
Chapter 2
Topologies for Spaces of Vector Fields

In this chapter we review the definitions of the topologies we use for spaces of
Lipschitz, finitely differentiable, smooth, and real analytic vector fields.We comment
that all topologies we define are locally convex topologies, of which the normed
topologies are a special case. However, few of the topologies we define, and none of
the interesting ones, are normable. We, therefore, begin with a very rapid review of
locally convex topologies, and why they are inevitable in work such as we undertake
here.

2.1 An Overview of Locally Convex Topologies
for Vector Spaces

In this sectionwe provide a “chatty” overview of locally convex topologies, since this
work relies on these in an essential way. The presentation here should be regarded
as that of a bare bones introduction, and a reader wishing to understand the subject
deeply will wish to refer to references such as [1, 3, 5, 7, 10, 12]. We particularly
suggest [10] as a good place to start learning the theory.

2.1.1 Motivation

As mentioned above, few of the topologies we introduce below arise from a norm,
and the most interesting ones, e.g., the topologies for spaces of smooth and real
analytic vector fields, are decidedly not norm topologies. Let us reflect onwhy locally
convex topologies, such as we use in this work, are natural. Consider first the task of
putting a norm on the space C0(R) of continuousR-valued functions onR. Spaces of
continuous functions are in the domain of classical analysis, and so are well-known
to the readership of this monograph, e.g., [4, Theorem 7.9]. This is often considered
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for continuous functions defined on compact spaces, e.g., compact intervals, where
the sup-norm suffices to describe the topology in an adequatemanner. For continuous
functions on noncompact spaces, the sup-norm obviously no longer applies. In such
cases, it is common to consider instead functions that “die off” at infinity, as the
sup-norm again functions perfectly well for these classes. For the entire space of
continuous functions, say C0(R), the sup-norm is no longer a viable candidate for
defining a topology. Instead one can use a family of natural seminorms, one for each
compact set K ⊆ R. To be precise, we define

pK ( f ) = sup{| f (x)|| x ∈ K }.

The collection pK , K ⊆ R compact, of such seminorms can then be used to define a
topology (in a manner that we make precise in Definition 2.2). If one wishes to apply
the same reasoning to functions of class Cm , m ∈ Z>0, we can use the seminorms

pm
K ( f ) = sup{|D j f (x)|| x ∈ K , j ∈ {0, 1, . . . , m}}, K ⊆ R compact,

on Cm(R), and it is not hard to imagine that this can be used to describe a suitable
topology; we define these sorts of topologies precisely below.

By being slightly more clever, one can imagine adapting the above procedure
for topologising Cm(R), m ∈ Z≥0, to topologising the space Cm(M) of functions
on a smooth manifold M of class Cm . If M is compact, such a space is actually a
normed space, since supremums can be taken over the compact set M. If one wishes
to topologise the space C∞(M) of smooth functions on a smooth manifold, one must
account for all derivatives. Let us indicate how to do this for C∞ (R) ; we handle the
general case in Sect. 2.2.2. For C∞ (R) we define the seminorms

p∞
K ,m( f ) = sup{|D j f (x)|| x ∈ K , j ∈ {0, 1, . . . , m}},

K ⊆ R compact, m ∈ Z≥0.

Note that the appropriate adaptation of these seminorms tomanifolds will never yield
a normed topology, since there will always be infinitely many derivatives to account
for.

The point of the preceding motivation is this: topologies defined by families of
seminorms arise in natural wayswhen topologising spaces of functions in differential
geometry.

2.1.2 Families of Seminorms and Topologies Defined by These

With the preceding remarks as motivation, let us provide a few precise definitions
and state a few facts (without proof) arising from these definitions.

We begin with the notion of a seminorm.
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Definition 2.1 (Seminorm) Let F ∈ {R,C} and let V be an F-vector space. A
seminorm for V is a function p : V → R≥0 such that

(i) p(av) = |a|p(v) for a ∈ F and v ∈ V;
(ii) p(v1 + v2) ≤ p(v1) + p(v2). ◦

The reader will note that the missing norm element is the positive definiteness. A
moments reflection on the examples above indicates why this omission is necessary.
Nonetheless, one can use families of seminorms to define a topology.

