
Chapter 2
Stability

2.1 Introduction

It is well known that stability is an essential and important problem in control theory
and dynamic system analysis. Under the assumption that the TRM of a MJS is
exactly given in advance, many results on the stability of SMJSs have been achieved
[1–5]. However, this assumption may not be satisfied in many practical applications.
In fact, the corresponding TRM may be uncertain, partially unknown or designed
without being given beforehand. Clearly, such general TRMs play important roles
in the analysis of MJSs. When there are uncertainties in a TRM, it may lead to
instability or destroy the system performance if the uncertainties are not considered.
For normal state-space MJSs with uncertain TRM, some results were available in
[6, 7]. Via considering the inherent probability constraints on rows of the TRM,
improved results were proposed in [8, 9], while the LMI conditions were presented
in [10]. When only a subset of the elements of an TRM are unknown, some results
were developed in [11, 12] by separating known elements from the unknown ones.
Improved results about the general case were further developed in [13, 14]. When
the TRM is selected, [15] first considered the stabilization problem via designing
the TRM and static output feedback gain simultaneously. By analysing the existing
work for normal state-space MJSs, it is easy to see that most approaches employed
to deal with such general cases cannot be extended to SMJSs.

In this chapter, the fundamental problem of stability for SMJSs with these gen-
eral TRMs is considered. Since SMJSs contain both singular derivative matrix and
Markov property, analysis on SMJSs becomes much different from normal state-
space MJSs and it is usually more complicated. Therefore, it is necessary to develop
conditions such that the considered system is not only stable but also regular and
impulse-free over such general TRMs. This chapter will focus on the investigation
on developing these conditions. Most results will be developed in terms of LMIs
or LMIs with equation constraints. Moreover, the proposed approaches are to be
extended to the problem of robust stability of Markovian jump singularly perturbed
descriptor systems with uncertain switchings and nonlinear perturbations for any
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18 2 Stability

ε ∈ (0, ε̄]. LMI conditions depending on ε̄ instead of ε are obtained by exploiting an
ε-dependent Lyapunov function such that the existence and uniqueness of a solution
in addition to exponential stability in mean square can be guaranteed.

2.2 Stability with General TRMs

Consider a class of continuous-time SMJSs described as

Eẋ(t) = A(rt )x(t), (2.1)

where x(t) ∈ R
n is the state vector, E ∈ R

n×n may be singular with rank(E) =
r ≤ n. The symbol A(rt ) is a known matrix with compatible dimensions. Operation
mode {(rt ), t ≥ 0} is a right-continuous Markov process taking values in a finite
space S = {1, 2, . . . , N } with TRM Π = (πi j ) ∈ R

N×N given as

Pr{rt+h = j |rt = i} =
{

πi j h + o(h) i �= j,

1 + πi i h + o(h) i = j,
(2.2)

where h > 0, limh→0+(o(h)/h) = 0, and πi j ≥ 0, for i �= j , are the transition rates
from mode i at time t to mode j at time t + h, which satisfy

πi i = −
N∑

j=1, j �=i

πi j . (2.3)

For the simplification of notation in the subsequent analysis, for each possible rt =
i ∈ S, the matrix M(rt ) will be denoted by Mi and so on.

It is well known that singular systems including SMJSs usually have three types
of modes: finite dynamic modes, infinite dynamic modes (impulsive modes) and
non-dynamic modes. For any finite initial conditions, the time response of a singular
systems may exhibit impulsive or non-causal behaviour. The undesired impulsive
behaviour in a singular system results from the infinite dynamic modes. Sometimes,
even if a singular system is impulse-free, there are still initial finite discontinuities
because of the inconsistent initial conditions. Moreover, since both infinite dynamic
modes and non dynamic modes are included in a singular system, the existence and
uniqueness of a solution to a given singular system is not always guaranteed. There-
fore, it is extremely important to develop conditions to guarantee that the considered
singular system is not only stable but also regular and impulse-free.

For SMJS (2.1), the following definition is introduced:

Definition 2.1 [16, 17] System (2.1) or the matric pair (E, Ai ), ∀i ∈ S, is said to be

(1) regular if det(s E − Ai ) is not identically zero for every i ∈ S;
(2) impulse-free if deg(det(s E − Ai )) = rank(E) for every i ∈ S;
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(3) stochastically stable if

E

⎧⎨
⎩

∞∫
0

xT (t)x(t)dt |x0, r0

⎫⎬
⎭ ≤ M(x0, r0),

holds for any initial condition x0 ∈ R
n and η0 ∈ S, where M(φ(t), η0) > 0 is a

given constant;
(4) stochastically admissible if it is regular, impulse-free and stochastically stable.

Remark 2.1 It should be noted that the regularity of the pair (E, Ai ) guarantees that
system (2.1) has a unique solution for any specified initial conditions. Moreover,
from Definition 2.1, it follows that the non-impulsiveness of the pair (E, Ai ) implies
regularity of the pair (E, Ai ).

For system (2.1), several sets of necessary and sufficient conditions for stochastic
admissibility are provided in the following.

Lemma 2.1 [16, 17] System (2.1) is stochastically admissible if and only if there
exists matrix Pi such that

ET Pi = PT
i E ≥ 0, (2.4)

(
AT

i Pi

)� +
N∑

j=1

πi j ET Pj < 0. (2.5)

Lemma 2.2 [18] System (2.1) is stochastically admissible if and only if there exist
matrices Pi > 0 and Qi such that

(
AT

i Pi E + AT
i U T Qi V T

)� +
N∑

j=1

πi j ET Pj E < 0, (2.6)

where U ∈ R
(n−r)×n is any matrix with full row rank satisfying U E = 0, and

V ∈ R
n×(n−r) is any matrix with full column rank satisfying EV = 0.

Now, two sets of necessary and sufficient conditions for stochastic admissibility
of system (2.1), where system matrix Ai is separated from Lyapunov matrix Pi will
be presented.

Theorem 2.1 System (2.1) is stochastically admissible if and only if there exist
matrices Pi , Gi and Zi such that

ET Pi = PT
i E ≥ 0, (2.7)

[ (
AT

i Gi
)� +∑N

j=1 πi j ET Pj AT
i Zi + PT

i − GT
i

∗ (−Zi )
�

]
< 0. (2.8)
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Proof In order to prove this theorem, the fact that (2.8) is equivalent to (2.5), is
proved at first.
Sufficiency: Pre- and post-multiplying (2.8) by matrix

[
I AT

i

]
,

and its transpose respectively, it is straightforward to see that (2.5) holds.
Necessity: Assume (2.5) holds. Then there is always a sufficient small scalar εi > 0
such that (

AT
i Pi

)� +
N∑

j=1

πi j ET Pj + AT
i

εi

2
Ai < 0. (2.9)

Let εi I = Zi and Pi = Gi . Using the Schur complements, (2.9) can be rewritten as
(2.8). It is concluded that (2.7) and (2.8) are equivalent to (2.4) and (2.5) respectively.

From Lemma 2.1, it easy to see that system (2.1) is stochastically stable if and
only if the conditions (2.7) and (2.8) hold. This completes the proof.

Theorem 2.2 System (2.1) is stochastically admissible if and only if there exist
matrices Pi > 0, Qi , Gi and Zi such that

[(
AT

i Gi
)� +∑N

j=1 πi j ET Pj E AT
i Zi + (Pi E + U T Qi V T

)T − GT
i

∗ (−Zi )
�

]
< 0.

(2.10)
where U ∈ R

(n−r)×n and V ∈ R
n×(n−r) are defined in Lemma 2.2.

Proof Similar to the proof of Theorem 2.1, it is concluded that (2.8) is equivalent to
(2.6). By Lemma 2.2, it is easy to see that system (2.1) is stochastically admissible
if and only if (2.9) holds for each i ∈ S. This completes the proof.

Remark 2.2 Both Theorems 2.1 and 2.2 give necessary and sufficient conditions for
system (2.1) being stochastically admissible. Especially, the conditions in Theorem
2.2 are strict LMIs, which can be solved directly. It should be noted that Theorems
2.1 and 2.2 are different from Lemmas 2.1 and 2.2 in which Ai and Pi are decoupled.
Sometimes, this decoupling is very helpful to deal with many general cases such as
a mode-independent case. When E = I , system (2.1) reduces to state-space MJSs,
and similar results can be obtained directly.

By investigating conditions (2.5), (2.6), (2.8) and (2.10), it is observed that transi-
tion rate πi j plays an important role in system analysis where the transition rate πi j is
exactly known and given beforehand. When it is not accessible, the aforementioned
conditions should be reconsidered. In this sense, these results developed under the
condition that the TRM is exact known, cannot be applied and thus their application
is limited. Next, four cases of TRM Π including some general cases are described
as follows:

Case 1 Π is assumed to be known exactly, which is described by (2.2);
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Case 2 Π is obtained inexactly and has admissible uncertainty

Π = Π̃ + ΔΠ̃, (2.11)

in which Π̃ � (π̃i j ) is an estimation of the known constant Π , and ΔΠ̃ �
(Δπ̃i j ) with Δπ̃i j � πi j − π̃i j denotes the estimated error, which satisfies
(2.2). It is assumed that Δπ̃i j , j �= i , takes any value in [−εi j , εi j ], and
αi j � π̃i j − εi j . Moreover, it is obtained that |Δπ̃i i | ≤ −εi i , where εi i �
−∑N

j=1, j �=i εi j ;
Case 3 Π with property (2.2) is partially known or accessible, in which some ele-

ments are unknown. For example, a partly unknown Π may be expressed
as

Π =

⎡
⎢⎢⎣

π11 ? π13 ?
? ? ? π24

π31 ? ? π34
? ? π43 π44

⎤
⎥⎥⎦ ,

where ’?’ represents the unknown elements. Based on this, for any i ∈ S,
define Si = S

i
k + S

i
k̄
where

S
i
k = { j : πi j is known} and S

i
k̄

= { j : πi j is unknown}, (2.12)

They are further described, respectively, by

S
i
k = {ki

1, . . . , ki
m} and S

i
k̄

= {k̄i
1, . . . , k̄i

N−m}, (2.13)

where ki
m ∈ Z

+ is the column index of the mth known element in the i th row
of Π , and the column index of the (N − m)th unknown element in the same
row is denoted as k̄i

N−m ∈ Z
+. In addition, τ = mini∈Si

k̄
{πi i } is assumed to

be known;
Case 4 Π in (2.2) is to be designed instead of being given beforehand.

