
Chapter 2
The Nested Distance

In the present context of stochastic optimization we are interested in approximations
of stochastic processes. To quantify the quality of an approximation, a concept of
distance between stochastic processes is necessary. This is accomplished by the
nested distance, which was introduced in Chap. 1 and is systematically treated in
what follows. To this end we review different concepts of distances for probability
measures first. The Wasserstein distance will be generalized to the nested distance
between discrete time stochastic processes.

The distance of stochastic processes is based on the distance of the induced
probability measures. There exists a broad variety of different concepts of distances
on probability spaces in the literature. Some of them metricize convergence
in probability or other variants of different topologies on random variables or
probability measures. Rachev [105, 108] lists 76 metrics for measures, and many
of them are adapted to concrete and particular problems.

A useful distance, which is adapted to stochastic optimization, should comprise
various properties: it

• should measure distances of distributions and be independent of different,
underlying probability spaces,

• should allow reasonable computational implementations,
• should represent a version of the weak* topology1 for random variables to enable

approximations by discrete measures and, above all,
• should extend to general stochastic processes.

The Wasserstein distance, which is a solution of an optimization problem itself,
covers the desired properties in a natural way. As an extra, there is a close, almost
intimate relation between the Wasserstein distance and risk functionals. In addition,

1Recall that Pn ! P in the weak* topology, if
´
h dPn ! ´

h dP for all bounded and continuous
functions h.
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42 2 The Nested Distance

this distance is the basis for its multistage generalization, the nested distance and is
therefore discussed in more detail below.

2.1 Distances of Probability Measures

In this section we work with ordinary probability distributions P on R
m, say. When

replacing a probability model P by another (typically simpler) model QP , the basic
question arises: how close is QP to P ? Obviously, distances quantify the notion of
closeness. We review here some ways of dealing with the concept of closeness for
probability measures.

Let P be a set of probability measures on R
m.

Definition 2.1. A semi-distance d on P � P satisfies the following three condi-
tions:

(i) Nonnegativity: for all P1; P2 2 P ,

d.P1; P2/ � 0I

(ii) Symmetry: for all P1; P2 2 P ,

d.P1; P2/ D d.P2; P1/I

(iii) Triangle Inequality: for all P1; P2; P3 2 P ,

d.P1; P2/ � d.P1; P3/C d.P3; P2/:

A semi-distance d.�; �/ is called a distance if it satisfies the strictness
property:

(iv) Strictness: if d.P1; P2/ D 0, then P1 D P2.

2.1.1 Semi-Distances Generated by a Class of Test Functions

A general principle for defining semi-distances and distances consists in choosing
a family of integrable functions H (i.e., a family of functions such that the integral´
h.w/ P.dw/ exists for all P 2 P) and defining

dH.P1; P2/ WD sup
h2H

ˇ
ˇ
ˇ
ˇ

ˆ
h dP1 �

ˆ
h dP2

ˇ
ˇ
ˇ
ˇ
:

dH is called the (semi-)distance generated by H.
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In general, dH is only a semi-distance. If H is separating, i.e., if for every pair
P1; P2 2 P there is a function h 2 H such that

´
h dP1 ¤ ´

h dP2, then dH is strict
and thus is a distance.

The Moment Matching Semi-Distance. Let Pq be the set of all prob-
ability measures on R

1 which possess the q-th moment, i.e., for which´
max f1; jwjqg P.dw/ < 1. The moment matching semi-distance on Pq is

dMq .P1; P2/ D sup

�ˇ
ˇ
ˇ
ˇ

ˆ
ws P1.dw/�

ˆ
ws P2.dw/

ˇ
ˇ
ˇ
ˇ

W s 2 f1; 2; : : : ; qg
�

:

(2.1)

The Moment Matching Caveat. The moment matching semi-distance is not a
distance, even if q is chosen to be large or even infinity. In fact, there are examples
of different probability measures on R

1, which have the same moments of all orders.
For instance, there is a manifold of probability measures, which have all moments
equal to those of the lognormal distribution, but are not lognormal (the lognormal
distribution is often present in mathematical finance). Figure 2.1b displays two (of
infinitely many) distributions with all moments coinciding, cf. Heyde [58]. Indeed,
there are also distributions taking values on the negative axis having the same
moments as the lognormal distribution, which itself has nonnegative support.

Ignoring these facts it is a widespread method in applications to match the
first four moments, i.e., to work with dM4 . The following example displays two
further densities, coinciding in their first four moments, but exhibiting very different
properties in a drastic way.

Example 2.2 (See [93]). Let P1 and P2 be the two probability measures on R with
densities g1 and g2, where
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Fig. 2.1 The moment matching caveat. (a) Two densities with identical first four moments.
(b) Two densities with all moments coinciding
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g1.w/ D 0:3988 Œ exp.�jw C 0:2297j3/ � 1fw��1:2297g
C exp.�jw C 0:2297j/ � 1f�1:2297<w��0:2297g
C exp.�0:4024 � .w C 0:2297// � 1f�0:2297<w�2:2552g

C 1:0985 � .0:4024w C 0:2925/�6 � 1f2:2552<wg� and

g2.w/ D 0:5962 � 1fjwj�0:8163g C 0:00595 � 1f0:8163<jwj�3:0588g

(see Fig. 2.1a). Both densities are unimodal and coincide in the first four moments,
which are m1 D 0, m2 D 0:3275, m3 D 0, and m4 D 0:7230 (mq.P / D´

wq dP.w/). Their fifth moment, however, could not differ more: while the fifth
moment of P2 is zero, P1 has infinite fifth moment. The density g1 is asymmetric,
has a sharp cusp at �0:2297 and unbounded support; in contrast, g2 is symmetric
around 0, has a flat density there, has finite support, and possesses all moments.
The distribution functions and quantiles differ drastically as well: we have that
GP1.0:81/ D 0:6257 and GP1.�0:81/ D 0:1098, while GP2.0:81/ D 0:9807 and
GP2.�0:81/ D 0:0133. Thus the probability of the interval Œ�0:81; 0:81� is only
51 % under P1, while it is 95 % under P2.

Summarizing, matching moments do not match the distributions. The moment
matching semi-distance is not well suited for approximating probability distribu-
tions, since it is not fine enough to capture the relevant quality of an approximation
(cf. also the additional Example 2.22 below.)

Variational Distance. The other extreme would be to choose as the generating
class H all measurable functions h such that jhj � 1. This class generates a distance,
which is called the variational distance (more precisely, twice the variational
distance). It is easy to see that if P1 (resp. P2) has density g1 (resp. g2), then

sup

� ˇ
ˇ
ˇ
ˇ

ˆ
h dP1 �

ˆ
h dP2

ˇ
ˇ
ˇ
ˇ

W jhj � 1; h measurable

�

D
ˆ

jg1.w/ � g2.w/j dw

D 2 � supfjP1.A/� P2.A/ W A a measurable setg:

The distance

dV .P1; P2/ WD supfjP1.A/� P2.A/j W A a measurable setg (2.2)

is called the variational distance between P1 and P2.
The variational distance is a very fine distance, too fine for our applications: if P1

has a density and P2 sits on at most countably many points, then dV .P1; P2/ D 1,
independently of the number of mass points of P2. Thus there is no hope to
approximate any continuous distribution by a discrete one with respect to the
variational distance.
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Uniform Distance. One may restrict the class of sets in (2.2) to a certain subclass.
If one employs the class of half-unbounded rectangles in R

m of the form .�1;w1��
.�1;w2��� � ��.�1;wm� one obtains the uniform distance, also called Kolmogorov
distance

dU .P1; P2/ WD sup fjGP1.w/�GP2.w/j W w 2 R
mg ;

where GP .�/ is the distribution function of P ,

GP .w/ D P f.�1;w1� � � � � � .�1;wm�g:

Notice that a unit mass at point x and at point y are at a distance 1 both in the dV
distance and in the dU distance, irrespective of how close x is to y. Especially when
dealing with continuous baseline models and approximating discrete models, these
distances are too fine.

Bounded Lipschitz Distance. Reducing the class H to the class of all bounded,
Lipschitz functions leads to the bounded Lipschitz metric, which metricizes the
weak convergence of probability measures.

The bounded Lipschitz distance is defined as

dBL.P1; P2/ W D sup

�ˆ
h dP1 �

ˆ
h dP2 W jh.w/j � 1; jh.w/ � h.v/j � kw � vk

�

;

it involves the class H of functions h which are uniformly bounded by 1, and which
are Lipschitz continuous with Lipschitz constant 1.

Kantorovich Distance. The Kantorovich distance (also Wasserstein distance
of order 1, cf. Definition 2.4 below) is the bounded Lipschitz distance, where
the requirement of boundedness of h is dropped:

d1.P1; P2/ WD sup

�ˆ
h dP1 �

ˆ
h dP2 W h.w/ � h.v/ � kw � vk

�

:

This distance metricizes weak convergence on sets of probability measures which
possess uniformly a first moment, as is elaborated in Theorem 2.23 below. On the
real line, the Kantorovich metric may also be written as

d1.P1; P2/ D
ˆ 1

�1
jGP1.w/ �GP2.w/j dw D

ˆ 1

0

ˇ
ˇG�1

P1
.p/ �G�1

P2
.p/

ˇ
ˇ dp;

(2.3)

where G�1
P .p/ D inffw W GP .w/ � pg (see Vallander [135]).

Fortet–Mourier Distance. If H is the class of Lipschitz functions of order q
(q-Lipschitz), the Fortet–Mourier distance is obtained:
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dFMq .P1; P2/ WD sup

�ˆ
h dP1 �

ˆ
h dP2 W Lq.h/ � 1

�

; (2.4)

where the Lipschitz constant of order q is defined as

Lq.h/ D inf
n

L W jh.w/ � h.v/j � L � jjw � vjj � max.1; kwkq�1 ; kvkq�1/
o

:

(2.5)

Notice that Lq0.h/ � Lq.h/ for q � q0; in particular, Lq.h/ � L1.h/ for all q � 1

and therefore

d1.P1; P2/ � dFMq .P1; P2/ � dFMq0
.P1; P2/ for 1 � q � q0:

The Fortet–Mourier distance metricizes weak convergence on sets of probability
measures possessing uniformly a q-th moment. Notice that the function w 7! kwkq
is q-Lipschitz with Lipschitz constant Lq D q. On R

1, the Fortet–Mourier distance
may be equivalently written as

dFMq .P1; P2/ D
ˆ

max
˚

1; jujq�1� � jGP1.u/�GP2.u/j du

(see Rachev [105, page 93]). For q D 1, the Fortet–Mourier distance coincides with
the Kantorovich distance.

Further distances on probability measures and their relations can be found, e.g.,
in the review of Gibbs and Su [45].

2.2 The Wasserstein Distance

The Wasserstein distance generalizes the Kantorovich distance, although it is not
generated by a set of test functions H (except in special cases).

Importantly, the Wasserstein distance allows a generalization for stochastic
processes. This generalization, the nested distance, is of particular interest in
multistage stochastic optimization, and addressed in Sect. 2.10 below.

We adapt and augment the common concept of the Wasserstein distance here to
prepare it for multistage stochastic optimization. For this we consider a general, real
valued and measurable function

cW� � Q� ! R (2.6)

linking two sample spaces � and Q�.
The function c is often associated with the interpretation that moving a particle

! 2 � to Q! 2 Q� costs c .!; Q!/, therefore c is often called a cost function.
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The common definition of the Wasserstein distance considers the cost function

c .�; �/ WD d .�; �/r W� �� ! R;

where d is a distance on � and r � 1. The notable difference is that the function c
in (2.6) deals with two different spaces � and Q�, whereas the distance function d
involves just a single space, i.e., Q� D �. In this situation the transportation costs
c .!; Q!/ are assumed to be proportional to the transported distance d .!; Q!/, or to
d .!; Q!/r .
Inheriting a Distance from Random Variables. Typically, the probability space
.�,F , P/ does not carry a topology or distance. However, in all applications in this
book, we assume that a distance or semi-distance is inherited on � from a random
variable � W � ! R

m by

d.!1; !2/ WD k�.!1/� �.!2/k;

where k � k is some norm in R
m.2 The notion can be extended to the case of two

different probability spaces � and Q�:

Definition 2.3. If � is an R
m-valued random variable on � and Q� is an R

m-valued
random variable on Q�, then the inherited distance between elements of � and Q�
can be defined by the transportation cost function c.!; Q!/

d.!; Q!/ WD c.!; Q!/ D d
�

�.!/; Q�. Q!/
�

(2.7)

for some distance d in R
m; often d.w; v/ D kw � vk for some norm k � k in R

m.

