Assumption 2.1, for any smooth function �(x), there exists
another ISS Lyapunov function V ′(x) satisfying

α′(‖x‖) ≤ V ′(x) ≤ ᾱ′(‖x‖)
V̇ ′(x) ≤ −�(x)‖x‖2 + κ(u)‖u‖2. (2.42)

for a smooth function κ. In particular, the class K∞ functions ᾱ′ and α′ and the
smooth function κ are given by Algorithm 2.3.

Proof Under Assumption 2.1, we can find two smooth functions α0(x) and σ0(u)

such that (2.41) is satisfied. Letting

�̄(x) ≥ �(x)α0(x) (2.43)

gives

�̄(x)α(‖x‖) ≥ �(x)α0(x)α(‖x‖) ≥ �(x)‖x‖2. (2.44)

By Corollary 2.1, for the smooth function �̄(x), there exists some smooth function
κ̄ such that the Lyapunov function V ′(x) defined in Corollary 2.1 satisfies

V̇ ′(x) ≤ −�̄(x)α(‖x‖) + κ̄(u)σ (‖u‖)

which yields (2.42) upon letting

κ(u) = κ̄(u)σ0(u) (2.45)

and using (2.41). ��
Algorithm 2.3

INPUT: α, ᾱ, α, σ,�

OUTPUT: α′, ᾱ′, κ

STEP 1: Pick two smooth functions α0(x) and σ0(u) satisfying (2.41).
STEP 2: Pick the smooth function �̄(x) satisfying (2.43).
STEP 3: Call (α′, ᾱ′, κ̄) = ALGORITHM 2.2(α, ᾱ, α, σ, �̄).

STEP 4: Find the smooth function κ from (2.45).
STEP 5: END

Remark 2.11 In Corollary 2.1, if α(‖x‖) is a quadratic function, say, α(‖x‖) =
a‖x‖2 for some a > 0. Then, by letting � be a constant and V ′(x) = �V (x), we
have

V̇ ′(x) ≤ −a�‖x‖2 + κ(u)‖u‖2
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where κ(u) is a smooth function such that κ(u)‖u‖2 ≥ �σ(‖u‖). In particular, if
σ(‖u‖) is also a quadratic function, say, σ(‖u‖) = b‖u‖2 for some b > 0, then
κ(u) = b� is a constant.

As an application of Corollary 2.2, we consider the global robust stabilization
problem of the following class of nonlinear systems

ż = q(z, x, d)

ẋ = f (z, x, d) + b(d)u (2.46)

where z ∈ R
n and x ∈ R are the state variables, u ∈ R is the input, and d : [t0,∞) �→

D is a piecewise continuous function with D a compact subset of R
l . The functions q

and f are sufficiently smooth4 with q(0, 0, d) = 0 and f (0, 0, d) = 0 for all d ∈ D.
We need the following two assumptions.

Assumption 2.2 The function b(d) is away from zero, e.g., b(d) > 0, ∀d ∈ D.

Assumption 2.3 The subsystem ż = q(z, x, d) has an ISS Lyapunov function
V (z), i.e.,

V (z) ∼ {α, ᾱ, α, σ | ż = q(z, x, d)}

and

lim sup
s→0+

s2

α(s)
< ∞, lim sup

s→0+

σ(s)

s2 < ∞.

In particular, the functions α, ᾱ, α and σ are known.

Theorem 2.8 Consider the system (2.46) with a prescribed compact set D. Under
Assumptions 2.2 and 2.3, there exist a controller

u = −ρ(x)x + ū (2.47)

and an ISS Lyapunov function W (z, x) satisfying

β(‖col(z, x)‖) ≤ W (z, x) ≤ β̄(‖col(z, x)‖)

for some class K∞ functions β and β̄, and, along the trajectory of the closed-loop
system,

Ẇ (z, x) ≤ −‖z‖2 − ‖x‖2 + ‖ū‖2. (2.48)

As a result, the controller (2.47) with ū = 0 globally robustly stabilizes the system
(2.46). In particular, the function ρ is given in Algorithm 2.4.

4 A sufficiently smooth function means a function whose k-th derivatives exist for a sufficiently
large integer k.



42 2 Fundamentals of Nonlinear Systems

Proof Since f (z, x, d) is a sufficiently smooth function, using (11.13) of the Appen-
dix, one has

| f (z, x, d)| ≤ m1(z)‖z‖ + m2(x)|x |, ∀d ∈ D (2.49)

for some smooth positive functions m1 and m2. Let

�(z) ≥ 1 + m2
1(z). (2.50)

By Corollary 2.2, there exists a continuously differentiable function V ′(z, t) satis-
fying α′(‖x1‖) ≤ V ′(z, t) ≤ ᾱ′(‖z‖) for some class K∞ functions α′

1 and ᾱ′
1, and,

along the trajectory of ż = q(z, x, d),

V̇ ′(z) ≤ −�(z)‖z‖2 + κ(x)x2 (2.51)

for a smooth function κ. Since b(d) > 0, ∀d ∈ D, there exist two constants b̄ and
b such that b̄ ≥ b(d) ≥ b, ∀d ∈ D. Then, define the function ρ such that

ρ(x) ≥ [κ(x) + m2(x) + 5/4]/b + b̄/4 (2.52)

and an ISS Lyapunov function candidate for the closed-loop system:

W (z, x) = V ′
1(z) + x2/2.

Direct calculation shows that the derivative of W (z, x) along the trajectory of the
closed-loop satisfies:

Ẇ (z, x) ≤ −�(z)‖z‖2 + κ(x)x2 + x( f (z, x, d) + b(−ρ(x)x + ū))

≤ −�(z)‖z‖2 + m2
1(z)‖z‖2

+ x2[κ(x) + 1/4 + m2(x) − bρ(x) + b2/4] + ū2

≤ −‖z‖2 − ‖x‖2 + ū2.

The proof is thus completed by choosing the class K∞ functions β and β̄, using
Lemma 11.3 of the Appendix, such that

β(‖col(z, x)‖) ≤ α′
1(‖z‖) + x2/2

β̄(‖col(z, x)‖) ≥ ᾱ′
1(‖z‖) + x2/2. ��

Algorithm 2.4

INPUT: f , b, α, ᾱ, α, σ , D

OUTPUT: ρ

STEP 1: Find the functions m1 and m2 from (2.49).

http://dx.doi.org/10.1007/978-3-319-08834-1_11
http://dx.doi.org/10.1007/978-3-319-08834-1_11
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STEP 2: Pick the function � from (2.50) and call

(α′, ᾱ′, κ) = ALGORITHM 2.3 (α, ᾱ, α, σ,�).

STEP 3: Calculate the function ρ from (2.52).
STEP 4: END

Remark 2.12 The function ρ selected in (2.52) is to satisfy (2.48) and thus solving the
stabilization problem of the system (2.46). In fact, to solve the stabilization problem
of the system (2.46), it suffices to pick

ρ(x) ≥ [κ(x) + m2(x) + 5/4]/b (2.53)

so that

Ẇ (z, x) ≤ −�(z)‖z‖2 + κ(x)x2 + x( f (z, x, d) + b(−ρ(x)x))

≤ −�(z)‖z‖2 + m2
1(z)‖z‖2 + x2[κ(x) + 1/4 + m2(x) − bρ(x)]

≤ −‖z‖2 − ‖x‖2.