When the admissible uncertainty described by (2.11) is added to an MJS, the
systemperformancewill be reduced and the systemmay be even unstable. For normal
state-space MJSs, there have been many references [6–10] reporting the relevant
study. But the referred approaches employed to deal with (2.11) cannot be applied
to SMJSs. The main reason is that these methods require additional assumption on
Lyapunouv matrix which should be satisfied firstly. It is not true for SMJSs because
the underlying matrix is non-singular. Moreover, even if the above assumption holds,
new problems such as the decoupling problem of system design emerge. Considering
this, in the following, sufficient conditions for stochastic admissibility of SMJSswith
uncertain TRM are established, some of which are within LMI framework.

Theorem 2.3 System (2.1) is stochastically admissible under Case 2 if there exist
matrices Pi , Wi = W T

i and Ti > 0, such that
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ET Pi = PT
i E ≥ 0, (2.14)

[
Ωi Wi

∗ −Ti

]
< 0, (2.15)

ET Pj − ET Pi − Wi ≤ 0, j ∈ S, j �= i, (2.16)

where

Ωi =
(

AT
i Pi

)� + 0.25ε2i i Ti − εi i Wi +
N∑

j=1, j �=i

αi j ET (Pj − Pi ).

Proof From Lemma 2.1 and (2.11), it follows that (2.5) is equivalent to

(
AT

i Pi

)� +
N∑

j=1, j �=i

αi j ET (Pj − Pi ) − Δπ̃i i Wi − εi i Wi

+
N∑

j=1, j �=i

(Δπ̃i j + εi j )
(

ET Pj − ET Pi − Wi

)
< 0, (2.17)

which is guaranteed by

(
AT

i Pi

)� +
N∑

j=1, j �=i

αi j ET (Pj − Pi ) − Δπ̃i i Wi − εi i Wi < 0, (2.18)

N∑
j=1, j �=i

(Δπ̃i j + εi j )
(

ET Pj − ET Pi − Wi

)
≤ 0. (2.19)

Furthermore, for any Ti > 0,

− Δπ̃i i Wi ≤ 0.25(Δπ̃i i )
2Ti + Wi T

−1
i Wi ≤ 0.25ε2i i Ti + Wi T

−1
i Wi . (2.20)

Taking into account (2.20), it is easy to see that condition (2.15) implies (2.18). On
the other hand, from (2.11), it is seen that (2.16) implies (2.19). Thus, (2.4) and (2.5)
are guaranteed by (2.14)–(2.16). This completes the proof.

Theorem 2.4 System (2.1) is stochastically admissible under Case 2 if there exist
matrices Pi > 0, Qi , Wi = W T

i and Ti > 0, such that
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(
AT

i Pi E + AT
i U T Qi V T

)� + 0.25ε2i i Ti − εi i Wi +
N∑

j=1, j �=i

αi j ET (Pj − Pi )E < 0,

(2.21)
ET Pj E − ET Pi E − Wi ≤ 0, j ∈ S, j �= i. (2.22)

Proof Similar to the proof of Theorem 2.3, it is obtained that (2.6) is equivalent to

(
AT

i Pi E + AT
i U T Qi V T

)� +
N∑

j=1, j �=i

αi j ET (Pj − Pi )E − Δπ̃i i Wi − εi i Wi

+
N∑

j=1, j �=i

(Δπ̃i j + εi j )
(

ET Pj E − ET Pi E − Wi

)
< 0,

(2.23)
which is ensured by

(
AT

i Pi E + AT
i U T Qi V T

)� +
N∑

j=1, j �=i

αi j ET (Pj − Pi )E − Δπ̃i i Wi − εi i Wi < 0,

(2.24)
N∑

j=1, j �=i

(Δπ̃i j + εi j )
(

ET Pj E − ET Pi E − Wi

)
≤ 0. (2.25)

Based on (2.20), the condition (2.24) is guaranteed by (2.21). On the other hand,
it is obvious that (2.22) implies (2.25). This completes the proof.

Based on Theorems 2.1 and 2.2 and by the method used for handling (2.11), the
following theorems are ready to be presented:

Theorem 2.5 System (2.1) is stochastically admissible under Case 2 if there exist
matrices Pi , Gi , Zi , Wi = W T

i and Ti > 0, such that

ET Pi = PT
i E ≥ 0, (2.26)

[
Ω̄i AT

i Zi + PT
i − GT

i∗ (−Zi )
�

]
< 0, (2.27)

ET Pj − ET Pi − Wi ≤ 0, j ∈ S, j �= i, (2.28)

where

Ω̄i =
(

AT
i Gi

)� + 0.25ε2i i Ti − εi i Wi +
N∑

j=1, j �=i

αi j ET (Pj − Pi ) < 0.
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Proof From the proof of Theorem 2.1, it clear to see that the difference between
Cases 1 and 2 only lies in πi j which is related to

∑N
j=1 πi j ET Pj . Using the same

method used for uncertain TRM, this theorem can be proved easily. This completes
the proof.

Theorem 2.6 System (2.1) is stochastically admissible under Case 2 if there exist
matrices Pi > 0, Qi , Gi , Zi , Wi = W T

i and Ti > 0, such that

[
Ω̃i AT

i Zi + (Pi E + U T Qi V T
)T − GT

i∗ (−Zi )
�

]
< 0, (2.29)

ET Pj E − ET Pi E − Wi ≤ 0, j ∈ S, j �= i, (2.30)

where

Ω̃i = (AT
i Gi )

� + 0.25ε2i i Ti − εi i Wi +
N∑

j=1, j �=i

αi j ET (Pj − Pi )E < 0.

Proof The proof can be obtained by Theorems 2.2 and 2.4, which is omitted here.
This completes the proof.

Remark 2.3 Via using a slack variablemethod onTRM, several sets of conditions are
established to ensure that system (2.1)with uncertainTRMis stochastic admissible, in
which some results are in traditional LMI forms.Clearly, there is no additional restric-
tion on system matrix Pi in these conditions. Moreover, such results are applicable
to discuss system synthesis problems and the couplings among uncertain transition
rates, singular matrix, system and Lyapunov matrices are decoupled and dealt with
appropriately.

Next, the stochastic admissibility of system (2.1) under Case 3 will be considered.

Theorem 2.7 System (2.1) is stochastically admissible under Case 3 if there exist
matrices Pi and Wi = W T

i such that

ET Pi = PT
i E ≥ 0, (2.31)

(
AT

i Pi

)� +
∑

j∈Si
k , j �=i

πi j ET (Pj − Pi ) +
∑
j∈Si

k

πi j Wi < 0, i ∈ S
i
k, (2.32)

(
AT

i Pi

)� +
∑

j∈Si
k , j �=i

πi j

[
ET (Pj − Pi ) + Wi

]
− τWi < 0, i ∈ S̄

i
k, (2.33)

ET Pj − ET Pi − Wi ≤ 0, i ∈ S, j ∈ S̄
i
k, j �= i. (2.34)
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Proof For any Wi = W T
i , it is known that

(
AT

i Pi

)� +
N∑

j=1

πi j ET Pj =
(

AT
i Pi

)� +
∑

j∈S, j �=i

πi j ET (Pj − Pi ) −
N∑

j=1

πi j Wi

=
(

AT
i Pi

)� +
∑

j∈Si
k , j �=i

πi j

[
ET (Pj − Pi ) − Wi

]

+
∑

j∈S̄i
k , j �=i

[
ET (Pj − Pi ) − Wi

]
− πi i Wi < 0,

(2.35)
which is guaranteed by

(
AT

i Pi

)� +
∑

j∈Si
k , j �=i

πi j

[
ET (Pj − Pi ) − Wi

]
− πi i Wi < 0, i ∈ S, (2.36)

and (2.34). When i ∈ S
i
k , (2.36) is rewritten to (2.32). To the contrary, if i ∈ S̄

i
k , it is

obtained that (2.33) implies (2.36). This completes the proof.

Similarly, the following theorems can be obtained directly.