The transportation costs or distances between elements of � and Q� can be
extended to transportation costs or distances between probabilities P on � and QP
on Q�:
Definition 2.4 (Optimal Transportation Cost). Given two probability spaces
.�;F ; P / and

� Q�; QF ; QP � and a transportation cost function c, the optimal
transportation cost is

inf
�

“

�� Q�
c .!; Q!/� .d!; d Q!/ ; (2.8)

where the infimum is taken over all (bivariate) probability measures � on � � Q�
having the marginals P and QP , that is

2Notice that it might happen that two different elements !1 and !2 are at distance 0, namely if
�.!1/ D �.!2/. In this case the distance is only a semi-distance, but it can as well be taken as the
basis of a Wasserstein distance construction, which will then also turn out to be a semi-distance.
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�
�

A � Q�� D P.A/ and � .� � B/ D QP .B/ (2.9)

for all measurable sets A 2 F and B 2 QF . The optimal measure � is called the
optimal transport plan. It exists under the conditions of Remark 2.6 below.

Specializing to the case where the costs are given by an inherited distance
between elements of � and Q� one obtains the Wasserstein distance.

Definition 2.5 (Wasserstein Distance). The Wasserstein distance of order r (r �
1) is

dr
�

P; QP � WD
	

inf
�

“

�� Q�
d .!; Q!/r � .d!; d Q!/


1=r

; (2.10)

where the infimum is among all joint probability measures � on � � Q� (more
precisely: on the product F ˝ QF of the �-algebras) which satisfy (2.9).

Remark 2.6. The infimum in (2.8) is attained, if both measures P and QP are tight,
i.e., for every � > 0 there are compact sets K and QK such that P.Kc/ � � and
QP. QKc/ � �.3 Under this condition, the family of all measures � with marginals P

and QP is uniformly tight, since for all these measures

�
�

.K � QK/c� � �
�

Kc � Q��C �
�

� � QKc
� � 2�;

i.e., is arbitrarily small if K and K 0 are chosen appropriately. Closed families of
uniformly tight probability measures are compact (Prohorov’s Theorem, see, e.g.,
Parthasarathy and Kalyanapuram [85]). Since the integrand of (2.10) is continuous
in � , the infimum is attained.

Definition 2.5 is used in two different situations:

• either there are given two abstract probability spaces .�;F ; P / and . Q�; QF ; QP /
and two random variables � W � ! R

m and Q� W Q� ! R
m such that the distance

is the induced distance according to Definition 2.3. In this case one may write

dr
�

P; QP � WD
	

inf
�

“

�� Q�
d
�

�.!/; Q�. Q!/
�r

� .d!; d Q!/

1=r

;

where the infimum is over all joint probability measures with marginals P ( QP ,
resp.);

• or the two probabilities P and QP are defined on R
m endowed with a distance d

(e.g., d.u; v/ D ku � vk for u; v 2 R
m). In the latter case one may write

3Kc denotes the complement of the set K .
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dr
�

P; QP � WD
	

inf
�

“

R
m�Rm

d.u; v/r � .du; dv/


1=r

;

where the infimum is over all probability measures on R
m � R

m with marginals
P ( QP , resp.).

The second case can be seen as a special case of the first one considering the
identical random variables � D id and Q� D id. Both cases are considered in the
following. The context always makes clear whether we consider probabilities on
abstract spaces endowed with the induced distance or their image measures on R

m.
The collection of all probability measures P , which satisfy for some—and thus

for any !0 2 �—the moment-like condition

ˆ

�

d .!; !0/
r P .d!/ < 1

is denoted by Pr .�I d/. It is immediate from the inequality

d .!; Q!/r � 2r�1 .d .!; !0/r C d . Q!;!0/r /

(this is the triangle inequality when r D 1) that the problem (2.10) is feasible and
well defined whenever P 2 Pr .�I d/ and QP 2 Pr . Q�I d/, because the product
measure4

� WD P ˝ QP

has the required marginals and

dr
�

P; QP �r �
ˆ

�

ˆ

Q�
d .!; Q!/r P .d!/ QP .d Q!/ < 1:

Notice that if d is inherited from � and the distance on R
m is given by a norm k�k,

then P 2 Pr .�I d/ iff
´ k�.!/kr P.d!/ < 1; i.e., if � has finite r-th moment.

Remark 2.7. A comprehensive and intensive discussion of the Wasserstein distance
is provided in the books by Rachev and Rüschendorf [107] and the book by
Villani [137]. We shall use the properties that the infimum in (2.10) is actually
attained, and dr .�; �/ turns out to be a metric on the space Pr .�I d/.

4
�

P ˝ QP � .A � B/ WD P.A/ � QP.B/ defines a � -additive measure due to the Hahn–Kolmogorov
theorem.
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Remark 2.8 (Remark on Naming). The terms in Definition 2.4 are not used consis-
tently in the literature: in honor of G. Monge5 (cf. [79]) and Leonid Kantorovich6

(cf. [64]) the distance dr is sometimes called Monge–Kantorovich distance of order
r . The term Vasershtein distance7 appears the first time in Dobrushin [29]. d2 is
sometimes called quadratic Wasserstein distance. Moreover, the distance d1 is also
called Kantorovich–Rubinstein distance and sometimes denoted by dKA WD d1. In
Russian literature the term Kantorovich distance (cf. Vershik [136]) is used instead
of Wasserstein distance.

The terms in Definition 2.4 apparently became accepted in recent years, particu-
larly due to Villani’s before-mentioned book [137] and other authors. We follow this
general trend, in particular we reserve the term Kantorovich distance for dKA D d1
(r D 1).

Notational Convenience. We are using the symbol d for the distance in the original
space �, and the same symbol dr .�; �/ with subscript r to account for the distance
on probabilities in Pr .�I d/ induced by d. This is justified in view of the following
proposition, which identifies .�;d/ as a closed subspace of .Pr ;dr /.
Proposition 2.9 (Embedding). It holds that

dr .P; ı!0/
r D

ˆ

�

d .!; !0/
r P .d!/ ;

and the mapping

i W .�;d/ ! .Pr .�I d/ ; dr / ;

! 7! ı!

assigning to each point! 2 � its point measure ı! (Dirac measure8) is an isometric
embedding for all 1 � r < 1 (.�;d/ ,! Pr .�I d/).

Proof. There is just one single measure with marginals P and ı!0 , which is the
transport plan � D P ˝ ı!0 . Hence

dr .P; ı!0 /
r D

ˆ

�

ˆ

�

d .!; Q!/r ı!0 .d Q!/P .d!/ D
ˆ

�

d .!; !0/
r P .d!/ ;

the first assertion.

5Gaspard Monge (1746–1818) investigated how to efficiently construct dugouts.
6L. Kantorovich was awarded the price in Economic Sciences in Memory of Alfred Nobel in 1975.
7In honor of Leonid N. Vaserteı̆n.

8ı! .A/ WD 1A.!/ D
(

1 if ! 2 A

0 if ! … A
is the usual Dirac measure.
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For the particular choice P D ı Q!0 the latter formula simplifies to

dr
�

ı Q!0 ; ı!0
�r D

ˆ

�

d .!; !0/
r ı Q!0 .d!/ D d . Q!0; !0/r ;

and hence ! 7! ı! is an isometry. ut
Notice that if d is inherited by �, then dr .P; ı!0/

r D ´
�

k�.!/��.!0/kr P.d!/.

2.3 Elementary Properties of the Wasserstein Distance

The following properties of the Wasserstein distance dr will be employed frequently.

Lemma 2.10 (Monotonicity and Convexity).

(i) If r1 � r2, then dr1
�

P; QP � � dr2
�

P; QP �.
(ii) The Wasserstein distance is r-convex9 in any of its components, that is for 0 �

� � 1 it holds that

dr .P; .1 � �/P0 C �P1/
r � .1 � �/dr .P; P0/

r C � dr .P; P1/
r ;

and

dr .P; . 1 � �/P0 C �P1/

� .1 � �/
1
r dr .P; P0/C �

1
r dr .P; P1/

� max f�; 1 � �g 1r �1 �
�

.1 � �/ dr .P; P0/C � dr .P; P1/
�

: (2.11)

(iii) dr is a distance, it satisfies the triangle inequality dr
�

P; QP � � dr
�

P; QQP
�

C
dr
� QQP; QP

�

.

Remark 2.11. Convexity in the traditional sense is actually achieved for the Kan-
torovich distance (r D 1), it follows from (2.11) that

d1 .P; .1 � �/P0 C �P1/ � .1 � �/ d1 .P; P0/C � d1 .P; P1/ :

For the general Wasserstein distance .r > 1/, however, a correction factor

1 � max f�; 1 � �g 1r �1 � 2
r�1
r < 2

has to be accepted in (2.11).

9For the notion of r-concavity (r-convexity) see Dentcheva [129].
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Proof. Observe that 1
r2
r1

C 1
r2

r2�r1

D 1. By use of Hölder’s inequality

ˆ
dr1 d� D

ˆ
dr1 �1 d� �

	ˆ
dr1

r2
r1 d�


 r1
r2 �
	ˆ

1
r2

r2�r1 d�


 r2�r1
r2 D

	ˆ
dr2 d�


 r1
r2

:

Thus,
�´

dr1d�
� 1
r1 � �´

dr2d�
� 1
r2 for every measure � , which proves the first

assertion.
As for the second let �0 and �1 be measures chosen with adequate marginals in

such way that the infimum is attained,

dr .P; P0/
r D

ˆ
d .!; Q!/r �0 .d!; d Q!/ and dr .P; P1/

r D
ˆ

d .!; Q!/r �1 .d!; d Q!/ :

The probability measure �� WD .1 � �/�0 C ��1 then has the marginals P and
P� WD .1 � �/P0 C �P1, and

dr .P; .1 � �/P0 C �P1/
r

�
ˆ

d .!; Q!/r �� .d!; d Q!/

D .1 � �/

ˆ
d .!; Q!/r �0 .d!; d Q!/C �

ˆ
d .!; Q!/r �1 .d!; d Q!/

D .1 � �/dr .P; P0/
r C � dr .P; P1/

r :

The assertion follows from monotonicity and concavity of x 7! x
1
r and as

.x C y/
1
r � x

1
r C y

1
r .

The other statements follow by employing Hölder’sL1�L1 inequality. For (iii)
we refer to the proof involving the gluing lemma in Villani [137]. ut
Remark 2.12. To note an important consequence: all functions are continuous
with respect to dr , provided they are continuous with respect to d1 D dKA, the
Kantorovich distance. A simple and useful example is provided by the following
well-known lemma.

Lemma 2.13. If the distance d is inherited from � and Q� and based on a norm k � k
(see (2.7)), then

�
�
�EP .�/ � E QP . Q�/

�
�
� � dr

�

P; QP � (2.12)

for r � 1.
In an alternative notation, let P1 ( QP1, resp.) be probability measure on R

m (for
instance P1 D P �; the image or pushforward measure of P ) and let the point
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	P1 WD EP1.id/ D ´
� P1 .d�/ be the expectation (barycenter) of measure P110

(provided it exists) and the same for QP1, then

�
�	P1 � 	 QP1

�
� � dr

�

P1; QP1
�

:

Proof. The proof for the Kantorovich distance (r D 1) is an application of Jensen’s
inequality as the norm is a convex function:

�
�
�EP .�/ � E QP . Q�/

�
�
� D

�
�
�
�

ˆ
�.!/P.d!/ �

ˆ
Q�. Q!/ QP.d Q!/

�
�
�
�

D
�
�
�
�

ˆ �

� � Q�
�

�.d!; d Q!/
�
�
�
�

�
ˆ �
�
� Q� � �

�
�
��.d!; d Q!/:

Taking the infimum over all measures � with appropriate marginals P and QP gives

the assertion, as
�
�
�EP .�/ � E QP . Q�/

�
�
� � d1

�

P; QP � � dr
�

P; QP �. ut
Remark 2.14. Formula (2.12) gives rise to the interpretation, that particles have to
be transported—on average—at least the distance of the barycentersEP .�/�E QP . Q�/.

2.3.1 The Wasserstein Distance on the Real Line

The Wasserstein distance for probability measures on the real line allows a closed
form representation, which turns out to be useful in many situations. We cite the
statement from Ambrosi et al. [3, Theorem 6.0.2], see also Vallander [135] and (2.3).

Theorem 2.15. The Wasserstein distance of order r � 1 for measures P and QP on
the real line R is

dr
�

P; QP �r D
ˆ 1

0

ˇ
ˇ
ˇG�1

P .˛/ �G�1
QP .˛/

ˇ
ˇ
ˇ

r

d˛;

where GP .y/ D P ..�1; y�/ is the associated cumulative distribution function
and G�1

P .˛/ D inf fy W GP .y/ � ˛g its generalized inverse.

