
One Degree of Freedom Systems 2

In which we explore many facets of the analysis of mechanical systems in the

context of a simple one degree of freedom system. . .

2.1 Development

The basic building blocks for models of mechanisms are masses, springs, and

dampers (sometimes called dashpots). Automobile shock absorbers and the piston

in screen and storm door closers are common examples of dampers. The motion of a

mass is governed by the forces applied to it. Figure 1.2 shows a fundamental one

degree of freedom system. The mass can only move in the horizontal (y) direction.
The spring and the damper are in parallel. This is the normal configuration.

Rotated 90� counterclockwise this could represent an automobile suspension unit—

coil spring and shock absorber (damper) in parallel. I will discuss other

configurations later. The diagram shows a mass motion forced by an external

force. The mass can also be made to move if the support moves. I will address

this possibility below.

2.1.1 An Aside About Friction

Friction is a dissipative mechanism. If you rub your hands together briskly, the

friction between the two will make them warmer. This is an example of sliding
friction, also known as dry friction. Sliding friction is common, but difficult to deal

with analytically. The simplest useful model (which apparently dates back to

Leonardo da Vinci) supposes that the force of friction is proportional to the normal

forceW between the two sliding objects. The proportionality constant μ is called the
coefficient of friction. (da Vinci apparently believed it to be a universal constant

equal to 1/4.) The laws of dry friction:
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• The friction force is proportional to the applied load and independent of the

contact area.

• The coefficient of sliding friction is independent of the speed of the motion.

are named for Amonton and Coulomb. Dry friction is often called Coulomb friction.
Most models suppose that the coefficient of static friction μs is larger than the

coefficient of sliding friction μd. The friction force always opposes the motion.

Figure 2.1 shows a block and the forces involved.

The friction force will be less than μW if f is also less than μW. The friction force

cannot induce motion; it can only impede motion. Figure 2.2 shows the friction

force as a function of the applied force for this simple model. One can see the drop

upon the commencement of motion and the subsequent constant friction force. The

friction force adjusts to balance the applied force until it reaches its static limit μsW,

at which point the block starts to slide. The friction force drops because the

coefficient of sliding friction is smaller than the coefficient of static friction, so

the net force is positive and the block will accelerate.

It is relatively easy to measure two friction coefficients for this model using an

inclined plane, as shown in Fig. 2.3. A simple static force balance gives the static

friction coefficient

mg sin α ¼ μmg cos α ! μs ¼ tan α ð2:1Þ
The angle α is often called the friction angle. The dynamic friction coefficient can

be found by observing the fall of the block down the slope. I leave it to the exercises

to show that

μd ¼ μs �
2s

gT2
tan α ð2:2Þ

where s denotes the distance slid in time T.
We cannot incorporate this model of friction into linear equations of motion. Dry

friction does not depend on the motion linearly.

Fig. 2.1 Force balance for

sliding friction
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This does not mean that dry friction is unimportant. Dry friction is essential for

stopping your car. Disc brakes work by forcing a pair of calipers to grip a disk

rigidly attached to the wheel. The disk moves with respect to the calipers as long as

the car is still moving, so the force on the disk depends on the coefficient of sliding

friction. This friction force exerts a torque on the wheel, which causes it to slow

down. The car slows because of the friction between the tire and the ground.

Ultimately (as some tire commercials have pointed out) brakes don’t stop your

car: tires do. The patch of tire contacting the ground is stationary with respect to the

ground (rolling without slipping). It can be approximated by a line contact for the

present purposes. The appropriate coefficient of friction between the tire and the

ground is the static coefficient. If you skid the appropriate friction coefficient

becomes the coefficient of sliding friction, which is smaller, and your stopping

power becomes less. Antilock brakes prevent this from happening, so you can stop

more quickly.

The following discussion is a bit simplistic, but it will give a flavor of the design

considerations involved in a braking system. The calipers are driven by a hydraulic

cylinder. If the pad area is A, the pressure in the cylinder p and the appropriate

coefficient of friction μ1, then the force on the disk is

Fig. 2.2 Friction force as a

function of applied force

Fig. 2.3 An inclined plane

for measuring friction

coefficients
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f ¼ 2μ1Ap

and the torque on the wheel is then rD times this, where rD denotes the effective

radius of the contact points. The force on the ground will be this torque divided by

the wheel radius rW. This force cannot exceed the static friction force between the

road and the tire, which can vary greatly depending on the condition of the road

(and the tire). We can write this in equation form as

f ¼ 2μ1Ap � μ2N

where N denotes the normal force on the ground and μ2 the coefficient of state

friction between the tire and the road.

What happens if we interpose a layer of liquid between the block and the

ground? The layer acts as a lubricant, and it provides no resistance to the initiation

of motion. The resistance to motion parallel to the interface will be the integral of

the shear stress in the liquid over the surface. (This leads to “aquaplaning” and

accidents in the automotive application.) If the layer is thin, then the flow in the

liquid will be laminar, and it can be approximated by plane Couette flow over most

of the interface, the velocity varying linearly between the two surfaces. The stress is

equal to the viscosity times the shear rate, which is constant for plane Couette flow.

The shear rate is given by the speed divided by the thickness of the liquid layer. The

resistance to motion parallel to the plane is thus proportional to the speed of motion

and the contact area and inversely proportional to the thickness of the liquid layer. It

is independent of the weight of the block. This is called viscous friction, friction
proportional to the speed of motion. Any system where the resistance to motion is

controlled by a liquid forced to pass through a narrow gap or opening where laminar

flow is a good approximation will provide viscous friction to resist motion.

Examples include lubricated bearings, shock absorbers, and screen door closers.

The viscous friction approximation is convenient and a good approximation in

many cases. It is amenable to linear analysis, which dry friction is not. I will use it

more or less universally in this text; thus the model shown in Fig. 1.2 is an

appropriate place to start our study of one degree of freedom problems.

2.1.2 The One Degree of Freedom Equation of Motion

We can write a single differential equation governing the motion of the mass shown

in Fig. 2.1 considering it to be a free body acted on by the force shown and the

spring and damper forces. Figure 2.4 shows a free body diagram of the mass.

The rate of change of momentum is equal to the sum of the forces, giving an

equation of motion

m€y ¼ f � f k � f c

where y denotes the departure from equilibrium, positive to the right in the figure,

and fk and fc denote the spring force and the damper force, respectively. If the block
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moves to the right, the spring will be stretched, and it will exert a force on the mass

to the left. I will suppose that the force in a linear spring is proportional to the

displacement from equilibrium. The force it exerts on the mass is to the left, and the

force it exerts on the wall is to the right. The equation for the mass becomes

m€y ¼ f � k y� y0ð Þ � f c

where y0 denotes the position of the mass when the spring is not stretched or

compressed. If y> y0 the force on the block is to the left and if y< y0 the force is

to the right. It is common to choose the origin for y such that y0¼ 0. I will do so

here. There is no loss of generality.

The damper works the same way, except that the force is proportional to the

speed of the mass. Thus we can write

m€y ¼ f � ky� c _y ) €yþ c

m
_y þ k

m
y ¼ f

m
¼ a

The dimensions of k/m are 1/time2, and the dimensions of c/m are 1/time. We can

introduce a natural frequency, ωn, and a damping ratio, ζ, the latter dimensionless1

c

m
¼ 2ζωn,

k

m
¼ ω2

n , ω2
n ¼

k

m
, ζ ¼ c

2mωn

¼ c

2
ffiffiffiffiffiffi
km

p ð2:3Þ

and rewrite the one degree of freedom equation in standard form, where a¼ f/m
denotes the applied acceleration

€yþ 2ζωn _y þ ω2
ny ¼ a ð2:4Þ

Fig. 2.4 Free body diagram

corresponding to Fig. 1.2

1 This is the parameter I introduced in Chap. 1 (Eq. 1.12).
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Equation (2.4) contains all that one needs to understand the dynamics of linear

one degree of freedom systems. The equation governing the motion of a mass

driven by a moving support can be put in this form, as I will show below, as can the

equation governing the small angle motion of a pendulum. Equation (2.4) is

inhomogeneous, that is, y¼ 0 is not a solution. Specific problems are defined by

adding initial conditions. A complete problem consists of a dynamical equation like

Eq. (2.4) and a set of initial conditions. We’ll have Eq. (2.4) and

y 0ð Þ ¼ y0, _y 0ð Þ ¼ v0 ð2:5Þ
where y0 and v0 are constants, the position and speed of the mass at t¼ 0.

