
Chapter 2
Differential Forms

This chapter discusses integration on differentiable manifolds. Because there is no
canonical choice of local coordinates, there is no natural notion of volume, and so
only objects with appropriate transformation properties under coordinate changes
can be integrated. These objects, called differential forms, were introduced by Élie
Cartan in 1899; they come equipped with natural algebraic and differential opera-
tions, making them a fundamental tool of differential geometry.

Besides their role in integration, differential forms occur in many other places in
differential geometry and physics: for instance, they can be used as a very efficient
device for computing the curvature of Riemannian (Chap. 4) or Lorentzian (Chap. 6)
manifolds; to formulate Hamiltonian mechanics (Chap. 5); or to write Maxwell’s
equations of electromagnetism in a compact and elegant form.

The algebraic structure of differential forms is set up in Sect. 2.1, which reviews
the notions of tensors and tensor product, and introduces alternating tensors and
their exterior product.

Tensor fields, which are natural generalizations of vector fields, are discussed
in Sect. 2.2, where a new operation, the pull-back of a covariant tensor field by a
smooth map, is defined. Differential forms are introduced in Sect. 2.3 as fields of
alternating tensors, along with their exterior derivative. Important ideas which will
not be central to the remainder of this book, such as the Poincaré lemma, de Rham
cohomology or the Lie derivative, are discussed in the exercises.

The integral of a differential form on a smooth manifold in defined in Sect. 2.4.
This makes use of another basic tool of differential geometry, namely the existence
of partitions of unity.

The celebrated Stokes theorem, generalizing the fundamental theorems of vector
calculus (Green’s theorem, the divergence theorem and the classical Stokes theorem
for vector fields) is proved in Sect. 2.5. Some of its consequences, such as invariance
by homotopy of the integral of closed forms, or Brouwer’s fixed point theorem,
are explored in the exercises.

Finally, Sect. 2.6 studies the relation between orientability and the existence of
special differential forms, called volume forms, which can be used to define a notion
of volume on orientable manifolds.
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2.1 Tensors

Let V be an n-dimensional vector space. A k-tensor on V is a real multilinear
function (meaning linear in each variable) defined on the product V × · · · × V of k
copies of V . The set of all k-tensors is itself a vector space and is usually denoted by
T k(V ∗).

Example 1.1

(1) The space of 1-tensors T 1(V ∗) is equal to V ∗, the dual space of V , that is, the
space of real-valued linear functions on V .

(2) The usual inner product on R
n is an example of a 2-tensor.

(3) The determinant is an n-tensor on R
n .

Given a k-tensor T and an m-tensor S, we define their tensor product as the
(k + m)-tensor T ⊗ S given by

T ⊗ S(v1, . . . , vk, vk+1, . . . , vk+m) := T (v1, . . . , vk) · S(vk+1, . . . , vk+m).

This operation is bilinear and associative, but not commutative [cf. Exercise 1.15(1)].

Proposition 1.2 If {T1, . . . , Tn} is a basis for T 1(V ∗) = V ∗ (the dual space of V ),
then the set {Ti1 ⊗· · ·⊗ Tik | 1 ≤ i1, . . . , ik ≤ n} is a basis of T k(V ∗), and therefore
dim T k(V ∗) = nk.

Proof We will first show that the elements of this set are linearly independent. If

T :=
∑

i1,...,ik

ai1...ik Ti1 ⊗ · · · ⊗ Tik = 0,

then, taking the basis {v1, . . . , vn} of V dual to {T1, . . . , Tn}, meaning that Ti (v j ) =
δi j (cf. Sect. 2.7.1), we have T (v j1 , . . . , v jk ) = a j1... jk = 0 for every 1 ≤
j1, . . . , jk ≤ n.

To show that {Ti1 ⊗ · · · ⊗ Tik | 1 ≤ i1, . . . , ik ≤ n} spans T k(V ∗), we take any
element T ∈ T k(V ∗) and consider the k-tensor S defined by

S :=
∑

i1,...,ik

T (vi1 , . . . , vik )Ti1 ⊗ · · · ⊗ Tik .

Clearly, S(vi1 , . . . , vik ) = T (vi1 , . . . , vik ) for every 1 ≤ i1, . . . , ik ≤ n, and so, by
linearity, S = T . �

If we consider k-tensors on V ∗, instead of V , we obtain the space T k(V ) (note that
(V ∗)∗ = V , as shown in Sect. 2.7.1). These tensors are called contravariant tensors
on V , while the elements of T k(V ∗) are called covariant tensors on V . Note that
the contravariant tensors on V are the covariant tensors on V ∗. The words covariant
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and contravariant are related to the transformation behavior of the tensor components
under a change of basis in V , as explained in Sect. 2.7.1.

We can also consider mixed (k, m)-tensors on V , that is, multilinear functions
defined on the product V × · · · × V × V ∗ × · · · × V ∗ of k copies of V and m copies
of V ∗. A (k, m)-tensor is then k times covariant and m times contravariant on V .
The space of all (k, m)-tensors on V is denoted by T k,m(V ∗, V ).

Remark 1.3

(1) We can identify the space T 1,1(V ∗, V ) with the space of linear maps from V to
V . Indeed, for each element T ∈ T 1,1(V ∗, V ), we define the linear map from
V to V , given by v �→ T (v, ·). Note that T (v, ·) : V ∗ → R is a linear function
on V ∗, that is, an element of (V ∗)∗ = V .

(2) Generalizing the above definition of tensor product to tensors defined on
different vector spaces, we can define the spaces T k(V ∗) ⊗ T m(W ∗) gener-
ated by the tensor products of elements of T k(V ∗) by elements of T m(W ∗).
Note that T k,m(V ∗, V ) = T k(V ∗) ⊗ T m(V ). We leave it as an exercise to find
a basis for this space.

A tensor is called alternating if, like the determinant, it changes sign every time
two of its variables are interchanged, that is, if

T (v1, . . . , vi , . . . , v j , . . . , vk) = −T (v1, . . . , v j , . . . , vi , . . . , vk).

The space of all alternating k-tensors is a vector subspace �k(V ∗) of T k(V ∗).
Note that, for any alternating k-tensor T , we have T (v1, . . . , vk) = 0 if vi = v j for
some i �= j .

Example 1.4

(1) All 1-tensors are trivially alternating, that is, �1(V ∗) = T 1(V ∗) = V ∗.
(2) The determinant is an alternating n-tensor on R

n .

Consider now Sk , the group of all possible permutations of {1, . . . , k}. If σ ∈ Sk ,
we set σ(v1, . . . , vk) = (vσ(1), . . . , vσ(k)). Given a k-tensor T ∈ T k(V ∗) we can
define a new alternating k-tensor, called Alt(T ), in the following way:

Alt(T ) := 1

k!
∑

σ∈Sk

(sgn σ) (T ◦ σ),

where sgn σ is +1 or −1 according to whether σ is an even or an odd permutation.
We leave it as an exercise to show that Alt(T ) is in fact alternating.

Example 1.5 If T ∈ T 3(V ∗),

Alt(T )(v1, v2, v3) = 1
6 (T (v1, v2, v3) + T (v3, v1, v2) + T (v2, v3, v1)

−T (v1, v3, v2) − T (v2, v1, v3) − T (v3, v2, v1)) .
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We will now define the wedge product between alternating tensors: if T ∈
�k(V ∗) and S ∈ �m(V ∗), then T ∧ S ∈ �k+m(V ∗) is given by

T ∧ S := (k + m)!
k! m! Alt(T ⊗ S).

Example 1.6 If T, S ∈ �1(V ∗) = V ∗, then

T ∧ S = 2 Alt(T ⊗ S) = T ⊗ S − S ⊗ T,

implying that T ∧ S = −S ∧ T and T ∧ T = 0.

It is easy to verify that this product is bilinear. To prove associativity we need the
following proposition.

Proposition 1.7

(i) Let T ∈ T k(V ∗) and S ∈ T m(V ∗). If Alt(T ) = 0 then

Alt(T ⊗ S) = Alt(S ⊗ T ) = 0;

(ii) Alt(Alt(T ⊗ S) ⊗ R) = Alt(T ⊗ S ⊗ R) = Alt(T ⊗ Alt(S ⊗ R)).

Proof

(i) Let us consider

(k + m)! Alt(T ⊗ S)(v1, . . . , vk+m) =
=

∑

σ∈Sk+m

(sgn σ) T (vσ(1), . . . , vσ(k))S(vσ(k+1), . . . , vσ(k+m)).

Taking the subgroup G of Sk+m formed by the permutations of {1, . . . , k + m}
that leave k + 1, . . . , k + m fixed, we have

∑

σ∈G

(sgn σ)T (vσ(1), . . . , vσ(k))S(vσ(k+1), . . . , vσ(k+m)) =

=
(
∑

σ∈G

(sgn σ)T (vσ(1), . . . , vσ(k))

)
S(vk+1, . . . , vk+m)

= k! (Alt(T ) ⊗ S) (v1, . . . , vk+m) = 0.

