
Chapter 2
The ConcurrenC Model of Computation

Embedded system design, in general, can only be successful if it is based on a
suitable Model of Computation (MoC) that can be well represented in an executable
System-level Description Language (SLDL) and is supported by a matching set of
design tools. While C-based SLDLs, such as SystemC and SpecC, are popular in
system-level modeling and validation, current tool flows impose serious restrictions
on the synthesizable subset of the supported SLDL. A properly aligned and clean
system-level MoC is often neglected or even ignored.

In this chapter, we propose a newMoC, called ConcurrenC, that defines a system-
level of abstraction, fits systemmodeling requirements, and can be expressed in both
SystemC and SpecC SLDLs [CD09].

2.1 Motivation

For system-level design, the importance of abstract modeling cannot be overrated.
Proper abstraction and specification of the system model is a key to an accurate and
efficient estimation and the final successful implementation.

Register-Transfer Level (RTL) design is a good example to show the impor-
tance of a well-defined MoC. Designers describe hardware components in hardware
description languages (HDL), i.e., VHDL and Verilog. Both languages have strong
capabilities to support different types of hardware structures and functionalities. By
using the HDL, designers use Finite State Machines (FSMs) to model controllers
or other parts of their design. Thus, FSM plays a crucial role as a formal model
behind the languages. In other words, the FSM model in the mind of the designer is
described syntactically in the VHDL or Verilog language to implement a hardware
design.

Note that commercial computer aided design (CAD) tools cannot synthesize all
the VHDL/Verilog statements. Instead, special design guidelines are provided to
restrict the use of specific syntax elements, or to prevent generation of improper
logics, e.g., latches.

© Springer International Publishing Switzerland 2015
W. Chen, Out-of-order Parallel Discrete Event Simulation
for Electronic System-level Design, DOI 10.1007/978-3-319-08753-5_2

29

30 2 The ConcurrenC Model of Computation

Table 2.1 System-level design in comparison with the well-established RTL design

Abstraction level Schematics Language MoC Tool

RTL VHDL, Verilog FSM, FSMD Synopsys design
compiler, cadence
RTL compiler...

ESL SpecC, SystemC PSM, TLM (?)
ConcurrenC !

SoC environment
[DGP+08], synopsys
system studio...

The importance of the model in system design is the same as in RTL. Table2.1
compares the situation at the system-level against the mature design methodology
at the RTL. RTL design is supported by the strong MoCs of FSM and FSMD, and
well-accepted coding guidelines exist for the VHDL and Verilog languags, so that
established commercial tool chains can implement the described hardware. It is
important to notice that here the MoC was defined first, and the coding style in the
respective HDL followed the needs of the MoC.

At the Electronic System Level (ESL), on the other hand, we have the popular
C-based SLDLs SystemC and SpecC, which are more or less supported by early
academic and commercial tools [DGP+08, ESE]. As at RTL, the languages are
restricted to a (small) subset of supported features, but these modeling guidelines
are not very clear. Moreover, the MoC behind these SLDLs is unclear. SpecC is
defined in context of the Program State Machine (PSM) MoC [GZD+00], but so is
SpecCharts [GVNG94] whose syntax is entirely different. For SystemC, one could
claim Transaction Level Model (TLM) as its MoC [GLMS02], but a wide variety of
interpretations of TLM exists.

We can conclude that in contrast to the popularity of the C-based SLDLs for ESL
modeling and validation, and the presence of existing design flows implemented
by early tools, the use of a well-defined and clear system-level MoC is neglected.
Instead, serious restrictions are imposed on the usable (i.e., synthesizable and veri-
fiable) subset of the supported SLDL. Without a clear MoC behind these syntactical
guidelines, computer-aided system design is difficult. Clearly, a well-defined and
formal MoC is needed to tackle the ESL design challenge.

2.2 Models of Computation

Edwards et al. argue in [ELLSV97] that the design approach should be based on the
use of formalmethods to describe the system behavior at a higher level of abstraction.
AMoC is such formalmethod for system design.MoC is a formal definition of the set
of allowable operations used in computation and their respective costs [MoC]. This
defines the behavior of the system is at certain abstract level to reflect the essential

2.2 Models of Computation 31

system features. Many different models of computation have been proposed for
different domains. An overview can be found in [GVNG94, LSV98].