Theorem 2.8 System (2.1) is stochastically admissible under Case 3 if there exist
matrices Pi > 0, Qi and Wi = W T

i such that

(
AT

i Pi E + AT
i U T Qi V T

)�+
∑

j∈Si
k , j �=i

πi j ET (Pj − Pi )E +
∑
j∈Si

k

πi j Wi < 0, i ∈ S
i
k,

(2.37)(
AT

i Pi E + AT
i U T Qi V T

)�+
∑

j∈Si
k , j �=i

πi j

[
ET (Pj − Pi )E + Wi

]
−τWi < 0, i ∈ S̄

i
k,

(2.38)

ET Pj E − ET Pi E − Wi ≤ 0, i ∈ S, j ∈ S̄
i
k, j �= i. (2.39)

Theorem 2.9 System (2.1) is stochastically admissible under Case 3 if there exist
matrices Pi , Gi , Zi and Wi = W T

i , such that

ET Pi = PT
i E ≥ 0, (2.40)

[
Ω̂i AT

i Zi + PT
i − GT

i∗ (−Zi )
�

]
< 0, i ∈ S

i
k, (2.41)

[
Ω̌i AT

i Zi + PT
i − GT

i∗ (−Zi )
�

]
< 0, i ∈ S̄

i
k, (2.42)
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ET Pj − ET Pi − Wi ≤ 0, i ∈ S, j ∈ S̄
i
k, j �= i. (2.43)

where
Ω̂i =

(
AT

i Gi

)� +
∑

j∈Si
k , j �=i

πi j ET (Pj − Pi ) +
∑
j∈Si

k

πi j Wi ,

Ω̌i =
(

AT
i Gi

)� +
∑

j∈Si
k , j �=i

πi j

[
ET (Pj − Pi ) + Wi

]
− τWi .

Theorem 2.10 System (2.1) is stochastically admissible under Case 3 if there exist
matrices Pi > 0, Qi , Gi , Zi and Wi = W T

i , such that

[
Θi AT

i Zi + (Pi E + U T Qi V T
)T − GT

i∗ (−Zi )
�

]
< 0, i ∈ S

i
k, (2.44)

[
Θ̄i AT

i Zi + (Pi E + U T Qi V T
)T − GT

i∗ (−Zi )
�

]
< 0, i ∈ S̄

i
k, (2.45)

ET Pj E − ET Pi E − Wi ≤ 0, i ∈ S, j ∈ S̄
i
k, j �= i, (2.46)

where (
AT

i Gi

)� +
∑

j∈Si
k , j �=i

πi j ET (Pj − Pi )E +
∑
j∈Si

k

πi j Wi ,

(
AT

i Gi

)� +
∑

j∈Si
k , j �=i

πi j

[
ET (Pj − Pi )E + Wi

]
− τWi < 0.

Finally, consider the stochastic admissibility of system (2.1) under Case 4. From
the criteria given above, it is seen that although the TRMmay be exact known, uncer-
tain or partially unknown, the proposed methods are all based on a precondition that
all or some elements of an TRM are given beforehand. In some cases, an appropriate
TRMmay be selected for MJSs. From the results presented in this chapter, it is seen
that for a given TRM, inequalities such as (2.5) are linear to matrix Pi . However,
if TRM is unknown, characterization (2.5) turns out to be bilinear due to the prod-
uct terms of non-singular matrix Pi and elements in Π . When similar problem is
discussed in [15], the positive-definite property of Pi for normal state-space MJSs
plays important roles in system analysis and synthesis. Due to the singular derivative
matrix and the only non-singular Lyapunov matrix, the property of Pi is not true for
SMJSs. Thus, such problems should be reconsidered for SMJSs.

Theorem 2.11 There exists an TRM such that system (2.1) is stochastically admis-
sible, if there exist matrices Pi , π̂i j ≥ 0, i �= j , Wi > 0 and Zi > 0, such that

ET Pi = PT
i E ≥ 0, (2.47)
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[ (
AT

i Pi
)�

Ωi2
∗ Ωi3

]
< 0, (2.48)

ET Pj − ET Pi − Wi ≤ 0, j ∈ S, j �= i, (2.49)

Wi Zi = I, (2.50)

where
Ωi2 = [ π̂i1 I . . . π̂i(i−1) I π̂i(i+1) I . . . π̂i N I

]
,

Ωi3 = −diag{Zi , . . . , Zi }.

In this case, a stabilizing TRM is given as

πi j = π̂2
i j , πi i = −

∑
i �= j

πi j . (2.51)

Proof By Theorem2.1 and conditions in Theorem2.10, it is seen that only (2.5)
needs to be proved. Similarly, it is equivalent to

(
AT

i Pi

)� +
N∑

j=1, j �=i

πi j Wi +
N∑

j=1, j �=i

πi j

(
ET Pj − ET Pi − Wi

)
< 0. (2.52)

which is guaranteed by

(
AT

i Pi

)� +
N∑

j=1, j �=i

πi j Wi < 0, (2.53)

N∑
j=1, j �=i

πi j

(
ET Pj − ET Pi − Wi

)
≤ 0. (2.54)

Based on (2.51), it is concluded that (2.48)–(2.50) imply (2.53) and (2.54). This
completes the proof.

Remark 2.4 Theorem2.11 gives an approach of designing a stabilizing TRM, in
which the corresponding matrix Pi is not necessary positive-definite. In addition,
this approach can be extended to the other system analysis and synthesis problems
easily. In the case when E = I , Theorem2.11 is used to deal with normal state-
space MJSs with TRM designed. In this sense, this theorem can be considered as an
extension of normal state-space MJSs to SMJSs.

Theorem 2.12 There exists a TRM such that system (2.1) is stochastically admissi-
ble, if there exist matrices Pi > 0, Qi , π̂i j ≥ 0, i �= j , Wi > 0 and Zi > 0, such
that
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[ (
AT

i

(
Pi E + U T Qi V T

))�
Ωi2

∗ Ωi3

]
< 0, (2.55)

ET Pj E − ET Pi E − Wi ≤ 0, j ∈ S, j �= i, (2.56)

Wi Zi = I. (2.57)

In addition, the stabilizing TRM can be calculated by (2.51).

Theorem 2.13 There exists a TRM such that system (2.1) is stochastically admissi-
ble, if there exist matrices Pi , π̂i j ≥ 0, i �= j , Wi > 0 and Zi > 0, such that

ET Pi = PT
i E ≥ 0, (2.58)

⎡
⎣
(

AT
i Gi

)�
AT

i Zi + PT
i − GT

i Ωi2
∗ (−Zi )

� 0
∗ ∗ Ωi3

⎤
⎦ < 0, (2.59)

ET Pj − ET Pi − Wi ≤ 0, j ∈ S, j �= i, (2.60)

Wi Zi = I. (2.61)

Then, a stabilizing SPRM can be solved by (2.51).

Theorem 2.14 There exists a TRM such that system (2.1) is stochastically admissi-
ble, if there exist matrices Pi > 0, Qi , π̂i j ≥ 0, i �= j , Wi > 0 and Zi > 0, such
that ⎡

⎣
(

AT
i Gi

)�
AT

i Zi + (Pi E + U T Qi V T
)T − GT

i Ωi2
∗ (−Zi )

� 0
∗ ∗ Ωi3

⎤
⎦ < 0, (2.62)

ET Pj E − ET Pi E − Wi ≤ 0, j ∈ S, j �= i, (2.63)

Wi Zi = I. (2.64)

Then, (2.51) is used to compute a stabilizing SPRM.

Remark 2.5 It can be seen that both Theorems 2.11 and 2.14 are proposed as a
set of LMIs with equation constraints such as (2.50) and cannot be solved directly
because of such non-convex conditions. However, there are many existing numer-
ical approaches to deal with this problem. Among those approaches, LMI-based
approaches are favourable and promising. Both cone complementarity linearization
(CCL) algorithm [19] and sequential linear programming matrix (SLPM) algorithm
[20] can be easily to solve the inversion constraints.
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In order to utilize the CCL algorithm to solve the proposed problem, we first
define a convex set of all the feasible solutions of LMIs (2.47)–(2.49) as follows:

S � {X |X satisfies LMIs (2.47)–(2.49)}, (2.65)

where
X � {P̂i = P̂T

i , Wi > 0, Zi > 0,

π̂i j ≥ 0,∀i, j ∈ S, j �= i}. (2.66)

It is known that for any matrices Wi > 0 and Zi > 0, i ∈ S, if LMI

[
Wi I
I Zi

]
≥ 0, (2.67)

is feasible, then Trace(Wi Zi ) ≥ n, and Trace(Wi Zi ) = n if and only if Wi Zi = I .
Define a set as

T �
{[

Wi I
I Zi

]
≥ 0, f or all i ∈ S

}
. (2.68)

By the CCL approach, the above non-convex problem of (2.50) is equivalent to
the following minimization problem:

min
X ∈S ∩T

Trace
N∑

i=1

Wi Zi . (2.69)

It is seen that the optimal solution to problem (2.50) is Nñ satisfying

Trace(Wi Zi ) = ñ,∀i ∈ S. (2.70)

Based on the analysis, a computational algorithm to solve this problem can be
proposed.

Algorithm 2.1 is described as follows:

Step 1: Given system (2.1) with given γ and error accuracy δ;
Step 2: Find any initial solution X0 ∈ S , and set k = 0;
Step 3: Define function

fk(X ) = Trace
(
�N

i=1(Wi Zik + Zi Wik)
)

. (2.71)

Find X via solving the following convex programming:

min
X ∈S

{ fk(X )|
[

Wi I
I Zi

]
≥ 0,∀i ∈ S}; (2.72)
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Step 4: If | fk(X )−2Nñ| ≤ δ, a stabilizing TRM Π can be got by (2.51), and then
exit; otherwise, go to step 5;

Step 5: Let Wi(k+1) = Wik, Zi(k+1) = Zik and k = k + 1. If k < kmax , then go to
step 3, else exit.