Then, since G decomposes Sk+m into disjoint right cosets G ·σ̃ := {σσ̃ | σ ∈ G},
and for each coset
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∑

σ∈G ·̃σ
(sgn σ)(T ⊗ S)(vσ(1), . . . , vσ(k+m)) =

= (sgn σ̃)
∑

σ∈G

(sgn σ) (T ⊗ S)(vσ(̃σ(1)), . . . , vσ(̃σ(k+m)))

= (sgn σ̃)k! (Alt(T ) ⊗ S)(vσ̃(1), . . . , vσ̃(k+m)) = 0,

we have that Alt(T ⊗ S) = 0. Similarly, we prove that Alt(S ⊗ T ) = 0.
(ii) By linearity of the operator Alt and the fact that Alt ◦ Alt = Alt

[cf. Exercise 1.15(3)], we have

Alt(Alt(S ⊗ R) − S ⊗ R) = 0.

Hence, by (i),

0 = Alt(T ⊗ (Alt(S ⊗ R) − S ⊗ R))

= Alt(T ⊗ Alt(S ⊗ R)) − Alt(T ⊗ S ⊗ R),

and the result follows. �

Using these properties we can show the following.

Proposition 1.8 (T ∧ S) ∧ R = T ∧ (S ∧ R).

Proof By Proposition 1.7, for T ∈ �k(V ∗), S ∈ �m(V ∗) and R ∈ �l(V ∗), we have

(T ∧ S) ∧ R = (k + m + l)!
(k + m)! l! Alt((T ∧ S) ⊗ R)

= (k + m + l)!
k! m! l! Alt(T ⊗ S ⊗ R)

and

T ∧ (S ∧ R) = (k + m + l)!
k! (m + l)! Alt(T ⊗ (S ∧ R))

= (k + m + l)!
k! m! l! Alt(T ⊗ S ⊗ R). �

We can now prove the following theorem.

Theorem 1.9 If {T1, . . . , Tn} is a basis for V ∗, then the set

{Ti1 ∧ · · · ∧ Tik | 1 ≤ i1 < . . . < ik ≤ n}
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is a basis for �k(V ∗), and

dim �k(V ∗) =
(

n
k

)
= n!

k!(n − k)! .

Proof Let T ∈ �k(V ∗) ⊂ T k(V ∗). By Proposition 1.2,

T =
∑

i1,...,ik

ai1...ik Ti1 ⊗ · · · ⊗ Tik

and, since T is alternating,

T = Alt(T ) =
∑

i1,...,ik

ai1···ik Alt(Ti1 ⊗ · · · ⊗ Tik ).

We can show by induction that Alt(Ti1 ⊗· · ·⊗ Tik ) = 1
k! Ti1 ∧ Ti2 ∧· · ·∧ Tik . Indeed,

for k = 1, the result is trivially true, and, assuming it is true for k basis tensors, we
have, by Proposition 1.7, that

Alt(Ti1 ⊗ · · · ⊗ Tik+1) = Alt(Alt(Ti1 ⊗ · · · ⊗ Tik ) ⊗ Tik+1)

= k!
(k + 1)! Alt(Ti1 ⊗ · · · ⊗ Tik ) ∧ Tik+1

= 1

(k + 1)! Ti1 ∧ Ti2 ∧ · · · ∧ Tik+1 .

Hence,

T = 1

k!
∑

i1,...,ik

ai1...ik Ti1 ∧ Ti2 ∧ · · · ∧ Tik .

However, the tensors Ti1 ∧ · · · ∧ Tik are not linearly independent. Indeed, due to
anticommutativity, if two sequences (i1, . . . ik) and ( j1, . . . jk) differ only in their
orderings, then Ti1 ∧ · · · ∧ Tik = ±Tj1 ∧ · · · ∧ Tjk . In addition, if any two of the
indices are equal, then Ti1 ∧ · · · ∧ Tik = 0. Hence, we can avoid repeating terms by
considering only increasing index sequences:

T =
∑

i1<···<ik

bi1...ik Ti1 ∧ · · · ∧ Tik

and so the set {Ti1 ∧ · · · ∧ Tik | 1 ≤ i1 < . . . < ik ≤ n} spans �k(V ∗). Moreover,
the elements of this set are linearly independent. Indeed, if

0 = T =
∑

i1<···<ik

bi1...ik Ti1 ∧ · · · ∧ Tik ,
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then, taking a basis {v1, . . . , vn} of V dual to {T1, . . . , Tn} and an increasing index
sequence ( j1, . . . , jk), we have

0 = T (v j1 , . . . , v jk )= k!
∑

i1<···<ik

bi1...ik Alt(Ti1 ⊗ · · · ⊗ Tik )(v j1, . . . , v jk )

=
∑

i1<···<ik

bi1...ik

∑

σ∈Sk

(sgn σ) Ti1(v jσ(1)
) · · · Tik (v jσ(k)

).

Since (i1, . . . , ik) and ( j1, . . . , jk) are both increasing, the only term of the second
sum that may be different from zero is the one for which σ = id. Consequently,

0 = T (v j1 , . . . , v jk ) = b j1... jk .

�

The following result is clear from the anticommutativity shown in Example 1.6.

Proposition 1.10 If T ∈ �k(V ∗) and S ∈ �m(V ∗), then

T ∧ S = (−1)km S ∧ T .

Proof Exercise 1.15(4) �

Remark 1.11

(1) Another consequence of Theorem 1.9 is that dim(�n(V ∗)) = 1. Hence, if
V = R

n , any alternating n-tensor in R
n is a multiple of the determinant.

(2) It is also clear that �k(V ∗) = 0 if k > n. Moreover, the set �0(V ∗) is defined
to be equal to R (identified with the set of constant functions on V ).

A linear transformation F : V → W induces a linear transformation F∗ :
T k(W ∗) → T k(V ∗) defined by

(F∗T )(v1, . . . , vk) = T (F(v1), . . . , F(vk)).

This map has the following properties.

Proposition 1.12 Let V, W, Z be vector spaces, let F : V → W and H : W → Z
be linear maps, and let T ∈ T k(W ∗) and S ∈ T m(W ∗). We have:

(1) F∗(T ⊗ S) = (F∗T ) ⊗ (F∗S);
(2) If T is alternating then so is F∗T ;
(3) F∗(T ∧ S) = (F∗T ) ∧ (F∗S);
(4) (F ◦ H)∗ = H∗ ◦ F∗.
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Proof Exercise 1.15(5) �

Another important fact about alternating tensors is the following.

Theorem 1.13 Let F : V → V be a linear map and let T ∈ �n(V ∗). Then
F∗T = (det A)T , where A is any matrix representing F.

Proof As �n(V ∗) is 1-dimensional and F∗ is a linear map, F∗ is just multiplication
by some constant C . Let us consider an isomorphism H between V and R

n . Then,
H∗ det is an alternating n-tensor in V , and so F∗H∗ det = C H∗ det. Hence

(H−1)∗F∗H∗ det = C det ⇔ (H ◦ F ◦ H−1)∗ det = C det ⇔ A∗ det = C det,

where A is the matrix representation of F induced by H . Taking the standard basis
in R

n , {e1, . . . , en}, we have

A∗ det (e1, . . . , en) = C det(e1, . . . , en) = C,

and so
det (Ae1, . . . , Aen) = C,

implying that C = det A. �

Remark 1.14 By the above theorem, if T ∈ �n(V ∗) and T �= 0, then two or-
dered basis {v1, . . . , vn} and {w1, . . . , wn} are equivalently oriented if and only if
T (v1, . . . , vn) and T (w1, . . . , wn) have the same sign.

Exercise 1.15

(1) Show that the tensor product is bilinear and associative but not commutative.
(2) Find a basis for the space T k,m(V ∗, V ) of mixed (k, m)-tensors.
(3) If T ∈ T k(V ∗), show that

(a) Alt(T ) is an alternating tensor;
(b) if T is alternating then Alt(T ) = T ;
(c) Alt(Alt(T )) = Alt(T ).

(4) Prove Proposition 1.10.
(5) Prove Proposition 1.12.
(6) Let T1, . . . , Tk ∈ V ∗. Show that

(T1 ∧ · · · ∧ Tk)(v1, . . . , vk) = det [Ti (v j )].

(7) Show that Let T1, . . . , Tk ∈ �1(V ∗) = V ∗ are linearly independent if and only
if T1 ∧ · · · ∧ Tk �= 0.
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(8) Let T ∈ �k(V ∗) and let v ∈ V . We define contraction of T by v, ι(v)T , as the
(k − 1)-tensor given by

(ι(v)T )(v1, . . . , vk−1) = T (v, v1, . . . , vk−1).

Show that:

(a) ι(v1)(ι(v2)T ) = −ι(v2)(ι(v1)T );
(b) if T ∈ �k(V ∗) and S ∈ �m(V ∗) then

ι(v)(T ∧ S) = (ι(v)T ) ∧ S + (−1)k T ∧ (ι(v)S).

2.2 Tensor Fields

The definition of a vector field can be generalized to tensor fields of general type.
For that, we denote by T ∗

p M the dual of the tangent space Tp M at a point p in M
(usually called the cotangent space to M at p).