Let us attack the general problem, Eq. (2.4) subject to the conditions given in

Eq. (2.5), in successively more complicated situations, starting with the unforced

system (a¼ 0). Equation (2.4) becomes homogeneous. Homogeneous equations
with constant coefficients can always be solved in terms of exponential functions.
This is an important fact to remember. It applies to all systems of homogeneous

differential equations with constant coefficients no matter the order of the individ-

ual equations or the number of equations. We learned in Chap. 1 that there is a

connection between exponential and trigonometric functions. The solution to the

simplest case, where there is no damping, can be found in terms of trigonometric

functions alone.

2.2 Mathematical Analysis of the One Degree of Freedom
Systems

2.2.1 Undamped Free Oscillations

Suppose a¼ 0¼ ζ. Equation (2.4) reduces to

€yþ ω2
ny ¼ 0

There is no external forcing and no damping. The system is homogeneous. Since

there is no damping, we expect any nontrivial (y 6¼ 0) solution to persist forever.

As noted above a differential equation by itself does not define a problem, but a

class of problems. Its solution, the so-called general solution, has as many

undetermined constants as the order of the equation. Side conditions, as many

as the order of the differential equation, are needed to determine these constants.

Here we have one second-order differential equation. It needs two side conditions,

and these are usually taken to be the initial conditions—the value of y and its first

derivative at the beginning of the motion. (If both are zero, there is no motion.) I

suppose the problem to start from t¼ 0, so that Eq. (2.5) defines the initial

conditions
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y 0ð Þ ¼ y0, _y 0ð Þ ¼ v0

The general solution of the differential equation can be written in terms of sines

and cosines

y ¼ A cos ωntð Þ þ B sin ωntð Þ ð2:6Þ
Note that if we seek exponential solutions directly, y¼A exp(st), the differential

equation reduces to

s2Aexp stð Þ þ ω2
nAexp stð Þ ¼ 0 ¼ s2 þ ω2

n

� �
Aexp stð Þ

so that we have a nontrivial solution if s2¼�ωn
2 or s¼� jωn. We can use the

connection between the exponential and the trigonometric functions given in

Chap. 1 to convert the general exponential solution to the form of Eq. (2.6). This

is only possible when s is purely imaginary. There is a similar transformation for

complex values of s, which we will need when we have damping.

The solution given in Eq. (2.6) can also be expressed as

y ¼ C sin ωntþ ϕð Þ ð2:7Þ
where ϕ denotes a phase angle. You can verify either formula by direct substitution

into the differential equation. To convert the form of Eq. (2.7) to that of Eq. (2.6),

expand the sine using the usual multiple angle formulas

sin αþ βð Þ ¼ sin α cos β þ cos α sin β
cos αþ βð Þ ¼ cos α cos β � sin α sin β

to obtain

y ¼ C sinϕ cos ωntð Þ þ C cosϕ sin ωntð Þ
so that

A ¼ C sinϕ, B ¼ C cosϕ ð2:8Þ
To convert from the form of Eq. (2.6) to that of Eq. (2.7), we can invert the

process. We find directly from Eq. (2.8)

C2 ¼ A2 þ B2, tanϕ ¼ A

B
ð2:9Þ

One has to be careful in calculating the phase. The inverse tangent is ambiguous.

One can choose the appropriate quadrant by noting that
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sinϕ ¼ A

C
, cosϕ ¼ B

C

The sine and cosine are both positive in the first quadrant (0<ϕ< π/2). The sine is
positive and the cosine negative in the second quadrant (π/2<ϕ< π). The sine and
cosine are both negative in the third quadrant (π<ϕ< 3π/2). The sine is negative and
the cosine positive in the fourth quadrant (3π/2<ϕ< 2π). The tangent is positive

in the first and third quadrants and negative in the second and fourth quadrants.

The general solution becomes specific when the initial conditions are imposed,

which is most easily done using the form in Eq. (2.6). We have

y 0ð Þ ¼ A ) A ¼ y0

_y 0ð Þ ¼ ωnB ) B ¼ v0
ωn

so that Eq. (2.10a)

y ¼ y0 cos ωntð Þ þ v0
ωn

sin ωntð Þ ð2:10aÞ

gives the general solution for unforced, undamped motion of a one degree of

freedom system in terms of its initial conditions. This solution can also be written

in terms of the amplitude and phase as in Eq. (2.7). It represents a sinusoidal

response at the natural frequency, ωn. Sinusoidal motion with a single frequency

is called harmonic motion. Harmonic motion is periodic; not all periodic motion is

harmonic. The response of an unforced, undamped single degree of freedom system

is harmonic, representable in terms of sines and cosines of ωnt. The initial

conditions determine A and B, hence C, and the amplitude and phase

amplitude ¼ C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y20 þ

v0
ωn

 !2
vuut

sinϕ ¼ y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y20 þ

v0
ωn

 !2
vuut , cosϕ ¼ v0=ωnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y20 þ
v0
ωn

 !2
vuut

ð2:11Þ

Equation (2.10a) can also be written in terms of exponential functions using the

trigonometric-exponential correspondences given in Chap. 1.

y ¼ x0
1

2
ejωnt þ e�jωnt
� �þ v0

ωn

1

2j
ejωnt � e�jωnt
� �

¼ 1

2
x0 � j

v0
ωn

� �
ejωnt þ 1

2
x0 þ j

v0
ωn

� �
e�jωnt ð2:10bÞ

28 2 One Degree of Freedom Systems

http://dx.doi.org/10.1007/978-3-319-08371-1_1


The two terms on the right are complex conjugates, so their sum is real, as it must

be. We can solve differential equation in terms of complex exponentials and still

arrive at physically meaningful real solutions. We’ll see this shortly when we add

dissipation to the homogeneous problem, but first let’s look at a couple of examples.

Example 2.1 Response to an Impulse This simple one degree of freedom system

seems a most artificial picture, but we can use it to examine the response of a simple

system to an impulsive load. If we hit the system with a hammer some of its

momentum will be transferred to the mass. In fact, if the hammer rebounds, then

more than its momentum will be transferred. The hammer stops in a perfectly

elastic collision, and all of the initial momentum of the hammer will be transferred

to the mass. Suppose a 2 kg sledgehammer moving at 5 m/s collides elastically with

a 10 kg mass attached to a 98,000 N/m spring. The momentum transferred will be

2� 5¼ 10 kg m/s. The velocity of the mass will jump “instantaneously” to 1 m/s,

before the mass has a chance to move, so we can write our initial conditions as

v0¼ 1 and y0¼ 0. The natural frequency of the system is √9,800¼ 99 rad/

s (¼15.8 Hz). The response of the system is then

y ¼ 1

99
sin 99tð Þm

This is a harmonic response with an amplitude of about one cm. The frequency is

a little below the threshold of human hearing.

Figure 2.5 shows a plot of the response over four periods. The amplitude is in cm

and the horizontal scale in seconds. (In a real physical system there will be some

damping, and the motion will decay. I will discuss this below.)
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Fig. 2.5 Response of a one degree of freedom to an impulsive load (see text)
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Example 2.2 The Simple Pendulum The simple pendulum is shown in Fig. 1.1.