Example 2.16 (Normal Distribution). If P D N
�

	; �2
�

and QP D N
� Q	; Q�2� are

normally distributed, then the explicit value for the Wasserstein distance of order
r D 2 is

d2
�

P; QP �2 D .	 � Q	/2 C .� � Q�/2 ;

10id .�/ WD � is the identity.
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while the Kantorovich distance is bounded by

d1
�

P; QP � � j	� Q	j C
r

2

�
j� � Q� j :

The statement follows by consideringG�1
P .u/ D 	C � �ˆ�1.u/, whereˆ.u/ D

1p
2�

´ u
�1 e� 1

2 v2 dv is the cdf of the standard normal distribution. It follows from
Theorem 2.15 that

d2
�

P; QP �2 D
ˆ 1

0

�

	 � Q	C .� � Q�/ˆ�1.u/
�2

du

D .	 � Q	/2 C 2 .	 � Q	/ .� � Q�/
ˆ 1

0

ˆ�1.u/ du

C .� � Q�/2
ˆ 1

0

�

ˆ�1.u/
�2

du

D .	 � Q	/2 C .� � Q�/2 :

Moreover,

d1
�

P; QP � D
ˆ 1

0

ˇ
ˇ	C �ˆ�1.u/� Q	 � Q�ˆ�1.u/

ˇ
ˇ

� j	 � Q	j C j� � Q� j �
ˆ 1

0

ˇ
ˇˆ�1.u/

ˇ
ˇ du

provides the second assertion, as
´ 1
0

ˇ
ˇˆ�1.u/

ˇ
ˇ du D ´ 1

�1 jujˆ0.u/ du D
q

2
�

.

Example 2.17. Evidently, explicit expressions are also available for even integer
orders, an example is

d4
�

P; QP �4 D .	 � Q	/4 C 6 .	 � Q	/2 .� � Q�/2 C 3 .� � Q�/4 ;

etc.

A further, general upper bound is provided by the following example.

Example 2.18. For two real valued random variables � � P and Q� � QP with finite
second moments, means 	 ( Q	, resp.) and variances �2 ( Q�2, resp.), it follows from
the elementary expansion

.x � y/2 D .	 � Q	/2 C .x � 	/2 C .y � Q	/2
� 2 .xy � 	 Q	/C 2	 .x � 	/C 2 Q	 .y � Q	/ ;
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together with (2.12), that

.	� Q	/2 � d2
�

P; QP �2 � .	 � Q	/2 C �2 C Q�2; (2.13)

because � WD P ˝ QP is a feasible bivariate measure. The upper bound (2.13) is
rather conservative, although attained if one of the measures is a Dirac measure.

2.4 Alternative Distances as Basis for the Wasserstein
Distance

2.4.1 The Role of the Distance on the Underlying Space

To every metric d on R
m there corresponds a Wasserstein distance according to

Definition 2.5. A special situation occurs for the discrete metric

d0.u; v/ WD
(

0 if u D v

1 if u ¤ v:

The set of all Lipschitz functions with respect to the discrete metric d0 coincides
with the set of all measurable functions h such that 0 � h � 1 or its translates.
Consequently the pertaining Kantorovich distance coincides with the variational
distance (see (2.2))

d1.P; QP j d0/ D dV .P; QP /;

(we write dr .P; QP j d0/ to emphasize the dependency on the metric d0 of the basic
space).

2.4.2 Transformation of the Axis, and Fortet–Mourier
Distances

Alternative metrics on R
1 are obtained by a nonlinear transform of the axis. Let 


be any bijective, monotone transformation, which maps R into R. Then d
.u; v/ WD
j
.u/�
.v/j defines a new metric on R

1. Notice that the family of functions, which
are Lipschitz with respect to the distance d
 and to the Euclidean distance ju � vj,
may be quite different.

To establish a relation between the Fortet–Mourier distance and a transformation
on the real line we consider the bijective transformation (for q > 0)
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q.u/ D
(

u if juj � 1

jujq � sign.u/ otherwise;
(2.14)

which introduces the metric d
q .u; v/ D j
q.u/� 
q.v/j. On bounded intervals the
distances 
1 .u; v/ D ju � vj and d
q are equivalent, since

ju � vj � j
q.u/� 
q.v/j � q �Kq�1ju � vj whenever juj � K and jvj � K:

Denote by d1
��; �j d
q

�

the Kantorovich distance based on the distance d
q ,

d1
�

P; QP j d
q
� D sup

�ˆ
h dP �

ˆ
h d QP W jh.u/� h.v/j � d
q .u; v/

�

:

Notice that d
q0
.u; v/ � d
q .u; v/ for q0 < q and therefore

d1
�

P; QP j d
q0

�

� d1
�

P; QP j d
q
�

for q0 < q: (2.15)

Let P
q be the image measure of P under 
q , that is P
q .A/ D P
�


1=q.A/
�

, as

�1
q .u/ D 
1=q.u/, and note that P
q has distribution function

GP
q .x/ D GP .
1=q.x//;

where Gp is the distribution function of P . This leads to the identity

d1
�

P; QP j d
q
� D d1

�

P
q ; QP
q j d
1
�

;

as d
1 .u; v/ D ju � vj.
To relate the Fortet–Mourier distance dMq to the distance d1

��; �j d
q
�

we show
first the relations

Lq.h ı 
q/ � q � L1.h/ (2.16)

and

L1.h ı 
1=q/ � 2 � Lq.h/ (2.17)

for the Lipschitz constants of order q defined in (2.5).
Indeed, if L1.h/ < 1, then

ˇ
ˇh
�


q.u/
�� h.
q.v//

ˇ
ˇ � L1.h/ � ˇˇ
q.u/� 
q.v/

ˇ
ˇ

� L1.h/ � q � max
˚

1; jujq�1; jvjq�1� � ju � vj;
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which implies (2.16). On the other hand, if Lq.h/ < 1, then (2.17) holds by

ˇ
ˇh.
1=q.u//� h.
1=q.v//

ˇ
ˇ � Lq.h/ � max

˚

1; j
1=q.u/jq�1; j
1=q.v/jq�1�

� ˇˇ
1=q.u/� 
1=q.v/
ˇ
ˇ

� 2 � Lq.h/ � ju � vj;

where we have used that

max
˚

1; j
1=q.u/jq�1; j
1=q.v/jq�1� � j
1=q.u/� 
1=q.v/j
ju � vj � 2: (2.18)

This latter inequality is clear if jvj � juj � 1. If jvj � juj and juj > 1, then the
left-hand side of (2.18) is bounded by 2.

As a consequence of (2.16) and (2.17) the relations

1

q
d1
�

P; QP j d
q
� D 1

q
d1
�

GP ı 
1=q; G QP ı 
1=q
�

� dFMq .P;
QP /

� 2 d1
�

GP ı 
1=q; G QP ı 
1=q
� D 2 d1

�

P; QP j d
q
�

(2.19)

are obtained.
One thus sees that the Fortet–Mourier distance of order q and the Kantorovich

distance (i.e., the Fortet–Mourier distance of order 1) with the alternative metric d
q
are topologically equivalent.

A further relation can be based on the function  r.u/ D jujr � sign.u/ and
the distance d r .u; v/ D j r.u/ �  r.v/j. Notice that by an easy geometric
consideration, for r � 1,

j r.u/�  r.v/j � 2

	 ju � vj
2


r

and therefore ju � vjr � 2r�1j .u/ �  .v/j, which implies that

dr .P; QP /r � 2r�1 � d1.P; QP j r/: (2.20)

Lemma 2.19. On the set of probability distributions, which have uniformly
bounded r-th moments, the topologies generated by the distances dr and
d1
��; �j d r

�

are equivalent.

Proof. Inequality (2.20) shows that d1.�; �j r/ is finer than dr . For the inverse
relation, let � � P and Q� � QP : Notice that the Lipschitz constant of order r of
 r is Lr. r / D r and therefore
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j r.�/ �  r. Q�/j � r �
ˇ
ˇ
ˇ� � Q�

ˇ
ˇ
ˇ � max

n

1; j�jr�1; j Q�jr�1
o

:

Using Hölder’s inequality, we get11

Ej r.�/ �  r. Q�/j � r E1=r j� � Q�jr � E r�1
r

h

.1C j�jr�1 C jQ�jr�1/ r
r�1

i

� r E1=r j� � Q�jr �
h

1C E
r�1
r .j�jr /C E

r�1
r .j Q�jr /

i

and consequently considering the minima with respect to the joint distribution of �
and Q� one gets

d1.P; QP j r/ � r � dr .P; QP /
�

1C E
r�1
r .j�jr /C E

r�1
r .j Q�jr /

�

;

which shows that dr is finer than d1.�; �j r/. ut

2.5 Estimates Involving the Wasserstein Distance

In this section we ask the question: How close are some important statistical
parameters, if the Wasserstein distances are small? Suppose that a probability
distributionP on R

m and some (typically discrete) approximation QP , which is close
to P in Wasserstein distance, are given. One may ask the following questions:

• Do P and QP have a similar mean?
• Do P and QP have a similar variance?
• If P and QP are multidimensional, do P and QP have a similar covariance matrix?
• Are the higher moments of P and QP similar?

Precise answers to these questions are given below in Proposition 2.20. Some
authors argue that a close approximation QP to P should have at least the same first
and second moments. Since we aim at approximating the distribution as a whole,
there is not much reason in trying to match some specific moments (as it is done
by moment matching, cf. Example 2.2 and (2.1)). In some applications one might
be interested in the median and mean matching would not help. Also matching
some Pearson correlation (product-moment correlation) would not help in matching
Spearman’s or Kendall’s correlation.

If � � P and Q� � QP , it is evident that for functions h with Lipschitz constant L
the Wasserstein distance controls the distance of their integrals,

ˇ
ˇ
ˇEŒh.�/� � EŒh. Q�/�

ˇ
ˇ
ˇ � L � d1.P; QP /:

11We use the shorthand notation E
p Œ�� for .E Œ��/p .
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The following proposition collects results involving distances of probability mea-
sures and Lipschitz constants.

Proposition 2.20 (Bounds Involving Lipschitz Constants). Assume that � � P

and Q� � QP . Then

(i)
ˇ
ˇ
ˇE� � E Q�

ˇ
ˇ
ˇ � d1

�

P; QP �,
(ii)

ˇ
ˇ
ˇEj�j � Ej Q�j

ˇ
ˇ
ˇ � d1.P; QP /,

(iii)
ˇ
ˇ
ˇE .� � a/C � E

� Q� � a
�

C

ˇ
ˇ
ˇ � d1

�

P; QP �,
(iv)

ˇ
ˇ
ˇE.�q/ � E. Q�q/

ˇ
ˇ
ˇ � q � dFMq .P;

QP / for integer q and

(v)
ˇ
ˇ
ˇE
�j�jq� � E

�

j Q�jq
�ˇ
ˇ
ˇ � q � dFMq .P;

QP /.
Proof. The functions u 7! u, u 7! juj and u 7! .u � a/C are Lipschitz continuous
(with Lipschitz constant 1). For the proof of (iv) and (v) recall the definition of
the Fortet–Mourier distance dFMq

.P; QP / in (2.4) and use the fact that the Lipschitz
constant of order q (see (2.5)) of x 7! xq is Lq D q. The same is true for the
function x 7! jxjq . ut

The following proposition collects examples to demonstrate how the Wasserstein
distance controls also higher moments, provided that they exist.

Proposition 2.21 (Wasserstein Distance Controls All Moments). Assume that
� � P and Q� � QP . Then

(i)
ˇ
ˇ
ˇEj�jp � Ej Q�jp

ˇ
ˇ
ˇ � p � dr

�

P; QP � � max
n

E
r�1
r

h

j�jr � p�1
r�1

i

; E
r�1
r

h

j Q�jr � p�1
r�1

io

,

(ii)
ˇ
ˇ
ˇE.�p/� E. Q�p/

ˇ
ˇ
ˇ � p � dr

�

P; QP � �
n

E
r�1
r

h

j�jr � p�1
r�1

i

C E
r�1
r

h

j Q�jr � p�1
r�1

io

for p

an integer,

(iii)
ˇ
ˇ
ˇE�2 � E Q�2

ˇ
ˇ
ˇ � 2 � d2

�

P; QP � � max
n

E
1
2

�

�2



; E
1
2

h Q�2
io

,

(iv)
ˇ
ˇ
ˇEj�jr � Ej Q�jr

ˇ
ˇ
ˇ � r � dr

�

P; QP � � max
n

E
r�1
r Œj�jr � ; E r�1

r

h

j Q�jr
io

and

(v)
ˇ
ˇ
ˇEj�jp � Ej Q�jp

ˇ
ˇ
ˇ � p � d2

�

P; QP � � max
n

E
1
2

�j�j2.p�1/
 ; E 1
2

h

j Q�j2.p�1/
io

,

where p � 1 and r > 1.