Definition 2.1 A (k, m)-tensor field is a map that to each point p ∈ M assigns a
tensor T ∈ T k,m(T ∗

p M, Tp M).

Example 2.2 A vector field is a (0, 1)-tensor field (or a 1-contravariant tensor field),
that is, a map that to each point p ∈ M assigns the 1-contravariant tensor X p ∈ Tp M .

Example 2.3 Let f : M → R be a differentiable function. We can define a (1, 0)-
tensor field d f which carries each point p ∈ M to (d f )p, where

(d f )p : Tp M → R

is the derivative of f at p. This tensor field is called the differential of f . For
any v ∈ Tp M we have (d f )p(v) = v · f (the directional derivative of f at p
along the vector v). Considering a coordinate system x : W → R

n , we can write

v =∑n
i=1 vi

(
∂
∂xi

)

p
, and so

(d f )p(v) =
∑

i

vi ∂ f̂

∂xi
(x(p)),

where f̂ = f ◦ x−1. Taking the coordinate functions xi : W → R, we can obtain
1-forms dxi defined on W . These satisfy

(dxi )p

((
∂

∂x j

)

p

)
= δi j
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and so they form a basis of each cotangent space T ∗
p M , dual to the coordinate

basis

{(
∂
∂x1

)

p
, . . . ,

(
∂
∂xn

)

p

}
of Tp M . Hence, any (1, 0)-tensor field on W can be

written as ω = ∑
i ωi dxi , where ωi : W → R is such that ωi (p) = ωp

((
∂
∂xi

)

p

)
.

In particular, d f can be written in the usual way

(d f )p =
n∑

i=1

∂ f̂

∂xi
(x(p))(dxi )p.

Remark 2.4 Similarly to what was done for the tangent bundle, we can consider the
disjoint union of all cotangent spaces and obtain the manifold

T ∗M =
⋃

p∈M

T ∗
p M

called the cotangent bundle of M . Note that a (1, 0)-tensor field is just a map from
M to T ∗M defined by

p �→ ωp ∈ T ∗
p M.

This construction can be easily generalized for arbitrary tensor fields.

The space of (k, m)-tensor fields is clearly a vector space, since linear combina-
tions of (k, m)-tensors are still (k, m)-tensors. If W is a coordinate neighborhood

of M , we know that
{
(dxi )p

}
is a basis for T ∗

p M and that

{(
∂
∂xi

)

p

}
is a basis for

Tp M . Hence, the value of a (k, m)-tensor field T at a point p ∈ W can be written as
the tensor

Tp =
∑

a j1··· jm
i1···ik

(p)(dxi1)p ⊗ · · · ⊗ (dxik )p ⊗
(

∂

∂x j1

)

p
⊗ · · · ⊗

(
∂

∂x jm

)

p

where the a j1... jm
i1...ik

: W → R are functions which at each p ∈ W give us the
components of Tp relative to these bases of T ∗

p M and Tp M . Just as we did with
vector fields, we say that a tensor field is differentiable if all these functions are
differentiable for all coordinate systems of the maximal atlas. Again, we only need
to consider the coordinate systems of an atlas, since all overlap maps are differentiable
[cf. Exercise 2.8(1)].

Example 2.5 The differential of a smooth function f : M → R is clearly a differen-

tiable (1, 0)-tensor field, since its components ∂ f̂
∂xi ◦ x on a given coordinate system

x : W → R
n are smooth.

An important operation on covariant tensors is the pull-back by a smooth map.
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Definition 2.6 Let f : M → N be a differentiable map between smooth manifolds.
Then, each differentiable k-covariant tensor field T on N defines a k-covariant tensor
field f ∗T on M in the following way:

( f ∗T )p(v1, . . . , vk) = T f (p)((d f )pv1, . . . , (d f )pvk),

for v1, . . . , vk ∈ Tp M .

Remark 2.7 Notice that ( f ∗T )p is just the image of T f (p) by the linear map (d f )∗p :
T k(T ∗

f (p)N ) → T k(T ∗
p M) induced by (d f )p : Tp M → T f (p)N (cf. Sect. 2.1).

Therefore the properties f ∗(αT + βS) = α( f ∗T ) + β( f ∗S) and f ∗(T ⊗ S) =
( f ∗T )⊗ ( f ∗S) hold for all α,β ∈ R and all appropriate covariant tensor fields T, S.
We will see in Exercise 2.8(2) that the pull-back of a differentiable covariant tensor
field is still a differentiable covariant tensor field.

Exercise 2.8

(1) Find the relation between coordinate functions of a tensor field in two overlap-
ping coordinate systems.

(2) Show that the pull-back of a differentiable covariant tensor field is still a differ-
entiable covariant tensor field.

(3) (Lie derivative of a tensor field) Given a vector field X ∈ X(M), we define the
Lie derivative of a k-covariant tensor field T along X as

L X T := d

dt
(ψt

∗T )
|t=0

,

where ψt = F(·, t) with F the local flow of X at p.

(a) Show that

L X (T (Y1, . . . , Yk)) = (L X T )(Y1, . . . , Yk)

+ T (L X Y1, . . . , Yk) + . . . + T (Y1, . . . , L X Yk),

i.e. show that

X · (T (Y1, . . . , Yk)) = (L X T )(Y1, . . . , Yk)

+ T ([X, Y1], . . . , Yk) + . . . + T (Y1, . . . , [X, Yk]),

for all vector fields Y1, . . . , Yk [cf. Exercises 6.11(11) and 6.11(12) in
Chap. 1].

(b) How would you define the Lie derivative of a (k, m)-tensor field?

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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2.3 Differential Forms

Fields of alternating tensors are very important objects called forms.

Definition 3.1 Let M be a smooth manifold. A form of degree k (or k-form) on M
is a field of alternating k-tensors defined on M , that is, a map ω that, to each point
p ∈ M , assigns an element ωp ∈ �k(T ∗

p M).

The space of k-forms on M is clearly a vector space. By Theorem 1.9, given a
coordinate system x : W → R

n , any k-form on W can be written as

ω =
∑

I

ωI dx I

where I = (i1, . . . , ik) denotes any increasing index sequence of integers in
{1, . . . , n}, dx I is the form dxi1 ∧ · · · ∧ dxik , and the ωI are functions defined
on W . It is easy to check that the components of ω in the basis {dxi1 ⊗ · · · ⊗ dxik }
are ±ωI . Therefore ω is a differentiable (k, 0)-tensor (in which case it is called a
differential form) if the functions ωI are smooth for all coordinate systems of the
maximal atlas. The set of differential k-forms on M is represented by �k(M). From
now on we will use the word “form” to mean a differential form.

Given a smooth map f : M → N between differentiable manifolds, we can
induce forms on M from forms on N using the pull-back operation (cf. Definition 2.6),
since the pull-back of a field of alternating tensors is still a field of alternating tensors.

Remark 3.2 If g : N → R is a 0-form, that is, a function, the pull-back is defined
as f ∗g = g ◦ f .

It is easy to verify that the pull-back of forms satisfies the following properties.

Proposition 3.3 Let f : M → N be a differentiable map and α,β forms on N.
Then,

(i) f ∗(α+ β) = f ∗α+ f ∗β;
(ii) f ∗(gα) = (g ◦ f ) f ∗α = ( f ∗g)( f ∗α) for any function g ∈ C∞(N );

(iii) f ∗(α ∧ β) = ( f ∗α) ∧ ( f ∗β);
(iv) g∗( f ∗α) = ( f ◦ g)∗α for any map g ∈ C∞(L , M), where L is a differentiable

manifold.

Proof Exercise 3.8(1) �

Example 3.4 If f : M → N is differentiable and we consider coordinate systems
x : V → R

m , y : W → R
n respectively on M and N , we have yi = f̂ i (x1, . . . , xm)

for i = 1, . . . , n and f̂ = y◦ f ◦x−1 the local representation of f . Ifω =∑I ωI dy I

is a k-form on W , then by Proposition 3.3,
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f ∗ω = f ∗
(
∑

I

ωI dy I

)
=
∑

I

( f ∗ωI )( f ∗dy I ) =
∑

I

(ωI ◦ f )( f ∗dyi1) ∧ · · · ∧ ( f ∗dyik ).

Moreover, for v ∈ Tp M ,

( f ∗(dyi ))p(v) = (dyi ) f (p)((d f )pv) =
(

d(yi ◦ f )
)

p
(v),

that is, f ∗(dyi ) = d(yi ◦ f ). Hence,

f ∗ω =
∑

I

(ωI ◦ f ) d(yi1 ◦ f ) ∧ · · · ∧ d(yik ◦ f )

=
∑

I

(ωI ◦ f ) d( f̂ i1 ◦ x) ∧ · · · ∧ d( f̂ ik ◦ x).

If k = dim M = dim N = n, then the pull-back f ∗ω can easily be computed from
Theorem 1.13, according to which

( f ∗(dy1 ∧ · · · ∧ dyn))p = det (d f̂ )x(p)(dx1 ∧ · · · ∧ dxn)p. (2.1)

Given any form ω on M and a parameterization ϕ : U → M , we can consider
the pull-back of ω by ϕ and obtain a form defined on the open set U , called the local
representation of ω on that parameterization.