In this section, the stability problem of SMJS (2.1) with TRM satisfying Cases
1–4 is considered. Different from the similar results in [16], the presented results
here have the following properties: (1) Instead of assuming that the TRM of an
SMJS is known exactly, the corresponding TRM of the results proposed in this
sectionmay be uncertain, partially known and designed; (2) Several sets of necessary
and sufficient conditions for stochastic admissibility are established, where system
matrix Ai and Lyapunov matrix Pi are decoupled successfully. This property is very
suitable to system synthesis, such as stabilization via mode-independent controllers,
partially mode-dependent H∞ filtering and so on; (3) For Case 1, using the methods
proposed in this section, the terms ET

i Pi and
∑N

j=1 πi j ET
j Pj will not be enlarged

by introducing additional variables and inequalities; (4) Without coupled LMIs, in
this section, all the results are linear LMIs and can be solved easily; (5) Without
transforming ET

i Pi = PT
i Ei ≥ 0 into additional LMIs by minimizing a common

scalar, another approach in this section is proposed to deal with such constraints and
makes the conditions solved directly. In this section, different methods are developed
to discuss stability problem under Case 1, and new problems in terms of TRM of
SMJSs satisfying some general cases are studied by new techniques. It is obvious that
the proposed results are more general and therefore can be considered as necessary
supplementary to the existing results such as the ones developed in [16].

2.3 Robust Stability

Consider a general class of Markovian jump singularly perturbed descriptor systems
described as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Eẋ(t) = A1(rt )x(t) + A2(rt )z(t) + B1(rt ) f1(t, rt , x, z),

εż(t) = A3(rt )x(t) + A4(rt )z(t) + B2(rt ) f2(t, rt , x, z),

x(0) = x0,

z(0) = z0,

(2.73)

where x(t) ∈ R
n and z(t) ∈ R

m are the state vectors of slow and fast dynamics.
Matrix E ∈ R

n×n may be singular, which is assumed to be rank(E) = r ≤ n.
A1(rt ), A2(rt ), A3(rt ), A4(rt ), B1(rt ) and B2(rt ) are known matrices of compatible
dimensions. Parameter {rt , t ≥ 0} is defined by (2.2) and (2.3), whose TRM Π is
imprecise and described in (2.11). For any rt = i ∈ S, fk(t, i, x, z), k = 1, 2, is
a time-varying nonlinear perturbation with fk(t, i, 0, 0) = 0 for all t ≥ 0, which
satisfies the following Lipschitz condition for all (t, x, z), (t, x̃, z̃) ∈ R×R

n ×R
m :
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‖ fk(t, i, x, z) − fk(t, i, x̃, z̃)‖ ≤ γi‖Fki (x − x̃) + Gki (z − z̃)‖, k = 1, 2, (2.74)

where γi > 0, Fki and Gki are constant matrices with appropriate dimensions.
Moreover, from (2.74), it follows that

‖ fk(t, i, x, z)‖ ≤ γi‖Fki x + Gki z‖, k = 1, 2, (2.75)

In order to simplify notation, system (2.73) is rewritten as

{
Eεξ̇ (t) = A(rt )ξ(t) + B(rt ) f (t, rt , ξ(t)),

ξ(0) = ξ0,
(2.76)

where

ξ(t) =
[

x(t)
z(t)

]
, f (t, rt , ξ(t)) =

[
f1(t, rt , x(t), z(t))
f2(t, rt , x(t), z(t))

]
, Eε =

[
E 0
0 ε I

]
,

A(rt ) =
[

A1(rt ) A2(rt )

A3(rt ) A4(rt )

]
, B(rt ) =

[
B1(rt ) 0
0 B2(rt )

]
,

and f (t, rt , ξ) satisfies

f T (t, rt , ξ) f (t, rt , ξ) ≤ γ (rt )ξ
T FT (rt )F(rt )ξ, (2.77)

with

F(rt ) =
[

F1(rt ) G1(rt )

F2(rt ) G2(rt )

]
.

Remark 2.6 Due to the presence of small parameter ε, system (2.73) will lead to
ill-conditioned problem in system analysis and synthesis when ε tends to be zero.
Description (2.73) is more general in terms of containing some special cases, for ex-
ample, when E = I , system (2.73) without nonlinear perturbation becomesMarkov-
ian jump singularly perturbed systems with or without time delay [21–23]; when
ε = 0 and there is no nonlinear perturbation, it will become singular Markovian
jump systems [16–18, 24, 25]; when there is no jumping, system (2.73) belongs
to singularly perturbed descriptor systems whose robust stability was considered in
[26].

Consider system (2.73). The following definitions are introduced:

Definition 2.2 For any given ε > 0, the pair (Eε, A(rt )) is said to be:

(1) regular if det(s Eε − A(rt )) is not identically zero for every rt ∈ S;
(2) impulse-free if deg(det(s Eε − A(rt ))) = rank(Eε) for every rt ∈ S.

Definition 2.3 System (2.73)with (2.11) and (2.74) is said to be exponentiallymean-
square stable, if there exist scalars a > 0 and b > 0 such that
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E {‖ξ(t)‖2|ξ0, r0} ≤ ae−bt‖ξ0‖2,

for any initial conditions ξ0 ∈ R
n+m and r0 ∈ S.

From [17], it is seen that for any given ε > 0, there always exist two non-singular
matrices M(ε) and N (ε) such that

Mε Eε Nε =
[

I 0
0 0

]
, Mε Aε(rt )Nε =

[
A1

ε(rt ) A2
ε(rt )

A3
ε(rt ) A4

ε(rt )

]
.

Then, the pair (Eε, Aε(rt )) is impulse-free if and only if A4
ε(rt ) is non-singular

for every rt ∈ S.

Remark 2.7 From Definition 2.2, it is concluded that, for any given ε > 0, impulse
free implies regular. In addition, it is easy to verify that for any given ε > 0, the pair
(Eε, Aε(rt )) is regular and impulse-free if and only if the (E, A1(rt )) is regular and
impulse-free.

Lemma 2.3 (S-procedure lemma)[27] Let Ω0(z) and Ω1(z) be two arbitrary
quadratic forms over Rs . Then Ω0(z) < 0 for all z ∈ R

s − {0} satisfying Ω1(z) ≤ 0
if and only if there exists a scalar τ ≥ 0 such that

Ω0(z) − τΩ1(z) < 0, ∀z ∈ R
s − {0}.

Lemma 2.4 For any given positive scalar ε ∈ (0, ε̄], if

Ω1 ≥ 0, (2.78)

Ω1 + ε̄Ω2 ≥ 0, (2.79)

Ω1 + ε̄Ω2 + ε̄2Ω3 > 0, (2.80)

where Ω1, Ω2 and Ω3 are symmetric matrices with appropriate dimensions, then

Ω1 + εΩ2 + ε2Ω3 > 0, ∀ε ∈ (0, ε̄]. (2.81)

Proof Since ε ∈ (0, ε̄], it is rewritten as ε = λε̄ with λ ∈ (0, 1]. From (2.78) to
(2.80), it follows that

(1 − λ)Ω1 ≥ 0, (2.82)

λ(1 − λ)Ω1 + (1 − λ)εΩ2 ≥ 0, (2.83)

λ2Ω1 + λεΩ2 + ε2Ω3 > 0, (2.84)

which imply (2.81). This completes the proof.
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Now, consider the regularity of system (2.73) in addition to free-impulse. Then,
the uniqueness of the solution will be guaranteed.

Theorem 2.15 If there exist matrices Pi1, Pi3, Ui > 0, Si > 0, and scalar τ > 0
such that

ET Pi1 = PT
i1 E ≥ 0, (2.85)

ET Pj1 − ET Pi1 − Ui ≤ 0, (2.86)

⎡
⎣Θi PT

i1 Bi1 Ui

∗ −τ I 0
∗ ∗ −Si

⎤
⎦ < 0, (2.87)

where

Θi =
(

AT
i1Pi1

)� +
(

AT
i3Pi3E

)� +0.25δ2i i Si −δi i Ui +
N∑

j=1, j �=i

αi j ET (Pj1 − Pi1
)+τγ 2

i FT
i1 Fi1.

Then for any ε > 0, the pair (Eε, A(rt )) is regular and impulse-free for every rt ∈ S.
Moreover, equation (2.73) or (2.76) with (2.11) and (2.74) has a unique solution on
[0,∞).

Proof First of all, it is required to show that (2.17) and (2.87) imply inequality

[
Θ̃i PT

i1 Bi1
∗ −τ I

]
< 0, (2.88)

where

Θ̃i =
(

AT
i1Pi1

)� +
(

AT
i3Pi3E

)� +
N∑

j=1

πi j ET Pj1 + τγ 2
i FT

i1Fi1.

It is easy to see that (2.88) is transformed into

Θ̃i + PT
i1 Bi1τ

−1BT
i1Pi1 < 0. (2.89)

which, under condition (2.11), is equivalent to

(
AT

i1Pi1

)� +
(

AT
i3Pi3E

)� +
N∑

j=1, j �=i

αi j ET (Pj1 − Pi1) − εi i Ui + τγ 2
i FT

i1 Fi1

+ PT
i1 Bi1τ

−1BT
i1Pi1 − Δπ̃i i Ui +

N∑
j=1, j �=i

(Δπ̃i j + εi j )
(

ET Pj1 − ET Pi1 − Ui

)
< 0.

(2.90)
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For any Si > 0, it is obtained that

Δπ̃i iUi ≤ 0.25(Δπ̃i i )
2Si + Ui S−1

i Ui ≤ 0.25ε2i i Si + Ui S−1
i Ui . (2.91)

Substituting it into (2.90), it is verified that (2.86) and (2.87) imply (2.90) which
is equivalent to (2.88).