Remark 2.13 From (2.52), it can be seen that the validity of Theorem 2.8 requires
that the functions κ and m2 as well as the constants b and b̄ be known precisely. This
is possible since D is assumed to be a known compact set. The case where D is not
a known compact set cannot be handled by Theorem 2.8, and will be studied in the
next section.

Remark 2.14 If b(d) < 0, ∀d ∈ D, Theorem 2.8 still works by rewriting the second
equation of (2.46) as ẋ = f (z, x, d) + b̂(d)û where b̂(d) = −b(d) and û = −u.

Example 2.16 Consider a second order system
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Fig. 2.2 Profile of aysmptoically stable state trajectories of the closed-loop system in Example 2.16
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ż = −z + x

ẋ = w1z sin x + w2x3 + u

where w1 and w2 are unknown parameters with |w1| ≤ 2 and |w2| ≤ 1. We will
find a controller u for the global robust stabilization problem and a corresponding
Lyapunov function of the closed-loop system.

First, it can be verified that the derivative of V (z) = z2, along the trajectory of
ż = −z + x , satisfies

V̇ (z) ≤ −z2 + x2.

Assumption 2.3 is satisfied with α(s) = ᾱ(s) = α(s) = σ(s) = s2.
Observe that

|w1z sin x + w2x3| ≤ 2|z| + x2|x |,

so (2.49) is true for m1(z) = 2 and m2(x) = x2. Using the inequality (2.50) gives
�(z) = 1 + m2

1 = 5. Since � is constant, and both α and σ are quadratic, by
Corollary 2.1 and Remark 2.11, letting V ′(z) = �z2 shows (2.51) is satisfied with
κ(x) = 5. Now, we are ready to pick the following function according to (2.53)

ρ(x) = 5 + x2 + 5/4 = x2 + 6.25,

which gives the controller

u = −x3 − 6.25x . (2.54)

Moreover, the closed-loop system has a Lyapunov function

W (z, x) = V ′(z) + x2/2 = 5z2 + x2/2

whose derivative, along the state trajectory of the closed-loop system, satisfies

Ẇ (z, x) ≤ −5z2 + 5x2 + x(w1z sin x + w2x3 − x3 − 6.25x) ≤ −z2 − x2.

The global robust stabilization problem is thus solved. The controller (2.54) is
designed for |w1| ≤ 2 and |w2| ≤ 1, and the simulation is conducted with w1 = 1.8
and w2 = 1. The initial state values are z(0) = 20 and x(0) = −10. The state of the
closed-loop system converges to the origin as shown in Fig. 2.2. If the uncertainties
are out of this range, the controller may fail as illustrated in Fig. 2.3 with w1 = 1.8
but w2 = 2.
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Fig. 2.3 Profile of unstable state trajectories of the closed-loop system in Example 2.16

2.6 Universal Adaptive Control

So far, we have assumed that the range of the uncertainty d(t) belongs to a compact
set D whose bound is known. In many cases, the range of D is unknown or d(t)
can be arbitrarily large, the robust control approach studied in the previous section
cannot handle such uncertainty. In this section, we will further consider extending
Theorem 2.8 to the case where the range of the uncertainty d(t) is unknown or d(t)
can be arbitrarily large. In Theorem 2.8, it is known that for all d ∈ D, there exist
two known constants b̄ and b such that b̄ ≥ b(d) ≥ b,∀, d ∈ D. In this section,
we assume b is an arbitrary unknown positive constant. More specifically, (2.46) is
rewritten as follows

ż = q(z, x, d)

ẋ = f (z, x, d) + bu, b > 0. (2.55)

We first modify Assumption 2.1 to the following.

Assumption 2.4 The system ẋ = f (x, u, d) has an ISS Lyapunov function
V (x), i.e.,

V (x) ∼ {α, ᾱ, α, σ̂ | ẋ = f (x, u, d)}

and

lim sup
s→0+

s2

α(s)
< ∞, lim sup

s→0+

σ̂ (s)

s2 < ∞.

Moreover, the functions α, ᾱ, and α are known and the function σ̂ is known up to
a constant factor in the sense that there exist an unknown constant p and a known
function σ such that σ̂ = pσ .
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Remark 2.15 Assumption 2.4 is weaker than Assumption 2.1 since it allows the
function σ̂ to be known up to a constant factor. This assumption is more realistic
when the range of D is unknown. For example, consider a scalar system ẋ = −x +du
where u ∈ R and d is an unknown constant. Let V (x) = x2. Then, along the trajectory
of the system ẋ = −x + du, we have

V̇ (x) ≤ −x2 + pu2 (2.56)

for p = d2. Letting α(s) = s2 and σ̂ (s) = ps2 shows that Assumption 2.4 is
satisfied, but Assumption 2.1 is not satisfied since p is unknown. In general, when
the compact set D is unknown, all the functions α, ᾱ, α, σ̂ may only be known up to
a constant factor. This more general case will be handled in Chap. 6.

Corresponding to Assumption 2.4, we can also modify Corollary 2.2 to the fol-
lowing.

Corollary 2.3 Under Assumption 2.4, for any smooth function �, there exists
another ISS Lyapunov function V ′(x) satisfying

α′(‖x‖) ≤ V ′(x) ≤ ᾱ′(‖x‖)
V̇ ′(x) ≤ −�(x)‖x‖2 + p′

κ(u)‖u‖2 (2.57)

for some unknown positive constant p′ and some known smooth function κ. In par-
ticular, the class K∞ functions ᾱ′ and α′ and the smooth function κ are given by
Algorithm 2.5.

Proof As shown in the proof of Lemma 2.5, for any smooth function �(x), there
exists some ISS Lyapunov function V ′(x) for ẋ = f (x, u, d) satisfying α′(‖x‖) ≤
V ′(x) ≤ ᾱ′(‖x‖) and the following inequality:

V̇ ′(x) ≤ −1

2
ρ(α(‖x‖))α(‖x‖) + pρ(ᾱ(α−1(2pσ(‖u‖))))σ (‖u‖).

for any ρ ∈ SN . By Remark 2.10, there exist smooth functions α0(x) and σ0(u)

such that

α0(x)α(‖x‖) ≥ ‖x‖2, σ0(u)‖u‖2 ≥ σ(‖u‖). (2.58)

From the proof of Corollary 2.2, there exists a smooth function �̄(x) satisfying
(2.43).