Definition 2.2 (The topology defined by a family of seminorms) Let F ∈ {R,C},
let V be an F-vector space, and letP be a family of seminorms for V. The topology
defined byP is that topology for which the sets

{v ∈ V| p(v) < r}, p ∈ P, r ∈ R>0,

are a subbasis, i.e., open sets in the topology are unions of finite intersections of these
sets. The resulting topology is called a locally convex topology, and anF-vector space
with a locally convex topology is called anF-locally convex topological vector space,
or simply a locally convex space. ◦

Now let us simply list some attributes of these topologies, referring to the refer-
ences for details. In the following list, we let F ∈ {R,C} and let U and V be F-locally
convex spaces defined by families Q and P , respectively, of seminorms.

1. The locally convex topology on V is Hausdorff if and only if, for each v ∈ V,
there exists p ∈ P such that p(v) 	= 0 [10, Theorem 1.37]. Locally convex
spaces are often assumed to be Hausdorff, and we shall suppose this to be true
for our statements below.

2. Locally convex topologies are translation-invariant, i.e., a neighbourhoodbasis at
0 translates (by adding v) to a neighbourhood basis at v ∈ V [10, Theorem 1.37].

3. We say that a subset B is von Neumann bounded if, for any neighbourhood N

of 0, there exists λ ∈ R>0 such thatB ⊆ λN. A subset is von Neumann bounded
if and only if p|B is bounded for every p ∈ P [10, Theorem 1.37(b)].

4. A locally convex topology is normable if it can be defined by a single seminorm
which is a norm. A locally convex space is normable if and only if there exists
a convex bounded neighbourhood of 0 [10, Theorem 1.39].

5. Compact subsets of locally convex spaces are closed and bounded. However,
closed and bounded subsets are not necessarily compact, e.g., closed balls in
infinite-dimensional Banach spaces are not compact.

6. Unlike the situation for Banach spaces, there are infinite-dimensional locally
convex spaces for which closed and bounded sets are compact. An important
class of such spaces are the so-called nuclear spaces [9, Proposition 4.47]. A
normed space is nuclear if and only if it is finite-dimensional. In this work, many
of the spaces we deal with are nuclear.

7. A locally convex space is metrisable if its topology can be defined by a
translation-invariant metric. A locally convex space is metrisable if and only
if it can be defined by a countable family of seminorms [10, Remark 1.38(c)].



24 2 Topologies for Spaces of Vector Fields

8. Metrisable topologies are characterised by their convergent sequences. This
is a general assertion, following from the fact that metric spaces are first-
countable [13, Corollary 10.5]. However, we will encounter locally convex
spaces that are not metrisable, and so convergence in such spaces is determined
by using nets rather than sequences. Recall that a net in a set is indexed by points
in a directed set, i.e., a partially ordered set (I,
) with the attribute that, given
i1, i2 ∈ I , there exists i ∈ I such that i1, i2 
 i . A net (xi )i∈I in a topological
space converges to x0 if, for every neighbourhood O of x0, there exists i0 ∈ I
such that xi ∈ O for all i0 
 i .

9. A net (vi )i∈I in V converges to v0 if and only if, for each p ∈ P and each
ε ∈ R>0, there exists i0 ∈ I such that p(vi − v0) < ε for i0 
 i .

10. A Cauchy net in V is a net (vi )i∈I such that, for each p ∈ P and each ε ∈ R>0,
there exists i0 ∈ I such that, if i0 
 i1, i2, then p(vi1 − vi2) < ε. A locally
convex space is complete if every Cauchy net converges.

11. A linear map L : U → V is continuous if and only if, for each p ∈ P , there
exist q1, . . . , qk ∈ Q and C1, . . . , Ck ∈ R>0 such that

p (L(u)) ≤ C1q1(u) + · · · + Ckqk(u),

cf. the discussion in [12, §III.1.1]. We denote by L(U; V) the set of continuous
linear maps from U to V.

The preceding is all that we shall make direct reference to in this monograph. We
mention, however, that our work here relies on the recent work of Jafarpour and
Lewis [6], and in this work, especially the development of the topology for spaces
of real analytic vector fields, many deep properties of locally convex topologies are
used. We shall skirt around these issues, for the most part, in the present monograph.

2.2 Seminorms for Locally Convex Spaces of Vector Fields

We now describe in a little detail the seminorms we use for spaces of vector fields
with various regularity, Lipschitz, finitely differentiable, smooth, and real analytic.
We also characterise spaces of holomorphic vector fields, because these can often be
useful in understanding real analytic vector fields.