Kahn Process Network (KPN) is a deterministic MoC where processes are con-
nected by unbounded FIFO communication channels to form a network [Par95].
Dataflow Process Network (DFPN) [Par95], a special case of KPN, is a kind of
MoC in which dataflow can be drawn in graphs as process network and the size of
the communication buffer is bounded. Synchronous dataflow (SDF) [LM87], Cyclo-
static dataflow (CSDF) [BELP96],Heterochronous dataflow (HDF) [GLL99],Para-
meterized Synchronous dataflow (PSDF) [BB00],Boolean dataflow (BDF) [Buc93],
and Dynamic dataflow (DDF) [Zho04] are extended MoCs from the DFPN to pro-
vide the features like static scheduling, predetermined communication patterns, finite
state machine (FSM) extension, reconfiguration, boolean modeling, and dynamic
deadlock and boundedness analysis. These MoCs are popular for modeling signal
processing applications but not suited for controller applications.

Software/hardware integration medium (SHIM) [ET06] is a concurrent asyn-
chronous deterministicmodel, which is essentially an effectiveKPNwith rendezvous
communication for heterogeneous-embedded systems.

Petri Net [Pet77], an abstract, formalmodel of informationflow, is a state-oriented
hierarchical model, especially for the systems that being concurrent, distributed,
asynchronous, parallel, non-deterministic or stochastic activities. However, it is unin-
terpreted and can also quickly become incomprehensiblewith any system complexity
increase.

Dataflow Graph (DFG) and its derivatives are MoCs for describing computa-
tional intensive systems [GZD+00]. It is very popular for describing digital signal
processing (DSP) components but is not suitable to represent control parts which are
commonly found in most programming languages.

Combined with Finite State Machine (FSM) which is popular for describing
control systems, FSM and DFG form Finite State Machine with Datapath (FSMD)
in order to describe systems requiring both control and computation. Superstate
Finite-State Machine with Datapath (SFSMD) and hierarchical concurrent finite-
state machine with Datapath (HCFSMD) are proposed based on FSMD to support
the hierarchical description ability with concurrent system features for behavioral
synthesis.

Program State machine (PSM) [GVNG94] is an extension of FSMD that sup-
ports both hierarchy and concurrency, and allows states to contain regular program
code.

Transaction-level modeling (TLM) [GLMS02] is a well-accepted approach to
model digital systems where the implementation details of the communication and
functional units are abstracted and separated. TLM abstracts away the low level sys-
tem details so that executes dramatically faster than synthesizable models. However,
high simulation speed is traded in for low accuracy, while a high degree of accuracy
comes at the price of low speed. Moreover, TLM does not specify a well-defined
MoC, but relies on the system design flow and the used SLDL to define the details
of supported syntax and semantics.

32 2 The ConcurrenC Model of Computation

2.3 ConcurrenC MoC

Althoughwe have themature and industrially used SLDLs, like SpecC and SystemC,
we do not have a formal model for both of them. In this section, we will discuss
the close relationship and tight dependencies between SLDLs (i.e., syntax), their
expressive abilities (i.e., semantics), and the abstract models they can represent. In
contrast to the large set of models the SLDL can describe, the available tools support
only a subset of these models. To avoid this discrepancy that clearly hinders the
effectiveness of anyESLmethodology,we propose a novelMoC, calledConcurrenC,
that fits the system modeling requirements and the capabilities of the supporting tool
chain and languages.

Generally speaking, ConcurrenC should be a system-level FSM extension with
support for concurrency and hierarchy. As such, it falls into the PSMMoC category.
TheConcurrenC model needs clear separation of concerns on computation and com-
munication. In the realm of structure abstraction, a ConcurrenC model consists of
blocks, channels and interfaces, and fully supports structural and behavioral hier-
archy. Blocks can be flexibly composed in space and time to execute sequentially,
in parallel/pipelined fashion, or by use of state transitions. Blocks themselves are
internally based on C, which the most popular programming language for embedded
applications. In the realm of communication abstraction, we intentionally use a set
of predefined channels that follow a typed message passing paradigm rather than
using user-defined freely programmable channels.

2.3.1 Relationship to C-based SLDLs

More specifically, ConcurrenC is tailored to the SpecC and SystemC SLDLs.
ConcurrenC abstracts the embedded system features and provides clear guidelines
for the designer to efficiently use the SLDLs to build a system. In other words, the
ConcurrenC model can be captured and described by using the SLDLs.

Figure2.1 shows the relationship between the C-based SLDLs, SystemC and
SpecC, and the MoC, ConcurrenC. ConcurrenC is a true subset of the models that
can be described by SpecC and SystemC. This implies that ConcurrenC contains
only the model features which can be described by both languages. For example,
exception handling, i.e., interrupt and abortion, is supported in SpecC by using the

Fig. 2.1 Relationship
between C-based SLDLs
SystemC and SpecC, and
MoC ConcurrenC

2.3 ConcurrenC MoC 33

try-trap syntax, but SystemC does not have the capability to handle such exceptions.
On the other hand, SystemC supports the feature for waiting a certain time and for
some events at the same time, which SpecC does not support. As shown in Fig. 2.1,
features that are only supported by one SLDLwill not be included in theConcurrenC
model.