Pick a function ρ ∈ SN such that

1

2
ρ(α(‖x‖)) ≥ �̄(x). (2.59)

http://dx.doi.org/10.1007/978-3-319-08834-1_6
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Then we have,

V̇ ′(x) ≤ −�̄(x)α(‖x‖) + pρ(ᾱ(α−1(2pσ(‖u‖))))σ (‖u‖). (2.60)

By part (i) of Lemma 11.1 in the Appendix, one has

ρ(ᾱ(α−1(2σ̂ (‖u‖)))) = ρ(ᾱ(α−1(2pσ(‖u‖)))) ≤ c(p)κ̄(u) (2.61)

for some smooth functions c(p) ≥ 0 and κ̄(u) ≥ 0.
Letting p′ be any unknown positive constant satisfying p′ ≥ c(p)p, and using

(2.43) and (2.61) in (2.60) gives

V̇ ′(x) ≤ −�(x)α0(x)α(‖x‖) + p′
κ̄(u)σ (‖u‖).

Letting

κ(u) = κ̄(u)σ0(u) (2.62)

and using (2.58) completes the proof. ��

Algorithm 2.5

INPUT: α, ᾱ, α, σ,�

OUTPUT: α′, ᾱ′, κ

STEP 1: Pick the functions α0(x) and σ0(u) satisfying (2.58).
STEP 2: Pick the smooth function �̄(x) satisfying (2.43).
STEP 3: Pick an SN function ρ satisfying (2.59).
STEP 4: Find the class K∞ functions α′ and ᾱ′ from (2.34).
STEP 5: Find the smooth function κ̄ from (2.61).
STEP 6: Find the smooth function κ from (2.62).
STEP 7: END

As pointed out in Remark 2.13, Theorem 2.8 cannot handle the system (2.46) when
D is not a known compact set. We now modify Theorem 2.8 by using a so-called
universal adaptive control technique. For this purpose, we modify Assumption 2.3
to the following.

Assumption 2.5 The subsystem ż = q(z, x, d) has an ISS Lyapunov function V (z),
i.e.,

V (z) ∼ {α, ᾱ, α, σ̂ | ż = q(z, x, d)}

and

lim sup
s→0+

s2

α(s)
< ∞, lim sup

s→0+

σ̂ (s)

s2 < ∞.

http://dx.doi.org/10.1007/978-3-319-08834-1_11
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Moreover, the functions α, ᾱ, and α are known and the function σ̂ is known up to
a constant factor in the sense that there exist an unknown constant p and a known
function σ such that σ̂ = pσ .

Example 2.17 Consider a linear system

ż = Az + B(d)x (2.63)

where z ∈ R
n and x ∈ R are the state variables, d ∈ D is the system uncertainty for

an unknown compact set D, and A is a Hurwitz matrix. Now, let P be a symmetric
positive matrix such that P A + AT P = −I . Since d ∈ D for a compact set D, we
can pick a positive number p ≥ 2‖P B(d)‖2 which is not necessarily known because
it depends on the size of D. Let V (z) = zT Pz. Then its derivative along the system
trajectory satisfies

V̇ (z) = −‖z‖2 + 2zT P B(d)x ≤ −‖z‖2/2 + 2‖P B(d)‖2x2

≤ −α(‖z‖) + pσ(|x |)

where α(s) = s2/2 and σ(s) = s2 are known functions. So, Assumption 2.5 is
satisfied for the system (2.63).

Theorem 2.9 Consider the system (2.55) with any unknown compact set D. Under
Assumption 2.5, there exists a controller

u = −kρ(x)x + ū

k̇ = λρ(x)x2, λ > 0 (2.64)

such that the closed-loop system has an ISS Lyapunov function W (z, x, k̂) where
k̂ = k − k∗ for some constant k∗ > 0, satisfying

β(‖col(z, x, k̂)‖) ≤ W (z, x, k̂) ≤ β̄(‖col(z, x, k̂)‖)

for some class K∞ functions β and β̄, and, along the trajectory of the closed-loop
system,

Ẇ (z, x, k̂) ≤ −‖z‖2 − ‖x‖2 + ‖ū‖2.

As a result, the controller (2.64) with ū = 0 globally stabilizes the system (2.55). In
particular, the function ρ is given in Algorithm 2.6.

Proof By Corollary 2.3, for any given smooth function �(z) ≥ 0, there exists a
continuously differentiable function V ′(z) satisfying α′(‖z‖) ≤ V ′(z) ≤ ᾱ′(‖z‖)
for some class K∞ functions α′ and ᾱ′, such that along the trajectory of the system
ż = q(z, x, d),

V̇ ′(z) ≤ −�(z)‖z‖2 + p′
κ(x)x2 (2.65)
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for some unknown positive number p′ and a known smooth function κ. By Corollary
11.1 of the Appendix, there exist a positive number c, depending on the size of D,
and two positive and sufficiently smooth known functions m1 and m2, such that

| f (z, x, d)| ≤ cm1(z)‖z‖ + cm2(x)|x |, ∀d ∈ D. (2.66)

Let k̂ = k − k∗ with k∗ a positive number to be specified later. Direct calculation
shows that, along the trajectory of the closed-loop system, the derivative of

U (z, x) = V ′(z) + x2/2

satisfies,

U̇ (z, x) ≤ −�(z)‖z‖2 + p′
κ(x)x2 + x[ f (z, x, d) + bu]

≤ −�(z)‖z‖2 + m2
1(z)‖z‖2 + x2[p′

κ(x) + c2/4 + cm2(x)

+ b2/4 − bkρ(x)] + ū2

= −�(z)‖z‖2 + m2
1(z)‖z‖2 + x2[p′

κ(x) + c2/4 + cm2(x)

+ b2/4 − bk∗ρ(x)] + ū2 − bk̂ρ(x)x2. (2.67)

In (2.67), let

�(z) ≥ 1 + m2
1(z) (2.68)

ρ(x) ≥ max{κ(x), m2(x), 1} (2.69)

and

k∗ ≥ (1 + p′ + c2/4 + c)/b + b/4. (2.70)

One has

U̇ (z, x) ≤ −‖z‖2 − ‖x‖2 + ū2 − bk̂ρ(x)x2. (2.71)

Define a Lyapunov function candidate as follows:

W (z, x, k̂) = U (z, x) + bk̂2/(2λ).

Direct calculation shows that the derivative of W (z, x, k̂) along the trajectory of the
closed-loop system satisfies,

Ẇ (z, x, k̂) ≤ −‖z‖2 − ‖x‖2 + ū2 − bk̂ρ(x)x2 + b(k − k∗)k̇/λ

≤ −‖z‖2 − ‖x‖2 + ū2.

http://dx.doi.org/10.1007/978-3-319-08834-1_11
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The proof is thus completed by choosing the class K∞ functions β and β̄, using
Lemma 11.3 of the Appendix, such that

β(‖col(z, x, k̂)‖) ≤ α′(‖z‖) + x2/2 + bk̂2/(2λ)

β̄(‖col(z, x, k̂)‖) ≥ ᾱ′(‖z‖) + x2/2 + bk̂2/(2λ). (2.72)

��
Algorithm 2.6

INPUT: f , α, ᾱ, α, σ

OUTPUT: ρ

STEP 1: Find the functions m1 and m2 from (2.66).
STEP 2: Pick the function � from (2.68) and call

(α′, ᾱ′, κ) = ALGORITHM 2.5 (α, ᾱ, α, σ,�).