I denote the angle between the pendulum rod and the vertical by θ. This angle is

zero when the pendulum hangs straight down and reckoned positive in the counter-

clockwise direction (θ¼ π/2 when the pendulum is extended horizontally to the

right from its pivot point). The pendulum is confined to the plane. Let y denote the
horizontal direction, positive to the right, and z denote the vertical, positive up

following the convention I introduced in Chap. 1. Neglect the mass of the rod. The

mass m, sometimes called the bob, is acted upon by two external forces: gravity in

the �z direction and a tension in the rod, directed parallel to the rod and in the

upward direction, countering gravity. When the rod is vertical these two forces

cancel and the pendulum is in static equilibrium.We can write two equations for the

motion of the mass by drawing a free body diagram, Fig. 2.6.

We can resolve the forces in the y and z directions to give

m€y ¼ �T sin θ
m€z ¼ T cos θ � mg

This is not the end of the story, because y and z are related. This is a one degree
of freedom system; all the pendulum can do is swing back and forth along its

circular arc. If we take the origin of the coordinate system to be at the base of the

pendulum, where the rod attaches to the support, then we have

y2 þ z2 ¼ l2

Fig. 2.6 Free body diagram

of the bob of a simple

pendulum
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where l denotes the length of the rod. This expression can be parameterized in terms

of the angle θ

y ¼ l sin θ, z ¼ �l cos θ

The two differential equations become

ml €θ cos θ � _θ
2
sin θ

� �
¼ �T sin θ

ml €θ sin θ þ _θ
2
cos θ

� �
¼ T cos θ � mg

These can be combined into two equations, one of which determines θ as a function
of time and the other the value of the tension as a function of time. Multiply the first

by cosθ and the second by sinθ and add them to get the pendulum equation,

Eq. (2.12a). Multiply the first by �sinθ and the second by cosθ and add them to

get the tension equation, Eq. (2.12b).

We are primarily concerned with the first equation. It is unlikely that a simple

pendulum will stretch or break the rod.

€θ þ g

l
sin θ ¼ 0 ð2:12aÞ

T ¼ ml _θ
2 þ mg cos θ ð2:12bÞ

The equation for θ is nonlinear, but if θ remains small during the motion, then

the sine can be replaced by θ. This is a common approximation that can be justified

by the Taylor series for the sine, which is

sin θ ¼ θ � 1

3!
θ3 þ 1

5!
θ5 þ � � �,

and if θ is small, θ3 is much smaller than θ, and the higher order terms will be

smaller still; thus sinθ� θ will be a good approximation for small θ. (I will discuss a
formal process of linearization in Chap. 3 and then again in Chap. 6.) Applying this

approximation gives a linear equation exactly parallel to the mass-spring system, a

realization of Eq. (2.4) with ζ¼ 0 and ωn
2¼ g/l

€θ þ g

l
θ ¼ 0

We find by analogy that the (radian) frequency of a simple pendulum is given by

√(g/l ). Its circular frequency is this divided by 2π, and so the period of a simple

pendulum is given by 2π√(l/g). The length of a pendulum with a one second period

will be 248.5 mm.

The period of a simple pendulum is independent of the mass of the bob, a fact that

Galileo observed in 1581 while he was a medical student in Pisa.
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The mass-spring system and the pendulum are not the only systems that can be

modeled by Eq. (2.4). The shafts in a gear train are under torsion. This is an elastic

phenomenon, so the twist of a shaft away from equilibrium has an effective spring

constant so long as the deformation remains in the elastic range. We can write the

momentM associated with a given amount of twist as (see Crandall and Dahl 1959,

or any equivalent strength of materials text)

M ¼ GIs
l

ϕ

where G denotes the shear modulus of the shaft material, Is the polar moment of

inertia of the shaft, l the length of the shaft, and ϕ the twist in radians. Consider the

system shown in Fig. 2.7: two wheels connected by a shaft. Suppose the right-hand

wheel to be fixed and consider the motion of the left-hand wheel. It may be

subjected to an external torque, τ, and it is acted on by the twisting of the shaft.

We can write its equation of motion, using the angle of twist as the dynamical

variable, as

I1€ϕ ¼ τ � GIs
l

ϕ

where I1 denotes the polar moment of the left-hand wheel, typically much greater

than that of the shaft. We can rearrange this and deduce the natural frequency of the

system to be

I1€ϕþ GIs
l

ϕ ¼ τ ) ω2
n ¼

GIs
I1l

Damping is usually pretty small in these systems, but one can certainly introduce

damping, probably empirically. I will discuss measuring damping later in this chapter.

Fig. 2.7 A torsional system:

moment-spring system
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2.2.2 Damped Unforced Systems

The governing differential equation for unforced damped systems [from Eq. (2.4)] is

€yþ 2ζωn _y þ ω2
ny ¼ 0

It is still homogeneous, but it no longer has purely trigonometric solutions.

Because it is homogeneous with constant coefficients, it does have exponential

solutions. Let’s see what they are by choosing an arbitrary exponential and

substituting that into the differential equation

y ¼ Yest ) €yþ 2ζωn _y þ ω2
ny ¼ 0 ¼ s2Y þ 2ζωnsY þ ω2

nY

This is the first example of a technique we will use often. Y denotes an arbitrary

(complex) constant. The constant parameter s is determined during the analysis.

Y can be found from the initial conditions. This substitution converts the differential

equation into an algebraic equation. Later we will generalize this method to convert

systems of differential equations into systems of algebraic equations. (We will also

find that the results look formally like the results of taking Laplace transform, but

that connection must be deferred until Chap. 7.) We seek nontrivial solutions,

solutions for which Y is not zero.

s2 þ 2ζωnsþ ω2
n

� �
Y ¼ 0 ) s2 þ 2ζωnsþ ω2

n ¼ 0 ð2:13Þ
If Y is not to be zero, the quadratic equation in parentheses must vanish. This is an

example of a characteristic equation, which I will treat more formally later on. This

determines two values of s, the roots of the quadratic equation. Denote these by s1
and s2. The general solution is then

y ¼ Y1e
s1t þ Y2e

s2t, ð2:14Þ
and the values of Y1 and Y2 are determined by the initial conditions, just as they

were for the trigonometric solution to the undamped problem. The initial conditions

may be written

Y1 þ Y2 ¼ y0, s1Y1 þ s2Y2 ¼ v0

from which

Y1 ¼ � s2y0 � v0
s1 � s2

, Y2 ¼ s1y0 � v0
s1 � s2

) y ¼ � s2y0 � v0
s1 � s2

es1t þ s1y0 � v0
s1 � s2

es2t ð2:15Þ

Equation (2.15) is perfectly general. The nature of the solution depends on the

values of the roots. We can apply the quadratic formula to obtain
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s1 ¼ �ζωn þ ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 � 1

q
, s2 ¼ �ζωn � ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 � 1

q
ð2:16Þ

The nature of the solution clearly depends on whether ζ is bigger or smaller than

unity. The case ζ¼ 1 is a special case. Engineering parameters are never deter-

mined to mathematical identity, and the difference in behavior between ζ¼ 0.99

and 1.01 is generally indistinguishable. I will give an example below. The large ζ
case is referred to as overdamped, and the small ζ case is referred to as

underdamped. (The ζ¼ 1 case is called critically damped, and we sometimes

design for that.) The roots for the underdamped case are complex, having both

real and imaginary parts. The roots are real (and negative) for the overdamped case.

(The roots are purely imaginary for ζ¼ 0, the undamped case we just looked at.)