Moreover, ConcurrenC excludes some features that both SpecC and SystemC
support (the shadow overlap area in Fig. 2.1). We exclude these to make the Con-
currenC model more concise for modeling. For example, ConcurrenC will restrict
its communication channels to a predefined library rather than allowing the user to
define arbitrary channels by themselves. This allows tools to recognize the channels
and implement them in an optimal fashion.

2.3.2 ConcurrenC Features

A ConcurrenC Model can be visualized in four dimensions as shown in Fig. 2.2.
There are three dimensions in space, and one in time. The spatial dimensions con-
sist of two dimensions for structural composition of blocks and channels and their
connectivity through ports and signals (X, Y coordinates), and one for hierarchi-
cal composition (Z-axis). The temporal dimension specifies the execution order of

Fig. 2.2 Visualization of a ConcurrenC Model in three spatial and one temporal dimensions

34 2 The ConcurrenC Model of Computation

blocks in time, which can be sequential or FSM-like (thick arrows), parallel (dashed
lines), or pipelined (dashed lines with arrows) in Fig. 2.2.

The detailed features of the proposed ConcurrenC MoC are listed below:

• Communication and Computation Separation. Separating communication from
computation allows “plug-n-play” features of the embedded system [GZD+00].
In ConcurrenC, the communication contained in channels is separated from the
computation part contained in blocks so that the purpose of each statement in the
model can be clearly identified whether it is for communication or computation.
This also helps for architecture refinement and hardware/software partitioning.

• Hierarchy. Hierarchy eliminates the potential explosion of the model size and
significantly simplifies comprehensible modeling of complex systems.

• Concurrency. The need for concurrency is obvious. A common embedded system
will have multiple hardware units work in parallel and cooperate through specified
communication mechanisms. ConcurrenC also supports pipelining in order to
provide a simple and explicit description of the pipelined data flow in the system.

• Abstract Communications (Channels). A predefined set of communication
channels is available in ConcurrenC. We believe that the restriction to prede-
fined channels not only avoids coding errors by the designer, but also simplifies
the later refinement steps, since the channels can be easily recognized by the tools.

• Timing. The execution time of the model should be evaluable to observe the
efficiency of the system. Thus, ConcurrenC supports wait-for-time statements in
similar fashion as SystemC and SpecC.

• Execution. The model must be executable in order to show its correctness and
obtain performance estimation. Since a ConcurrenC model can be converted to
SpecC and SystemC, the execution of the model is thus possible.

2.3.3 Communication Channel Library

For ConcurrenC, we envision two type of channels, channels for synchronization
and data transfer. For data transfer, ConcurrenC limits the channel to transfer data in
FIFO fashion (as in KPN and SDF). In many cases, these channels make the model
deterministic and allow static scheduling. For KPN-like channels, the buffer size is
infinite (Q∞) which makes the model deadlock free but not practical. For SDF-like
channels, the buffer size is fixed (Qn). Double-handshakemechanism,which behaves
in a rendezvous fashion, is also available as a FIFO with buffer size of zero (Q0).
Signals are needed to design a 1−N (broadcasting) channel. Furthermore, shared
variables are allowed as a simple way of communication that is convenient especially
in software. Moreover, FIFO channels can be used to implement semaphore which
is the key to build synchronization channels. In summary, ConcurrenC supports the
predefined channel library as shown in Table2.2.

2.3 ConcurrenC MoC 35

Table 2.2 Parameterized
communication channels

Channel type Receiver Sender Buffer size

Q0 Blocking Blocking 0

Qn Blocking Blocking n

Q∞ Blocking – ∞
Signal Blocking – 1

Shared variable – – 1

2.3.4 Relationship to KPN and SDF

With the features we discussed above, it is quite straightforward to convert the major
MoCs, KPN, and SDF into ConcurrenC.

The conversion rules from KPN (SDF) to ConcurrenC are:

• ∀ processes ∈ KPN (SDF): convert into ConcurrenC blocks.
• ∀ channels ∈ KPN (SDF): convert into ConcurrenC channels of type Q∞ (Qn).
• Keep the same connectivity in ConcurrenC as in KPN (SDF).
• If desired, group blocks in hierarchy and size the KPN channels for real-world
implementation.

The conversion rules from SDF to ConcurrenC are:

• ∀ actors ∈ SDF: convert into ConcurrenC blocks.
• ∀ arcs ∈ SDF: convert into ConcurrenC channels of type Qn where n is the size
of the buffer.