STEP 3: Calculate the function ρ from (2.69).
STEP 4: END

Remark 2.16 If the size of the uncertainty D is known, then a real number k∗ dom-
inating the inequality (2.70) is known. One can pick a sufficiently large constant
gain k ≥ k∗ to be the controller gain. However, if the size of the uncertainty D is
unknown, then k∗ is unknown, either. One has to use a dynamic gain governed by
(2.64). From (2.64), it can be seen that if the gain k is not large enough to achieve
limt→∞ x(t) = 0, then it will increase until limt→∞ x(t) = 0. This type of adap-
tive approach for tuning the controller gain is called universal adaptive control or
self-tuning adaptive control.

Example 2.18 Consider a second order nonlinear system

ż = −z + w3x

ẋ = w1z sin x + w2x3 + u

which was studied in Example 2.16 assuming w3 = 1 and the size of the unknown
parameters w1 and w2 are known. Here, we consider the more general case where
w1, w2, and w3 can be any unknown real numbers. First, it can be verified that the
derivative of V (z) = z2, along the trajectory of ż = −z + w3x , satisfies

V̇ (z) ≤ −z2 + px2

where p ≥ w2
3 is any unknown constant. Thus, Assumption 2.5 is satisfied with

α(s) = ᾱ(s) = α(s) = s2 and σ̂ (s) = ps2.
Next, we note that

|w1z sin x + w2x3| ≤ c(|z| + x2|x |)

http://dx.doi.org/10.1007/978-3-319-08834-1_11
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Fig. 2.4 Profile of state trajectories of the closed-loop system in Example 2.18

where c ≥ max{|w1|, |w2|}, that is, (2.66) is true for m1 = 2 and m2(x) = x2.
Let �(z) = 1 + m2

1 = 5. Since � is constant, and both α and σ̂ are quadratic, by
Corollary 2.3 and Remark 2.11, letting V ′(z) = �z2 shows (2.65) is satisfied with
κ(x) = 5. Now, pick the following function according to (2.69)

ρ(x) = x2 + 5 ≥ max{5, x2, 1},

which leads to the controller (2.64). The performance of the controller is simulated
and illustrated in Fig. 2.4 with w1 = 1.8, w2 = 2, and w3 = 1. The initial state
values are z(0) = 20, x(0) = −10, and k(0) = 0. It can be seen that both x and z
approach 0 asymptotically while k approaches a finite constant asymptotically.

2.7 Small Gain Theorem

In this section, we introduce the small gain theorem to analyze the property of two
inter-connected ISS systems. Let us consider the following two systems �1 and �2,

�1 : ẋ1 = f1(x1, u1, uc, d),

�2 : ẋ2 = f2(x2, u2, uc, d), t ≥ t0 (2.73)

where, for i = 1, 2, xi ∈ R
ni is the state, ui ∈ R

mi , uc ∈ R
mc are the inputs of

the subsystem �i , and the function fi (xi , ui , uc, d(t)) is piecewise continuous in d
and locally Lipschitz in col(xi , ui , uc) and d(t) : [t0,∞) �→ D ⊂ R

l is piecewise
continuous in t for a compact set D.

Suppose m1 = n2 and m2 = n1, and consider the following connection
(see Fig. 2.5),
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ẋ2 = f2(x2,u 2,u c,d (t))

d(t)

d(t)

ẋ1 = f1(x1,u 1,u c,d (t))

uc [:]
col(x1,x 2)

x2

x1

u1

u2

Fig. 2.5 Inter-connection of two ISS systems

u1 = x2

u2 = x1. (2.74)

Under (2.74), the system (2.73) can be put in a compact form

ẋ = f (x, uc, d)

with

x = col(x1, x2), f (x, uc, d) = col( f1(x1, x2, uc, d), f2(x2, x1, uc, d)).

We will introduce two versions of the small gain theorem. The first version is
formulated in terms of the ISS Lyapunov function of the individual subsystems, and
this version will be frequently used in nonlinear controller design in the subsequent
chapters.

Theorem 2.10 (Small Gain Theorem in terms of ISS Lyapunov Functions) For
i = 1, 2, assume the subsystem �i of (2.73) is RISS with an ISS Lyapunov function
Vi (xi ), i.e.,

Vi (xi ) ∼ {αi , ᾱi , αi , (σi , ςi ) | ẋi = fi (xi , ui , uc, d)}.

Further assume

α1(s) − σ2(s) ≥ δ1(s), α2(s) − σ1(s) ≥ δ2(s), ∀s ≥ 0 (2.75)

for class K∞ functions δi , i = 1, 2. Then the system (2.73) under the connection
(2.74) is RISS with an ISS Lyapunov function V (x), i.e.,

V (x) ∼ {α, ᾱ, α, ς | ẋ = f (x, uc, d)}.
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Proof Let V (x) = V1(x1) + V2(x2). Under (2.75), we have

α1(‖x1‖) + α2(‖x2‖) ≤ V (x) ≤ ᾱ1(‖x1‖) + ᾱ2(‖x2‖)
V̇ (x) ≤ −δ1(‖x1‖) − δ2(‖x2‖) + ς1(‖uc‖) + ς2(‖uc‖).

By Lemma 11.3 of the Appendix, there exist functions α, ᾱ, α, and ς such that

α(‖x‖) ≤ α1(‖x1‖) + α2(‖x2‖)
ᾱ(‖x‖) ≥ ᾱ1(‖x1‖) + ᾱ2(‖x2‖)
α(‖x‖) ≤ δ1(‖x1‖) + δ2(‖x2‖)

ς(‖uc‖) ≥ ς1(‖uc‖) + ς2(‖uc‖).

The proof is thus completed. ��
Example 2.19 Consider the following system

ẋ1 = −x3
1 + x1x2

ẋ2 = x2
1 − ax2 + u (2.76)

where a is a real parameter. This system results from the connection (2.74) of the
following two systems

ẋ1 = −x3
1 + x1u1 (2.77)

ẋ2 = u2
2 − ax2 + u. (2.78)

Let V1(x1) = x2
1/2. We first show that V1(x1) is an ISS-Lyapunov function for

the system (2.77) with state x1 and input u1. Indeed, the derivative of V (x1) along
the trajectory of (2.77) is

V̇1(x1) ≤ −x4
1 + x2

1 |u1| ≤ −x4
1/2 + u2

1/2.

In other words, one has

V1(x1) ∼ {α1, ᾱ1, α1, σ1 | ẋ1 = −x3
1 + x1u1}

for α1(s) = s4/2 and σ1(s) = s2/2.
Next we consider the system (2.78) with state x2 and input (u2, u). Let V2(x2) =

x2
2/2. Then the derivative of V2(x2) along (2.78) is

V̇2(x2) ≤ |x2|(|u2|2 − a|x2| + |u|)
≤ (1/(4ε1))u

4
2 + ε1x2

2 − ax2
2 + ε2x2

2 + (1/(4ε2))u
2

http://dx.doi.org/10.1007/978-3-319-08834-1_11
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for any ε1, ε2 > 0. In other words, one has

V2(x2) ∼ {α2, ᾱ2, α2, (σ2, ς2) | ẋ2 = u2
2 − ax2 + u}

for α2(s) = (a − ε1 − ε2)s2, σ2(s) = (1/(4ε1))s4, and ς2(s) = (1/(4ε2))s2.
Obviously, if a > 1, there exist ε1, ε2 > 0 to satisfy

1/2 > 1/(4ε1), a − ε1 − ε2 > 1/2, (2.79)

which implies the small gain condition (2.75). By Theorem 2.10, the inter-connected
system, i.e., the original system (2.76) is ISS and admits an ISS Lyapunov function
V (x1, x2) = V1(x1) + V1(x2).