We can visualize the behavior of the roots of Eq. (2.13b) as a function of ζ in the
complex plane. Figure 2.8 shows the complex plane with the roots plotted for

ζ¼ 1/2 (underdamped, closed circles) and ζ¼ 3/2 (overdamped, open circles).

The roots lie on a circle of radius ωn (unity in the figure) when the system is

underdamped (0< ζ< 1). The roots are purely imaginary when ζ¼ 0, the

undamped case. When ζ reaches unity the two roots coincide and the system is

critically damped. As ζ increases beyond unity, one root moves to the left and one

to the right, as shown by the arrows, eventually approaching—1 and zero (from

below). The angle θ shown in the figure is defined by the ratio of the real part to the
imaginary part of the root and so is directly related to the damping ratio:

tan θ ¼ ζffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2

p ) ζ ¼ sin θ ð2:17Þ

The general solution can be rewritten in a more useful form in the (common)

underdamped case by making use of the relations between exponential and trigo-

nometric functions

y ¼ exp �ζωntð Þ A cos ωdtð Þ þ B sin ωdtð Þð Þ ð2:18aÞ

Fig. 2.8 Roots of Eq. (2.13b)

(given by Eq. 2.16) in the

complex plane
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where ωd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2

p
ωn is often called the damped natural frequency. This is the

frequency you would measure. This form of the solution in terms of the initial

conditions is

y ¼ exp �ζωntð Þ y0 cos ωdtð Þ þ v0 � ζωny0
ωd

sin ωdtð Þ
� �

ð2:18bÞ

Equation (2.18b) is a much more useful form for underdamped systems than that

given in Eq. (2.15).

We can learn about the behavior of the solutions by looking at how the impulse

problem we have already studied changes when there is damping. I will make it

simpler than before by setting y0¼ 0. I leave it to the reader to show that the

solution to this problem [see Eq. (2.15)] for arbitrary ζ is

y ¼ v0

2ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 � 1

p exp � ωnζ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 � 1

q� �
t

� �
� exp � ωnζ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 � 1

q� �
t

� �� �

ð2:19Þ
If ζ is less than unity this can be written

y ¼ v0

2jωn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2

p
exp � ζ þ j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2

q� �
ωnt

� �
� exp � ζ � j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2

q� �
ωnt

� �� �

¼ e�ωnζt

ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2

p e j
ffiffiffiffiffiffiffiffi
1�ζ2

p
ωnt

� �
� e �j

ffiffiffiffiffiffiffiffi
1�ζ2

p
ωnt

� �
2j

ð2:20Þ
The second quotient is recognizable as the sine, so we can write the underdamped

solution as

y ¼ exp �ζωntð Þ
ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2

p sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2

q
ωnt

� �
ð2:21Þ

Of course we could have found this result directly from Eqs. (2.18a) and (2.18b).

If ζ is greater than unity the solution is as shown in Eq. (2.15)—both terms are real.

Equation (2.21) gives the response of an underdamped system to a unit impulse.

Figure 2.9 shows the first two nominal periods (4π/ωn) of an underdamped case

with ζ¼ 0.1. One can see the effect of the damped frequency: the curve doesn’t

quite close because the actual period is longer than the ideal period. The damping

also causes the solution to decay. There is significant decay even in the first quarter

of the nominal period. The maximum value of the undamped response for the

parameters in Fig. 2.9 is unity. The amplitude of the peak shown in Fig. 2.10 is

0.8626.
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Figure 2.10 shows the same time interval, but with a damping ratio of 10. The

maximum amplitude is much reduced, but the decay time is much longer. This

appears to be contradictory—more damping leads to a longer decay time. I leave it

to you to think about why this is so. (Think about the implications of Fig. 2.8.) The

most rapid decay is for a critically damped system, for which ζ¼ 1.

I noted above that the difference between the response at a damping ratio of 0.99

and 1.01 was negligible. Figure 2.11 shows both responses to a unit impulse. The

solid line is underdamped, and the dashed line is overdamped. There’s little

daylight between the two curves, although one can see the reduction in maximum

response with increase in damping ratio. The difference is negligible (and probably

unmeasurable) for engineering applications. Other approximations in modeling will

overwhelm errors of this size.

We can summarize the behavior of an unforced one degree of freedom system as

follows. If the system is in equilibrium and not disturbed, it will stay in equilibrium.

If disturbed its behavior depends on the damping ratio ζ. If the damping ratio is zero

there is no dissipation of energy and the system will oscillate at its natural

frequency indefinitely—harmonic motion. If the damping ratio is not zero, the

disturbed system will tend back to equilibrium, in an oscillatory fashion if the

damping ratio is less than unity (underdamped) and without oscillations if

the damping ratio is greater than unity (overdamped). The “frequency” of the

oscillations in the underdamped case is less than the natural frequency. The decay

time is a minimum for a damping ratio of unity (critically damped) and increases as

the damping ratio increases from unity. Most of the systems with which we will be

dealing will be underdamped. There will be some systems for which an undamped

Fig. 2.9 The underdamped response to an impulsive load
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Fig. 2.10 The overdamped response to an impulsive load

Fig. 2.11 The near critically damped response to a unit impulse
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approximation makes sense, but all real systems have some damping. (Imagine the

cacophony in the world were this not true!)

The e-folding time (the time it takes for the original value to decrease to 1/e
times its initial value) for an underdamped system is 1/ζωn, so it will have

disappeared for most practical purposes at about three times this number

(e�3� 0.05, 5 % of the initial amplitude). The 5 % time for the underdamped

system just examined is about 30. For comparison, the critically damped version is

down to 5 % in about 6 time units.

I can illustrate the techniques for dealing with forced system more clearly if

I neglect damping to begin with—the various terms are simpler. But first let me say

something about stability.

Equation (2.4) is our generalized one degree of freedom equation. The unforced

system (a¼ 0) that we have looked at so far can oscillate, or oscillate while its

amplitude decays, or just decay to zero, as I just noted. We can say this another way.

Set a¼ 0 and multiply Eq. (2.4) by _y. We’ll have

_y€yþ 2ζωn _y
2 þ ω2

n _y€y ¼ 0 ð2:22Þ
We can “integrate” Eq. (2.22) and rearrange it to get

1

2

d

dt
_y2 þ ω2

ny
2

� � ¼ �2ζωn _y
2 ð2:23Þ

The natural frequency is positive. The left-hand side of Eq. (2.23) is the deriva-

tive of the positive quantity _y2 þ ω2
ny

2. The right-hand side is zero if ζ¼ 0, negative

if ζ> 0, and positive if ζ< 0. If the right-hand side is negative, then the quantity

_y2 þ ω2
ny

2 must decrease in amplitude until it goes (asymptotically) to zero. This is

an example of absolute global stability.

2.2.3 Forced Motion

Forced systems obey Eq. (2.4) with its associated initial conditions. The classical

way to deal with this is to divide the solution into two parts, a homogeneous

solution yH and a particular solution yP. The homogeneous solution is simply the

general unforced solution that we have been examining. The particular solution is

any solution that satisfies the inhomogeneous equation, without regard to the initial

conditions. I will give a general formula for such a solution later in this section. The

actual solution is the sum of the homogeneous and particular solutions.

Why do we need a homogeneous solution? Because the particular solution may

not satisfy the initial conditions. Indeed, it specifically ignores them. The homoge-

neous solution exists to cancel any incorrect initial values of the particular solution.