Proof. By convexity of the function x 7! jxjp for p � 1 it holds that

j Qxjp � jxjp C p � sign.x/ jxjp�1 . Qx � x/ ;

and consequently

j�jp � jQ�jp � p sign.�/ j�jp�1 �� � Q�
�

� p
ˇ
ˇ
ˇ� � Q�

ˇ
ˇ
ˇ j�jp�1 :
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Taking expectations with respect to � , where � has marginals P and QP , and
employing Hölder’s inequality for the conjugate parameters 1

r
C 1

r 0
D 1 (i.e.,

r 0 D r
r�1 ) reveals that

E j�jp � Ej Q�jp � p �
�
�
�� � Q�

�
�
�
r

�
�
�
�j�jp�1��

�
r 0

D p �
�
�
�� � Q�

�
�
�
r

� k�kp�1
r � p�1
r�1

:

Taking the infimum with of all bivariate probability measures � with marginals P
and QP it follows that

E j�jp � Ej Q�jp � p � dr .P; QP / � E r�1
r

h

j�jr � p�1
r�1

i

:

The assertion (i) follows now for general r > 1 and p > 1 by interchanging � and Q� .
The second inequality has only to be proved for odd p since for even p it is a

consequence of (i). Using the monotonicity of the odd function x 7! p � xp�1 one
gets

�p � Q�p � p �
�

j�jp�1 C Qj�jp�1� ˇˇ
ˇ� � Q�

ˇ
ˇ
ˇ ;

and in analogy to the proof of (i) the inequality (ii) follows.
The other assertions can be derived from (i) as special cases (r D p D 2, r D p,

etc.). ut
Further inequalities of the type addressed in Proposition 2.20 and in Proposi-

tion 2.21 can be derived, if one considers the Wasserstein norms with alternative
distances on R: Again, let � � P and Q� � QP . Using the functions (see (2.14))


q.u/ D
(

u if juj � 1

jujq sign.u/ otherwise

and noticing (2.15) one gets that for q0 � q

E

h

max
n

j�j; j�jq0

oi

� d1
�

P; QP j d
q
�

:

Also, using the Fortet–Mourier metric (2.4) we get the basic inequality

ˇ
ˇ
ˇEŒh.�/� � EŒh. Q�/�

ˇ
ˇ
ˇ � Lq.h/ � dFMq

�

P; QP � ;

where Lq is the Lipschitz constant of order q (see (2.5)). A special case is

ˇ
ˇ
ˇEj�jq0 � Ej Q�jq0

ˇ
ˇ
ˇ � q � dFMq

�

P; QP � � 2q � d1
�

P; QP j d
q
�
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for q0 < q, since the Lipschitz constant of order q of x 7! jxjq equals q (cf. also
inequality (2.19)).

Example 2.22 (Approximation of a Bivariate Normal Distribution). As an illustra-
tion consider the best approximation of a normal distribution

N

		
0

0




;

	
2 1

1 1





(2.21)

by a discrete distribution located at s points in R
2. Notice that we may generate

random variates from this distribution by

�1 D Z1 CZ2;

�2 D Z2;

where Z1 and Z2 are independent standard normals. We approximate these dis-
tributions by discrete ones, sitting on s D 5, 7, 9, and 25 points. The discrete
approximations are displayed in Fig. 2.2, where the little circles around each point
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Fig. 2.2 Discrete approximations of a two-dimensional normal distribution with 5, 7, 9, and 25
points. Some statistical parameters of these approximations are given in Table 2.1
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Table 2.1 Approximations of a bivariate normal distribution (2.21) by 5, 7, 9, and 25 points. Their
Wasserstein distance (of order 1) is shown in the first column

Distance E.�1/ E.�2/ Var.�1/ Var.�2/ Cov E.�31 / E.�41 /

True value 0: 0: 2: 1: 1: 0: 12:

5 points 0:587 0:056 �0:064 1:59 0:76 0:96 0:54 6:06

7 points 0:454 0:043 0:004 1:95 0:87 1:105 0:47 8:63

9 points 0:359 �0:03 �0:009 1:90 0:83 1:02 0:22 9:52

25 points 0:147 0:01 0:01 2:04 0:99 1:07 0:41 11:6

(a) Approximation quality of selected moments. Cov is the covariance between �1 and �2
Distance Med.�1/ Med.�2/ Ej�1j Ej�2j Spm P.�1 > �2/

True value 0. 0. 1.128 0.797 0.695 0.50

5 points 0.587 0.07 0.18 1.005 0.773 0.88 0.642

7 points 0.454 �0.03 0.094 1.11 0.73 0.83 0.60

9 points 0.359 �0.08 �0.03 1.07 0.75 0.76 0.502

25 points 0.147 �0.14 0.03 1.14 0.81 0.76 0.53

(b) Continuation of Table 2.1a: here the medians, the first absolute moments, the Spearman
correlation coefficient (Spm) as well as the probability of a particular event are shown

symbolize the respective probability mass (these approximations were found by the
Stochastic Approximation (SA) Algorithm 4.5, which is explained in Chap. 4). The
results for comparison are collected in Table 2.1.

It is not claimed that these approximations are optimal, however, they are good
ones. As one can see, they approximate the true distribution in many aspects, not
just for the first two or four moments. While it is not possible to derive from
closeness with respect to some moments the closeness with respect to other aspects,
the closeness in the Wasserstein distance implies closeness for moments and other
statistics in a natural way (cf. also Example 2.2).

2.6 Approximations in the Wasserstein Metric

This subsection provides the foundations for approximations of probability mea-
sures by probability measures with finite support. This is quite relevant, because
only probability measures with finite support are eligible for numerical computa-
tions and algorithmic treatment.

Suppose that the supports of all considered probabilities are contained in some
closed set „ � R

m, which is endowed with some metric d. The elements of „
are denoted by � (these are here points and not random variables). We discuss
the important and necessary theorems. The precise proofs of some results of this
subsection are beyond the scope of this book, we give the references instead.

The crucial tool to identify the topology induced by the metric dr with the
topology of weak* convergence is the uniform tightness condition (2.22) below.
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Theorem 2.23 (Wasserstein Metricizes the Weak* Topology). Let .Pn/n�1 be
a sequence of measures in Pr .„/, and let P 2 Pr .„/. Then the following are
equivalent:

(i) dr .Pn; P / ����!
n!1 0,

(ii) Pn ����!
n!1 P in weak* sense, and Pn satisfies the following uniform tightness

condition: for some (and thus any) �0 2 �,

lim sup
n!1

ˆ

fd.�0;�/�Rg
d .�0; �/

r Pn .d�/ ����!
R!1 0: (2.22)

Proof. For a proof we refer to Theorem 7.12 in Villani [137]. ut
Remark 2.24. One may always replace the metric d by the uniformly bounded

distance d0
�

�; Q�
�

WD d.�;Q�/
1Cd.�;Q�/ or d0

�

�; Q�
�

WD min
n

1; d
�

�; Q�
�o

without changing

the topology of„. In this situation, however, the uniform tightness condition (2.22)
is trivial, and d0

r thus metricizes weak* convergence on the whole of Pr .„/.
The following theorem is essential for our intentions to approximate probability

measures by measures with finite support.

Theorem 2.25. If .„;d/ is separable, then .Pr .„/ ; dr / is separable and all
measures

P

�2 Q„ P� � ı� with finite support Q„ 	 „ (P� � 0 and
P

�2 Q„ P� D 1)
are dense.

Proof. A proof by elementary means is contained in Bolley [13]. Initial proofs of
the statement, however, involve the weaker Prohorov distance and deep results of
Kolmogorov; cf. Ambrosi et al. [3]. ut

To complete the essential characteristics we mention that the space
.Pr .„I d/ ; dr / is not only separable and metrizable, but also complete, hence
a Polish space.

Theorem 2.26. Let .„; d/ be a Polish space, then .Pr .„I d/ ; dr / is a Polish space
again.

Proof. The space is metrizable and separability is established by Theorem 2.25.
Completeness is proved in Bolley [13]. ut

2.7 The Wasserstein Distance in a Discrete Framework

In many applications and in implementations the measures considered are discrete
measures (measures with finite support) of the form P D Pn

iD1 Pi ı�i (where Pi �
0,
Pn

iD1 Pi D 1 and the support f�i W i D 1; 2; : : : ng 	 „ is finite).
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Given two discrete measures P D Pn
iD1 Pi ı�i and QP D PQn

jD1 QPj ıQ�j the
computation of the Wasserstein distance (2.10) corresponds to solving the linear
program

minimize
(in �)

X

i;j

�i;j � dri;j (2.23)

subject to
QnX

jD1
�i;j D Pi .i D 1; 2; : : : n/;

nX

iD1
�i;j D QPj .j D 1; 2; : : : Qn/;

�i;j � 0; (2.24)

where di;j D d
�

�i ; Q�j
�

is an n� Qn-matrix carrying the distances. The n� Qn-matrix

�i;j in (2.23) corresponds to the bivariate probability measure

� D
X

i; j

�i;j � ı.�i ;Q�j /

on the product „ � Q„; � is a probability measure as �i;j � 0 and
P

i;j �i;j D
P

i

P

j �i;j D P

i Pi D 1.
Figure 2.3 exhibits the structure of this linear program (2.23), where the matrix

can be written in the form

	
1Qn ˝ In
IQn ˝ 1n




Fig. 2.3 Structure of the linear constraints of the linear program (2.23). The .nC Qn/ � .n � Qn/
matrix is totally unimodular



2.8 Duality for the Wasserstein Metric 65

(˝ denotes the Kronecker product, 1n D .1; 1; : : : 1
„ ƒ‚ …

n times

/ and In is the n � n-identity

matrix). From this figure it becomes evident that the constraints are linearly
dependent, because the sum of the first n lines equals the sum of the following Qn
lines. As a consequence, one of all nC Qn constraints in (2.23) can be removed. For
efficiency reasons in numerical implementations a line should be removed for most
numerical solvers.

It follows from complementary slackness conditions of linear programs that the
optimal transport plan � in (2.23) is sparse, it has at most nC Qn�1 nonzero entries,
because (2.23) has not more than nC Qn�1 linearly independent equality constraints.

Remark 2.27 (Transport Plans and Their Relation to Bipartite Graphs). One may
define the bipartite graph G D .U [ V;E/ with distinct nodes

U D f�i W i D 1; : : : ng and V D
n Q�j W j D 1; : : : Qn

o

and vertices E D
n�

�i ; Q�j
�

W �i;j > 0; i D 1; : : : n; j D 1; : : : ; Qn
o

. The linear

constraints in (2.23) correspond to the incidence matrix of this graph G, which is
a totally unimodular matrix (i.e., every square non-singular submatrix is invertible
over the integers, cf. Hoffman and Krukskal [60]). It follows from Cramer’s rule
that each entry of the matrix � has the specific form

�i;j D
nX

kD1
�ki;j Pk C

QnX

`D1
Q�`i;j QP`;

where �ki;j ; Q�`i;j 2 f�1; 0; 1g.

2.8 Duality for the Wasserstein Metric

The linear program (2.23) to compute dr
�

P; QP � naturally—as any linear program—
has a dual linear program. It is given by

maximize
(in �;	)

nX

iD1
Pi�i C

QnX

jD1
QPj	j (2.25)

subject to �i C 	j � dri;j for all i D 1; : : : ; n and j D 1; : : : ; Qn: (2.26)

By the vanishing duality gap of the primal (2.23) and its dual (2.25) it follows
that
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nX

iD1

QnX

jD1

�i;j d
r
i;j �

nX

iD1

Pi�i C
QnX

jD1

QPj	j D
nX

iD1

QnX

jD1

�i;j
�

�i C	j
� �

nX

iD1

QnX

jD1

�i;j d
r
i;j ;

from which further follows, by (2.24) and (2.26), that

�i;j
�

�i C 	j
� D �i;j � dri;j ;

which is the complementary slackness condition.
Recalling the fact that P D Pn

iD1 Pi ı�i ( QP D PQn
jD1 QPj ıQ�j , resp.) one may

extend the dual variables

� .�/ WD
(

�i if � D �i

�1 else
and 	

� Q�
�

WD
(

	j if Q� D Q�j
�1 else:

Then the dual program (2.25) can be rewritten as

maximize (in �,	) EP �C E QP	

subject to � .�/C 	
� Q�
�

� d
�

�; Q�
�r

for all � 2 „ and Q� 2 Q„;
(2.27)

and the complementary slackness reads

�
�n�

�; Q�
�

W �.�/C 	
� Q�
�

D d
�

�; Q�
�ro� D 1:

This means that

�.�/C 	
� Q�
�

D d
�

�; Q�
�r

� almost everywhere;

the inequality in (2.27) is thus replaced by equality on the support set of the optimal
measure � .