Example 3.5 Let x : W → R
n be a coordinate system on a smooth manifold M and

consider the 1-form dxi defined on W . The pull-back ϕ∗dxi by the corresponding
parameterization ϕ := x−1 is a 1-form on an open subset U of R

n satisfying

(ϕ∗dxi )x (v) = (ϕ∗dxi )x

⎛

⎝
n∑

j=1

v j
(

∂

∂x j

)

x

⎞

⎠ = (dxi )p

⎛

⎝
n∑

j=1

v j (dϕ)x

(
∂

∂x j

)

x

⎞

⎠

= (dxi )p

⎛

⎝
n∑

j=1

v j
(

∂

∂x j

)

p

⎞

⎠ = vi = (dxi )x (v),

for x ∈ U , p = ϕ(x) and v = ∑n
j=1 v j

(
∂
∂x j

)

x
∈ TxU . Hence, just as we had

(
∂
∂xi

)

p
= (dϕ)x

(
∂
∂xi

)

x
, we now have (dxi )x = ϕ∗(dxi )p, and so (dxi )p is the

1-form in W whose local representation on U is (dxi )x .

If ω = ∑
I ωI dx I is a k-form defined on an open subset of R

n , we define a
(k + 1)-form called exterior derivative of ω as

dω :=
∑

I

dωI ∧ dx I .
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Example 3.6 Consider the form ω = − y
x2+y2 dx + x

x2+y2 dy defined on R
2\{0}.

Then,

dω = d

(
− y

x2 + y2

)
∧ dx + d

(
x

x2 + y2

)
∧ dy

= y2 − x2

(x2 + y2)2 dy ∧ dx + y2 − x2

(x2 + y2)2 dx ∧ dy = 0.

The exterior derivative satisfies the following properties:

Proposition 3.7 If α,ω,ω1,ω2 are forms on R
n, then

(i) d(ω1 + ω2) = dω1 + dω2;
(ii) if ω is k-form, d(ω ∧ α) = dω ∧ α+ (−1)kω ∧ dα;

(iii) d(dω) = 0;
(iv) if f : R

m → R
n is smooth, d( f ∗ω) = f ∗(dω).

Proof Property (i) is obvious. Using (i), it is enough to prove (i i) for ω = aI dx I

and α = bJ dx J :

d(ω ∧ α) = d(aI bJ dx I ∧ dx J ) = d(aI bJ ) ∧ dx I ∧ dx J

= (bJ daI + aI dbJ ) ∧ dx I ∧ dx J

= bJ daI ∧ dx I ∧ dx J + aI dbJ ∧ dx I ∧ dx J

= dω ∧ α+ (−1)kaI dx I ∧ dbJ ∧ dx J

= dω ∧ α+ (−1)kω ∧ dα.

Again, to prove (i i i), it is enough to consider forms ω = aI dx I . Since

dω = daI ∧ dx I =
n∑

i=1

∂aI

∂xi
dxi ∧ dx I ,

we have

d(dω) =
n∑

j=1

n∑

i=1

∂2aI

∂x j∂xi
dx j ∧ dxi ∧ dx I

=
n∑

i=1

∑

j<i

(
∂2aI

∂x j∂xi
− ∂2aI

∂xi∂x j

)
dx j ∧ dxi ∧ dx I = 0.

To prove (iv), we first consider a 0-form g:

f ∗(dg) = f ∗
(

n∑

i=1

∂g

∂xi
dxi

)
=

n∑

i=1

(
∂g

∂xi
◦ f

)
d f i =

n∑

i, j=1

((
∂g

∂xi
◦ f

)
∂ f i

∂x j

)
dx j
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=
n∑

j=1

∂(g ◦ f )

∂x j
dx j = d(g ◦ f ) = d( f ∗g).

Then, if ω = aI dx I , we have

d( f ∗ω) = d(( f ∗aI )d f I ) = d( f ∗aI ) ∧ d f I + ( f ∗aI )d(d f I ) = d( f ∗aI ) ∧ d f I

= ( f ∗daI
) ∧ ( f ∗dx I ) = f ∗(daI ∧ dx I ) = f ∗(dω)

(where d f I denotes the form d f i1 ∧ · · · ∧ d f ik ), and the result follows. �

Suppose now that ω is a differential k-form on a smooth manifold M . We define
the (k + 1)-form dω as the smooth form that is locally represented by dωα for each
parameterization ϕα : Uα → M , where ωα := ϕ∗

αω is the local representation of ω,
that is, dω = (ϕ−1

α )∗(dωα) on ϕα(U ). Given another parameterization ϕβ : Uβ →
M such that W := ϕα(Uα) ∩ ϕβ(Uβ) �= ∅, it is easy to verify that

(ϕ−1
α ◦ ϕβ)∗ωα = ωβ .

Setting f equal to ϕ−1
α ◦ ϕβ , we have

f ∗(dωα) = d( f ∗ωα) = dωβ .

Consequently,

(ϕ−1
β )∗dωβ = (ϕ−1

β )∗ f ∗(dωα)

= ( f ◦ ϕ−1
β )∗(dωα)

= (ϕ−1
α )∗(dωα),

and so the two definitions agree on the overlapping set W . Therefore dω is well
defined. We leave it as an exercise to show that the exterior derivative defined for
forms on smooth manifolds also satisfies the properties of Proposition 3.7.

Exercise 3.8

(1) Prove Proposition 3.3.
(2) (Exterior derivative) Let M be a smooth manifold. Given a k-form ω in M we

can define its exterior derivative dω without using local coordinates: given k +1
vector fields X1, . . . , Xk+1 ∈ X(M),

dω(X1, . . . , Xk+1) :=
k+1∑

i=1

(−1)i−1 Xi · ω(X1, . . . , X̂i , . . . , Xk+1)

+
∑

i< j

(−1)i+ jω([Xi , X j ], X1, . . . , X̂i , . . . , X̂ j , . . . , Xk+1),
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where the hat indicates an omitted variable.

(a) Show that dω defined above is in fact a (k + 1)-form in M , that is,
(i) dω(X1, . . . , Xi + Yi , . . . , Xk+1) =

dω(X1, . . . , Xi , . . . , Xk+1) + dω(X1, . . . , Yi , . . . , Xk+1);
(ii) dω(X1, . . . , f X j , . . . , Xk+1)= f dω(X1, . . . , Xk+1) for any differen-

tiable function f ;
(iii) dω is alternating;
(iv) dω(X1, . . . , Xk+1)(p) depends only on (X1)p, . . . , (Xk+1)p.

(b) Let x : W → R
n be a coordinate system of M and let ω = ∑

I aI dxi1 ∧
· · · ∧ dxik be the expression of ω in these coordinates (where the aI are
smooth functions). Show that the local expression of dω is the same as the
one used in the local definition of exterior derivative, that is,

dω =
∑

I

daI ∧ dxi1 ∧ · · · ∧ dxik .

(3) Show that the exterior derivative defined for forms on smooth manifolds satisfies
the properties of Proposition 3.7.

(4) Show that:

(a) if ω = f 1dx + f 2dy + f 3dz is a 1-form on R
3 then

dω = g1dy ∧ dz + g2dz ∧ dx + g3dx ∧ dy,

where (g1, g2, g3) = curl( f 1, f 2, f 3);
(b) if ω = f 1dy ∧ dz + f 2dz ∧ dx + f 3dx ∧ dy is a 2-form on R

3, then

dω = div( f 1, f 2, f 3) dx ∧ dy ∧ dz.

(5) (De Rham cohomology) A k-form ω is called closed if dω = 0. If it exists a
(k − 1)-form β such that ω = dβ then ω is called exact. Note that every exact
form is closed. Let Zk be the set of all closed k-forms on M and define a relation
between forms on Zk as follows: α ∼ β if and only if they differ by an exact
form, that is, if β − α = dθ for some (k − 1)-form θ.

(a) Show that this relation is an equivalence relation.
(b) Let Hk(M) be the corresponding set of equivalence classes (called the k-

dimensional de Rham cohomology space of M). Show that addition and
scalar multiplication of forms define indeed a vector space structure on
Hk(M).

(c) Let f : M → N be a smooth map. Show that:
(i) the pull-back f ∗ carries closed forms to closed forms and exact forms

to exact forms;
(ii) if α ∼ β on N then f ∗α ∼ f ∗β on M ;
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(iii) f ∗ induces a linear map on cohomology f � : Hk(N ) → Hk(M)

naturally defined by f �[ω] = [ f ∗ω];
(iv) if g : L → M is another smooth map, then ( f ◦ g)� = g� ◦ f �.

(d) Show that the dimension of H0(M) is equal to the number of connected
components of M .

(e) Show that Hk(M) = 0 for every k > dim M .