In Theorem 2.10, the inequalities in (2.75) are the small gain conditions. In real
applications, the functions αi and σi are usually modified using the changing supply
function technique to make the conditions (2.75) satisfied. The following result will
be used in robust controller design (see Chap. 4 and some other chapters).

Theorem 2.11 Consider a nonlinear system

ẋ1 = f1(x1, u, d)

ẋ2 = f2(x2, x1, u, d). (2.80)

Assume both subsystems are RISS with ISS Lyapunov functions

V1(x1) ∼ {α1, ᾱ1, α1, σ1) | ẋ1 = f1(x1, u, d)}.
V2(x2) ∼ {α2, ᾱ2, α2, (ς, σ2) | ẋ2 = f2(x2, x1, u, d)}.

Suppose the function αi , σi , and ς satisfy the following properties:

lim sup
s→0+

s2

αi (s)
< ∞, lim sup

s→0+

σi (s)

s2 < ∞, i = 1, 2, lim sup
s→0+

ς(s)

s2 < ∞.

Then there exists an ISS Lyapunov function V (x), with x = col(x1, x2), satisfying

α(‖x‖) ≤ V (x) ≤ ᾱ(‖x‖) (2.81)

for some class K∞ functions α and ᾱ, and, along the trajectory of (2.80),

V̇ (x) ≤ −‖x‖2 + κ(u)‖u‖2 (2.82)

for some smooth function κ.

Proof We first consider the x1-subsystem. By Corollary 2.2, for any smooth function
�, there exists an ISS Lyapunov function V ′

1(x1) satisfying

http://dx.doi.org/10.1007/978-3-319-08834-1_4
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α′
1(‖x1‖) ≤ V ′

1(x1) ≤ ᾱ′
1(‖x1‖)

V̇ ′
1(x1) ≤ −�(x1)‖x1‖2 + κ1(u)‖u‖2

for some class K∞ functions α′
1 and ᾱ′

1 and some smooth function κ1. Then, we
consider the x2-subsystem. By Corollary 2.2 again, there exists an ISS Lyapunov
function V ′

2(x2) satisfying

α′
2(‖x2‖) ≤ V ′

2(x2) ≤ ᾱ′
2(‖x2‖)

V̇ ′
2(x2) ≤ −‖x2‖2 + κ(x1, u)‖col(x1, u)‖2

for some class K∞ functions α′
2 and ᾱ′

2 and some smooth function κ. Moreover, we
have

κ(x1, u)‖col(x1, u)‖2 ≤ κ2(x1)‖x1‖2 + κ3(u)‖u‖2

for some smooth functions κ2 and κ3. Let �(x1) = κ2(x1)+1 and V (x) = V ′
1(x1)+

V ′
2(x2). One has (2.82) for any smooth function

κ(u) ≥ κ1(u) + κ3(u).

By Lemma 11.3 of the Appendix, there exist class K∞ functions α and ᾱ such
that

α(‖x‖) ≤ α′
1(‖x1‖) + α′

2(‖x2‖)
ᾱ(‖x‖) ≥ ᾱ′

1(‖x1‖) + ᾱ′
2(‖x2‖).

The inequalities in (2.81) are thus proved. ��
Corollary 2.4 Consider a nonlinear system

ẋ1 = f1(x1, u, d)

ẋ2 = Ax2 + φ(x1, u, d) (2.83)

where the matrix A is Hurwitz and the function φ is sufficiently smooth with
φ(0, 0, d) = 0 for all d ∈ D with D a compact set. Assume the x1-subsystem is
RISS with an ISS Lyapunov function V1(x1), i.e.,

V1(x1) ∼ {α1, ᾱ1, α1, σ1) | ẋ1 = f1(x1, u, d)},

and the functions α1 and σ1 satisfy the following properties:

lim sup
s→0+

s2

α1(s)
< ∞, lim sup

s→0+

σ1(s)

s2 < ∞.

http://dx.doi.org/10.1007/978-3-319-08834-1_11
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Then (2.83) has an ISS Lyapunov function V (x) with x = col(x1, x2) satisfying

α(‖x‖) ≤ V (x) ≤ ᾱ(‖x‖)

for some class K∞ functions α and ᾱ, and, along the trajectory of (2.83),

V̇ (x) ≤ −‖x‖2 + κ(u)‖u‖2

for a smooth function κ.

Proof By Theorem 2.11, it suffices to show the x2-subsystem is RISS with an ISS
Lyapunov function V2(x2), i.e.,

V2(x2) ∼ {α2, ᾱ2, α2, (ς, σ2) | ẋ2 = f2(x2, x1, u, d)}

and the function α2, σ2, and ς satisfy the following properties:

lim sup
s→0+

s2

α2(s)
< ∞, lim sup

s→0+

σ2(s)

s2 < ∞, lim sup
s→0+

ς(s)

s2 < ∞.

Let V2(x2) = xT
2 Px2 where P is a symmetric positive definite matrix satisfying

the Lyapunov equation

P A + AT P = −I.

It can be seen that

α2(‖x2‖) = λmin‖x2‖2/2 ≤ V2(x2) ≤ λmax‖x2‖2 ≤ ᾱ2(‖x2‖)

where λmin and λmax are the minimal and maximal eigenvalues of P , respectively.
Since φ is sufficiently smooth with φ(0, 0, d) = 0, by Corollary 11.1 of the Appen-
dix,

|φ(x1, u, d)| ≤ m1(‖x1‖)‖x1‖ + m2(|u|)|u|, ∀d ∈ D,

for some smooth functions m1 and m2. Then, the derivative of V2(x2) along the
trajectory of the x2-subsystem of (2.83) satisfies

V̇2(x2) = −‖x2‖2 + 2xT
2 Pφ(x1, u, d)

≤ −‖x2‖2/2 + 4‖P‖2m2
1(‖x1‖)‖x1‖2 + 4‖P‖2m2

2(|u|)u2.

Thus, the proof is completed with

α2(s) = s2/2, ς(s) ≥ 4‖P‖2m2
1(s)s

2, σ2(s) ≥ 4‖P‖2m2
2(s)s

2. ��

http://dx.doi.org/10.1007/978-3-319-08834-1_11
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The small gain theorem can also be given in terms of gain functions of the
individual subsystems. The proof of the following theorem is given in the Appendix.