Next, the objective to prove that the uniqueness of the solution to equation (2.73)
with (2.11) and (2.74) on [0,∞) is guaranteed by (2.85) and (2.88). Let t0 = 0 and
define a sequence of stopping time

tk+1 = inf{t > tk : rt �= rtk },

for all k ≥ 0. It is concluded that for any k ≥ 0, rt = rtk is constant for all
t ∈ [tk, tk+1) and tk → ∞ as k → ∞. First, we show there is a unique solution to
equation (2.73) with rt = i on interval [t0, t1). Since rank(E) = r ≤ n, there are

two non-singular matrices M = [MT
1 MT

2

]T
and N = [ N1 N2

]
such that

M E N =
[

I 0
0 0

]
, M Ai1N =

[
A1

i1 A2
i1

A3
i1 A4

i1

]
,

M−T Pi1N =
[

P1
i1 P2

i1

P3
i1 P4

i1

]
, Pi3M−1 = [ P1

i3 P2
i3

]
. (2.92)

Pre- and post-multiplying (2.85) by N T and its transpose, respectively, it follows
that N T ET MT M−T Pi1N = N T PT

i1 M−1M E N which implies P2
i1 = 0. Similarly,

pre- and post-multiplying Θ̃i < 0 by N T and N , respectively,

((
P4

i1

)T
A4

i1

)�

+ τγ 2
i N T

2 FT
i1Fi1N2 < 0, (2.93)

which implies A4
i1 is non-singular. Then, the pair (E, A1(rt )) is regular and impulse-

free, and there are two non-singular matrices M̃ = [ M̃T
1 M̃T

2

]T
and Ñ = [ Ñ1 Ñ2

]
such that

M̃ E Ñ =
[

I 0
0 0

]
, M̃ Ai1 Ñ =

[
Ãi1 0
0 I

]
,

M̃−T Pi1 Ñ =
[

P̃1
i1 0

P̃3
i1 P̃4

i1

]
, M̃ Bi1 =

[
B̃1

i1

B̃2
i1

]
. (2.94)

Similarly, by pre- and post-multiplying (2.88) by diag{Ñ T , I } and its transpose,
respectively,
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(
P̃4

i1

)� + τγ 2
i Ñ T

2 FT
i1Fi1 Ñ2 + τ−1

(
P̃4

i1

)T
B̃2

i1

(
B̃2

i1

)T
P̃4

i1 < 0. (2.95)

Thus for every i ∈ S, there is always a small scalar μ > 0 such that

(
P̃4

i1

)�+τγ 2
i Ñ T

2 FT
i1Fi1 Ñ2+τ−1

(
P̃4

i1

)T
B̃2

i1

(
B̃2

i1

)T
P̃4

i1+τ−1
(

P̃4
i1

)T
μI P̃4

i1 < 0.

(2.96)
By rewriting (2.96),

⎡
⎢⎢⎣ τγ 2

i Ñ T
2 FT

i1 Fi1 Ñ2 − τ

(
B̃2

i1

(
B̃2

i1

)T + μI

)−1

τ

[(
B̃2

i1

(
B̃2

i1

)T + μI

)
P̃4

i1 + I

]T

∗ −τ

(
B̃2

i1

(
B̃2

i1

)T + μI

)
⎤
⎥⎥⎦ < 0,

(2.97)
which implies

γ 2
i Ñ T

2 FT
i1Fi1 Ñ2 <

(
B̃2

i1

(
B̃2

i1

)T + μI

)−1

. (2.98)

Since B̃2
i1(B̃2

i1)
T + μI > 0,

‖Fi1 N̂i2‖ <
1

γi
, (2.99)

where N̂i2 = Ñ2(B̃2
i1(B̃2

i1)
T + μI )

1
2 . Then for any i ∈ S, there exists a sufficient

small κ > 0 such that

‖Fi1 N̂i2‖ <
1

γi (1 + κ)
. (2.100)

Let
M̂i = [ M̃T

1 M̂T
i2

]T
, N̂i = [ Ñ1 N̂i2

]
,

with M̂i2 = (B̃2
i1(B̃2

i1)
T + μI )− 1

2 M̃2. It is easy to verify that M̂i and N̂i are nonsin-
gular and

M̂i E N̂i =
[

I 0
0 0

]
, M̂i Ai1 N̂i =

[
Ãi1 0
0 I

]
,

M̂i Ai2 =
[

Â1
i2

Â2
i2

]
, Ai3 N̂i = [ Â1

i3 Â2
i3

]
, M̂i Bi1 =

[
B̃1

i1

B̂2
i1

]
, (2.101)

where B̂2
i1(B̂2

i1)
T = (B̃2

i1(B̃2
i1)

T +μI )− 1
2 B̃2

i1(B̃2
i1)

T (B̃2
i1(B̃2

i1)
T +μI )− 1

2 < I .Define

N̂−1
i x = [ x̂ T

1 x̂ T
2

]T
and taking into account (2.101). System (2.73) is rewritten as
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̂x1(t) = Ãi1 x̂1(t) + Â1
i2z(t) + B̃1

i1 fi1

(
t, Ñ1 x̂1 + N̂i2 x̂2, z

)
,

0 = x̂2(t) + Â2
i2z(t) + B̂2

i1 fi1

(
t, Ñ1 x̂1 + N̂i2 x̂2, z

)
,

εż(t) = Â1
i3 x̂1(t) + Â2

i3 x̂2(t) + Ai4z(t) + Bi2 fi2

(
t, Ñ1 x̂1 + N̂i2 x̂2, z

)
.

(2.102)
Based on [27], there is a unique solution to equation (2.73) with any compatible

initial condition on [t0, t1). Similarly, it can be also shown that there is a unique
solution on [t1, t2) for any given admissible condition ξ(t1), and so on. So it is
obtained that Eq. (2.73) with (2.11) and (2.74) has a unique solution on [0,∞). This
completes the proof.

Theorem 2.16 Give a scalar ε̄ > 0, if there exist matrices Pi1 > 0, Pi2, Pi3,
Pi4 = PT

i4 , Pi5 = PT
i5 , Pi6 = PT

i6 , Ui1 > 0, Ui2, Ui3 > 0, Si1 > 0, Si2, Si3 > 0 and
scalar τ > 0 such that the following LMIs hold for all i, j ∈ S, j �= i :

Φi1 + ε̄Φi2 ≥ 0, (2.103)

Φi1 + ε̄Φi2 + ε̄2Φi3 > 0, (2.104)

Ψ
j

i1 ≤ 0, (2.105)

Ψ
j

i1 + ε̄Ψ
j

i2 ≤ 0, (2.106)

Ψ
j

i1 + ε̄Ψ
j

i2 + ε̄2Ψ
j

i3 ≤ 0, (2.107)

Ωi1 < 0, (2.108)

Ωi1 + ε̄Ωi2 ≤ 0, (2.109)

Ωi1 + ε̄Ωi2 + ε̄2Ωi3 < 0, (2.110)

[
Ui1 Ui2
∗ Ui3

]
> 0, (2.111)

[
Si1 Si2
∗ Si3

]
> 0, (2.112)
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where

Φi1 =
[

Pi1 0
∗ 0

]
, Φi2 =

[
Pi5 PT

i3∗ Pi4

]
, Φi3 =

[
0 0
∗ Pi6

]
,

Ψ
j

i1 =
[

ET (Pj1 − Pi1)E − Ui1 −Ui2
∗ −Ui3

]
,

Ψ
j

i2 =
[

ET (Pj5 − Pi5)E ET (PT
j3 − PT

i3)

∗ Pj4 − Pi4

]
,

Ψ
j

i3 =
[
0 0
∗ Pj6 − Pi6

]
,

Ωi1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11
i1 Ω12

i1 Ω13
i1 Ω14

i1 Ui1 Ui2

∗ Ω22
i1 0 Ω23

i1 U T
i2 Ui3

∗ ∗ −τ I 0 0 0

∗ ∗ ∗ −τ I 0 0
∗ ∗ ∗ ∗ −Si1 −Si2
∗ ∗ ∗ ∗ ∗ −Si3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ωi2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ω11
i2 Ω12

i2 Ω13
i2 0 0 0

∗ Ω22
i2 Ω23

i2 Ω24
i2 0 0

∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Ωi3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
∗ Ω1

i3 0 0 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Ω11
i1 =

(
AT

i1Pi1E
)� +

(
AT

i1V Pi2

)� +
(

AT
i3Pi3E

)� + 0.25ε2i i Si1

− εi i Ui1 +
N∑

j=1, j �=i

αi j ET (Pj1 − Pi1)E + τγ 2
i

(
FT

i1Fi1 + FT
i2Fi2

)
,

Ω12
i1 =AT

i3Pi4 + ET Pi1Ai2 + PT
i2V T Ai2 + ET PT

i3 Ai4

+ 0.25ε2i i Si2 − εi i Ui2 + τγ 2
i

(
FT

i1Gi1 + FT
i2Gi2

)
,

Ω13
i1 =ET Pi1Bi1 + PT

i2V T Bi1, Ω14
i1 = ET PT

i3 Bi2,
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Ω22
i1 =

(
AT

i4Pi4

)� + 0.25ε2i i Si3 − εi i Ui3 + τγ 2
i

(
GT

i1Gi1 + GT
i2Gi2

)
, Ω23

i1 = Pi4Bi2,

Ω11
i2 =

(
AT

i1Pi5E
)� +

N∑
j=1, j �=i

αi j ET (Pj5 − Pi5)E,

Ω12
i2 =AT

i1PT
i3 + AT

i3Pi6 + ET Pi5Ai2 +
N∑

j=1, j �=i

αi j ET
(

PT
j3 − PT

i3

)
,

Ω13
i2 =ET Pi5Bi1, Ω22

i2 =
(

AT
i4Pi6

)� + (Pi3Ai2)
� +

N∑
j=1, j �=i

αi j (Pj4 − Pi4),

Ω23
i2 =Pi3Bi1, Ω24

i2 = Pi6Bi2, Ω1
i3 =

N∑
j=1, j �=i

αi j (Pj6 − Pi6).

where V is any appropriate matrix with full column rank satisfying V T E = 0. Then
for any ε ∈ (0, ε̄], Eq. (2.73) with (2.11) and (2.74) has a unique solution on [0,∞)

and is exponentially mean-square stable over all the admissible uncertainty.