Let’s see how this goes. Suppose we have found the particular solution. We already

know how to find the homogeneous solution. We find the initial conditions for the
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homogeneous solution by subtracting the initial values of the particular solution

from the initial conditions specified in the problem:

yH 0ð Þ ¼ y0 � yP 0ð Þ, _yH 0ð Þ ¼ v0 � _yP 0ð Þ,
and the analog of Eq. (2.15) will be

y ¼ � s2 y0 � yP 0ð Þð Þ � v0 � _yP 0ð Þð Þ
s1 � s2

exp s1tð Þ

þ s1 y0 � yP 0ð Þð Þ � v0 � _yP 0ð Þð Þ
s1 � s2

exp s2tð Þ

If there is dissipation in the system, the homogeneous solution will decay away,

and the long-term solution will be just the particular solution. In many situations we

do not care about the initial conditions. In those cases we are said to ignore the
transients, and then all we need to do is find the particular solution. This long-term

solution is often referred to as the steady solution, even though it will be time

dependent anytime the forcing a is time dependent. Deciding what to do about the

transients (essentially the homogeneous solution) is a matter for engineering judg-

ment. Sometimes it makes sense to ignore them, sometimes it does not. For now, let

us assume that we need to take them into account and learn how to do this.

We know the homogeneous solution. It has two arbitrary constants, and we know

that these can be determined from the initial condition once we have the particular

solution. We need a particular solution. That is, we need to solve the inhomoge-

neous Eq. (2.4) (for now without damping). The solution clearly depends on

the nature of the forcing acceleration a. If it is constant a0, then it is clear by

inspection that

yP ¼
a0
ω2
n

If a is some power of time, then we can construct a polynomial for yP of the same

degree as the power. Let me illustrate this for t3.

€yP þ 2ζωn _yP þ ω2
nyP � t3 ¼ 0

Let

yP ¼ a0 þ a1tþ a2t
2 þ a3t

3

Substituting this into the differential equation leads to a polynomial of degree three

that has to vanish for all time. This will only be true if each power of t vanishes
separately, which gives four equations to determine the four coefficients in the

expression for yP. It is easy enough to show that these four equations are
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a3ω2
n � 1

� �
t3 ¼ 0

ωn 6ζa3 þ ωna2ð Þt2 ¼ 0�
6a3 þ ωn 4ζa2 þ ωna1ð Þ�t ¼ 0�
2a2 þ ωn 2ζa1 þ ωna0ð Þ�t0 ¼ 0

They can be solved successively for all four coefficients. I leave the details to the

reader. If I can do it for any power, then I can do it for any function with a

convergent Taylor series. Of course, this is of purely academic interest.

If a is a harmonic function, which is a much more important case, then yP will
also be harmonic at the forcing frequency, with a phase determined by the natural

frequency and damping ratio

yP ¼ A sin ωf tþ ϕð Þ
Let’s look at this case and use it to explore the combination of particular and

homogeneous solutions.

Example 2.3 Response of an Undamped System to Harmonic Forcing Let

a¼Af sin(ωft). I can choose zero phase without loss of generality. It is important

to remember that this forcing frequency is not the same as the natural frequency.

(We’ll see what happens when it is shortly.) The differential equation is

€yP þ 2ζωn _yP þ ω2
nyP � Af sin ωf tð Þ ¼ 0

We see that there are two frequencies in the problem, the natural frequency and

the forcing frequency. The particular solution depends on both. It oscillates at the

forcing frequency, but its amplitude depends on both frequencies. We’ll see shortly

that the nature of the solution depends on the forcing frequency through its ratio to

the natural frequency. I will denote this by r¼ωf/ωn.

I will neglect damping for now, making the equation simpler

€yP þ ω2
nyP � Af sin ωf tð Þ ¼ 0

We are just looking for the particular solution right now, so we don’t care about the

initial conditions. Since the second derivative of the sine is proportional to the sine,

we can find a particular solution by supposing it to be proportional to sin(ωft) :
yP¼ YP sin(ωft). The differential equation becomes

�ω2
fYP þ ω2

nYP � Af

� �
sin ωf tð Þ ¼ 0 ) YP ¼ Af

ω2
n � ω2

f

¼ 1

ω2
n 1� r2ð ÞAf

We see that the response is in phase with the excitation for low forcing

frequencies (compared to the natural frequency, small r) and π radians out of

phase for high forcing frequencies (large r). We see that the amplitude of the
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response is formally infinite if the forcing frequency equals the natural frequency

(r¼ 1). This state of affairs is called resonance. Since the point of this example is

how to connect the particular and homogeneous solutions, I will ignore the possi-

bility of resonance for now and write

yP ¼ Af

sin ωf tð Þ
ω2
n � ω2

f

, _yP ¼ Af

ωf cos ωf tð Þ
ω2
n � ω2

f

) yP 0ð Þ ¼ 0, _yP 0ð Þ ¼ Afωf

ω2
n � ω2

f

We know the homogeneous solution to the undamped system, so we have

yH ¼ A cos ωntð Þ þ B sin ωntð Þ ) yH 0ð Þ ¼ A, _yH 0ð Þ ¼ ωnB

If y¼ y0 and _y ¼ v0 at t¼ 0, then the initial conditions that determine A and B are

y 0ð Þ ¼ A ¼ y0, _y 0ð Þ ¼ ωnBþ Afωf

ω2
n � ω2

f

¼ v0

from which

A ¼ y0, B ¼ 1

ωn

v0 � Afωf

ω2
n � ω2

f

� �
¼ v0

ωn

� r

ω2
n 1� r2ð ÞAf

So we have the homogeneous solution

yH ¼ y0 cos ωntð Þ þ v0
ωn

� r

ω2
n 1� r2ð ÞAf

� �
sin ωntð Þ,

and the complete solution is the sum of the homogeneous and particular solutions

y ¼ y0 cos ωntð Þ þ v0
ωn

� r

ω2
n 1� r2ð ÞAf

� �
sin ωntð Þ þ 1

ω2
n 1� r2ð ÞAf sin ωf tð Þ

There are two harmonic terms, one at the forcing frequency and one at the natural

frequency. The solution itself is not harmonic because it has more than one

frequency.

2.2.4 The Particular Solution for a Harmonically
Forced Damped System

The process is more complicated when the system is damped. Let us consider the

particular solution to a harmonic forcing in the presence of damping. The homoge-

neous solution can be added at the end following the paradigm reviewed in Ex. 2.3.

I can tackle this problem using trigonometric functions or complex exponentials.
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This is a matter of taste, and I will explore both methods here. I suppose that

I have the same forcing as the previous example. The particular solution must

satisfy

€yP þ 2ζωn _yP þ ω2
nyP � Af sin ωf tð Þ ¼ 0

2.2.4.1 The Trigonometric Approach
The solution will be harmonic at the forcing frequency, but it cannot be propor-

tional to the sine alone because the first derivative introduces a cosine term.

Therefore we must write

yP ¼ AP cos ωf tð Þ þ BP sin ωf tð Þ ð2:24Þ
When this is substituted into the differential equation, there will be two terms,

one proportional to the sine and one proportional to the cosine. The two terms must

both vanish independently for the equation to be satisfied for all time. It is easy to

verify that the coefficients of the cosine and sine in Eq. (2.24) are

2BPζωfωn þ ω2
n � ω2

f

� �
AP ¼ 0 ¼ ω2

n � ω2
f

� �
BP � 2APζωfωn � Af

This is a pair of inhomogeneous algebraic equations that can be solved for A and B.
That result is

AP ¼ � 2ζωfωnAf

ω2
n � ω2

f

� �2 þ 2ζωfωnð Þ2
, BP ¼ ω2

n � ω2
f

� �
Af

ω2
n � ω2

f

� �2 þ 2ζωfωnð Þ2

or

AP ¼ � 2ζrAf

ω2
n 1� r2ð Þ2 þ 2ζrð Þ2
� � , BP ¼ 1� r2ð ÞAf

ω2
n 1� r2ð Þ2 þ 2ζrð Þ2
� � ð2:25aÞ

so that

yP ¼ � 2ζrAf

ω2
n 1� r2ð Þ2 þ 2ζrð Þ2
� � cos ωf tð Þ

þ 1� r2ð ÞAf

ω2
n 1� r2ð Þ2 þ 2ζrð Þ2
� � sin ωf tð Þ ð2:25bÞ

The amplitude of this response, YP, is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
P þ B2

P

q
.