Theorem 2.12 (Small Gain Theorem) For i = 1, 2, assume the subsystem �i of
(2.73) is RISS viewing xi as state, col(ui , uc) as input, i.e., there exist class KL
functions βi , class K functions γ x

i , γ u
i , independent of t0 and d(t), such that, for any

initial state xi (t0), and any input function col(ui , uc) ∈ Lmi +mc∞ , the solution xi (t)
of �i exists and satisfies

‖xi (t)‖ ≤ max
{
βi (‖xi (t0)‖, t − t0), γ

x
i

(∥∥ui[t0,t]
∥∥) , γ u

i

(∥∥uc[t0,t]
∥∥)} ,

∀t ≥ t0. (2.84)

Further assume

γ x
1 ◦ γ x

2 (s) < s, ∀s > 0. (2.85)

Then the system (2.73) under the connection (2.74) is RISS viewing x =
col(x1, x2) as state and uc as input, i.e.,

‖x(t)‖ ≤ max
{
β(‖x(t0)‖, t − t0), γ

(∥∥uc[t0,t]
∥∥)} , ∀t ≥ t0, (2.86)

for some class KL function β, and any class K function γ satisfying

γ (s) ≥ max
{
2γ x

1 ◦ γ u
2 (s), 2γ u

1 (s), 2γ x
2 ◦ γ u

1 (s), 2γ u
2 (s)

}
, ∀s > 0. (2.87)

Corollary 2.5 Consider the nonlinear system

ẋ1 = f1(x1, u, d)

ẋ2 = f2(x2, x1, u, d).

Assume both the subsystems are RISS viewing x1 as state, u as input, and viewing x2
as state, col(x1, u) as input, respectively, Then, the overall system is RISS viewing
x = col(x1, x2) as state and u as input with its gain function given by any class K
function γ satisfying

γ (s) ≥ max
{
2γ u

1 (s), 2γ u
2 (s), 2γ x

2 ◦ γ u
1 (s)

}
, ∀s > 0 (2.88)

Proof Note that the inequality (2.84) holds for i = 1, 2 with any class K function
γ x

1 (noting u2 = x1 and uc = u). In particular, let

γ x
1 (s) = min

{
(γ x

2 )−1(s)/2, s
}

.

Then, the inequality (2.84) holds with i = 1 and the inequality (2.85) holds with this
γ x

1 . Thus, the inequality (2.87) reduces to (2.88). ��
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2.8 Notes and References

Most materials in this chapter are standard and can be found in many textbooks on
nonlinear systems and control, e.g., [2, 4–8]. Theorems 11.1 and 11.2 (given in the
Appendix) on the existence and uniqueness of the initial value solution to a nonlinear
system can be found in Sect. 3.1 of [2]. A series of stability concepts are introduced
in Sect. 2.1. The definitions are consistent with those commonly used in literature.
When uncertainties are taken into consideration, the robust version of various stability
concepts are introduced in Sect. 2.2. Some of the tools for adaptive control introduced
in Sect. 2.3 can also been found in textbooks [6, 9–12]. Lemma 2.1 (Barbalat’s
Lemma) can be found in [2, 8]. Theorem 2.5 (LaSalle-Yoshizawa Theorem) due
to LaSalle [13] and Yoshizawa [14] is from Theorem 2.1 of [6]. Lemma 2.3 is
from Lemma 3.4 of [15]. Lemma 2.4 is taken from [16]. It can be viewed as an
alternative form of Lemma 1 in [17] and can also be directly derived from Lemma 2
of [18]. For the linear adaptive control systems, the parameter convergence condition
is established by showing, under the PE condition, the closed-loop system which is
typically a linear time-varying system is uniform exponentially stable. However, for
nonlinear adaptive control systems, the PE condition may not guarantee the uniform
exponential stability of the closed-loop system which is typically a nonlinear time-
varying system, see, e.g., [19]. Lemma 2.4 is of interest in that it only depends on
the characteristics of the signals g(t) and f (t) without assuming that these signals
are governed by some dynamical systems as in the literature of adaptive control of
linear systems. Thus, it may also apply to the adaptive control of nonlinear systems.
The notion of ISS discussed in Sect. 2.4 was first proposed by Sontag in [20–25],
etc. It has become an effective tool in the analysis and design of nonlinear control
systems. Theorems 2.6 and 2.7 are of particular interest for designing control laws
for nonlinear systems. The time-invariant version of Theorems 2.6 and 2.7 can also
be found in [5]. The technique of changing supply function was developed in [26].
Some variants of this technique are introduced in Sect. 2.5 and will be used in the
subsequent chapters. The universal adaptive control technique in Sect. 2.6 has been
used for handling static uncertainty with unknown boundary in, e.g., [9, 10, 27–29].
The small gain theorem was established in [30–32] in terms of a general inter-
connection of two nonlinear subsystems. In Sect. 2.7, a more clear-cut version of
the small gain theorem is introduced for a simpler inter-connection of two nonlinear
subsystems. This simplified version is taken from [33].

2.9 Problems

Problem 2.1 Simulate the following systems starting from different initial condi-
tions. Observe the stability, asymptotic stability, and globally asymptotic stability
properties of the equilibrium point x = 0.

(a) ẋ = ax + bx2 + cx3, a, b, c ∈ R;
(b) ÿ − μ(1 − y2)ẏ + y = 0, μ ∈ R, x = col(y, ẏ);

http://dx.doi.org/10.1007/978-3-319-08834-1_11
http://dx.doi.org/10.1007/978-3-319-08834-1_11
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(c) ṙ = r(1 − r), θ̇ = sin2(θ/2), r =
√

x2
1 + x2

2 , θ = arctan(x2/x1),
x = col(x1, x2);

(d) ẋ1 = −x1 + 4x2, ẋ2 = −x1 − x3
2 , x = col(x1, x2);

(e) ẋ1 = x2, ẋ2 = x1 −sat(2x1 +x2), x = col(x1, x2), where the saturation function
is defined as

sat(s) =
⎧⎨
⎩

s, |s| ≤ 1
1, s > 1
−1, s < −1

.

Problem 2.2 Determine if the following functions belong to class K function, class
K∞ function, or class KL function.

(a) γ (r) = 2r + r2, r ∈ [0,∞);
(b) γ (r) = er , r ∈ [0,∞);
(c) γ (r) = arctan(r), r ∈ [0, 1);
(d) γ (r, s) = re−2s, r ∈ [0,∞), s ∈ [0,∞);
(e) γ (r, s) = (r3 + r)/(s + 1), r ∈ [0,∞), s ∈ [0,∞).

Problem 2.3 Find the Jacobian matrices for the following systems at the origin
x = 0 and determine the stability of their equilibrium points at the origin.

(a) ẋ = − sin x ;
(b) ẋ = −x3;
(c) ẋ1 = sin x2, ẋ2 = −x1 + x1x2, x = col(x1, x2);

(d) ẋ =
⎡
⎣ 5x2

4x2
1 − 2 sin(x2x3)

x2x3

⎤
⎦ , x = col(x1, x2, x3).

Problem 2.4 Use Lyapunov’s linearization theorem to determine the stability of the
equilibrium point of the mechanical system at the origin

mÿ + cẏ + k1 y + k3 y3 = 0, m, c > 0, k1, k2 ∈ R.