(6) Let M be a manifold of dimension n, let U be an open subset of R
n and let ω be

a k-form on R × U . Writing ω as

ω = dt ∧
∑

I

aI dx I +
∑

J

bJ dx J ,

where I = (i1, . . . , ik−1) and J = ( j1, . . . , jk) are increasing index sequences,
(x1, . . . , xn) are coordinates in U and t is the coordinate in R, consider the
operator Q defined by

Q(ω)(t,x) =
∑

I

(∫ t

t0
aI ds

)
dx I ,

which transforms k-forms ω in R × U into (k − 1)-forms.

(a) Let f : V → U be a diffeomorphism between open subsets of R
n . Show

that the induced diffeomorphism f̃ := id × f : R × V → R × U satisfies

f̃ ∗ ◦ Q = Q ◦ f̃ ∗.

(b) Using (a), construct an operator Q which carries k-forms on R × M into
(k − 1)-forms and, for any diffeomorphism f : M → N , the induced
diffeomorphism f̃ := id × f : R× M → R× N satisfies f̃ ∗ ◦Q = Q◦ f̃ ∗.
Show that this operator is linear.

(c) Considering the operatorQdefined in (b) and the inclusion it0 : M → R×M
of M at the “level” t0, defined by it0(p) = (t0, p), show that ω − π∗i∗t0ω =
dQω + Qdω, where π : R × M → M is the projection on M .

(d) Show that the maps π� : Hk(M) → Hk(R × M) and i�t0 : Hk(R × M) →
H(M) are inverses of each other (and so Hk(M) is isomorphic to Hk(R ×
M)).

(e) Use (d) to show that, for k > 0 and n > 0, every closed k-form in R
n is

exact, that is, Hk(Rn) = 0 if k > 0.
(f) Use (d) to show that, if f, g : M → N are two smoothly homotopic

maps between smooth manifolds (meaning that there exists a smooth map
H : R × M → N such that H(t0, p) = f (p) and H(t1, p) = g(p) for
some fixed t0, t1 ∈ R), then f � = g�.

(g) We say that M is contractible if the identity map id : M → M is smoothly
homotopic to a constant map. Show that R

n is contractible.
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(h) (Poincaré lemma) Let M be a contractible smooth manifold. Show that every
closed form on M is exact, that is, Hk(M) = 0 for all k > 0.
(Remark: This exercise is based on an exercise in [GP73]).

(7) (Lie derivative of a differential form) Given a vector field X ∈ X(M), we define
the Lie derivative of a form ω along X as

L Xω := d

dt
(ψt

∗ω)
|t=0

,

where ψt = F(·, t) with F the local flow of X at p [cf. Exercise 2.8(3)]. Show
that the Lie derivative satisfies the following properties:

(a) L X (ω1 ∧ ω2) = (L Xω1) ∧ ω2 + ω1 ∧ (L Xω2);
(b) d(L Xω) = L X (dω);
(c) Cartan formula: L Xω = ι(X)dω + d(ι(X)ω);
(d) L X (ι(Y )ω) = ι(L X Y )ω + ι(Y )L Xω

[cf. Exercise 6.11(12) on Chap. 1 and Exercise 1.15(8)].

2.4 Integration on Manifolds

Before we see how to integrate differential forms on manifolds, we will start by
studying the R

n case. For that let us consider an n-form ω defined on an open subset
U of R

n . We already know that ω can be written as

ωx = a(x) dx1 ∧ · · · ∧ dxn,

where a : U → R is a smooth function. The support of ω is, by definition, the
closure of the set where ω �= 0 that is,

suppω = {x ∈ Rn | ωx �= 0}.

We will assume that this set is compact (in which case ω is said to be compactly
supported). We define

∫

U
ω =

∫

U
a(x) dx1 ∧ · · · ∧ dxn :=

∫

U
a(x) dx1 · · · dxn,

where the integral on the right is a multiple integral on a subset of R
n . This definition

is almost well-behaved with respect to changes of variables in R
n . Indeed, if

f : V → U is a diffeomorphism of open sets of R
n , we have from (2.1) that

f ∗ω = (a ◦ f )(det d f )dy1 ∧ · · · ∧ dyn,

http://dx.doi.org/10.1007/978-3-319-08666-8_2
http://dx.doi.org/10.1007/978-3-319-08666-8_1
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and so ∫

V
f ∗ω =

∫

V
(a ◦ f )(det d f )dy1 · · · dyn .

If f is orientation-preserving, then det (d f ) > 0, and the integral on the right is, by
the change of variables theorem for multiple integrals in R

n (cf. Sect. 2.7.2), equal to∫
U ω. For this reason, we will only consider orientable manifolds when integrating

forms on manifolds. Moreover, we will also assume that suppω is always compact
to avoid convergence problems.

Let M be an oriented manifold, and let A = {(Uα,ϕα)} be an atlas whose
parameterizations are orientation-preserving. Suppose that suppω is contained in
some coordinate neighborhood Wα = ϕα(Uα). Then we define

∫

M
ω :=

∫

Uα

ϕ∗
αω =

∫

Uα

ωα.

Note that this does not depend on the choice of coordinate neighborhood: if suppω is
contained in some other coordinate neighborhood Wβ = ϕβ(Uβ), then ωβ = f ∗ωα,
where f := ϕ−1

α ◦ ϕβ is orientation-preserving, and hence

∫

Uβ

ωβ =
∫

Uβ

f ∗ωα =
∫

Uα

ωα.

To define the integral in the general case we use a partition of unity (cf. Sect. 2.7.2)
subordinate to the cover {Wα} of M , i.e. a family of differentiable functions on M ,
{ρi }i∈I , such that:

(i) for every point p ∈ M , there exists a neighborhood V of p such that V ∩
supp ρi = ∅ except for a finite number of ρi ;

(ii) for every point p ∈ M ,
∑

i∈I ρi (p) = 1;
(iii) 0 ≤ ρi ≤ 1 and supp ρi ⊂ Wαi for some element Wαi of the cover.

Because of property (i), suppω (being compact) intersects the supports of only
finitely many ρi . Hence we can assume that I is finite, and then

ω =
(
∑

i∈I

ρi

)
ω =

∑

i∈I

ρiω =
∑

i∈I

ωi

with ωi := ρiω and suppωi ⊂ Wαi . Consequently we define:

∫

M
ω :=

∑

i∈I

∫

M
ωi =

∑

i∈I

∫

Uαi

ϕ∗
αi
ωi .
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Remark 4.1

(1) When suppω is contained in one coordinate neighborhood W , the two definitions
above agree. Indeed,

∫

M
ω =

∫

W
ω =

∫

W

∑

i∈I

ωi =
∫

U
ϕ∗
(
∑

i∈I

ωi

)

=
∫

U

∑

i∈I

ϕ∗ωi =
∑

i∈I

∫

U
ϕ∗ωi =

∑

i∈I

∫

M
ωi ,

where we used the linearity of the pull-back and of integration on R
n .

(2) The definition of integral is independent of the choice of partition of unity and
the choice of cover. Indeed, if {ρ̃ j } j∈J is another partition of unity subordinate
to another cover {W̃β} compatible with the same orientation, we have by (1)

∑

i∈I

∫

M
ρiω =

∑

i∈I

∑

j∈J

∫

M
ρ̃ jρiω

and ∑

j∈J

∫

M
ρ̃ jω =

∑

j∈J

∑

i∈I

∫

M
ρi ρ̃ jω.

(3) It is also easy to verify the linearity of the integral, that is,

∫

M
aω1 + bω2 = a

∫

M
ω1 + b

∫

M
ω2.

for a, b ∈ R and ω1,ω2 two n-forms on M .
(4) The definition of integral can easily be extended to oriented manifolds with

boundary.

Exercise 4.2

(1) Let M be an n-dimensional differentiable manifold. A subset N ⊂ M is said
to have zero measure if the sets ϕ−1

α (N ) ⊂ Uα have zero measure for every
parameterization ϕα : Uα → M in the maximal atlas.

(a) Prove that in order to show that N ⊂ M has zero measure it suffices to check
that the sets ϕ−1

α (N ) ⊂ Uα have zero measure for the parameterizations in
an arbitrary atlas.

(b) Suppose that M is oriented. Let ω ∈ �n(M) be compactly supported and let
W = ϕ(U ) be a coordinate neighborhood such that M\W has zero measure.
Show that ∫

M
ω =

∫

U
ϕ∗ω,
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where the integral on the right-hand side is defined as above and always
exists.

(2) Let x, y, z be the restrictions of the Cartesian coordinate functions in R
3 to S2,

oriented so that {(1, 0, 0); (0, 1, 0)} is a positively oriented basis of T(0,0,1)S2,
and consider the 2-form

ω = xdy ∧ dz + ydz ∧ dx + zdx ∧ dy ∈ �2(S2).

Compute the integral
∫

S2
ω

using the parameterizations corresponding to

(a) spherical coordinates;
(b) stereographic projection.

(3) Consider the manifolds

S3 =
{
(x, y, z, w) ∈ R

4 | x2 + y2 + z2 + w2 = 2
}

;
T 2 =

{
(x, y, z, w) ∈ R

4 | x2 + y2 = z2 + w2 = 1
}

.

The submanifold T 2 ⊂ S3 splits S3 into two connected components. Let M be
one of these components and let ω be the 3-form

ω = zdx ∧ dy ∧ dw − xdy ∧ dz ∧ dw.