42 2 One Degree of Freedom Systems



YP ¼ Af

ω2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2ð Þ2 þ 2ζrð Þ2

q ð2:25cÞ

and the phase by

tanϕ ¼ � 2ζr

1� r2ð Þ ð2:25dÞ

The force applied to the system ism times Af. The natural frequency is the square

of the ratio of k tom, so that Af/ωn
2¼F/k, which is the amount that the spring would

be compressed if F were constant, it provides a reference displacement; yk/F is

the dimensionless response of the system. Equation (2.25c) tells us the amplitude of

the response of a damped single degree of freedom system to harmonic excitation.

We can plot the response as a function of r for various values of the damping ratio.

Figure 2.12 shows the scaled magnitude, y0 ¼ yk/F, of the response for ζ ranging

from 0.1 to 1.0 at intervals of 0.1. The dimensionless response is unity at zero

excitation frequency and goes to zero as increases without bound. As we can see

from Eq. (2.25c), the maximum amplitude is at the nominal resonance—the forcing

frequency equal to the natural frequency (r¼ 1). We can use this value to find the

damping ratio from the amplitude plot

Fig. 2.12 The dimensionless amplitude of the response to a damped system to harmonic forcing.

The vertical axis is relative displacement and the horizontal axis the ratio of forcing frequency to

natural frequency
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ζ ¼ 1

2y0
max

ð2:25eÞ

I’ll discuss an alternate way of determining ζ when the system is underdamped

later.

For high forcing frequencies (compared to the natural frequency, large r) the
amplitude is small (asymptotically zero) and basically independent of the damping

ratio. Physically the forcing is changing so rapidly that the inertia of the system

gives it no time to respond. The response given by Eq. (2.15) is valid once the

transients have decayed. If the transients are important, then a homogeneous

solution—some realization of Eq. (2.9)—must be added to form a complete

solution.

2.2.4.2 The Complex Variable Approach
We learned in Chap. 1 that the complex exponential is equivalent to the trigono-

metric functions. We can use this as an alternate way of finding the particular

solution. We can rewrite the differential equation, replacing the sine by its complex

equivalent

€yP þ 2ζωn _yP þ ω2
nyP ¼ Af

1

2j
ejωtt � e�jωtt
� �

The two terms on the right-hand side are complex conjugates. The equation is

linear, so the particular solution will have two parts, one forced by the first term on

the right-hand side and one by its complex conjugate. These solutions will be

complex conjugates of each other. We can find the solution by solving one of the

equations and adding the complex conjugate of that solution to form the full

solution. Symbolically, we can find yP1 as the solution to

€yP1 þ 2ζωn _yP1 þ ω2
nyP1 ¼ Af

ejωtt

2j

and write

yP ¼ yP1 þ yP1	
where the asterisk denotes complex conjugate. Now the sum of a function and its

complex conjugate is twice the real part of the function

yP ¼ 2Re yP1ð Þ
I can incorporate the factor of two by multiplying the governing equation by 2 and

define yQ¼ 2 yP to give

€yQ þ 2ζωn _yQ þ ω2
nyQ ¼ �Af je

jωtt
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We solve this equation for yQ and take its real part to give yP. That is a relatively

easy task. This is an important point, however, so I will spend a bit of time going

through the details.

First multiply the original equation by 2 and move the j on the right-hand side to
the numerator (multiply top and bottom by j)

2€yP þ 4ζωn _yP þ 2ω2
nyP ¼ �jAf ejωtt � e�jωtt

� �
Replace yP by its expression in terms of yP1 and its conjugate

2 €yP1 þ €yP1	ð Þ þ 4ζωn _yP1 þ _yP1	ð Þ þ 2ω2
n yP1 þ yP1	ð Þ ¼ �jAf ejωtt � e�jωtt

� �
Define yQ as twice yP, and write this as two equivalent equations

€yQ þ 2ζωn _yQ þ ω2
nyQ ¼ �jAfe

jωtt

€yQ 	 þ2ζωn _yQ 	 þω2
nyQ	 ¼ jAfe

�jωtt

It is clear that the particular solution to either will be proportional to the exponen-

tial, and we find directly that the complex amplitude of the solution is

YQ ¼ � jAf

ω2
n � ω2

f þ 2jζωnωf

� � ¼ � jAf 1� r2 � 2jζrð Þ
ω2
n 1� r2ð Þ2 þ 2ζrð Þ2
� �

Parts of this formula should look familiar.

The important thing to note is that one does not take the real part of YQ. One
takes the real part of the actual solution, yQ, which is given by

yQ ¼ YQexp jωf tð Þ ¼ � jAf 1� r2 � 2jζrð Þ
ω2
n 1� r2ð Þ2 þ 2ζrð Þ2
� � exp jωf tð Þ

Expand the exponential and take the real part

yP ¼ �Re
jAf 1� r2 � 2jζrð Þ

ω2
n 1� r2ð Þ2 þ 2ζrð Þ2
� � cos ωf tð Þ þ j sin ωf tð Þð Þ

2
4

3
5

¼ �2ζr cos ωf tð Þ þ 1� r2ð Þ sin ωf tð Þ
ω2
n 1� r2ð Þ2 þ 2ζrð Þ2
� �

which one can see is identical to Eq. (2.23). The two methods are equivalent, as they

must be. The choice of method is a matter of personal taste.
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2.3 Special Topics

2.3.1 Natural Frequencies Using Energy

We found natural frequencies for undamped one degree of freedom systems by

writing and solving the differential equations. This is how we will find natural

frequencies for more complicated systems. However, it is interesting to note that we

can find natural frequencies for one degree of freedom systems by consideration of

energy alone. I want to address energy here because it is fundamental for the

derivation of the equations of motion for the more complicated systems that we

will see starting in Chap. 3.

An undamped, unforced system once set in motion will stay in motion perpetu-

ally (see Fig. 1.2 with the damper removed). Its energy is conserved: the sum of the

maximum kinetic energy and the minimum potential energy must equal the sum of

the minimum kinetic energy and the maximum potential energy

Tmax þ Vmin ¼ Tmin þ Vmax

The minimum kinetic energy is zero, because the kinetic energy is proportional

to the square of the speed, which is zero twice during any simple oscillation, so we

have

Tmax ¼ Vmax � Vmin ð2:26Þ
In one degree of freedom systems for which there is a restoring force (so that it

will oscillate), the potential is an even function of the variable, which I will denote

by y

V ¼ V0 þ V2y
2 þ � � �

Thus

Tmax ¼ Vmax � Vmin ¼ V2y
2 þ � � �

where the constant term cancels. The idea of natural frequency makes sense only for

small motions or for systems that are linear in their nature. In either case the +. . .
terms are negligible, so that the maximum kinetic energy will be proportional to the

square of the magnitude of the displacement. In most cases Vmin will be zero. When

it is not, it will be independent of the motion and will cancel from Eq. (2.26). This

allows us to find the natural frequency. If we have harmonic motion, which we

must have if we are to speak of natural frequencies, then we can write that

€y ¼ �ω2
ny. The left-hand side of Eq. (2.26) can be written in terms of the amplitude

of the oscillation Y and the natural frequency.
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Tmax / ω2
nY

2

The right-hand side can also be written in terms of the amplitude

Vmax � Vmin ¼ V2y
2 þ � � � � V2Y

2

The proportionality constant for the kinetic energy and V2 are different for each

problem, but their ratio determines the square of the natural frequency. Let me go

through some examples, starting with the simple mass-spring system.