Problem 2.5 Show the nonlinear system ẋ = −c(x, t) is UGAS if

xc(x, t) ≥ α(|x |), ∀x ∈ R

for a class K function α.

Problem 2.6 Consider the following system

ẋ1 = x2

ẋ2 = −x1 − x3
1 − x3

2 .

(a) Find the Jacobian matrix at the origin; what does it say about the stability of the
equilibrium point?
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(b) Use Lyapunov’s direct theorem to determine the stability of the equilibrium point
at the origin.
Hint:

V (x1, x2) = x2
2

2
+

x1∫
0

(s + s3)ds

Problem 2.7 Use Lyapunov’s direct theorem to determine the stability of the equi-
librium point at the origin for the systems in Problem 2.3.

Problem 2.8 Determine if x = 0 is an equilibrium point for the following systems,
where d(t) represents external disturbance.

(a) ẋ = sin x + d(t);
(b) ẋ = −x + d(t)x3;
(c) ẋ1 = x2, ẋ2 = d(t)x2

1 + x2, x = col(x1, x2);
(d) ẋ = (x + cos x − 1)/(1 + d(t)).

Problem 2.9 Find the Jacobian matrices for the following systems at (x, d) = (0, 0)

and determine the stability of their equilibrium points at x = 0, where d represents
an unknown parameter.

(a) ẋ = −(1 + d) sin x ;
(b) ẋ = −x3/(2 + sin(d));
(c) ẋ1 = sin x2, ẋ2 = −x1 + dx1x2, x = col(x1, x2);

(d) ẋ =
⎡
⎣ dx2

4x2
1 − 2 sin(x2x3)

x2x3

⎤
⎦ , x = col(x1, x2, x3).

Problem 2.10 Use Lyapunov’s direct theorem to determine the stability of the equi-
librium point at the origin for the systems in Problem 2.9.

Problem 2.11 Use LaSalle-Yoshizawa Theorem to show that the equilibrium point
of the system in Problem 2.6 is GAS.

Problem 2.12 Consider the nonlinear system

ẋ1 = x2

ẋ2 = − sin x1 + (1 + d(t))x2

where d(t) represents external disturbance satisfying |d(t)| < 0.1. Use LaSalle-
Yoshizawa Theorem (hint: V (x1, x2) = 1 − cos x1 + x2

2/2) to show

lim
t→∞ x2(t) = 0

for all initial state values x1(0), x2(0) ∈ R.
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Problem 2.13 Find ISS-Lyapunov functions for the following systems where d(t)
represents external disturbance.

(a) ẋ = −|d(t)|x − x3 + u;
(b) ẋ = −x3 − x2u;

(c) ẋ =
[ −x1 − x2

x1 − x3
2 + d(t)u

]
, x = col(x1, x2), 1 < d(t) < 2.

Problem 2.14 Find the gain functions for the RISS systems in Problem 2.13.

Problem 2.15 The function V defined in Theorem 2.7 is an ISS Lyapunov function
for the system (2.7). If the class K∞ function α is relaxed by a continuous positive
definite function α (not required to be unbounded), the function V is called an
integral input-to-state stable (iISS) Lyapunov function for the system (2.7). The
system (2.7) is said to be iISS if there exists an iISS Lyapunov function [34]. Show
that the following systems are not ISS but iISS using the suggested iISS Lyapunov
functions.

(a) ẋ = −x + xu2, V (x) = ln(1 + x2);
(b) ẋ = − arctan x + u, V (x) = x arctan x .

Problem 2.16 Write the ISS-Lyapunov functions in Problem 2.13 in the form

V (x) ∼ {α, ᾱ, α, σ | ẋ = f (x, u, d)}.

For each function � given below, find another ISS Lyapunov function V ′(x) satis-
fying (2.37) and the corresponding functions ᾱ′, α′ and κ.

(a) �(x) = 2;
(b) �(x) = ‖x‖2;
(c) �(x) = 3‖x‖2 + 2‖x‖4.

Problem 2.17 Determine if the functions V ′(x) given in Problem 2.16 satisfies
(2.42). If yes, find the corresponding functions ᾱ′, α′ and κ.

Problem 2.18 Suppose the system (2.7) is iISS with an iISS Lyapunov function
V (x) satisying (2.25) where α is a continuous positive definite function. Let α′ be
a continuous positive definite function such that α′(s) = O[α(s)] as s → 0+ and
lim sups→∞

[
α′(s)/α(s)

]
< ∞ if α is not of class K∞. Show that there exists another

iISS Lyapunov function V ′(x) satisfying α′(‖x‖) ≤ V ′(x) ≤ ᾱ′(‖x‖) for some class
K∞ functions α′ and ᾱ′ such that, along the trajectory of (2.7),

V̇ ′(x) ≤ −α′(‖x‖) + κ(u)

for some positive definite function κ.
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Problem 2.19 Consider the system (2.83) where the matrix A is Hurwitz and the
function φ is sufficiently smooth with φ(0, 0, d) = 0 for all d ∈ D with D a
compact set. Assume the x1-subsystem is iISS with an iISS Lyapunov function
V1(x1) satisfying α1(‖x1‖) ≤ V1(x1) ≤ ᾱ1(‖x1‖) for some class K∞ functions
α1 and ᾱ1 such that, along the trajectory of the x1-subsystem,

V̇ (x1) ≤ −α1(‖x1‖) + σ1(‖u‖)

for some positive definite function α1 and some class K function σ1 satisfying
lim sups→0+

[
σ1(s)/s2

]
< ∞.

Let φ be a continuous positive definite function such that φ(s) = O[α1(s)] as
s → 0+ and lim sups→∞ [φ(s)/α1(s)] < ∞ if α1 is not of class K∞. Show that there
exists an iISS Lyapunov function V (x) with x = col(x1, x2), satisfying α(‖x‖) ≤
V (x) ≤ ᾱ(‖x‖) for some class K∞ functions α and ᾱ such that, along the trajectory
of (2.83),

V̇ (x) ≤ −φ2(‖x‖) + κ(u)‖u‖2

for some smooth function κ.

Problem 2.20 Consider the system (2.46) with D a known compact set and b(d)>0.
Assume the z-subsystem is iISS with an iISS Lyapunov function V (z) satisfying
α(‖z‖) ≤ V (z) ≤ ᾱ(‖z‖) for some class K∞ functions α and ᾱ such that, along the
trajectory of the z-subsystem,

V̇ (z) ≤ −α(‖z‖) + σ(|x |)

for some positive definite function α and some class K function σ satisfying
lim sups→0+

[
σ(s)/s2

]
< ∞.

Let m1 and m2 be some smooth positive functions such that

| f (z, x, d)| ≤ m1(‖z‖)‖z‖ + m2(|x |)|x |, ∀d ∈ D.

Moreover, m1(s)s = O[α(s)] and lim sups→∞ [m1(s)s/α(s)] < ∞ if α is not of
class K∞. Show that there exists a controller of the form u = −ρ(x)x that globally
robustly stabilizes the system (2.46).