Compute the two possible values of
∫

M ω.
(4) Let M and N be n-dimensional manifolds, f : M → N an orientation-

preserving diffeomorphism and ω ∈ �n(N ) a compactly supported form.
Prove that

∫

N
ω =

∫

M
f ∗ω.

2.5 Stokes Theorem

In this section we will prove a very important theorem.

Theorem 5.1 (Stokes) Let M be an n-dimensional oriented smooth manifold with
boundary, let ω be a (n − 1)-differential form on M with compact support, and let
i : ∂M → M be the inclusion of the boundary ∂M in M. Then
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∫

∂M
i∗ω =

∫

M
dω,

where we consider ∂M with the induced orientation (cf. Sect.9 in Chap.1).

Proof Let us take a partition of unity {ρi }i∈I subordinate to an open cover of M
by coordinate neighborhoods compatible with the orientation. Then ω =∑i∈I ρiω,
where we can assume I to be finite (ω is compactly supported), and hence

dω = d
∑

i∈I

ρiω =
∑

i∈I

d(ρiω).

By linearity of the integral we then have,

∫

M
dω =

∑

i∈I

∫

M
d(ρiω) and

∫

∂M
i∗ω =

∑

i∈I

∫

∂M
i∗(ρiω).

Hence, to prove this theorem, it is enough to consider the case where suppω is
contained inside one coordinate neighborhood of the cover. Let us then consider an
(n − 1)-form ω with compact support contained in a coordinate neighborhood W .
Let ϕ : U → W be the corresponding parameterization, where we can assume U
to be bounded (supp(ϕ∗ω) is compact). Then, the representation of ω on U can be
written as

ϕ∗ω =
n∑

j=1

a j dx1 ∧ · · · ∧ dx j−1 ∧ dx j+1 ∧ · · · ∧ dxn,

(where each a j : U → R is a C∞-function), and

ϕ∗dω = dϕ∗ω =
n∑

j=1

(−1) j−1 ∂a j

∂x j
dx1 ∧ · · · ∧ dxn .

The functions a j can be extended to C∞-functions on H
n by letting

a j (x1, · · · , xn) =
{

a j (x1, · · · , xn) if (x1, . . . , xn) ∈ U
0 if (x1, . . . , xn) ∈ H

n\U.

If W ∩ ∂M = ∅, then i∗ω = 0. Moreover, if we consider a rectangle I in H

containing U defined by equations b j ≤ x j ≤ c j ( j = 1, . . . , n), we have

∫

M
dω =

∫

U

⎛

⎝
n∑

j=1

(−1) j−1 ∂a j

∂x j

⎞

⎠ dx1 · · · dxn =
n∑

j=1

(−1) j−1
∫

I

∂a j

∂x j
dx1 · · · dxn

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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=
n∑

j=1

(−1) j−1
∫

Rn−1

(∫ c j

b j

∂a j

∂x j
dx j

)
dx1 · · · dx j−1dx j+1 · · · dxn

=
n∑

j=1

(−1) j−1
∫

Rn−1

(
a j (x1, . . . , x j−1, c j , x j+1, . . . , xn)−

−a j (x1, . . . , x j−1, b j , x j+1, . . . , xn)
)

dx1 · · · dx j−1dx j+1 · · · dxn = 0,

where we used the Fubini theorem (cf. Sect. 2.7.3), the fundamental theorem of
Calculus and the fact that the a j are zero outside U . We conclude that, in this case,∫
∂M i∗ω = ∫M dω = 0.

If, on the other hand, W ∩ ∂M �= ∅ we take a rectangle I containing U now
defined by the equations b j ≤ x j ≤ c j for j = 1, . . . , n − 1, and 0 ≤ xn ≤ cn .
Then, as in the preceding case, we have

∫

M
dω =

∫

U

⎛

⎝
n∑

j=1

(−1) j−1 ∂a j

∂x j

⎞

⎠ dx1 · · · dxn =
n∑

j=1

(−1) j−1
∫

I

∂a j

∂x j
dx1 · · · dxn

= 0 + (−1)n−1
∫

Rn−1

(∫ cn

0

∂an

∂xn
dxn

)
dx1 · · · dxn−1

= (−1)n−1
∫

Rn−1

(
an(x1, . . . , xn−1, cn) − an(x1, . . . , xn−1, 0)

)
dx1 · · · dxn−1

= (−1)n
∫

Rn−1
an(x1, . . . , xn−1, 0) dx1 . . . dxn−1.

To compute
∫
∂M i∗ω we need to consider a parameterization ϕ̃ of ∂M defined on

an open subset of R
n−1 which preserves the standard orientation on R

n−1 when we
consider the induced orientation on ∂M . For that, we can for instance consider the set

Ũ = {(x1, . . . , xn−1) ∈ R
n−1 | ((−1)n x1, x2, . . . , xn−1, 0) ∈ U }

and the parameterization ϕ̃ : Ũ :→ ∂M given by

ϕ̃(x1, . . . , xn−1) := ϕ
(
(−1)n x1, x2, . . . , xn−1, 0

)
.

Recall that the orientation on∂M obtained fromϕ by just dropping the last coordinate
is (−1)n times the induced orientation on ∂M (cf. Sect. 9 in Chap. 1). Therefore
ϕ̃ gives the correct orientation. The local expression of i : ∂M → M on these
coordinates (î : Ũ → U such that î = ϕ−1 ◦ i ◦ ϕ̃) is given by

î(x1, . . . , xn−1) =
(
(−1)n x1, x2, . . . , xn−1, 0

)
.

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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Hence,

∫

∂M
i∗ω =

∫

Ũ
ϕ̃∗i∗ω =

∫

Ũ
(i ◦ ϕ̃)∗ω =

∫

Ũ
(ϕ ◦ î)∗ω =

∫

Ũ
î∗ϕ∗ω.

Moreover,

î∗ϕ∗ω = î∗
n∑

j=1

a j dx1 ∧ · · · ∧ dx j−1 ∧ dx j+1 ∧ · · · ∧ dxn

=
n∑

j=1

(a j ◦ î) dî1 ∧ · · · ∧ dî j−1 ∧ dî j+1 ∧ · · · ∧ dîn

= (−1)n(an ◦ î) dx1 ∧ · · · ∧ dxn−1,

since dî1 = (−1)ndx1, dîn = 0 and dî j = dx j , for j �= 1 and j �= n. Consequently,

∫

∂M
i∗ω = (−1)n

∫

Ũ
(an ◦ î) dx1 · · · dxn−1

= (−1)n
∫

Ũ
an

(
(−1)n x1, x2, . . . , xn−1, 0

)
dx1 · · · dxn−1

= (−1)n
∫

Rn−1
an(x1, x2, . . . , xn−1, 0) dx1 · · · dxn−1 =

∫

M
dω

(where we have used the change of variables theorem). �

Remark 5.2 If M is an oriented n-dimensional differentiable manifold (that is, a
manifold with boundary ∂M = ∅), it is clear from the proof of the Stokes theorem
that ∫

M
dω = 0

for any (n − 1)-differential form ω on M with compact support. This can be viewed
as a particular case of the Stokes theorem if we define the integral over the empty
set to be zero.

Exercise 5.3

(1) Use the Stokes theorem to confirm the result of Exercise 4.2(3).
(2) (Homotopy invariance of the integral) Recall that two maps f0, f1 : M → N are

said to be smoothly homotopic if there exists a differentiable map H : R×M →
N such that H(0, p) = f0(p) and H(1, p) = f1(p) [cf. Exercise 3.8(6)]. If M
is a compact oriented manifold of dimension n and ω is a closed n-form on N ,
show that ∫

M
f ∗
0 ω =

∫

M
f ∗
1 ω.
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(3) (a) Let X ∈ X(Sn) be a vector field with no zeros. Show that

H(t, p) = cos(πt)p + sin(πt)
X p

‖X p‖
is a smooth homotopy between the identity map and the antipodal map,
where we make use of the identification

X p ∈ Tp Sn ⊂ TpR
n+1 ∼= R

n+1.

(b) Using the Stokes theorem, show that

∫

Sn
ω > 0,

where

ω =
n+1∑

i=1

(−1)i+1xi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn+1

and Sn = ∂{x ∈ R
n+1 | ‖x‖ ≤ 1} has the orientation induced by the

standard orientation of R
n+1.

(c) Show that if n is even then X cannot exist. What about when n is odd?
(4) (Degree of a map) Let M , N be compact, connected oriented manifolds of

dimension n, and let f : M → N be a smooth map. It can be shown that there
exists a real number deg( f ) (called the degree of f ) such that, for any n-form
ω ∈ �n(N ), ∫

M
f ∗ω = deg( f )

∫

N
ω.

(a) Show that if f is not surjective then deg( f ) = 0.
(b) Show that if f is an orientation-preserving diffeomorphism then deg( f ) =

1, and that if f is an orientation-reversing diffeomorphism then deg( f )=−1.
(c) Let f : M → N be surjective and let q ∈ N be a regular value of f .