While our interest is primarily in spaces of vector fields, it is actually less confusing
notationally and conceptually to work instead with spaces of sections of a vector
bundle. Thus, throughout this section we will work with a vector bundle π: E → M
that is either smooth, real analytic, or holomorphic, depending on our needs.

2.2.1 Fibre Norms for Jet Bundles

The classes of sections we consider are all characterised by their derivatives in some
manner. The appropriate device for considering derivatives of sections is the theory
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of jet bundles, for which we refer to [11] and [8, §12]. By JmE we denote the
vector bundle of m-jets of sections of a smooth vector bundle π: E → M, with
πm : JmE → M denoting the projection. If ξ is a smooth section of E, we denote by
jmξ the corresponding smooth section of JmE.

Sections of JmE should be thought of as sections of E along with their first m
derivatives. In a local trivialisation of E, one has the local representatives of the
derivatives, order-by-order. Such an order-by-order decomposition of derivatives is
not possible globally, however. Nonetheless, following [6, §2.1], we shall mimic this
order-by-order decomposition globally using a linear connection ∇0 on E and an
affine connection ∇ on M. First note that ∇ defines a connection on T∗M by duality.
Also, ∇ and ∇0 together define a connection ∇m on Tm(T∗M) ⊗ E by asking that
the Leibniz Rule be satisfied for the tensor product. Then, for a smooth section ξ of
E, we denote

∇(m)ξ = ∇m · · · ∇1∇0ξ,

which is a smooth section of Tm+1(T∗M ⊗ E). By convention we take ∇(−1)ξ = ξ.
We then have a map

Sm
∇,∇0 : JmE → ⊕m

j=0(S
jT∗M ⊗ E)

jmξ(x) �→ (ξ(x),Sym1 ⊗ idE(∇0ξ)(x), . . . ,Symm ⊗ idE(∇(m−1)ξ)(x)),

(2.1)

which can be verified to be an isomorphism of vector bundles [6, Lemma 2.1]. Here
Symm : Tm(V) → Sm(V) is defined by

Symm(v1 ⊗ · · · ⊗ vm) = 1

m!
∑

σ∈Sm

vσ(1) ⊗ · · · ⊗ vσ(m).

Now we note that inner products on the components of a tensor product induce
in a natural way inner products on the tensor product [6, Lemma 2.2]. Thus, if we
suppose that we have a fibre metricG0 on E and a Riemannian metricG on M, there
is induced a natural fibre metric Gm on Tm(T∗M) ⊗ E for each m ∈ Z≥0. We then
define a fibre metric Gm on JmE by

Gm( jmξ(x), jmη(x))

=
m∑

j=0

G j

( 1

j !Sym j ⊗ idE(∇( j−1)ξ)(x),
1

j !Sym j ⊗ idE(∇( j−1)η)(x)
)
.

(The factorials are required to make things work out with the real analytic topology.)
The corresponding fibre norm we denote by ‖·‖

Gm
.
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2.2.2 Seminorms for Spaces of Smooth Vector Fields

Let π: E → M be a smooth vector bundle. Using the fibre norms from the preceding
section, it is a straightforward matter to define appropriate seminorms that prescribe
the locally convex topology for Γ ∞(E). For K ⊆ M compact and for m ∈ Z

m≥0,
define a seminorm p∞

K ,m on Γ ∞(E) by

p∞
K ,m(ξ) = sup{‖ jmξ(x)‖

Gm
| x ∈ K }.

The family of seminorms p∞
K ,m , K ⊆ M compact, m ∈ Z≥0, defines a locally convex

topology, called the C∞-topology,1 with the following properties:

1. it is Hausdorff, metrisable, and complete, i.e., it is a Fréchet topology;
2. it is separable;
3. it is nuclear;
4. it is characterised by the sequences converging to zero, which are the sequences

(ξ j ) j∈Z>0 such that, for each K ⊆ M and m ∈ Z≥0, the sequence ( jmξ j |K ) j∈Z>0

converges uniformly to zero.

In this paper we shall not make reference to other properties of the C∞-topology, but
we mention that there are other properties that play an important rôle in the results in
Chap. 3. For these details, and for references where the above properties are proved,
we refer to [6, §3.2].