Two points in this motion are special. When the (effective) spring is unstretched

(the equilibrium position for a stationary mass) the mass is moving at its maximum

speed. When the mass is stationary, the spring is at its maximum tension (compres-

sion). In the former case all the energy of the system is kinetic, in the latter,

potential. We can write these two energies as

T ¼ 1

2
m _y2, V ¼ 1

2
ky2

where we denote the kinetic energy by T and the potential energy by V. The
potential energy supposes that I have chosen the origin for y such that the potential

energy is zero when the spring is unstretched. We have already established that the

motion is harmonic, so we can write (using the amplitude and phase notation for

convenience)

y ¼ Y sin ωntþ φð Þ, _y ¼ Yωn cos ωntþ φð Þ
The maximum displacement occurs when the sine is unity and the maximum speed

when the cosine is unity. We can then find the maximum kinetic and potential

energies and equate these.

Tmax ¼ 1

2
mY2ω2

n ¼ Vmax ¼ 1

2
kY2 ) ω2

n ¼
k

m

The square of the natural frequency here is what we expect it to be, the ratio of the

energy storage coefficient to the inertia coefficient.

The restoring force for the mass-spring example is the spring force. The restor-

ing force for the pendulum is gravity. What happens when both gravity and a spring

can act? It depends on the circumstances, but let’s look now at the application of the

energy argument for the mass-spring system in a vertical position. The potential

energy here has both a spring and gravity component. Figure 2.13 shows the

system.

This is a one degree of freedom system with motion only in the z direction.

Denote the location of the mass where the spring is relaxed by z0, and the

equilibrium position of the spring, where the spring force just balances gravity,

by z1. A simple force balance—mg¼ k(z0� z1)—shows that
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z1 ¼ z0 � mg

k

We can write the energies of the system

T ¼ 1

2
m_z2, V ¼ mgzþ 1

2
z� z0ð Þ2

We expect the system to oscillate harmonically about its equilibrium position.

We can write

z ¼ z1 þ Z sin ωntþ ϕð Þ
_z ¼ ωnZ cos ωntþ ϕð Þ

where Z denotes the amplitude of the oscillation. The energies are

T ¼ 1

2
mω2

nZ
2 cos 2 ωntþ ϕð Þ

V ¼ mg
�
z1 þ Z sin ωntþ ϕð Þ�þ 1

2

�
z1 þ Z sin

�
ωntþ ϕ

�� z0
�
2

Substituting for z1 and expanding the potential energy gives

V ¼ 1

2
kZ2 sin 2 ωntþ ϕð Þ þ mgz0 � m2g2

2k

We can use Eq. (2.26) to get the natural frequency.

Fig. 2.13 A vertical mass-

spring system
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Tmax ¼ Vmax � Vmin

The two minima for the horizontal mass-spring system were both zero. In the

present case we have

1

2
mω2

nZ
2 ¼ 1

2
kZ2 þ mgz0 � m2g2

2k
� mgz0 � m2g2

2k

� �

The constant terms cancel and we reproduce the previous formula.

The following example shows the power of the energy method.

Example 2.4 Find the Frequency of Sloshing in a U-Tube Filled

with an Inviscid Liquid I first ran across this example in Den Hartog (1956).

The approach below is different from his, but the result is, of course, the same.

Figure 2.14 shows a U-tube manometer. I assume the fluid to be inviscid, so

there is no dissipation in the system. I also assume the liquid to be incompressible.

We would like to find the natural frequency of this system as the liquid sloshes up

and down. Denote the total length of the liquid by l, its density by ρ, and the cross-

sectional area of the tube by A. The mass of the fluid is thenm¼ ρAl. The dynamical

variable is h as shown in the figure. h¼ 0 corresponds to equilibrium. The kinetic

energy is straightforward if we assume that the fluid moves as a unit:

T ¼ 1

2
mv2 ¼ 1

2
ρAl _h

2

Fig. 2.14 A U-tube

manometer. h denotes the

distance the liquid has moved

up and down from the

equilibrium position, shown

by the long dashed line
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To get from the equilibrium configuration to the configuration shown in the

figure, we moved a mass ρAh from the vacant spot below the dashed line on the left

to the filled spot above the line. The center of mass moved up a distance h, so the

change in potential energy was

V ¼ ρAhg

(I will take the h¼ 0 equilibrium to define the reference state of the potential

energy.)

Supposing the system to be harmonic and equating the two maxima gives

ω2
n ¼

ρAg
1
2
ρAl

¼ 2
g

l

We can find the equation of motion from this, because in a nondissipative one

degree of freedom system, the only parameter is the natural frequency. We’ll have

€hþ 2
g

l
h ¼ 0

2.3.2 A General Particular Solution to Eq. (2.4)

We can write an integral expression that purports to solve Eq. (2.4)

y ¼
ð t
0

ϕ t� τð Þa τð Þdτ ð2:27Þ

Our task is to find the function ϕ such that Eq. (2.27) solves Eq. (2.4), which we

can do by substituting Eq. (2.27) into Eq. (2.4). To so this we need to recall how to

differentiate a definite integral. The derivative is equal to the integral of the

derivative of the integrand, plus the derivative of the upper limit times the integrand

evaluated at the upper limit, minus the derivative of the lower limit times the

integrand evaluated at the lower limit. For y given by Eq. (2.26), we have

_y ¼
ð t
0

_ϕ t� τð Þa τð Þdτ þ ϕ 0ð Þa tð Þ � 0

Differentiating again gives

€y ¼
ð t
0

€ϕ t� τð Þa τð Þdτ þ ϕ 0ð Þ _a tð Þ þ _ϕ 0ð Þa tð Þ
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Equation (2.4) becomes

ð t
0

€ϕ t� τð Þa τð Þdτ þ ϕ 0ð Þ _a tð Þ þ _ϕ 0ð Þa tð Þ þ 2ζωn

ð t
0

_ϕ t� τð Þa τð Þdτ þ ϕ 0ð Þa tð Þ
� �

þω2
n

ð t
0

ϕ t� τð Þa τð Þdτ ¼ a tð Þ

or combining all the integral terms under a single integral sign

ð t

0

€ϕ t� τð Þ þ 2ζωn
_ϕ t� τð Þ þ ω2

nϕ t� τð Þ� �
a τð Þdτ þ ϕ 0ð Þ _a tð Þ þ _ϕ 0ð Þa tð Þ ¼ a tð Þ

ð2:28Þ
Equation (2.28) will be an identity if ϕ satisfies the homogeneous version of

Eq. (2.4) with ϕ(0)¼ 0 and its first derivative equal to unity. The integrand in

Eq. (2.28) vanishes because the function satisfies the differential equation. The

coefficient of _a tð Þ vanishes, and the coefficient of a(t) is unity. The function ϕ(t) is
the solution for the unit impulse that we have already seen, and so we can write this

for any value of ζ in terms of the two general exponents for the homogeneous

equation.

ϕ t� τð Þ ¼ es1 t�τð Þ � es2 t�τð Þ

s1 � s2
ð2:29aÞ

We can write this in terms of a general argument, replacing t� τ by ξ, to give

Eq. (2.29b)

ϕ ξð Þ ¼ es1ξ � es2ξ

s1 � s2
ð2:29bÞ

This works because the two exponentials each satisfy the differential equation. The

equation is linear, so their sum does as well. It is easy to establish that the initial

conditions (here when the general argument ξ¼ 0) are as promised. It is worth

noting that the underdamped version of Eq. (2.29b) is

ϕ ξð Þ ¼ exp �ζωnξð Þ sin ωdξð Þ
ωd

ð2:29cÞ

the same as Eq. (2.21). The particular solution given by Eq. (2.27) and its first

derivative both vanish at t¼ 0, the former by inspection, and the latter as follows:

_y ¼ ϕ 0ð Þa tð Þ þ
ð t
0

_ϕ t� τð Þa τð Þdτ

The first term vanishes because ϕ(0) does and the second vanishes by inspection—

the interval of integration goes to zero. This particular solution does not contribute
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to the initial conditions. The initial conditions for the problem are taken care of

entirely by the homogeneous solution. We can incorporate the initial conditions by

adding an appropriate homogeneous solution, that given by Eq. (2.15).