Show that f −1(q) is a finite set and that there exists a neighborhood W of
q in N such that f −1(W ) is a disjoint union of opens sets Vi of M with
f |Vi : Vi → W a diffeomorphism.

(d) Admitting the existence of a regular value of f , show that deg( f ) is an
integer. (Remark: The Sard theorem guarantees that the set of critical values of a differentiable map f

between manifolds with the same dimension has zero measure, which in turn guarantees the existence of a

regular value of f ).
(e) Given n ∈ N, indicate a smooth map f : S1 → S1 of degree n.
(f) Show that homotopic maps have the same degree.
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(g) Let f : Sn → Sn be an orientation-preserving diffeomorphism if n is even,
or an orientation-reversing diffeomorphism if n is odd. Prove that f has a
fixed point, that is, a point p ∈ Sn such that f (p) = p. (Hint: Show that if f had

no fixed points then it would be possible to construct an homotopy between f and the antipodal map).

2.6 Orientation and Volume Forms

In this section we will study the relation between orientation and differential forms.

Definition 6.1 A volume form (or volume element) on a manifold M of dimension
n is an n-form ω such that ωp �= 0 for all p ∈ M .

The existence of a volume form is equivalent to M being orientable.

Proposition 6.2 A manifold M of dimension n is orientable if and only if there exists
a volume form on M.

Proof Let ω be a volume form on M , and consider an atlas {(Uα,ϕα)}. We can
assume without loss of generality that the open sets Uα are connected. We will
construct a new atlas from this one whose overlap maps have derivatives with positive
determinant. Indeed, considering the representation of ω on one of these open sets
Uα ⊂ R

n , we have

ϕ∗
αω = aαdx1

α ∧ · · · ∧ dxn
α,

where the function aα cannot vanish, and hence must have a fixed sign. If aα is
positive, we keep the corresponding parameterization. If not, we construct a new
parameterization by composing ϕα with the map

(x1, . . . , xn) �→ (−x1, x2, . . . , xn).

Clearly, in these new coordinates, the new function aα is positive. Repeating this for
all coordinate neighborhoods we obtain a new atlas for which all the functions aα
are positive, which we will also denote by {(Uα,ϕα)}. Moreover, whenever W :=
ϕα(Uα) ∩ ϕβ(Uβ) �= ∅, we have ωα = (ϕ−1

β ◦ ϕα)∗ωβ . Hence,

aαdx1
α ∧ · · · ∧ dxn

α = (ϕ−1
β ◦ ϕα)∗(aβ dx1

β ∧ · · · ∧ dxn
β)

= (aβ ◦ ϕ−1
β ◦ ϕα)(det(d(ϕ−1

β ◦ ϕα))) dx1
α ∧ · · · ∧ dxn

α

and so det(d(ϕ−1
β ◦ ϕα)) > 0. We conclude that M is orientable.

Conversely, if M is orientable, we consider an atlas {(Uα,ϕα)} for which the
overlap maps ϕ−1

β ◦ ϕα are such that det d(ϕ−1
β ◦ ϕα) > 0. Taking a partition
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of unity {ρi }i∈I subordinate to the cover of M by the corresponding coordinate
neighborhoods, we may define the forms

ωi := ρi dx1
i ∧ · · · ∧ dxn

i

with suppωi = supp ρi ⊂ ϕαi (Uαi ). Extending these forms to M by making them
zero outside supp ρi , we may define the form ω := ∑

i∈I ωi . Clearly ω is a well-
defined n-form on M so we just need to show that ωp �= 0 for all p ∈ M . Let p
be a point in M . There is an i ∈ I such that ρi (p) > 0, and so there exist linearly
independent vectors v1, . . . , vn ∈ Tp M such that (ωi )p(v1, . . . , vn) > 0. Moreover,
for all other j ∈ I\{i} we have (ω j )p(v1, . . . , vn) ≥ 0. Indeed, if p /∈ ϕα j (Uα j ),
then (ω j )p(v1, . . . , vn) = 0. On the other hand, if p ∈ ϕα j (Uα j ), then by (2.1)

dx1
j ∧ · · · ∧ dxn

j = det(d(ϕ−1
α j

◦ ϕαi ))dx1
i ∧ · · · ∧ dxn

i

and hence

(ω j )p(v1, . . . , vn) = ρ j (p)

ρi (p)
(det(d(ϕ−1

α j
◦ ϕαi )))(ωi )p(v1, . . . , vn) ≥ 0.

Consequently, ωp(v1, . . . , vn) > 0, and so ω is a volume form. �

Remark 6.3 Sometimes we call a volume form an orientation. In this case the orien-
tation on M is the one for which a basis {v1, . . . , vn} of Tp M is positive if and only
if ωp(v1, . . . , vn) > 0.

If we fix a volume form ω ∈ �n(M) on an orientable manifold M , we can define
the integral of any compactly supported function f ∈ C∞(M, R) as

∫

M
f :=

∫

M
f ω

(where the orientation of M is determined by ω). If M is compact, we define its
volume to be

vol(M) :=
∫

M
1 =

∫

M
ω.

Exercise 6.4

(1) Show that M × N is orientable if and only if both M and N are orientable.
(2) Let M be a compact oriented manifold with volume element ω ∈ �n(M). Prove

that if f > 0 then
∫

M f ω > 0. (Remark: In particular, the volume of a compact manifold is always

positive).
(3) Let M be a compact orientable manifold of dimension n, and let ω be an (n−1)-

form in M .

(a) Show that there exists a point p ∈ M for which (dω)p = 0.
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(b) Prove that there exists no immersion f : S1 → R of the unit circle into R.

(4) Let f : Sn → Sn be the antipodal map. Recall that the n-dimensional projective
space is the differential manifold RPn = Sn/Z2, where the group Z2 = {1,−1}
acts on Sn through 1 · x = x and (−1) · x = f (x). Let π : Sn → RPn be the
natural projection.

(a) Prove that ω ∈ �k(Sn) is of the form ω = π∗θ for some θ ∈ �k(RPn) if
and only if f ∗ω = ω.

(b) Show that RPn is orientable if and only if n is odd, and that in this case,

∫

Sn
π∗θ = 2

∫

RPn
θ.

(c) Show that for n even the sphere Sn is the orientable double covering of RPn

[cf. Exercise 8.6(9) in Chap. 1].

(5) Let M be a compact oriented manifold with boundary andω ∈ �n(M) a volume
element. The divergence of a vector field X ∈ X(M) is the function div(X)

such that
L Xω = (div(X))ω

[cf. Exercise 3.8(7)]. Show that

∫

M
div(X) =

∫

∂M
ι(X)ω.

(6) (Brouwer fixed point theorem)

(a) Let M be an n-dimensional compact orientable manifold with boundary
∂M �= ∅. Show that there exists no smooth map f : M → ∂M satisfying
f |∂M = id.

(b) Prove the Brouwer fixed point theorem: Any smooth map g : B → B of
the closed ball B := {x ∈ R

n | ‖x‖ ≤ 1} to itself has a fixed point, that is,
a point p ∈ B such that g(p) = p. (Hint: For each point x ∈ B, consider the ray rx starting

at g(x) and passing through x . There is only one point f (x) different from g(x) on rx ∩ ∂B. Consider the

map f : B → ∂B).

2.7 Notes

2.7.1 Section 2.1

(1) Given a finite dimensional vector space V we define its dual space as the space
of linear functionals on V .

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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Proposition 7.1 If {v1, . . . , vn} is a basis for V then there is a unique basis
{T1, . . . , Tn} of V ∗ dual to {v1, . . . , vn}, that is, such that Ti (v j ) = δi j .

Proof By linearity, the equations Ti (v j ) = δi j define a unique set of functionals
Ti ∈ V ∗. Indeed, for any v ∈ V , we have v =∑n

j=1 a j v j and so

Ti (v) =
n∑

j=1

a j Ti (v j ) =
n∑

j=1

a jδi j = ai .

Moreover, these uniquely defined functionals are linearly independent. In fact,
if

T :=
n∑

i=1

bi Ti = 0,

then, for each j = 1, . . . , n, we have

0 = T (v j ) =
n∑

i=1

bi Ti (v j ) = b j .

To show that {T1, . . . , Tn} generates V ∗, we take any S ∈ V ∗ and set bi := S(vi ).
Then, defining T :=∑n

i=1 bi Ti , we see that S(v j ) = T (v j ) for all j = 1, . . . , n.
Since {v1, . . . , vn} is a basis for V , we have S = T . �
Moreover, if {v1, . . . , vn} is a basis for V and {T1, . . . , Tn} is its dual basis, then,
for any v =∑ a j v j ∈ V and T =∑ bi Ti ∈ V ∗, we have

T (v) =
n∑

j=i

bi Ti (v) =
n∑

i, j=1

a j bi Ti (v j ) =
n∑

i, j=1

a j biδi j =
n∑

i=1

ai bi .