2.2.3 Seminorms for Spaces of Finitely Differentiable
Vector Fields

We again take π: E → M to be a smooth vector bundle, and we fix m ∈ Z≥0. For the
space Γ m(E) of m-times continuously differentiable sections, we define seminorms
pm

K , K ⊆ M compact, for Γ m(E) by

pm
K (ξ) = sup{‖ jmξ(x)‖

Gm
| x ∈ K }.

The locally convex topology defined by the family of seminorms pm
K , K ⊆ M

compact, we call the Cm-topology, and it has the following properties:

1. it is Hausdorff, metrisable, and complete, i.e., it is a Fréchet topology;
2. it is separable;

1 This is actually not a very good name. A better name, and the name used by Jafarpour and
Lewis [6], would be the “smooth compact-open topology”. However, we wish to keep things simple
here, and also use notation that is common between regularity classes.

http://dx.doi.org/10.1007/978-3-319-08638-5_3
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3. it is characterised by the sequences converging to zero, which are the sequences
(ξ j ) j∈Z>0 such that, for each K ⊆ M, the sequence ( jmξ j |K ) j∈Z>0 converges
uniformly to zero;

4. if M is compact, then pm
M is a norm that gives the Cm-topology.

As with the C∞-topology, we refer to [6, §3.4] for details.

2.2.4 Seminorms for Spaces of Lipschitz Vector Fields

In this section we again work with a smooth vector bundle π : E → M. In defining
the fibre metrics from Sect. 2.2.1, for the Lipschitz topologies the affine connection
∇ is required to be the Levi-Civita connection for the Riemannian metric G and the
linear connection ∇0 is required to be G0-orthogonal. While Lipschitz vector fields
are often used, spaces of Lipschitz vector fields are not. Nonetheless, one may define
seminorms for spaces of Lipschitz vector fields rather analogous to those defined
above in the smooth and finitely differentiable cases. Let m ∈ Z≥0. By Γ m+lip(E)

we denote the space of sections ofE that are m-times continuously differentiable and
whose m-jet is locally Lipschitz. (One can think of this in coordinates, but Jafarpour
and Lewis [6] provide geometric definitions, if the reader is interested.) If a section ξ
is of class Cm+lip, then, by Rademacher’s Theorem [2, Theorem 3.1.6], its (m + 1)st
derivative exists almost everywhere. Thus we define

dil jmξ(x) = inf{sup{‖∇[m]
vy

jmξ‖
Gm

| y ∈ cl(U), ‖vy‖G = 1,

jmξ differentiable at y}| U is a relatively compact neighbourhood of x},

which is the local sectional dilatation of ξ. Here ∇[m] is the connection in JmE
defined by the decomposition (2.1). Let K ⊆ M be compact and define

λm
K (ξ) = sup{dil jmξ(x)| x ∈ K }

for ξ ∈ Γ m+lip(E). We can then define a seminorm pm+lip
K on Γ m+lip(E) by

pm+lip
K (ξ) = max{λm

K (ξ), pm
K (ξ)}.

The family of seminorms pm+lip
K , K ⊆ M compact, defines a locally convex topology

for Γ m+lip(E), which we call the Cm+lip-topology, having the following attributes:

1. it is Hausdorff, metrisable, and complete, i.e., it is a Fréchet topology;
2. it is separable;
3. it is characterised by the sequences converging to zero, which are the sequences

(ξ j ) j∈Z>0 such that, for each K ⊆ M, the sequence ( jmξ j |K ) j∈Z>0 converges
uniformly to zero in both seminorms λm

K and pm
K ;

4. if M is compact, then pm+lip
M is a norm that gives the Cm+lip-topology.

We refer to [6, §3.5] for details.
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2.2.5 Seminorms for Spaces of Holomorphic Vector Fields

Now we consider an holomorphic vector bundle π: E → M and denote by Γ hol(E)

the space of holomorphic sections of E. We let G be an Hermitian metric on the
vector bundle and denote by ‖·‖G the associated fibre norm. For K ⊆ M compact,
denote by pholK the seminorm

pholK (ξ) = sup{‖ξ(z)‖G| z ∈ K }

onΓ hol(E). The family of seminorms pholK , K ⊆ M compact, defines a locally convex
topology for Γ hol(E) that we call the Chol-topology. This topology has the following
properties:

1. it is Hausdorff, metrisable, and complete, i.e., it is a Fréchet topology;
2. it is separable;
3. it is nuclear;
4. it is characterised by the sequences converging to zero, which are the sequences

(ξ j ) j∈Z>0 such that, for each K ⊆ M, the sequence (ξ j |K ) j∈Z>0 converges
uniformly to zero;

5. if M is compact, then pholM is a norm that gives the Chol-topology.