A pair .�; 	/ of feasible dual variables can moreover be replaced by .�; ��/ or
.	�; 	/, where

��
� Q�
�

WD inf
�2„ d

�

�; Q�
�r � � .�/

and

	�.�/ WD inf
Q�2 Q„

d
�

�; Q�
�r � 	

� Q�
�

;
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because

� .�/C 	
� Q�
�

� � .�/C �� � Q�
�

� d
�

�; Q�
�r

and

� .�/C 	
� Q�
�

� 	� .�/C 	
� Q�
�

� d
�

�; Q�
�r

:

For an arbitrary function � the pair .�; ��/ is feasible. By the same reasoning, given
	, the pair .	�; 	/ is feasible. This gives an improved objective, as

EP .�/C E QP .	/ � EP .�/C E QP
�

��� � dr
�

P; QP �r ; (2.28)

and analogously for the pair .	; 	�/.

Rapid Computation of the Wasserstein Distance. The cascading property (2.28)
can be exploited in algorithms to quickly compute the Wasserstein distance of
discrete probability measures. By duality the objective of both problems,

maximize .in �/EP .�/C E QP
�

��� and maximize (in 	/EP
�

	��C E QP .	/ ;
(2.29)

is dr
�

P; QP �r , but the dimension of the vector � (or 	) in (2.29) is much smaller
than the dimension of the matrix � in the primal (2.23). The problems (2.29) are
unconstrained, nonlinear, and the objectives

� 7! EP .�/C E QP
�

��� and 	 7! EP

�

	��C E QP .	/

are moreover concave. In addition a subdifferential (an element of the subgradient)
of the objective with respect to � and 	 is available, as

@

@�i
EP .�/CE QP

�

��� D Pi � QPj and
@

@	j
EP

�

	��CE QP .	/ D QPj �Pi ;

where for the first equation i 2 argmink
n

drk;j � �k
o

and for the second one

j 2 argmink
n

dri;k � 	k
o

, so that equality holds in the duality equations ��
j D

dri;j � �i and 	�
i D dri;j � 	j . The nonlinear conjugate gradient method (cf.

Ruszczyński [119]) is an appropriate choice to compute successive improvements
of the unconstrained problems (2.29).

This algorithmic approach to compute dr
�

P; QP � notably provides the dual
variables � and 	 and the distance, but not the primal solution � . However, the
primal � is supported only at points .i; j / with ��

i C 	�
j D dri;j . This can be

exploited to determine the primal variable � in a dual–primal step.
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Example 2.28. As an example we consider two discrete distributions on R
3, whose

probability mass functions on the vectors

0

@

xi;0

xi;1
xi;2

1

A

are given by

P D

2

6
6
4

0:02 0:04 0:08 0:06 0:21 0:09 0:15 0:06 0:09 0:08 0:12
0

@

10

13

15

1

A

0

@

10

13

14

1

A

0

@

10

13

13

1

A

0

@

10

13

11

1

A

0

@

10

11

12

1

A

0

@

10

11

9

1

A

0

@

10

8

10

1

A

0

@

10

8

8

1

A

0

@

10

8

6

1

A

0

@

10

6

7

1

A

0

@

10

6

5

1

A

3

7
7
5

and

QP D

2

6
6
4

0:12 0:18 0:30 0:16 0:16 0:08
0

@

10

13

14

1

A

0

@

10

13

12

1

A

0

@

10

11

10

1

A

0

@

10

7

9

1

A

0

@

10

7

8

1

A

0

@

10

7

5

1

A

3

7
7
5
:

The matrix in Table 2.2 collects the distances di;j D P2
tD0

ˇ
ˇxi;t � xj;t

ˇ
ˇ. Later, these

vectors will be interpreted as the values on the paths of a tree (see Fig. 2.12), but for
the simple Wasserstein distance as we discuss it here, the treestructure is irrelevant.

The solutions of the Wasserstein problem (2.23) and its dual (2.25) are displayed
in the Table 2.3.

Table 2.2 The distance
matrix with entries di;j from
the Example 2.28. The
optimal transportation plan
sits only on the 16 pairs
which are italicized

Distance di;j 1 2 3 4 5 6

1 1 3 7 12 13 16

2 0 2 6 11 12 15

3 1 1 5 10 11 14

4 3 1 3 8 9 12

5 4 2 2 7 8 11

6 7 5 1 4 5 8

7 9 7 3 2 3 6

8 11 9 5 2 1 4

9 13 11 7 4 3 2

10 14 12 8 3 2 3

11 16 14 10 5 4 1
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Table 2.3 The solutions of the primal and the dual Wasserstein problem

Probabilities, �i;j 0:12 0:18 0:30 0:16 0:16 0:08

0.02 0:02 0 0 0 0 0

0.04 0:04 0 0 0 0 0

0.08 0:06 0:02 0 0 0 0

0.06 0 0:06 0 0 0 0

0.21 0 0:10 0:11 0 0 0

0.09 0 0 0:09 0 0 0

0.15 0 0 0:10 0:05 0 0

0.06 0 0 0 0 0:06 0

0.09 0 0 0 0:09 0 0

0.08 0 0 0 0:02 0:06 0

0.12 0 0 0 0 0:04 0:08

(a) The transportation plan � solving the primal Wasserstein problem (2.23) for the two
distributions given in Example 2.28, d1

�

P; QP � D P

i;j �i;j di;j D 1:91

	

Dual variables �i C 	j 6 6 6 5 4 1
� �5 1 1 1 0 �1 �4

�6 0 0 0 �1 �2 �5
�5 1 1 1 0 �1 �4
�5 1 1 1 0 �1 �4
�4 2 2 2 1 0 �3
�5 1 1 1 0 �1 �4
�3 3 3 3 2 1 �2
�3 3 3 3 2 1 �2
�1 5 5 5 4 3 0
�2 4 4 4 3 2 �1

0 6 6 6 0 4 1
(b) The variables � (leftmost column) and 	 (upmost row) solving the dual Wasserstein
problem (2.27) for the two distributions given in Example 2.28. Their sum �i C 	j is shown as
matrix elements. They satisfy �i C 	j � di;j , with equality in the shaded cells (cf. Table 2.2),
and

P

i Pi�i CP

j
QPj	j D 1:91

2.9 Continuity of the Dual Variables,
and the Kantorovich–Rubinstein Theorem

To investigate the continuity of the dual variables define the diameter � WD
sup�2„; Q�2 Q„ d

�

�; Q�
�

(� may be unbounded, but is bounded for discrete measures

and even by 1 for the distances discussed in Remark 2.24).
By convexity of the function x 7! xr it holds that

d
�

�2; Q�
�r � d

�

�1; Q�
�r C r d

�

�1; Q�
�r�1 �

d
�

�2; Q�
�

� d
�

�1; Q�
��

;
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from which follows that

d
�

�1; Q�
�r � 	

� Q�
�

�
�

d
�

�2; Q�
�r � 	

� Q�
��

� r d
�

�1; Q�
�r�1 �

d
�

�1; Q�
�

� d
�

�2; Q�
��

� r d
�

�1; Q�
�r�1

d .�1; �2/ (2.30)

by the triangle inequality, d
�

�1; Q�
�

� d
�

�2; Q�
�

C d .�1; �2/. As one may assume

by (2.27) that � .�/ D infQ� d
� Q�; �

�r � 	
� Q�
�

, it follows that

� .�1/ �
�

d
�

�2; Q�
�r � 	

� Q�
��

� r �r�1 d .�1; �2/ ;

and thus

� .�1/� � .�2/ � r �r�1 d .�1; �2/ :

By interchanging the roles of �1 and �2 it follows that � is continuous with Lipschitz
constant r �r�1—provided that the diameter is bounded, � < 1. The same
reasoning as above can be repeated to verify that 	 is Lipschitz continuous as well
with the same Lipschitz constant.

Kantorovich–Rubinstein Theorem. A particular situation arises for the Kan-
torovich distance (i.e., the Wasserstein of order r D 1). It follows from (2.30)
directly that

� .�1/ � � .�2/ � d .�1; �2/ ;

that is the dual functions � and 	 are Lipschitz continuous with constant 1,
irrespective of the diameter (notice as well that r�r�1 D �0 D 1 whenever r D 1).

Moreover,

�� .�/ � inf
Q�

d
� Q�; �

�

� �
� Q�
�

� �� .�/

by Lipschitz-1 continuity and by choosing Q� D �, hence 	 .�/ D �� .�/. This is the
content of the Kantorovich–Rubinstein Theorem.

Theorem 2.29 (Kantorovich–Rubinstein Theorem). Let .„;d/ be a Polish
space, then

d1
�

P; QP � D sup
�

EP � � E QP �;

where the supremum is among all Lipschitz continuous functions �, i.e.,
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sup
�¤Q�

� .�/ � �
� Q�
�

d
�

�; Q�
� � 1;

which are integrable with respect to P and QP .

2.10 Multistage Generalization: The Nested Distance

Multistage optimization problems do not consider just one single stage, but, as its
name indicates and as was outlined in the introduction, multiple and subsequent
stages. In mathematical terms it is not a single random variable which has to be
considered, but an entire stochastic process instead. To this end, let .�, F , P/ and
. Q�; QF ; QP/ be two probability spaces and let � W � ! „ and Q� W Q� ! „ be two
random variables with common image space „ � R

m, which is endowed with a
metric d:We assume that .„;d/ is a Polish space and the Wasserstein distance dr on
Pr .„/ is well defined. This distance will now be extended for stochastic processes �t
defined on a filtered probability space .�;F D .F0;F1; : : : ;FT /; P /12 and another

process Q�t defined on
� Q�; QF D . QF0; QF1; : : : ; QFT /; QP

�

:

2.10.1 The Inherited Distance

Consider a stochastic process

�t W � ! .„t ;dt / ; t D 0; 1; : : : ; T;

with possibly different state spaces .„t ;dt / for every t D 1; : : : T . The value
�0 is considered as being deterministic. These random variables .�t /

T
tD0 can be

compounded to a single random variable � via

� W � ! „0 �„1 � : : : „T

! 7! �

�0 .!/ ; : : : �T .!/
�

; (2.31)

where each ! is mapped to its path (the trajectory) in the state space „ WD „0 �
„1 � : : : „T . This setting generalizes the usual definition of a stochastic process as
the state spaces of the partial observations

12Often also called a stochastic basis.
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�t D projt ı� W � ! „t t D 0; 1; : : : T

may differ at different times (projt W „ ! „t is the natural projection).
For � a process as in (2.31), P � can be considered again. P � D P ı ��1 is

called the law of the process �, it is a probability measure on the product „ WD
„0 �„1 � : : : „T .

Now note that any of the spaces„t are equipped with a distance function dt , and
there are many metrics d such that .„;d/ is a metric space. Given two processes �
resp. Q� (with the same state spaces„t ) on� ( Q�, resp.), a (semi-)distance is inherited
to � � Q� in an analogous way as in Definition 2.3, for example by

d .!; Q!/ WD
TX

tD0
wt dt

�

�t .!/; Q�t . Q!/
�

; (2.32)

the weighted `1-distance (with weights wt > 0), or

d .!; Q!/ WD
 

TX

tD0
wt dt

�

�t .!/; Q�t . Q!/
�2

! 1
2

; (2.33)

the `2-distance, or

d .!; Q!/ WD max
tD0;:::T wt dt

�

�t .!/; Q�t .!/
�

;

the `1-distance.
For any of these choices d is a cost function or (semi-)distance on � � Q�, and

the Wasserstein distance

dr
�

P �; P
Q�� (2.34)

of the laws is available.
The following example elaborates that this simple application of the Wasserstein

distance (2.34) is not suitable yet to distinguish stochastic processes.

Example 2.30. To observe the hidden caveat for the (final) Wasserstein distance
consider the example depicted in Fig. 2.4. Two processes are shown there, which
have the same states. The paths of successive observations, for both processes, are
.2; 2; 3/ or .2; 2; 1/. Each path has the same probability in both processes (p, and
1 � p, resp.).

The Wasserstein distance of these processes is simply 0: indeed, the state space is

„ D Q„ D f.2; 2; 1/ ; .2; 2; 3/g
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Fig. 2.4 Two processes with identical final probabilities and identical states. The second process
reveals already at an earlier stage that the final observation will be 3 (1, resp.). The nested distance
of the trees is 4p.1� p/

for both processes. The distance matrix then is d D
	
0 2

2 0




and � D
	
p 0

0 1 � p




is

a feasible transport plan. Hence, the Wasserstein distance of the laws P and QP of
the processes is dr

�

P; QP � D P

i;j di;j �i;j D 0.