Problem 2.21 For the inter-connected system

ẋ1 = f1(x1, x2, d(t))

ẋ2 = f2(x1, x2, d(t))
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where d(t) represents external disturbance. Assume the system satisfies

‖x1(t)‖ ≤ max
{
β1(‖x1(t0)‖, t − t0), γ1

(∥∥x2[t0,t]
∥∥)}

‖x2(t)‖ ≤ max
{
β2(‖x2(t0)‖, t − t0), γ2

(∥∥x1[t0,t]
∥∥)} , ∀t ≥ t0

for some class KL functions β1 and β2 and some class K functions γ1 and γ2 given
below. Use the small gain theorem to determine the asymptotic stability of the system
for the following cases.

(a) γ1(s) = 2, γ2(s) = 0.4;
(b) γ1(s) = 0.8s2, γ2(s) = √

s;
(c) γ1(s) = α−1(s), γ2(s) = s2 for α(s) = 2s2 + s4.

Problem 2.22 For each of the systems given below with state x = col(x1, x2), input
u, and disturbance 1 < d(t) < 2, find an ISS Lyapunov function V (x) satisfying

α(‖x‖) ≤ V (x) ≤ ᾱ(‖x‖)
V̇ (x) ≤ −‖x‖2 + κ(u)‖u‖2.

Calculate the class K∞ functions α and ᾱ and the smooth function κ.

(a) ẋ1 = −x1 + u, ẋ2 = −x2 + d(t)x2
1 + u;

(b) ẋ1 =
[

0 1
−1 −2

]
x1 +

[
1
2

]
u, ẋ2 = −x2 + d(t)‖x1‖2 + u;

(c) ẋ1 = −x1 + u, ẋ2 = −
[

0 1
−1 −2

]
x2 +

[
1
2

]
(d(t)x2

1 + u).

Problem 2.23 For each of the systems given below with state x = col(x1, x2), input
u, and disturbance 1 < d(t) < 2, design a controller u = −ρ(x2)x2 + ū and find an
ISS Lyapunov function V (x) satisfying

α(‖x‖) ≤ V (x) ≤ ᾱ(‖x‖)
V̇ (x) ≤ −‖x‖2 + ‖ū‖2.

Calculate the class K∞ functions α and ᾱ.

(a) ẋ1 = −x1 + x2, ẋ2 = d(t)x1x2 + u;
(b) ẋ1 = −x1 + d(t)x2, ẋ2 = −x3

2 + d(t)u;

(c) ẋ1 =
[

0 1
−1 −2

]
x1 +

[
1
2

]
x2

2 , ẋ2 = d(t) sin x2 + u.

Problem 2.24 For each of the systems in Problem 2.23, design a controller u to
solve the global stabilization problem for d(t) ∈ D when D is an arbitrarily large
compact set.
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6. Krstic M, Kanellakopoulos I, Kokotović P (1995) Nonlinear and adaptive control design. Wiley,

New York
7. Nijmeijer H, van der Schaft AJ (1990) Nonlinear dynamical control systems. Springer, New

York
8. Slotine JJ, Li W (1991) Applied nonlinear control. Prentice Hall, Englewood Cliffs
9. Ilchmann A (1993) Non-identifier-based high-gain adaptive control. Springer, Berlin

10. Mareels I, Polderman JW (1996) Adaptive systems: an introduction. Birkhäuser, Boston
11. Marino R, Tomei P (1995) Nonlinear control design: geometric, adaptive and robust. Prentice

Hall, Englewood Cliffs
12. Narendra KS, Annaswamy AM (1989) Stable adaptive systems. Printice-Hall, Englewood

Cliffs
13. LaSalle JP (1968) Stability theory for ordinary differential equations. J Diff Equat 4:57–65
14. Yoshizawa T (1966) Stability theory by Lyapunov’s second method. The Mathematical Society

of Japan, Tokyo
15. Boyd S, Sastry S (1983) On parameter convergence in adaptive control. Syst Control Lett

3:311–319
16. Liu L, Chen Z, Huang J (2009) Parameter convergence and minimal internal model with an

adaptive output regulation problem. Automatica 45:1306–1311
17. Ortega R, Fradkov A (1993) Asymptotic stability of a class of adaptive systems. Int J Adapt

Control Signal Process 7:255–260
18. Yuan JS-C, Wonham WM (1977) Probing signals for model reference identification. IEEE

Trans Autom Control 22:530–538
19. Loria A, Panteley E (2002) Uniform exponential stability of linear time-varying systems:

revisited. Syst Control Lett 47:13–24
20. Sontag ED (1989) Smooth stabilization implies coprime factorization. IEEE Trans Autom

Control 34:435–443
21. Sontag ED (1990) Further facts about input to state stabilization. IEEE Trans Autom Control

34:473–476
22. Sontag ED (1995) On the input-to-state stability property. Int J Control 1:24–36
23. Sontag ED, Wang Y (1996) New characterizations of input-to-state stability. IEEE Trans Autom

Control 41:1283–1294
24. Sontag ED, Wang Y (1999) Notions of input to output stability. Syst Control Lett 38:351–359
25. Sontag ED, Wang Y (2001) Lyapunov characterizations of input to output stability. SIAM J

Control Optim 39:226–249
26. Sontag ED, Teel A (1995) Changing supply function in input/state stable systems. IEEE Trans

Autom Control 40:1476–1478
27. Ilchmann A, Ryan EP (1994) Universal λ-tracking for nonlinearly perturbed systems in the

presence of noise. Automatica 30:337–346
28. Ryan EP (1994) A nonlinear universal servomechanism. IEEE Trans Autom Control 39:753–

761
29. Ye XD, Huang J (2003) Decentralized adaptive output regulation for a class of large-scale

nonlinear systems. IEEE Trans Autom Control 48:276–281
30. Jiang ZP, Mareels I (1997) A small-gain control method for nonlinear cascaded systems with

dynamic uncertainties. IEEE Trans Autom Control 42:292–308



References 65

31. Jiang ZP, Mareels I, Wang Y (1996) A Lyapunov formulation of the nonlinear small gain
theorem for interconnected ISS systems. Automatica 32:1211–1215

32. Jiang ZP, Teel AR, Praly L (1994) Small-gain theorem for ISS systems and applications. Math
Control Signals Systems 7:95–120

33. Chen Z, Huang J (2005) A simplified small gain theorem for time-varying nonlinear systems.
IEEE Trans Autom Control 50:1904–1908

34. Angeli D, Sontag ED, Wang Y (2000) A characterization of integral input-to-state stability.
IEEE Trans Autom Control 45(6):1082–1097



http://www.springer.com/978-3-319-08833-4


	2 Fundamentals of Nonlinear Systems
	2.1 Stability Concepts
	2.2 Robust Stability
	2.3 Tools for Adaptive Control
	2.4 Input-to-State Stability
	2.5 Changing Supply Function
	2.6 Universal Adaptive Control
	2.7 Small Gain Theorem
	2.8 Notes and References
	2.9 Problems
	References