We refer to [6, §4.2] and the references therein for details about the Chol-topology.

2.2.6 Seminorms for Spaces of Real Analytic Vector Fields

The topologies described above for spaces of smooth, finitely differentiable,
Lipschitz, and holomorphic sections of a vector bundle are quite simple to under-
stand in terms of their converging sequences. The topology one considers for real
analytic sections does not have this attribute. There is a bit of a history to the char-
acterisation of real analytic topologies, and we refer to [6, §5] for four equivalent
characterisations of the real analytic topology for the space of real analytic sections
of a vector bundle. Here wewill give themost elementary of these definitions to state,
although it is probably not the most practical definition. In practice, it is probably
best to somehow complexify and use the holomorphic topology; we give instances
of this in Theorems 3.9 and 3.17 below.

In this section we let π: E → M be a real analytic vector bundle and let Γ ω(E)

be the space of real analytic sections. One can show that there exist a real analytic
linear connection ∇0 on E, a real analytic affine connection ∇ on M, a real analytic
fibre metric on E, and a real analytic Riemannian metric on M [6, Lemma 2.3]. Thus
we can define real analytic fibre metricsGm on the jet bundles JmE as in Sect. 2.2.1.

To define seminorms for Γ ω(E), let c0(Z≥0;R>0) denote the space of sequences
in R>0, indexed by Z≥0, and converging to zero. We shall denote a typical element
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of c0(Z≥0;R>0) by a = (a j ) j∈Z≥0 . Now, for K ⊆ M and a ∈ c0(Z≥0;R>0), we
define a seminorm pω

K ,a for Γ ω(E) by

pω
K ,a(ξ) = sup{a0a1 · · · am‖ jmξ(x)‖

Gm
| x ∈ K , m ∈ Z≥0}.

The family of seminorms pω
K ,a, K ⊆ M compact, a ∈ c0(Z≥0;R>0), defines a

locally convex topology on Γ ω(E) that we call the Cω-topology. This topology has
the following attributes:

1. it is Hausdorff and complete;
2. it is not metrisable (and so it not a Fréchet topology);
3. it is separable;
4. it is nuclear.

We shall generally avoid dealing with the rather complicated structure of this topol-
ogy, and shall be able to do what we need by just working with the seminorms. That
this is possible is one of the main contributions of the work [6].

2.2.7 Summary and Notation

In the real case, the degrees of regularity are ordered according to

C0 ⊃ Clip ⊃ C1 ⊃ · · · ⊃ Cm ⊇ Cm+lip ⊃ Cm+1 ⊃ · · · ⊃ C∞ ⊃ Cω,

and in the complex case the ordering is the same, of course, but with an extra Chol on
the right. Sometimes it will be convenient to write ν + lip for ν ∈ {Z≥0,∞,ω}, and
in doing this we adopt the obvious convention that ∞ + lip = ∞ and ω + lip = ω.

Where possible, we will state definitions and results for all regularity classes at
once. To do this, we will let m ∈ Z≥0 and m′ ∈ {0, lip}, and consider the regularity
classes ν ∈ {m + m′,∞,ω}. In such cases we shall require that the underlying
manifold be of class “Cr , r ∈ {∞,ω}, as required”. This has the obvious meaning,
namely that we consider class Cω if ν = ω and class C∞ otherwise. Proofs will
typically break into the four cases ν = ∞, ν = m, ν = m + lip, and ν = ω. In some
cases there is a structural similarity in the way arguments are carried out, so we will
sometimes do all cases at once. In doing this, we will, for K ⊆ M be compact, for
k ∈ Z≥0, and for a ∈ c0(Z≥0;R>0), denote

pK =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p∞
K ,k, ν = ∞,

pm
K , ν = m,

pm+lip
K , ν = m + lip,

pω
K ,a, ν = ω.

(2.2)
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The convenience and brevity more than make up for the slight loss of preciseness in
this approach.
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