However, the processes P and QP depicted in Fig. 2.4 are certainly not the same
processes: having observed the partial path .2; 2/ in the second process, we already
know whether the final observation will be 1 or 3. This knowledge (information) is
not available for the first process. So as the distance was identified to be dr

�

P; QP � D
0, the Wasserstein distance, in its genuine form, does not qualify as a distance for
filtered stochastic processes.

The reason why the Wasserstein distance does not detect this difference is
because it does not take conditional probabilities into account (Ft for t D
0; 1 : : : T � 1), but only final probabilities, where the sigma algebras coincide,
FT D QFT . But the sigma algebras differ at stage 1 (cf. (1.21)),

F1 D � .f.2; 2; 1/ ; .2; 2; 3/g/ ¤ � .f.2; 2; 1/g ; f.2; 2; 3/g/ D QF1:

Definition 2.31 (The Filtration Induced by the Process). The history process is

�0Wt WD proj0Wt ı � WD .proj0 ı �; : : : projt ı �/ D .�0; : : : �t / ;

that is �0Wt .!/ WD .�0 .!/ ; : : : �t .!// 2 „0 � � � � �„t .
The history process generates the natural filtration of the process �,

F� D
�

F �
t

�T

tD0 ; F �
t WD �

�˚

��1
0Wt .A0 � � � � � At/ W As 2 B .„s/

��

;

where B .„s/ denotes the Borel sets on „s . Notice that the relation � C F implies
that the filtration F is finer than F� .
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2.10.2 The Nested Distance

The nested distance is based on the Wasserstein distance. Extending the Wasserstein
distance to stochastic processes the nested distance takes notice of all sigma algebras
contained in the filtrations of the filtered probability spaces.

Definition 2.32 (The Nested Distance). The nested distance of order r � 1 of two
filtered probability spaces P D .�; .Ft / ; P / and QP D � Q�; � QFt

�

; P
�

, for which a
distance d W �� Q� ! R is defined, is the optimal value of the optimization problem

minimize
(in �/

�´
d .!; Q!/r � .d!; d Q!/� 1r

subject to �
�

A � Q� j Ft ˝ QFt
� D P .A j Ft / .A 2 Ft ; t 2 T/ ;

�
�

� � B j Ft ˝ QFt
� D QP �B j QFt

� �

B 2 QFt ; t 2 T
�

;

(2.35)

where the infimum in (2.35) is among all bivariate probability measures � 2
P �� � Q�� which are defined on FT ˝ QFT 13 and T D f0; 1 : : : T g. Its optimal
value, the nested distance, is denoted by

dlr
�

P; QP
�

:

Remark 2.33. The nested distance is often called multistage distance or process
distance as well. A feasible measure � is called a nested transport plan.

The nested distance was initially constructed on nested distributions (cf. Defini-
tion 1.7), both were introduced by Pflug in [92]. The definition given here notably
applies for continuous time, T D ft 2 R W t � 0g as well.

The Markov-constructions contained in Rüschendorf [116] can be com-
pared with the nested distribution for two stages, such that the distance on
Markov-constructions can be considered as a special case of the definition provided
here.

The multistage formulation presented here is based on filtrations. The following
discussion of the nested distance is adapted from [94].

Discussion of the Nested Distance. We recall first that the conditional probability
is defined by the conditional expectation by P .A j Ft / D E .1A j Ft / for every
A 2 FT , it is thus a random variable itself,

P .A j Ft / D E .1A j Ft / W � ! Œ0; 1� ;

which is measurable with respect to Ft . Its characterizing property is

13FT ˝ QFT is the smallest sigma-algebra on the product space�� Q�, which contains all rectangles
A � QA for A 2 F ; QA 2 QF .
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ˆ

B

P .A j Ft / dP D
ˆ

B

P .A j Ft / .!/P.d!/DP .A\ B/ .A 2 FT ; B 2 Ft / :

The identity

�
�

A � Q� j Ft ˝ QFt
� D P .A j Ft /

thus expresses that

�
�

A � Q� j Ft ˝ QFt
�

.!; Q!/ D P .A j Ft / .!/ � almost everywhere

for every A 2 FT . The right-hand side of this equation is notably independent of Q!.
It is sometimes helpful to make this independence explicit by using the notations

�
�

A � Q� j Ft ˝ QFt
� D P .A j Ft / ı id D P .A j Ft / .id/ ;

where id is the projection id W � � Q� ! �, id .!; Q!/ D ! and Qid .!; Q!/ D Q!,
respectively.

Remark 2.34. Two stochastic processes �t W � ! „t and Q�t W � ! Q„t

on the same probability space .�;F IP/ induce the filtered probability spaces

P
� WD �

�;F� ; P �
�

and P
Q� WD

�

�;F
Q� ; P Q�

�

, for which the nested distance is

available, provided that there is a cost function

d W .„0 � : : : „T / � � Q„0 � : : : Q„T

� ! R: (2.36)

This justifies the name process distance. In addition it should be repeated that the
state spaces„t and Q„t do not necessarily have to coincide. Then d in (2.36) is more
a cost function than a distance function. Notice that the inherited distance defined
in (2.7) is rather a cost function too.

Remark 2.35 (The Initial Stage, t D 0). For the trivial sigma-algebra F0 D f;; �g,
P .A j F0/ is deterministic (a constant) and satisfies P .A j F0/ D P .A/ (almost
everywhere).

Remark 2.36 (The Final Stage, t D T ). For A 2 FT it holds that P .AjFT / D
E .1AjFT / D 1A and �

�

A � Q� j FT ˝ QFT
� D 1A� Q�. But as 1A ı id D 1A� Q�

always holds true it follows that the constraints in (2.35) are redundant for t D T ,
they can be omitted.

Lemma 2.37. Let .�;F; P; �/ � P and
� Q�; QF; QP ; Q�

�

� QP be nested distributions

with F0 D f;; �g and QF0 D ˚;; Q��.14 The product measure � WD P ˝ QP is

14If not otherwise specified, d is always the distance inherited from � and Q� .
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feasible for the multistage distance (i.e., the nested distance is well defined). It holds
moreover that

dr
�

P; QP �r � dlr
�

P; QP
�r � EP˝ QP .d

r / : (2.37)

Proof. The first inequality follows in view of Remark 2.35. We shall verify that all
constraints in (2.35) are satisfied for � WD P ˝ QP . For this choose C 2 Ft and
D 2 QFt and observe that, for � D P ˝ QP ,

ˆ

C�D
P .A j Ft / .id/ � QP .B j Ft /

� Qid�d�

D
ˆ

C

P .A j Ft / .id/ dP �
ˆ

D

QP .B j Ft /
� Qid� d QP

D P .A \ C/ � QP .B \D/

D � ..A\ C/ � .B \D// D � ..A � B/\ .C �D//

D
ˆ

C�D
�
�

A � B j Ft ˝ QFt
�

d�:

It follows that the conditional probabilities P .A j Ft / ı id � QP .B j Ft / ı Qid and
�
�

A � B j Ft ˝ QFt
�

are (�-almost everywhere) identical, as equality holds for any
sets C 2 Ft and D 2 QFt . By choosing A D � (B D Q�, resp.) it follows that

� D P ˝ QP is feasible and hence dlr
�

P; QP
�r � EP˝ QP .dr /. ut

The following example demonstrates that convergence with respect to the
distance of the multivariate distributions dr is quite different from convergence of
the nested distributions (i.e., with respect to the nested distance dlr ).

Example 2.38 (See Heitsch et al. [55]). Consider the following nested distributions

P� D

2

6
6
6
6
4

0:5 0:5

2 2C �
"

1:0

3

# "

1:0

1

#

3

7
7
7
7
5

and P0 D

2

6
6
6
6
4

1:0

2
"

0:5 0:5

3 1

#

3

7
7
7
7
5

:

Notice that the pertaining multivariate distribution of P� on R
2 converges weakly to

the one of P0, if � ! 0. However, the nested distributions do not converge to P0:
The nested distance is dl.P�;P0/ D 1 C � for all �. The limit P� as � ! 0 in the
sense of nested distances is
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NP D

2

6
6
6
6
4

0:5 0:5

2 2
"

1:0

3

# "

1:0

1

#

3

7
7
7
7
5

which is different from P0. To put it differently: the topology of the tree is not
changed by going to the limit in the nested distance sense. The filtration of the
limiting nested distribution NP is larger than the one generated by the scenario values.
The concept of nested distributions can handle this.

The following proposition shows that the left side of inequality (2.37) can be
refined by considering finer filtrations, which are between the original filtration and
the full clairvoyant filtration.

Proposition 2.39. Let P � .�;F; P; �/ and QP �
� Q�; QF; QP ; Q�

�

be filtered spaces

with filtrations F D .F0;F1; : : : ;FT / and QF D � QF0; QF1; : : : ; QFT
�

, respectively.
Denote by P

t the pertaining nested distribution made clairvoyant from time t
onwards, that is

P
t � �

�;Ft ; P; �t
�

with Ft D .F0;F1; : : : ;Ft�1;FT ; : : :FT ;FT / :

In a similar manner we define QPt . Then, for 1 � t � T ,

dr
�

P; QP � D dlr
�

P
1; QP1

�

� � � � � dlr
�

P
t ; QPt

�

� � � � � dlr
�

P
T ; QPT

�

D dlr
�

P; QP
�

:

Proof. The proof follows form the fact that the multivariate distance is always not
larger than the nested distance. Arguing this way for the subtrees at stage t and
considering the recursive structure of the nested distance, the assertion is obvious.

ut
Example 2.40. Figure 2.5 shows two trees (nested distributions) P and QP. Their
nested distance is dl.P; QP/ D 8:75. Figure 2.6 shows the same trees, but both are
made clairvoyant from time 2 onwards. Their distance is reduced to dl.P2; QP2/ D
0:5. Finally, in Fig. 2.7, the same trees are now made totally clairvoyant. Their
distance is dl.P1; QP1/ D 0, since their set of trajectories is identical.

The following lemma recovers the properties of the Wasserstein distance for the
nested distance.

Lemma 2.41 (Monotonicity and Convexity).

(i) Suppose that r1 � r2, then

dlr1
�

P; QP
�

� dlr2
�

P; QP
�

:
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Fig. 2.5 The two original trees P (left) and QP (right). Their nested distance is dl.P; QP/ D 8:75

Fig. 2.6 The two trees of Fig. 2.5 have been made clairvoyant from time 2 onwards leading to the
new trees P2 and QP2. Their distance is dl.P2; QP2/ D 0:5

Fig. 2.7 The two trees of Fig. 2.5 have now been made further clairvoyant, namely from time
1 onwards leading to the new trees P

1 and QP1. Their distance is dl.P1; QP1/ D 0:0, i.e., they are
identical

(ii) The nested distance is r-convex in any of its components, that is for 0 � � � 1

it holds that

dlr
�

P; C. QP0; QP1; �/
�r � �dlr

�

P; QP0
�r C .1 � �/ dlr

�

P; QP1
�r

;
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and

dlr
�

P; C. QP0; QP1; �/
�

� �
1
r dlr

�

P; QP0
�

C .1 � �/
1
r dlr

�

P; QP1
�

� max f�; 1 � �g 1r �1 �
�

� dlr
�

P; QP0
�

C .1 � �/ dlr
�

P; QP1
��

:

Here C. QP0; QP1; �/ is the compound distribution defined in (1.24) of the
introduction.

(iii) dlr satisfies the triangle inequality, dlr
�

P; QP
�

� dlr
�

P;
QQP
�

C dlr
� QQP; QP

�

.

Proof. The proof of Lemma 2.10 applies. As for the triangle inequality we refer to
the proof contained in Villani [137] involving the gluing lemma. A similar proof
applies here. ut

2.10.3 The Nested Distance for Trees

The Wasserstein distance between discrete probability measures can be calculated
by solving the linear program (2.23). To establish the corresponding linear program
for the nested distance we use trees that model the whole space and filtration. Recall
that we denote bym 
 i that nodem is a predecessor of node i , not necessarily the
immediate predecessor. Problem (2.35) reads

minimize
(in �/

P

i;j �i;j � dri;j
subject to

P

j�n � .i; j j k; l/ D P .i j k/ .k 
 i; l/;
P

i�m � .i; j j k; l/ D QP .j j l/ .l 
 j; k/;

�i;j � 0 and
P

i;j �i;j D 1;

(2.38)

where again �i;j is a matrix defined on the terminal nodes (i 2 NT , j 2 QNT ) and
k 2 Nt , l 2 QNt are arbitrary nodes on the same stage t . The conditional probabilities
� .i; j j k; l/ are given by

� .i; j j k; l/ D �i;j
P

i 0�k; j 0�l �i 0;j 0

: (2.39)

In view of this quotient it becomes evident that the constraint
P

i;j �i;j D 1 is
necessary in (2.38) to specify a probability measure, as otherwise every multiple of
any feasible � would be feasible as well.
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Formulation as a Linear Program. The constraints in (2.38) can be rewritten as

P .i/ �
X

i 0�m;j 0�n
�i 0;j 0 D P .m/ �

X

j 0�n
�i;j 0 .m 
 i; n/ and

QP .j / �
X

i 0�m;j 0�n
�i 0;j 0 D QP .n/ �

X

i 0�m
�i 0 ;j .m; n 
 j / :

As P and QP are given, the latter equations show that (2.38) is equivalent to

minimize
(in �/

P

i;j �i;j � dri;j
subject to P .i/ �Pi 0�k; j 0�l �i 0 ;j 0 D P .k/ �Pj 0�l �i;j 0 .k 
 i/;

QP .j / �Pi 0�k; j 0�l �i 0 ;j 0 D QP .l/ �Pi 0�k �i 0;j .l 
 j /;

�i;j � 0 and
P

i;j �i;j D 1;

which is indeed a linear program. (This is not immediate in the formulation (2.38),
as it involves quotients.)