If we now consider a linear functional F on V ∗, that is, an element of (V ∗)∗, we
have F(T ) = T (v0) for some fixed vector v0 ∈ V . Indeed, let {v1, . . . , vn} be
a basis for V and let {T1, . . . , Tn} be its dual basis. Then if T = ∑n

i=1 bi Ti ,
we have F(T ) = ∑n

i=1 bi F(Ti ). Denoting the values F(Ti ) by ai , we get
F(T ) = ∑n

i=1 ai bi = T (v0) for v0 = ∑n
i=1 ai vi . This establishes a one-to-

one correspondence between (V ∗)∗ and V , and allows us to view V as the space
of linear functionals on V ∗. For v ∈ V and T ∈ V ∗, we write v(T ) = T (v).

(2) Changing from a basis {v1, . . . , vn} to a new basis {v′
1, . . . , v′

n} in V , we obtain
a change of basis matrix S, whose j th column is the vector of coordinates of
the new basis vector v′

j in the old basis. We can then write the symbolic matrix
equation

(v′
1, . . . , v′

n) = (v1, . . . , vn)S.

The coordinate (column) vectors a and b of a vector v ∈ V (a contravariant
1-tensor on V ) with respect to the old basis and to the new basis are related by
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b =
⎛

⎜⎝
b1
...

bn

⎞

⎟⎠ = S−1

⎛

⎜⎝
a1
...

an

⎞

⎟⎠ = S−1a,

since we must have (v′
1, . . . , v′

n)b = (v1, . . . , vn)a = (v′
1, . . . , v′

n)S−1a. On the
other hand, if {T1, . . . , Tn} and {T ′

1, . . . , T ′
n} are the dual bases of {v1, . . . , vn}

and {v′
1, . . . , v′

n}, we have

⎛

⎜⎝
T1
...

Tn

⎞

⎟⎠ (v1, . . . , vn) =
⎛

⎜⎝
T ′

1
...

T ′
n

⎞

⎟⎠
(
v′

1, . . . , v′
n

) = I

(where, in the symbolic matrix multiplication above, each coordinate is obtained
by applying the covectors to the vectors). Hence,

⎛

⎜⎝
T1
...

Tn

⎞

⎟⎠
(
v′

1, . . . , v′
n

)
S−1 = I ⇔ S−1

⎛

⎜⎝
T1
...

Tn

⎞

⎟⎠
(
v′

1, . . . , v′
n

) = I,

implying that
⎛

⎜⎝
T ′

1
...

T ′
n

⎞

⎟⎠ = S−1

⎛

⎜⎝
T1
...

Tn

⎞

⎟⎠ .

The coordinate (row) vectors a = (a1, . . . , an) and b = (b1, . . . , bn) of a
1-tensor T ∈ V ∗ (a covariant 1-tensor on V ) with respect to the old basis
{T1, . . . , Tn} and to the new basis {T ′

1, . . . , T ′
n} are related by

a

⎛

⎜⎝
T1
...

Tn

⎞

⎟⎠ = b

⎛

⎜⎝
T ′

1
...

T ′
n

⎞

⎟⎠ ⇔ aS

⎛

⎜⎝
T ′

1
...

T ′
n

⎞

⎟⎠ = b

⎛

⎜⎝
T ′

1
...

T ′
n

⎞

⎟⎠

and so b = aS. Note that the coordinate vectors of the covariant 1-tensors on V
transform like the basis vectors of V (that is, by means of the matrix S) whereas
the coordinate vectors of the contravariant 1-tensors on V transform by means
of the inverse of this matrix. This is the origin of the terms “covariant” and
“contravariant”.
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2.7.2 Section 2.4

(1) (Change of variables theorem) Let U, V ⊂ R
n be open sets, let g : U → V be

a diffeomorphism and let f : V → R be an integrable function. Then

∫

V
f =

∫

U
( f ◦ g)| det dg|.

(2) To define smooth objects on manifolds it is often useful to define them first
on coordinate neighborhoods and then glue the pieces together by means of a
partition of unity.

Theorem 7.1 Let M be a smooth manifold and V an open cover of M. Then
there is a family of differentiable functions on M, {ρi }i∈I , such that:

(i) for every point p ∈ M, there exists a neighborhood U of p such that
U ∩ supp ρi = ∅ except for a finite number of ρi ;

(ii) for every point p ∈ M,
∑

i∈I ρi (p) = 1;
(iii) 0 ≤ ρi ≤ 1 and supp ρi ⊂ V for some element V ∈ V .

Remark 7.2 This collection ρi of smooth functions is called partition of unity
subordinate to the cover V .

Proof Let us first assume that M is compact. For every point p ∈ M we consider
a coordinate neighborhood Wp = ϕp(Up) around p contained in an element Vp

of V , such that ϕp(0) = p and B3(0) ⊂ Up (where B3(0) denotes the ball of
radius 3 around 0). Then we consider the C∞-functions (cf. Fig. 2.1)

x

λ

h

1 2

Fig. 2.1 Graphs of the functions λ and h
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λ : R → R

x �→
{

e
1

(x−1)(x−2) if 1 < x < 2
0 otherwise

,

h : R → R

x �→
∫ 2

x λ(t) dt
∫ 2

1 λ(t) dt
,

β : R
n → R

x �→ h(‖x‖) .

Notice that h is a decreasing function with values 0 ≤ h(x) ≤ 1, equal to zero
for x ≥ 2 and equal to 1 for x ≤ 1. Hence, we can consider bump functions
γp : M → [0, 1] defined by

γp(q) =
⎧
⎨

⎩

β(ϕ−1
p (q)) if q ∈ ϕp(Up)

0 otherwise.

Then supp γp = ϕp(B2(0)) ⊂ ϕp(B3(0)) ⊂ Wp is contained inside an element
Vp of the cover. Moreover, {ϕp(B1(0))}p∈M is an open cover of M and so we
can consider a finite subcover {ϕpi (B1(0))}k

i=1 such that M = ∪k
i=1ϕpi (B1(0)).

Finally we take the functions

ρi = γpi∑k
j=1 γp j

.

Note that
∑k

j=1 γp j (q) �= 0 since q is necessarily contained inside some
ϕpi (B1(0)) and so γi (q) �= 0. Moreover, 0 ≤ ρi ≤ 1,

∑
ρi = 1 and

supp ρi = supp γpi ⊂ Vpi .
If M is not compact we can use a compact exhaustion, that is, a sequence

{Ki }i∈N of compact subsets of M such that Ki ⊂ int Ki+1 and M = ∪∞
i=1 Ki .

The partition of unity is then obtained as follows. The family {ϕp(B1(0))}p∈M

is a cover of K1, so we can consider a finite subcover of K1,
{
ϕp1(B1(0)), . . . ,ϕpk1

(B1(0))
}

.

By induction, we obtain a finite number of points such that
{
ϕpi

1
(B1(0)), . . . ,ϕpi

ki
(B1(0))

}
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covers Ki\ int Ki−1 (a compact set). Then, for each i , we consider the corre-
sponding bump functions

γpi
1
, . . . , γpi

ki
: M → [0, 1].

Note that γp1
i + · · · + γpi

ki
> 0 for every q ∈ Ki \ int Ki−1 (as there is always

one of these functions which is different from zero). As in the compact case, we
can choose these bump functions so that supp γpi

j
is contained in some element

of V . We will also choose them so that supp γpi
j
⊂ ∫ Ki+1 \ Ki−2 (an open set).

Hence, {γpi
j
}i∈N,1≤ j≤ki is locally finite, meaning that, given a point p ∈ M ,

there exists an open neighborhood V of p such that only a finite number of these
functions is different from zero in V . Consequently, the sum

∑∞
i=1
∑ki

j=1 γpi
j

is

a positive, differentiable function on M . Finally, making

ρi
j =

γpi
j

∑∞
i=1
∑ki

j=1 γpi
j

,

we obtain the desired partition of unity (subordinate to V). �

Remark 7.3 Compact exhaustions always exist on manifolds. In fact, if U is a
bounded open set of R

n , one can easily construct a compact exhaustion {Ki }i∈N

for U by setting

Ki =
{

x ∈ U | dist(x, ∂U ) ≥ 1

n

}
.

If M is a differentiable manifold, one can always take a countable atlas A =
{(U j ,ϕ j )} j∈N such that each U j is a bounded open set, thus admitting a compact

exhaustion {K j
i }i∈N. Therefore

⎧
⎨

⎩
⋃

i+ j=l

ϕ j

(
K j

i

)
⎫
⎬

⎭
l∈N

is a compact exhaustion of M .

2.7.3 Section 2.5

(Fubini theorem) Let A ⊂ R
n and B ⊂ R

m be compact intervals and let f : A×B →
R be a continuous function. Then
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∫

A×B
f =

∫

A

(∫

B
f (x, y)dy1 · · · dym

)
dx1 · · · dxn

=
∫

B

(∫

A
f (x, y)dx1 · · · dxn

)
dy1 · · · dym .

2.7.4 Bibliographical Notes

The material in this chapter can be found in most books on differential geometry
(e.g. [Boo03, GHL04]). A text entirely dedicated to differential forms and their
applications is [dC94]. The study of de Rham cohomology leads to a beautiful and
powerful theory, whose details can be found for instance in [BT82].
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