Proof First, it needs to be proved that if conditions in Theorem 2.16 hold, equation
(2.73) has a unique solution on [0,∞). Define P̃i1 = Pi1E + V Pi2, it is concluded
that (2.85) holds, and (2.105) implies (2.86). That is,

ET
(

P̃j1 − P̃i1

)
− Ui1 < 0. (2.113)

From (2.108) and taking into account (2.113) and expression (2.76), it is obtained
that ⎡

⎣ Θ̂i P̃T
i1 Bi1 Ui1

∗ −τ I 0
∗ ∗ −Si1

⎤
⎦ < 0, (2.114)

where

Θ̂i =
(

AT
i1 P̃i1

)�+
(

AT
i3Pi3E

)�+0.25ε2i i Si1−εi i Ui1+
N∑

j=1, j �=i

αi j ET
(

P̃j1 − P̃i1

)
+τγ 2

i FT
i1 Fi1.

By Theorem 2.15, one gets that there is a unique solution to system (2.73) with
(2.11) and (2.74) on [0,∞) for any given ε > 0.

Next, it is to prove that system (2.73) is exponentially mean-square stable. For
any rt = i ∈ S, define

Piε =
[

(Pi1 + εPi5)E + V Pi2 εPT
i3

Pi3E Pi4 + εPi6

]
.

For any ε ∈ (0, ε̄], it is obtained that
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ET
ε Piε = PT

iε Eε = ẼT
(
Φi1 + εΦi2 + ε2Φi3

)
Ẽ ≥ 0, (2.115)

where

Ẽ =
[

E 0
0 I

]
.

Since Pi1 > 0, it is concluded that

Φi1 ≥ 0. (2.116)

Taking into account (2.103), (2.104) and (2.116), and by Lemma 2.4, (2.115)
holds. For any ε ∈ (0, ε̄], choose an ε-dependent Lyapunov function for system
(2.73) such that

V (ξ(t)) = ξ T (t)ET
ε Piεξ(t), ε ∈ (0, ε̄]. (2.117)

LetL be the weak infinitesimal generator of random process {ξ(t), rt }, for each
rt = i ∈ S, which is defined as

L [V (ξ(t), rt = i)] = lim
h→0+

1

h
[E (V (ξ(t + h), rt+h)|ξ(t), rt = i) − V (ξ(t), i)].

(2.118)
Then,

L [V (ξ(t), rt )] =
[
(Aiξ(t) + Bi fi (t))

T Piε

]� + ξ T (t)
N∑

j=1

π̃i j ET
jε Pjεξ(t) < 0.

(2.119)
By the S-procedure Lemma, the inequalityL [V (xt , rt )] < 0 is equivalent to that

there is a τ > 0 such that

L [V (ξ(t), rt )] − τ
(

f T
i (t) fi (t) − γ 2

i ξ T (t)FT
i Fiξ(t)

)
< 0, (2.120)

which is equivalent to

[
(Aiξ(t) + Bi fi (t))

T Piε

]� − τ
(

f T
i (t) fi (t) − γ 2

i ξ T (t)FT
i Fiξ(t)

)

+ ξ T (t)
[ N∑

j=1, j �=i

αi j ET
ε (Pjε − Piε) − εi i Ui − Δπ̃i i Ui

+
N∑

j=1, j �=i

(
Δπ̃i j + εi j

) (
ET

ε Pjε − ET
ε Piε − Ui

) ]
ξ(t) < 0.

(2.121)

Similar to (2.90), it is easy to see that (2.121) is guaranteed by



40 2 Stability

ET
ε Pjε − ET

ε Piε − Ui ≤ 0, (2.122)

[
(Aiξ(t) + Bi fi (t))

T Piε
]� − τ

(
f T
i (t) fi (t) − γ 2

i ξ T (t)FT
i Fiξ(t)

)
+ ξ T (t)

× [ N∑
j=1, j �=i

αi j ET
ε (Pjε − Piε) − εi iUi + 0.25ε2i i Si + Ui S−1

i Ui
]
ξ(t) < 0.

(2.123)

Substituting (2.111) and (2.115) into (2.122) and by Lemma 2.4, it is obtained
that (2.105)–(2.107) implies (2.122). Moreover, (2.123) is rewritten as

[
ξ(t)
fi (t)

]T [
Λiε PT

iε Bi

∗ −τ I

] [
ξ(t)
fi (t)

]
< 0, (2.124)

where

Λiε =
(

AT
i Piε

)�+γ 2
i τ FT

i Fi+
N∑

j=1, j �=i

αi j ET
ε (Pjε−Piε)−εi i Ui+0.25ε2i i Si+Ui S−1

i Ui .

It is concluded that (2.124) is guaranteed by

⎡
⎣ Λ̄iε PT

iε Bi Ui

∗ −τ I 0
∗ ∗ −Si

⎤
⎦ < 0, (2.125)

where

Λ̄iε = Λiε − Ui S−1
i Ui .

By substituting the parameters of (2.76), (2.111), (2.112) and Piε into (2.125),

Ωi1 + εΩi2 + ε2Ωi3 < 0, ∀ε ∈ (0, ε̄], (2.126)

which is obtained by (2.108)–(2.110). Thus, (2.120) hods for all i ∈ S, and there is
a constant θε > 0 such that

L [V (ξ(t), i)] ≤ −θε||ξ(t)||2. (2.127)

On the other hand, for any i ∈ S, let ẑ(t) = z(t) and define
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ξ(t) =
[

N̂i 0
0 I

]⎡⎣ x̂1(t)
x̂2(t)
ẑ(t)

⎤
⎦ =

[
N̂i 0
0 I

]
ξ̂ (t).

(2.117) becomes

V
(
ξ̂ , i
)

= ξ̂ T (t)

[
N̂ T

i 0
0 I

]
ET

ε Piε

[
N̂i 0
0 I

]
ξ̂ (t)

= ξ̂ T (t)

⎡
⎣
[

Ir 0
0 0

]
0

0 I

⎤
⎦Ξiε

⎡
⎣
[

Ir 0
0 0

]
0

0 I

⎤
⎦ ξ̂ (t),

(2.128)

where

Ξiε =
[

M̂−T
i 0
0 I

] (
Φi1 + εΦi2 + ε2Φi3

) [
M̂−1

i 0
0 I

]
.

From (2.103), (2.104) and (2.116), there is a scalar θ̄ε = mini∈S λmin(Ξiε) > 0 such
that

V
(
ξ̂ , i
)

≥ θ̄ε

(
‖x̂1‖2 + ‖ẑ‖2

)
. (2.129)

From (2.127),

L [V (ξ(t), i)] ≤ −θεb1
(
‖x̂1‖2 + ‖ẑ‖2

)
, (2.130)

where

b1 = min
i∈S

σ 2
min

([
N̂i 0
0 I

])
.

Taking into account (2.129) and (2.130) and by Dynkin’s formula,

θ̄εE
{
‖x̂1‖2 + ‖ẑ‖2

}
≤ E {V (ξ0, r0)} − θεb1

∫ t

0
E
{
‖x̂1‖2 + ‖ẑ‖2

}
ds. (2.131)

Applying Gronwall-Bellman lemma to (2.131), it is easy to see that there is a
scalar aε > 0 such that

E
{
‖x̂1‖2 + ‖ẑ‖2

}
≤ aε‖ξ0‖2e−bε t , (2.132)

where bε = θεb1θ̄−1
ε . Then (x̂1, ẑ) is exponentially mean-square stable. From (2.75)

and (2.102), we obtain that

‖x̂2‖ ≤ ‖ Â2
i2‖‖z‖ + γi‖B̂2

i1‖‖Fi1 Ñ1 x̂1 + Fi1 N̂i2 x̂2 + Gi1 ẑ‖
≤
(
‖ Â2

i2‖ + γi‖Gi1‖
)

‖z‖ + γi‖Fi1 Ñ1‖‖x̂1‖ + γi‖Fi1 N̂i2‖‖x̂2‖.
(2.133)
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Under condition (2.100) and taking into account (2.132), it is obtained that

E {‖x̂2‖} ≤ â‖ξ0‖e− bε
2 t , (2.134)

where

â = 2(1 + κ)

κ

√
aε max

i∈S

(
‖ Â2

i2‖ + γi‖Gi1‖, γi‖Fi1 Ñ1‖
)

.

Therefore, system (2.73) is globally exponentially mean-square stable. This com-
pletes the proof.

Remark 2.8 In Theorem 2.16, not only is the existence condition of stability bound ε̄

of system (2.73) with uncertain TRM presented, but also an estimation of ε̄ is given.
In addition, the ε-dependent Lyapunov function given by (2.117) is more general, in
which more slack matrices are introduced. That is, when Pi5 = 0 and Pi6 = 0, one
can have the corresponding ones in [22, 23, 26, 28]. It should be emphasized that the
stability bound ε̄ was estimated directly without introducing additional inequalities.