• keep the same connectivity in ConcurrenC as in SDF.
• If desired, group blocks in hierarchy.

As such, ConcurrenC is essentially a superset MoC of KPN and SDF. Also it
becomes possible to implement KPN and SDF into SpecC and SystemC by using
ConcurrenC as the intermediate MoC. Moreover, note that ConcurrenC inherits the
strong formal properties of KPN and SDF, such as static schedulability and deadlock-
free guarantees.

2.4 Case Study

In order to demonstrate the feasibility and benefits of the ConcurrenC approach, we
use the Advanced Video Coding (AVC) standard H.264 decoding algorithm [Joi03]
as a driver application to evaluate the modeling features. Our H.264 decoder model is
of industrial size, consisting of about 40,000 lines of code. The input of the decoder
is an H.264 stream file, while the output is a YUV file.

ConcurrenC features can be easily used to model the H.264 decoder, see Fig. 2.3.

36 2 The ConcurrenC Model of Computation

Fig. 2.3 Proposed H.264 decoder block diagram

• Hierarchy: At the top level of the ConcurrenC model, there are three behavioral
blocks: stimulus, decoder, and monitor. The stimulus reads the input YUV file,
while the monitor receives and displays the decoded stream including signal-to-
noise ratio (SNR), system time, and writes the reconstructed frames into the output
file. Decoder contains multiple blocks for concurrent slice decoding. A stream
processing block prepares the settings, n decode units decode slices in parallel,
and the decoding synchronizer combines the decoded slices for output by the
monitor. The number of the slice decoders is scalable depending on the number of
slices contained in one frame of the input streamfile. Inside the slice decode blocks,
functional sub-blocks are modeled for the detailed decoding tasks. Hierarchical
modeling allows convenient and clear system description.

• Concurrency: [WSBL03a] confirms that multiple slices in one frame are possible
to be decoded concurrently. Consequently, our H.264 decoder model consists of
multiple blocks for concurrent slice decoding in one picture frame.1

• Communication: FIFO channels and shared variables are used for communication
in our H.264 decoder model. FIFO queues are used for data exchange between dif-
ferent blocks. For example, the decoder synchronizer sends the decoded frame via
a FIFO channel to the monitor for output. Shared variables, i.e., reference frames,
are used to simplify the coordination for decoding multiple slices in parallel.

1 We should emphasize that this potential parallelism was not apparent in the original C code. It
required serious modeling effort to parallelize the slice decoders for our model.

2.4 Case Study 37

Table 2.3 Simulation results, H.264 decoder modeled in ConcurrenC

Filename Boat.264 Coastguard.264

Macroblocks/frame 396 396

Frames 73 (2.43 s) 299 (9.97 s)

Slices/frame 4 8 4 8

Max # macroblocks/slice 150 60 150 60

Model type seq par seq par seq par seq par

Host sim time (s) 4.223 4.258 4.557 4.550 12.191 12.197 12.860 12.846

Estimated exec time (s) 11.13 4.43 11.49 1.80 18.78 7.20 20.31 3.33

Speedup 1 2.51 1 6.38 1 2.61 1 6.10

• Timing: The decoding time can be observed by using wait-for-time statements in
the modeled blocks. We have obtained the estimated execution time for different
hardware architectures by using simulation and profiling tools of the SLDLs.

• Execution: We have successfully converted and executed our model in SpecC
using the SoC Environment [DGP+08].

Table2.3 shows the simulation results of our H.264 decoder modeling in
ConcurrenC. The model is simulated on a PC machine with Intel(R) Pentium(R)
4 CPU at 3.00GHz. Two stream files, one with 73 frames, and the other with 299
frames are tested. For each test file, we created two types of streams, four slices and
eight slices per frame. We run the model by decoding the input streams in two ways:
slice by slice (seq model), and slices in one frame concurrently (par model). The
estimated execution time is measured by annotated timing information according to
the estimation results generated by SCE with a ARM7TDMI 400 MHz processor
mapping. Our simulation results show that the parallelism of the applicationmodeled
in ConcurrenC is scalable. We can expect that it is possible to decode three of the
test streams in real-time (bold times).

http://www.springer.com/978-3-319-08752-8

	2 The ConcurrenC Model of Computation
	2.1 Motivation
	2.2 Models of Computation
	2.3 ConcurrenC MoC
	2.3.1 Relationship to C-based SLDLs
	2.3.2 ConcurrenC Features
	2.3.3 Communication Channel Library
	2.3.4 Relationship to KPN and SDF

	2.4 Case Study