The nested structure of the transportation plan � , which is induced by the trees,
is schematically depicted in Fig. 2.8a.

a b

Fig. 2.8 Schematic structure of the distance matrix d and the transport matrix � , as it is imposed
by the structures of the trees and the respective constraints
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Remark 2.42. As is the case for the Wasserstein distance, many constraints in (2.38)
are linearly dependent. For computational reasons (loss of significance during
numerical evaluations, which can impact linear dependencies and the feasibility)
it is advisable to remove linear dependencies. This is partially accomplished by the
simpler program

minimize
(in �/

P

i;j �i;j � dri;j
subject to

P

fj 0
W j 0

�Dlg � .i 0; j 0j k; l/ D Q.i 0/ D P .i 0j k/ .i 0 2 Nn f1g ; k D i 0�; l D j 0�/ ;
P

fi 0W i 0�Dkg
� .i 0; j 0j k; l/ D QQ.j 0/ D QP .j 0j l/ �j 0 2 QNn f1g ; k D i 0�; l D j 0�� ;

�i;j � 0 and
P

i;j �i;j D 1;

(2.40)

where the conditional probabilities are

Q.i 0/ D P.i 0ji 0�/ D P.i 0jk/
QQ.j 0/ D QP .j 0jj 0�/ D QP .j 0jl/

for k D i 0�; l D j 0�. Here only one-step conditional transportation measures are
required. They are defined as

�.i 0; j 0jk; l/ D
P

i�i 0;j�j 0 �i;j
P

i�k;j�l �i;j
: (2.41)

Equation (2.40) is equivalent to (2.38) by the following lemma, and which can be
reformulated as an LP as above (recall that N n f1g denotes all nodes except the
root). A computational advantage of (2.40) is given by the fact that the conditional
probabilities involved are considered only at successive stages.

Further constraints can be removed from (2.40) by taking into account that
P

fi 0W i 02kCgQ.i 0/ D 1. Hence, for each node k it is possible to drop one constraint
out of all equations related to fi 0 W i 0 2 kg (cf. Sect. 2.7 and Fig. 2.3 for the
Wasserstein distance).

Lemma 2.43 (Tower Property). To compute the nested distance it is enough to
condition on the immediately following sigma algebra: the conditions

�
�

A � Q� j Ft ˝ QFt
� D P .A j Ft / for all A 2 FT

in (2.35) may be replaced by

�
�

A � Q� j Ft ˝ QFt
� D P .A j Ft / for all A 2 FtC1:

Proof. The result follows from the tower property of the conditional expectation.
Let A 2 FT and observe first that
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E�

�

1A .id/ jFt ˝ QFt
� D E�

�

1A� Q�jFt ˝ QFt
�

D �
�

A � Q�jFt ˝ QFt
� D P .AjFt / .id/ D EP .1AjFt / .id/ ;

such that by linearity

E�

�

� ı id jFt ˝ QFt
� D EP .�jFt / ı id

for every � C Ft . It follows then that

�
�

A � Q� j FT�2 ˝ QFT�2
� D �

�

�
�

A � Q� j FT�1 ˝ QFT�1
� j FT�2 ˝ QFT�2

�

D �
�

P .A j FT�1/ j FT�2 ˝ QFT�2
� D P .A j FT�2/ ;

which is the assertion for t D T �2. The assertion for general t follows by repeated
application of the previous argument. ut

Notice that the nested distance may be defined not only between trees, but also
between a filtered stochastic process and a tree. In the following example, we intend
to approximate a simple stochastic process (with only two periods) by a discrete
process sitting on a tree. It is crucial that the approximation aims at minimizing the
nested distance and not the multivariate distance.

Example 2.44. Consider correlated normal variables �1 � N.0; 1/ and �2 �
N.�1; 1/, that is the joint distribution is

	
�1
�2




� N

		
0

0




;

	
1 1

1 2





:

Figure 2.9 displays the density of this distribution.
Let P be the nested distribution pertaining to the two-stage process .�1; �2/. We

approximate this distribution by a tree with 9 leaves. First, we consider a tree of
height 2 with bushiness 3. To this end the first stage variable �1 is approximated
by a discrete distribution sitting on 3 points. It is well known that the optimal
approximation of an N.	; �2/ distribution in the d1 (Kantorovich) sense by a
3-point distribution is

"

0:3035 0:3930 0:3035

	 � 1:029� 	 	C 1:029�

#

The distance is 0.3397 � . Therefore, the best approximation of �1 is

"

0:3035 0:3930 0:3035

�1:029 0:0 1:029

#
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Fig. 2.9 A bivariate normal distribution

Then, conditional on the first coordinate, the second coordinate is approximated,
resulting in the following nested distribution QP�

QP� D

2

6
6
6
4

0:3035 0:3930 0:3035

�1:029
"

0:3035 0:393 0:3035

�2:058 �1:029 0:0

#
0:0

"

0:3035 0:393 0:3035

�1:029 0:0 1:029

#
1:029

"

0:3035 0:393 0:3035

0:0 1:029 2:058

#

3

7
7
7
5
:

The resulting nested distance is dl1.P; QP�/ D 0:76. The example is illustrated in
Fig. 2.10.

As a comparison we have calculated the best approximation of the
two-dimensional distribution .�1; �2/ by a discrete probability sitting on 9 points.
Notice that this approximation does not respect the tree structure, it can be seen as
a fan with 9 leaves. The calculated approximate distribution is

NP D
2

6
4

0:114 0:108 0:152 0:148 0:078 0:046 0:188 0:114 0:052
 

1:205

1:205

!  

0:277

1:601

!  

�1:068
�0:855

!  

0:088

�0:660
!  

�0:577
�2:074

!  

�1:855
�2:522

!  

�0:412
0:397

!  

0:894

0:132

!  

0:052

1:673

!

3

7
5 :

These points are shown in Fig. 2.11. While the multivariate distance is smaller than
before, the nested distance is dl1.P; NP/ D 1:12 which is much larger than before
because NP does not respect the filtration structure.
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Fig. 2.10 An “optimal” discrete approximation QP to the process P of Fig. 2.9. Left: the
prespecified tree structure. Right: the visualization of the values and probabilities

Fig. 2.11 A discrete approximation QP to the bivariate distribution of Fig. 2.9. Left: the structure
of the fan, i.e., a trivial tree. Right: the visualization of the values and probabilities

Rapid Computation of the Nested Distance. In view of the tower property it
should be noted that instead of solving the full problem (2.40), the nested distance
can be calculated in a recursive way.15 For this observe that dlr is the nested distance
of both trees, starting at their roots. For a rapid computation we extend the distance
dlr to subtrees, starting at given nodes of the trees.

For two leaves i 2 NT ; j 2 QNT at the final stage of the tree define first

dlrT .i; j / WD d
�

�i ; Q�j
�r

:

Given dlrtC1 .i 0; j 0/ for i 0 2 NtC1 and j 0 2 QNtC1, set

15Notice that this recursive calculation corresponds to the way the nested distance was introduced
in Sect. 1.4.1.
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dlrt .k; l/ WD
X

i 02kC;j
02lC

�t
�

i 0; j 0j k; l� � dlrtC1
�

i 0; j 0� �

k 2 Nt ; l 2 QNt

�

;

where the one-step conditional probabilities �.�; �j k; l/ solve the usual Wasserstein
problem, conditioned on k and l , that is

minimize
in �t .:; :j k; l/

P

i 02kC;j 02lC �t .i 0; j 0j k; l/ � dlrtC1 .i 0; j 0/

subject to
P

j 02lC �t .i
0; j 0j k; l/ D Q.i 0/ D P .i 0j k/ .i 0 2 kC/;

P

i2mC

�t .i
0; j 0j k; l/ D QQ.j 0/ D QP .j 0j l/ .j 0 2 lC/;

�t .i
0; j 0j k; l/ � 0:

The values dlrt .k; l/ can be interpreted as the nested distances of the subtrees
starting in nodes k and l . Finally the transport plan � on the leaves is recomposed
by

� .i; j / D � .i1; j1j i0; j0/ � � � � � � .iT�1; jT�1j iT�2; jT�2/ � � .i; j j iT�1; jT�1/
(2.42)

with it D predt .i /, jt D predt .j /. The nested distance is given by dlr
�

P; QP
�r D

dlr0 .1; 1/, where .i0; j0/ D .1; 1/ is the pair of root nodes of both trees.
Algorithm 2.1 summarizes this procedure in order to efficiently compute the

nested distance for tree processes in a nested, recursive manner.

Example 2.45. As an example for Algorithm 2.1 to efficiently compute the nested
distance we consider the nested distributions P (a tree with 11 leaves) and QP (a tree
with 6 leaves) shown below and depicted in Fig. 2.12.

P D

2

6
6
6
4

0:2 0:3 0:3 0:2

13 11 8 6
"

0:1 0:2 0:4 0:3

15 14 13 11

# "

0:7 0:3

12 9

# "

0:5 0:2 0:3

10 8 6

# "

0:4 0:6

7 5

#

3

7
7
7
5
;

QP D

2

6
6
6
4

0:3 0:3 0:4

13 11 7
"

0:4 0:6

14 12

# "

1:0

10

# "

0:4 0:4 0:2

9 8 5

#

3

7
7
7
5
:

The pertaining multivariate distributions and their Wasserstein distances were
already considered in Example 2.28.

Initialization. Table 2.2 collects the distances of two paths of the trees (the state
space). Here, the `1-distance is employed.
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Algorithm 2.1 Nested computation of the nested distance dlr
�

P; QP
�

of two tree-

processes P and QP
Initialization (t D T ):
For all combinations of leaf nodes i 2 NT and j 2 QNT with predecessors .i0; i1; : : : iT�1; i / and
.j0; j1; : : : jT�1; j / define

dlrT .i; j / WD d
��

�i0 ; �i1 ; : : : �i
�

;
�Q�j0 ; Q�j1 ; : : : Q�j

��r

:

Iteration, backwards:
For t D T � 1 down to 0, and

for every combination of inner nodes k 2 Nt and l 2 Nt solve the LP (cf. (2.23))

dlrt .k; l/ WD minimize
(in �)

P

i 02kC;j 0
2lC � .i 0; j 0j k; l/ � dlrtC1 .i

0; j 0/

subject to
P

j 0
2lC � .i 0; j 0j k; l/ D Q.i 0/ i 0 2 kC

P

i 02kC
� .i 0; j 0j k; l/ D QQ.j 0/ j 0 2 lC

� .i 0; j 0j k; l/ � 0

(2.43)

Final Assignment:
The nested distance of the trees is the distance of the trees at their roots 1,

dlr
�

P; QP
�r D dlr0 .1; 1/ :

The optimal transport plan at the leaf nodes i 2 NT and j 2 QNT is

� .i; j / WD �1 .i1; j1j i0; j0/ � � � � � �T�1 .i; j j iT�1; jT�1/ :

�t is the optimal transport plan obtained in (2.43) at stage t .