When E = I , system (2.73) reduces to the following system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ(t) = A1(rt )x(t) + A2(rt )z(t) + B1(rt ) f1(t, rt , x, z),

εż(t) = A3(rt )x(t) + A4(rt )z(t) + B2(rt ) f2(t, rt , x, z),

x(0) = x0,

z(0) = z0,

(2.135)

with constraints (2.11) and (2.74). Although system (2.135) is a normal singular
perturbed system with Markovian switching, it is also dealt with by a descriptor
approach which could reduce the conservativeness. It is easy to see that system
(2.135) is equivalent to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ē ˙̄x(t) = Ā1(rt )x̄(t) + Ā2(rt )z(t) + B̄1(rt ) f̄1(t, rt , x̄, z),

εż(t) = Ā3(rt )x̄(t) + A4(rt )z(t) + B2(rt ) f̄2(t, rt , x̄, z),

x(0) = x0,

z(0) = z0,

(2.136)

where

x̄(t) =
[

x(t)
y(t)

]
, Ē =

[
I 0
0 0

]
, Ā1(rt ) =

[
0 I

A1(rt ) −I

]
,

Ā2(rt ) =
[

0
A2(rt )

]
, B̄1(rt ) =

[
0

B1(rt )

]
, f̄1(t, rt , x̄, z) = f1(t, rt , x, z),

Ā3(rt ) = [ A3(rt ) 0
]
, f̄2(t, rt , x̄, z) = f2(t, rt , x, z),

F̄1(rt ) = [ F1(rt ) 0
]
, F̄2(rt ) = [ F2(rt ) 0

]
.
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Using the similar method as in Theorem 2.16, the following corollary is ready to
be presented:

Corollary 2.1 Give a scalar ε̄ > 0, if there exist matrices Pi1 > 0, Pi2, Pi3,
Pi4 = PT

i4 , Pi5 = PT
i5 , Pi6 = PT

i6 , Ui1 > 0, Ui2, Ui3 > 0, Si1 > 0, Si2, Si3 > 0 and
scalar τ > 0 such that LMIs (2.103), (2.104), (2.111), (2.112) and

Ψ̄
j

i1 ≤ 0, (2.137)

Ψ̄
j

i1 + ε̄Ψ̄
j

i2 ≤ 0, (2.138)

Ψ̄
j

i1 + ε̄Ψ̄
j

i2 + ε̄2Ψ
j

i3 ≤ 0, (2.139)

Ω̄i1 < 0, (2.140)

Ω̄i1 + ε̄Ω̄i2 ≤ 0, (2.141)

Ω̄i1 + ε̄Ω̄i2 + ε̄2Ωi3 < 0, (2.142)

where

Ψ̄
j

i1 =
[

ĒT (Pj1 − Pi1)Ē − Ui1 −Ui2
∗ −Ui3

]
,

Ψ̄
j

i2 =
[

ĒT (Pj5 − Pi5)Ē ĒT (PT
j3 − PT

i3)

∗ Pj4 − Pi4

]
,

Ω̄i1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ω̄11
i1 Ω̄12

i1 Ω̄13
i1 Ω̄14

i1 Ui1 Ui2

∗ Ω22
i1 0 Ω23

i1 U T
i2 Ui3

∗ ∗ −τ I 0 0 0
∗ ∗ ∗ −τ I 0 0
∗ ∗ ∗ ∗ −Si1 −Si2
∗ ∗ ∗ ∗ ∗ −Si3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Ω̄i2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ω̄11
i2 Ω̄12

i2 Ω̄13
i2 0 0 0

∗ Ω̄22
i2 Ω̄23

i2 Ω24
i2 0 0

∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
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Ω̄11
i1 =

(
ĀT

i1Pi1E
)� +

(
ĀT

i1V Pi2

)� +
(

ĀT
i3Pi3 Ē

)� + 0.25ε2i i Si1

− εi iUi1 +
N∑

j=1, j �=i

αi j Ē T (Pj1 − Pi1)Ē + τγ 2
i

(
F̄T

i1 F̄i1 + F̄T
i2 F̄i2

)
,

Ω̄12
i1 = ĀT

i3Pi4 + ĒT Pi1 Āi2 + PT
i2V T Āi2 + ĒT PT

i3 Ai4

+ 0.25ε2i i Si2 − εi iUi2 + τγ 2
i

(
F̄T

i1Gi1 + F̄T
i2Gi2

)
,

Ω̄13
i1 =ĒT Pi1 B̄i1 + PT

i2V T B̄i1, Ω̄14
i1 = ĒT PT

i3 Bi2,

Ω̄11
i2 =

(
ĀT

i1Pi5 Ē
)� +

N∑
j=1, j �=i

αi j Ē T (Pj5 − Pi5)Ē,

Ω̄12
i2 = ĀT

i1PT
i3 + ĀT

i3Pi6 + ĒT Pi5 Āi2 +
N∑

j=1, j �=i

αi j Ē T
(

PT
j3 − PT

i3

)
,

Ω̄13
i2 =ĒT Pi5 B̄i1, Ω̄22

i2 =
(

AT
i4Pi6

)� + (Pi3 Āi2
)� +

N∑
j=1, j �=i

αi j (Pj4 − Pi4),

Ω̄23
i2 =Pi3 B̄i1,

hold for all i, j ∈ S, j �= i . Then for any ε ∈ (0, ε̄], equation (2.135) with (2.11)
and (2.74) has a unique solution on [0,∞) and is exponentially mean-square stable
over all the admissible uncertainties.

When πi j is accessible accurately, the corresponding result can be obtained di-
rectly.

Corollary 2.2 Give a scalar ε̄ > 0, if there exist matrices Pi1 > 0, Pi2, Pi3,
Pi4 = PT

i4 , Pi5 = PT
i5 , Pi6 = PT

i6 and scalar τ > 0 such that LMIs (2.103), (2.104)
and

Ω̃i1 < 0, (2.143)

Ω̃i1 + ε̄Ω̃i2 ≤ 0, (2.144)

Ω̃i1 + ε̄Ω̃i2 + ε̄2Ω̃i3 < 0, (2.145)

where
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Ω̃i1 =

⎡
⎢⎢⎢⎣

Ω̃11
i1 Ω̃12

i1 Ω13
i1 Ω14

i1

∗ Ω̃22
i1 0 Ω̃23

i1

∗ ∗ −τ I 0
∗ ∗ ∗ −τ I

⎤
⎥⎥⎥⎦ ,

Ω̃i2 =

⎡
⎢⎢⎢⎣

Ω̃11
i2 Ω̃12

i2 Ω̃13
i2 0

∗ Ω̃22
i2 Ω23

i2 Ω24
i2

∗ ∗ 0 0
∗ ∗ ∗ 0

⎤
⎥⎥⎥⎦ ,

Ω̃i3 =

⎡
⎢⎢⎣
0 0 0 0
∗ Ω̃1

i3 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

⎤
⎥⎥⎦ ,

Ω̃11
i1 =

(
AT

i1Pi1E
)� +

(
AT

i1V Pi2

)� +
(

AT
i3Pi3E

)�

+
N∑

j=1

πi j ET Pj1E + τγ 2
i

(
FT

i1Fi1 + FT
i2Fi2

)
,

Ω̃12
i1 =AT

i3Pi4 + ET Pi1Ai2 + PT
i2V T Ai2

+ ET PT
i3 Ai4 + τγ 2

i

(
FT

i1Gi1 + FT
i2Gi2

)
,

Ω̃22
i1 =

(
AT

i4Pi4

)� + τγ 2
i

(
GT

i1Gi1 + GT
i2Gi2

)
,

Ω̃11
i2 =

(
AT

i1Pi5E
)� +

N∑
j=1

πi j ET Pj5E,

Ω̃12
i2 =AT

i1PT
i3 + AT

i3Pi6 + ET Pi5Ai2 +
N∑

j=1

πi j ET PT
j3,

Ω̃22
i2 =

(
AT

i4Pi6

)� + (Pi3Ai2)
� +

N∑
j=1

πi j Pj4,

Ω̃1
i3 =

N∑
j=1

πi j Pj6,

hold for all i ∈ S. Then for any ε ∈ (0, ε̄], Eq. (2.73) with (2.2) and (2.3) has a
unique solution on [0,∞) and is exponentially mean-square stable.

When there is no Markovian switching, system (2.73) becomes
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Eẋ(t) = A1x(t) + A2z(t) + B1 f1(t, x, z),

εż(t) = A3x(t) + A4z(t) + B2 f2(t, x, z),

x(0) = x0,

z(0) = z0,

(2.146)

where fk(t, x, z), k = 1, 2, satisfies

‖ fk(t, x, z) − fk(t, x̃, z̃)‖ ≤ γ ‖Fk(x − x̃) + Gk(z − z̃)‖, k = 1, 2, (2.147)

and
‖ fk(t, x, z)‖ ≤ γ ‖Fk x + Gk z‖, k = 1, 2, (2.148)

where γ > 0, Fk and Gk are constant matrices with appropriate dimensions.

Corollary 2.3 Give a scalar ε̄ > 0, if there exist matrices P1 > 0, P2, P3, P4 = PT
4 ,

P5 = PT
5 , P6 = PT

6 and scalar τ > 0 such that

Φ̂1 + ε̄Φ̂2 ≥ 0, (2.149)

Φ̂1 + ε̄Φ̂2 + ε̄2Φ̂3 > 0, (2.150)

Ω̂1 < 0, (2.151)

Ω̂1 + ε̄Ω̂2 < 0, (2.152)

where

Φ̂1 =
[

P1 0
∗ 0

]
, Φ̂2 =

[
P5 PT

3∗ P4

]
, Φ̂3 =

[
0 0
∗ P6

]
,

Ω̂1 =

⎡
⎢⎢⎢⎣

Ω̂11
1 Ω̂12

1 Ω̂13
1 Ω̂14

1

∗ Ω̂22
1 0 Ω̂23

1

∗ ∗ −τ I 0
∗ ∗ ∗ −τ I

⎤
⎥⎥⎥⎦ ,

Ω̂2 =

⎡
⎢⎢⎢⎣

Ω̂11
2 Ω̂12

2 Ω̂13
2 0

∗ Ω̂22
2 Ω̂23

2 Ω̂24
2

∗ ∗ 0 0
∗ ∗ ∗ 0

⎤
⎥⎥⎥⎦ ,
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Ω̂11
1 =

(
AT
1 P1E

)� +
(

AT
1 V P2

)� +
(

AT
3 P3E

)� + τγ 2
(

FT
1 F1 + FT

2 F2

)
,

Ω̂12
1 = AT

3 P4 + ET P1A2 + PT
2 V T A2 + ET PT

3 A4 + τγ 2
(

FT
1 G1 + FT

2 G2

)
,

Ω̂13
1 = ET P1B1 + PT

2 V T B1, Ω̂14
1 = ET PT

3 B2,

Ω̂22
1 =

(
AT
4 P4

)� + τγ 2
(

GT
1 G1 + GT

2 G2

)
, Ω̂23

1 = P4B2,

Ω̂11
2 =

(
AT
1 P5E

)�

, Ω̂12
2 = AT

1 PT
3 + AT

3 P6 + ET P5A2, Ω̂13
2 = ET P5B1,

Ω̂22
2 =

(
AT
4 P6

)� + (P3A2)
�, Ω̂23

2 = P3B1, Ω̂24
2 = P6B2,

hold. Then for any ε ∈ (0, ε̄], Eq. (2.146) with (2.147) and (2.148) has a unique
solution on [0,∞) and is exponentially stable.

To illustrate the results developed above, some numerical examples are presented
as follows:

Example 2.1 Consider the following singularly perturbed system from [29]:

⎧⎪⎪⎨
⎪⎪⎩

ẋ = x − z + |x |z
1 + 4z2

,

εż = 2x − z + |x |z
1 + 4x2

.

(2.153)

For system (2.153), it is concluded that f1(x, z) = |x |z/(1 + 4z2) and f2(x, z) =
|x |z/(1 + 4x2) satisfy (2.74) with F1 = G2 = 0.25, G1 = F2 = 0 and γ = 1
respectively. Bymethod [29], it is obtained that the stability bound is ε̄ = 9.5×10−3,
while the stability bound computed by method [26] is ε̄ = 0.3395. From Corollary
2.3, it is obtained that the stability bound ε̄ = 0.4528, which is large, and thus the
result given in Corollary 2.3 is less conservative.

Example 2.2 Consider the following Markovian jump singularly perturbed descrip-
tor system with two modes such as

Mode 1: ⎧⎪⎨
⎪⎩

ẋ1 = x2 + 0.2 f 111(t, x1, x2, z),

0 = 0.4x1 − x2 − z − 0.5 f 211(t, x1, x2, z),

εż = x1 + x2 − z + f12(t, x1, x2, z),

(2.154)

where

f 111(t, x1, x2, z) = |x1|z
1 + 16z2,

f 211(t, x1, x2, z) = |x1|x2
1 + 16x22

,

f12(t, x1, x2, z) = 0.25z sin(x2 + z).
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Mode 2: ⎧⎪⎨
⎪⎩

ẋ1 = 0.3x1 + 0.4x2 − 0.9z + 0.3 f 121(t, x1, x2, z),

0 = −0.9x1 + x2 + 0.2z + 0.2 f 221(t, x1, x2, z),

εż = 0.2x1 − 0.5z + f22(t, x1, x2, z),

(2.155)

where

f 121(t, x1, x2, z) = |x1|z
16 + z2

,

f 221(t, x1, x2, z) = |x1|x2
16 + x22

,

f22(t, x1, x2, z) = 0.4z cos(x1 − 2x2).

It is concluded that the nonlinear perturbations of systems (2.154) and (2.155) satisfy
(2.74) and (2.75) with γi = 1, i = 1, 2. First, it is assumed that TRM is given exactly,
that is,

Π =
[−1.2 1.2

0.4 −0.4

]

By methods in [21–23, 30], there is no information on stability bound ε̄. But from
Corollary 2.2, the above system has a unique solution and is exponentially mean-
square stable for ∀ε ∈ (0, ε̄] with a stability bound ε̄ = 0.5229. If TRM Π is
not obtained exactly, only the estimated transition rates are got as π̃11 = −1.2
and π̃22 = −0.4, where uncertainty ΔΠ̃ satisfies |Δπ̃12| ≤ ε12 � 0.5π̃12 and
|Δπ̃21| ≤ ε21 � 0.5π̃21 respectively. From Theorem 2.16, an estimation of stability
bound ε̄ = 0.3219which guarantees that the aforementioned system is exponentially
mean-square stable for any ε ∈ (0, ε̄].
Example 2.3 Consider the following singularly perturbed system controlled by a
DC motor, which is illustrated in Fig. 2.1. It is described as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = g

l
sin x1(t) + N Km

ml2
z(t),

ż(t) = Kb N

La
x2(t) − R(rt )

La
z(t) + 1

La
u(t),

(2.156)

where x1(t) = θp(t), x2(t) = θ̇p(t) and z(t) = Ia(t) are system states, u(t) is the
control input, Km is the motor torque constant, Kb is the back emf constant, N is the
gear ratio, and R(rt ) is defined as

R(rt ) =
{

Ra, if rt = 1,

Rb, otherwise rt = 2,
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Fig. 2.1 DC motor controlling an inverted pendulum

where {rt , t ≥ 0} is a Markov process taking values in a finite set S = {1, 2}.
Let La = εH, system (2.156) becomes a normal SPS with Markovian switching,

which is described as

⎧⎪⎪⎨
⎪⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = g

l
sin x1(t) + N Km

ml2
z(t),

εż(t) = −Kb N x2(t) − R(rt )z(t) + u(t).

(2.157)

The parameters of this system are given as g = 9.8m/s2, l = 1m, m = 1 kg,
N = 10, l = 1m, Km = 0.1Nm/A, Kb = 0.1Vs/rad, Ra = 1Ω and Rb = 2Ω .
Substituting the parameters into (2.157) and letting u(t) = −20x1 − 2x2, one has⎧⎪⎨

⎪⎩
ẋ1(t) = x2(t),

ẋ2(t) = z(t) + 9.8 sin x1(t),

εż(t) = −20x1 − 3x2 − R(rt )z(t),

(2.158)

where TRM is first assumed to be given exactly, that is,

Π =
[−1.5 1.5

0.7 −0.7

]
.

For this case, it is also seen that themethods in [21–23, 30] fail in giving an estimation
of stability bound ε̄. By Corollary 2.2, it is concluded that the corresponding closed-
loop system (2.158) has a unique solution and is exponentially mean-square stable
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Fig. 2.2 The mode of the closed-loop system with ε = 0.01
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Fig. 2.3 The states of the closed-loop system with ε = 0.01

for any ε ∈ (0, 0.1022]. Let initial conditions x1(0) = 1, x2(0) = −1, z(0) = 1 and
r0 = 1. The simulation of system mode r(t) is shown in Fig. 2.2, and the evolution
of system state is given in Fig. 2.3.

Moreover, if TRM Π is an estimation Π̃ , and the uncertainties satisfy |Δπ̃12| ≤
ε12 � 0.5π̃12 and |Δπ̃21| ≤ ε21 � 0.5π̃21 respectively, then from Theorem 2.16, it
can be obtained that the corresponding estimation of stability bound is ε̄ = 0.0685.
Especially, when there is no jumping parameter in system (2.158), that is Ra = Rb =
1Ω , it becomes a deterministic singularly perturbed system. Then, it is obtained that
there is no solution if the approach proposed in [28] is employed. However, the



2.3 Robust Stability 51

stability bound can be got as ε̄ = 0.0388 by Corollary 2.3. This example, again,
shows that our result is less conservative.

2.4 Conclusion

This chapter has addressed the stability of SMJSs with general TRMs, whose TRMs
may be exactly known, uncertain, partially unknown and designed. The conditions
guaranteeing a given SMJS stochastically admissible are expressed in terms of LMIs
or LMIs with equation constraints, which can be efficiently solved by using stan-
dard numerical algorithms. Especially, when TRM is given exactly, necessary and
sufficient conditions with different forms are developed. Then, the robust stabil-
ity of Markovian jump singularly perturbed systems with uncertain switchings and
nonlinear perturbations for any perturbation parameter ε ∈ (0, ε̄] are solved by an
LMI approach. Instead of containing ε, such conditions guaranteeing the existence
and uniqueness of a solution as well as stochastic admissibility, are established by
choosing an ε-dependent Lyapunov function and only depend on stability bound ε̄.
It is worth mentioning that the stability results proposed in this chapter will play
important roles in dealing with other problems. Part of the results presented in this
chapter are available in [31, 32].
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