0 1 2
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0 0.2 0.4 0 1 2
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16

0 0.2 0.4

a b

Fig. 2.12 Depicted are two trees in three stages, annotated is the histogram of their final
probability distribution. (a) Initial tree P. (b) Target tree QP

Iteration, backwards. Based on the distance matrix and the structure of the trees
the respective subproblems are computed for each combination of nodes at the same
stage. For stage 1, the result of the above two subtrees is displayed in Table 2.4a; the
result (0.8) is the corresponding, new entry in the distance Table 2.4b at the earlier
stage 0.
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Table 2.4 The distance at different levels: distance dl, probabilities � , and dual variables (� and
	; cf. Table 2.3)

Distance of states, Probabilities,

dl2 .i; j / 0 0 �2 .i; j / 0.4 0.6

1 1 3 0.1 0.1 0

0 0 2 0.2 0.2 0

1 1 1 0.4 0.1 0.3
1 3 1 0.3 0 0.3

(a) Stage 1, the first two subtrees, primal and dual solutions. The Wasserstein distance of the
subtrees is

P

i;j �2 .i; j /dl2 .i; j / D 0:8—the first entry in Table 2.4b

Distance of subtrees, Probabilities,
dl1 .i; j / 7.6 5.6 3 �1 .i; j / 0.3 0.3 0.4
�6.8 0.8 4.8 11 0.2 0.2 0 0
�3.9 3.7 1.7 7.3 0.3 0.1 0.2 0
�1 9.4 4.6 2 0.3 0 0.1 0.2

0 14 9.2 3 0.2 0 0 0.2
(b) Stage 0, the combination of all subtrees. The nested distance is

P

i;j �1 .i; j /dl1 .i; j / D 2:33

Table 2.5 The conditional probabilities of the tree, and the probabilities of the nested distance,
P

i;j �i;j di;j D 2:33. The unconditional probabilities for the nested distance notably do not
coincide with Wasserstein distance (Table 2.3)

1

0.3 0.3 0.4

Conditional probabilities 0.4 0.6 1 0.4 0.4 0.2

1 0.2 0.1 0.02 0 0 0 0 0

0.2 0.04 0 0 0 0 0

0.4 0.02 0.06 0 0 0 0

0.3 0 0.06 0 0 0 0

0.3 0.7 0.04 0.03 0.14 0 0 0

0.3 0 0.03 0.06 0 0 0

0.3 0.5 0 0 0.05 0.08 0.02 0

0.2 0 0 0.02 0 0.04 0

0.3 0 0 0.03 0 0.02 0.04

0.2 0.4 0 0 0 0.04 0.04 0

0.6 0 0 0 0.04 0.04 0.04

Final Assignment. The nested distance finally is the distance of the subtrees at

level 0, d1
�

P; QP
�

D 2:33. Moreover, the transport plan � can be computed. The

resulting transport plan is displayed in Table 2.5.
It should be noted that the final probabilities of any of the sub-problems can be

recovered in the probability at an earlier stage. For example, the probabilities� from
Table 2.4a are in the upper-left section of the matrix in Table 2.5, but multiplied with
its conditional probability 10 %, which is the result from Table 2.4a.



88 2 The Nested Distance

Example 2.46. The nested distance of the trees in Fig. 1.13 (Chap. 1) is 0, a minimal
transport plan is

� D

0

B
B
@

0:42 0

0 0:18

0:28 0

0 0:12

1

C
C
A
:

This example demonstrates that the nested distance correctly identifies equivalent
processes.

Example 2.47. The nested distance of the trees addressed in Example 2.30
(Fig. 2.4) is 4p .1 � p/ > 0, the corresponding nested transport plan is given
by

� D
	

p2 p .1 � p/
.1 � p/ p .1 � p/2




:

The nested distance thus correctly identifies two different trees in this situation
(except for the degenerate cases p D 0 or p D 1, where they coincide again).
This is in notable contrast to the final Wasserstein distance of these trees, which was
found to be 0.

2.11 Dual Representation of the Nested Distance

The duality for the Wasserstein distance was established in Sect. 2.8 by considering
LP duality for the defining optimization problem. This section provides a martingale
representation of the nested distance. The martingale corresponds to successively
solving Wasserstein problems on subsequent stages, the main result is Theorem 2.49
below. This (dual) representation is adapted from [94].

To prepare for the dual representation of the nested distance it is helpful to
observe that one may state the dual problem (2.25) in the equivalent form

maximize
(in M0; �; 	)

M0

subject to E� D 0; QE	 D 0;

M0 C �.�/C 	. Q�/ � d.�; Q�/r for all � and Q�:

The defining equations for the nested distance in Definition 2.32 involve
constraints for each of the stages. As the variables in the dual program correspond to
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constraints in the primal, the dual program for the nested distance involves variables
for each stage.

To establish the dual representation of the nested distance it is necessary to
incorporate the constraints (2.35) in the Lagrangian function. To this end we define
projections, which act on one component while leaving the other unaffected, by

projt W L1 �FT ˝ QFT
� ! L1

�Ft ˝ QFT
�

� .id/ � 	 � Qid� 7! E .�jFt / .id/ � 	 � Qid�

and

Qprojt W L1 �FT ˝ QFT
� ! L1

�FT ˝ QFt
�

� .id/ � 	 � Qid� 7! � .id/ � E .	jFt /
� Qid� :

The one-sided projections proj and Qproj are well defined by linearity, because
functions of the form .x; y/ 7! 1A .x/1B .y/ form a basis for L1

�FT ˝ QFT
�

.

Proposition 2.48 (Characterization of the Projection). The measure � satisfies
the marginal condition

�
�

A � Q�jFt ˝ QFt
� D P .AjFt / for all A 2 � (2.44)

if and only if

E�� D E� projt � for all � C FT ˝ QFt : (2.45)

Moreover, projt .�/ D E�

�

�jFt ˝ QFT
�

if � has marginal P .

Proof. Note first that the left-hand side and the right-hand side of (2.44) are
probability measures, it is thus sufficient to show that

ˆ

C�D
�
�

A � Q�jFt ˝ QFt
�

d� D
ˆ

C�D
P .AjFt / .id/ d�

for all sets C 2 Ft andD 2 QFt .
To this end observe that
ˆ

C�D
�
�

A � Q�jFt ˝ QFt
�

d� D E�

�

1C�DE�
�

1A� Q�jFt ˝ QFt
��

D E�E�

�

1C�D1A� Q�jFt ˝ QFt
�

D E�1.C�D/\.A� Q�/ D � ..A\ C/ �D/ :
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Next,

ˆ

C�D
P .AjFt / d� D E�1C�DEP .1AjFt / ı id

D E�1C .id/ � 1D
� Qid� � EP .1AjFt / .id/

D E�EP .1C1AjFt / .id/ � 1D
� Qid�

D E�EP .1C\AjFt / .id/ � 1D
� Qid�

D E� projt
�

1C\A .id/ � 1D
� Qid�� ;

and by the assertion (2.45) thus

ˆ

C�D
P .AjFt / d� D E�1A\C .id/ � 1D

� Qid�

D E�1.A\C/�D D � ..A \ C/ �D/ ;

from which the first assertion (2.44) follows.
As for the converse it is enough to prove (2.45) for functions of the form 	 ı

id � Q	 ı Qid for 	 2 FT and Q	 2 QFt , as these products form a basis.
For the function 1A (A 2 FT )

EP .1AjFt / .id/ D P .AjFt / D �
�

A � Q�jFt ˝ QFt
�

D E
�

1A� Q�jFt ˝ QFt
� D E�

�

1A .id/ jFt ˝ QFt
�

;

and by linearity thus EP .	jFt / .id/ D E�

�

	 .id/ jFt ˝ QFt
�

. With this identity it
follows further that

EP .	jFt / .id/� Q	 � Qid�DE�

�

	 .id/ jFt ˝ QFt
�� Q	 � Qid�DE�

�

	 .id/ Q	 � Qid� jFt ˝ QFt
�

:

Taking expectations gives that

E� projt
�

	 .id/ � Q	 � Qid�� D E�EP .	jFt / .id/ � Q	 � Qid� :
D E�E�

�

	 .id/ Q	 � Qid� jFt ˝ QFt
�

D E�	 .id/ � Q	 � Qid� ;

which is the assertion for the basis functions 	 .id/ � Q	 � Qid�. ut
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2.11.1 Martingale Representation of the Nested Distance

Proposition 2.48 is the essential tool to describe the dual representation of the nested
distance.

Theorem 2.49 (Duality for the Nested Distance). The infimum of problem (2.35)
to compute the nested distance dlrr .P; QP/ equals the supremum of all numbers M0

such that

MT .!; Q!/ � d .!; Q!/r .!; Q!/ 2 � � Q�;

where Mt is an R-valued process on � � Q� of the form

Mt D M0 C
tX

sD1
.�s C 	s/

and the measurable functions �t C Ft ˝ QFt�1 and 	t C Ft�1 ˝ QFt�1 satisfy
projt�1.�t / D 0 and Qprojt�1.	t / D 0.

The processMt , for which the supremum is attained, is a martingale with respect
to the optimal measure � ,

Mt D E
�

dr jFt ˝ QFt
�

�-a.e. in � � Q�

and

dlr
�

P; QP
�r D E� .dr / D M0 D E�MT :

Before we conclude this section with the proof of the theorem we give an
example, which displays the martingale process.

Example 2.50 (Continuation of Example 2.45). Table 2.6 collects the final stage of
the process MT . Comparing MT with the initial distance (Table 2.2) it becomes
apparent that MT � d. Moreover it holds that MT D d for all entries for
which �i;j > 0 (these entries are bold in the table. Cf. Table 2.5 to compare this
representation by duality with the primal nested distance).

Proof of Theorem 2.49. Evoking Proposition 2.48 the constraints in (2.35) can be
encoded in the Lagrangian as

inf
��0 sup

M0;ft ;gt

E�drCM0 � .1 � E�1/C

�
T�1X

sD0
.E�fsC1 � E� projs.fsC1//C
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Table 2.6 The final state of the dual martingale process MT corresponding to Example 2.45

1

0.3 0.3 0.4

Conditional probabilities 0.4 0.6 1 0.4 0.4 0.2

1 0.2 0.1 1 1 1 �2.8 �1.8 1.2

0.2 0 0 0 �3.8 �2.8 0.2

0.4 1 1 �1 �4.8 �3.8 �0.8

0.3 1 1 �3 �6.8 �5.8 �2.8

0.3 0.7 4 2 2 �1.2 �0.2 2.8

0.3 7 5 1 �4.2 �3.2 �0.2

0.3 0.5 6.2 4.2 3 2 3 2

0.2 8.2 6.2 5 0 1 0

0.3 10.2 8.2 7 2 3 2
0.2 0.4 7.6 5.6 4.4 3 2 �1

0.6 9.6 7.6 6.4 5 4 1

�
T�1X

sD0

�

E�gsC1 � E�
Qprojs.gsC1/

�

;

the infimum being among positive measures � � 0, not only probability measures;
the functions in the inner supremum satisfy ft C Ft ˝ QFt�1 and gt C Ft�1 ˝ QFt .
According to Sion’s minimax theorem (cf. Sion [132]) this saddle point has the same
objective value as

sup
M0;ft ;gt

M0 C inf
��0E�

2

4

dr �M0 � 1
�PT�1

sD0 .fsC1 � projs.fsC1//
�PT�1

sD0
�

gsC1 � Qprojs.gsC1/
�

3

5 : (2.46)

Now notice that the infimum over all � � 0 is �1 unless the integrand is positive
for every measure � � 0, which means that

M0 C
T�1X

sD0
.fsC1 � projs.fsC1//C

T�1X

sD0

�

gsC1 � Qprojs.gsC1/
� � dr

necessarily has to hold. For a positive integrand in (2.46), the infimum over positive
measures inf��0 E� is 0. Equation (2.46) thus can be reformulated as

maximize
in M0; ft ; gt

M0

subject to M0 CPT�1
sD0 .fsC1 � projs fsC1/CPT�1

sD0
�

gsC1 � QprojsgsC1
� � dr ;

ft C Ft ˝ QFt�1; gt C Ft ˝ QFt�1:
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Using the setting �s WD fs�projs�1.fs/ and	s WD gs�projs�1.gs/ allows rewriting
the latter equation as

maximize (in M0; �t ; 	t / M0

subject to M0 CPT
sD1 .�s C 	s/ � dr

projt�1.�t / D 0; projt�1.	t / D 0;

which is the desired formulation.
To accept the martingale property observe that

E�

�

MT jFt ˝ QFt
� D E�

 

M0 C
T�1X

sD0
�s C 	sjFt ˝ QFt

!

D M0 C
tX

sD0
�s C 	s;

provided that E�
�

�s C 	s jFt ˝ QFt
� D 0 whenever s > t . This can be seen as

follows: recall that � .id/ � 1B
� Qid� are base functions. Now if

projt � .id/ � 1B
� Qid� D E .�jFt / .id/ � 1B

� Qid� D 0;

then E .�jFt / D 0 and consequently E

�

� .id/ Q� � Qid� jFt ˝ QFt
�

D 0.

It holds moreover that

Mt D E�

�

MT jFt ˝ QFt
� � E�

�

dr jFt ˝ QFt
�

due to the constraints. But the vanishing duality gap forces

M0 D E�dr ;

such that we conclude in addition that

Mt D E�

�

dr jFt ˝ QFt
�

� � a.e.;

which completes the proof. ut
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