This particular solution is restricted to one degree of freedom problems, but we

will find similar integral expressions for problems of arbitrary complexity later.

2.3.3 Combining Springs and Dampers

Mechanical systems, even one degree of freedom systems, can have more than one

spring or damper. We need to know how to combine springs and dampers to form

effective springs and dampers so that we can use what we have learned about

Eq. (2.4) for more complicated situations. Fortunately the rules are simple and

straightforward and the same for dampers as for springs. I will work them out for

springs.

The relation between force and displacement for a spring is linear, and the

proportionality constant is the spring constant: f¼ kδy. We can find the spring

constant by finding the relation between displacement and force. Figure 2.15

shows three springs in parallel.

We see that the force is the sum of the forces in the three springs so that the

effective spring constant is simply the sum of the three individual constants. In

equation form

Fig. 2.15 Three springs

in parallel
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f ¼ k1δyþ k2δyþ k3δy ¼ k1 þ k2 þ k3ð Þδy
so that

keff ¼ k1 þ k2 þ k3ð Þ ð2:30aÞ
Figure 2.16 shows three springs in series.

The system is stationary so the force between springs must be zero. Therefore,

the force in each spring is the same, so each will deform in response to that force

and the total displacement will be

δy ¼ f

k1
þ f

k2
þ f

k3

We can solve this for f in terms of the spring constants

f ¼ δy
1
k1
þ 1

k2
þ 1

k3

¼ k1k2k3
k1k2 þ k1k3 þ k2k3

δy

so that the effective spring constant is given by

keff ¼ 1
1
k1
þ 1

k2
þ 1

k3

¼ k1k2k3
k1k2 þ k1k3 þ k2k3

ð2:30bÞ

In summary the effective spring constant of springs in parallel is the sum of the

individual spring constants; the effective spring constant of springs in series is

the inverse of the sum of the inverses. If an electric analogy is helpful to you,

you can say that springs in parallel add like resistors in series and springs in series

add like resistors in parallel or that springs are the mechanical analog of

capacitors.

The same combination rules apply to dampers. I leave it to you to verify this.

Fig. 2.16 Three springs in series
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2.3.4 Measuring the Damping Ratio

So far this chapter has assumed that the parameters for Eq. (2.4) are given. Suppose

we have some vibrating system that we think can be represented by a one degree of

freedom model. We can hear or feel something that sounds like a vibration. If we

want to analyze it further, we would need to provide values for the natural

frequency and damping ratio. We know that the damping ratio is less than one or

there would not be a detectable vibration. The model system must be underdamped.

We might excite the system (e.g., by providing an impulse) and get a picture like

Figure 2.9.

Can we deduce what we need to know from these data? We will learn methods

for finding natural frequencies for systems of any complexity later. We can estimate

the frequency for the sample data by simply counting zero crossings. We know

that the system is underdamped because it is oscillating and decaying. How can we

find the damping ratio from the data in Fig. 2.9? This is a traditional exercise.

Extending it to more than one degree of freedom is not trivial, but the technique is

intriguing and worth addressing.

We know the response to an underdamped system is of the form

y ¼ exp �ζωntð Þ A cos ωdtð Þ þ B sin ωdtð Þð Þ
If the response is to an impulse, A¼ 0, so we can write the response as [see

Eq. (2.29c)]

y ¼ Yexp �ζωntð Þ sin ωdtð Þ
The successive peaks are at tn¼ (2n+ 1)π/ωd and so their values are

yn ¼ Yexp �ζωn

2nþ 1ð Þ
ωd

π

� �
¼ Yexp � ζffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ζ2
� �q 2nþ 1ð Þπ

0
B@

1
CA

This expression is independent of the natural frequency, and if we take ratios, we

can make it independent of the amplitude Y. We have

yn
ynþ1

¼
exp � ζffiffiffiffiffiffiffiffiffiffiffiffi

1�ζ2ð Þp 2nþ 1ð Þπ
 !

exp � ζffiffiffiffiffiffiffiffiffiffiffiffi
1�ζ2ð Þp 2nþ 3ð Þπ

 ! ¼ exp
ζffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ζ2
� �q 2π

0
B@

1
CA

54 2 One Degree of Freedom Systems



Take the logarithm of this

δ ¼ ln
yn
ynþ1

� �
¼ 2π

ζffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2
� �q ð2:31Þ

The quantity δ is called the log decrement. We can measure the log decrement

and solve the equation for the damping ratio.

ζ ¼ δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2 þ δ2
� �q ð2:32Þ

Note that the ratio is the same for each successive point, so one can measure several

of these and arrive at an estimate based on several values of the ratio.

Example 2.5 Finding the Damping Ratio from Artificial Data Figure 2.17

shows a digital sampling of a decay curve for a system with a damping ratio of 0.15

y ¼ exp �0:15ωntð Þ sin 0:9887ωntð Þ
I eyeballed the data from the figure and built a table of successive maxima.

I calculated ratios from these maxima, calculated the logarithms, then the damping

ratios, and finally averaged the damping ratios, obtaining 0.1500, a very good

estimate of the actual damping ratio. Table 2.1 shows the calculations.2

Fig. 2.17 A digital record of some artificial data

2 Calculated using spreadsheet software.
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2.3.5 Support Motion

I stated earlier that we can drive the mass by moving the support. We can redraw

Fig. 1.2 with the external forcing replaced by an imposed displacement, shown in

Fig. 2.18. The equation of motion associated with this system is

m€y ¼ �k y� yGð Þ � c _y � _yGð Þ ) €yþ 2ζωn _y þ ω2
ny ¼ 2ζωn _yG þ ω2

nyG

where yG denotes the motion of the support. (I use the subscript G because the support

will frequently be the ground.) The right-hand side plays the role of the acceleration

a in Eq. (2.4). We can make the essential points more clearly if we neglect damping

and suppose that the support motion is harmonic. Then we will have

€yþ ω2
ny ¼ ω2

nYG sin ωGtð Þ
In this simple case y will also be proportional to sin(ωGt) and we find that

yP ¼
ω2
nYG

ω2
n � ω2

G

sin ωGtð Þ ¼ YG

1� r2
sin ωGtð Þ

Table 2.1 Estimating

the damping ratio from

artificial data

Eyeball

Maxima Ratios ln(ratios) Zetas

0.7965 2.592773438 0.952728128 0.149917725

0.3072 2.596787828 0.95427523 0.150155687

0.1183 2.605726872 0.957711666 0.150684156

0.0454 2.583949915 0.949319203 0.149393302

0.01757 0.150037717

Fig. 2.18 A one degree

of freedom system excited

by motion of its support
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where r now denotes the ratio of the ground motion frequency to the natural

frequency: r¼ωG/ωn. Note that I have labeled this as a particular solution. It is

fairly common to neglect the homogeneous solution in applications. All real

systems have some damping, and the transients before damping can have its effect

are often not interesting. When only the particular solution is used, it is called the

steady solution, even though it is not actually steady, but a harmonic function of

time at the same frequency as the driving input. The engineer has to decide when it

is appropriate to use this steady (particular) solution. Generally the steady solution

is fine if the transients are unimportant (or unknown).

There are two extreme limits. If ωG is small compared to the natural frequency

(small r), then the amplitude of the response is approximately equal to the input.

If we add damping we get a somewhat more complicated expression, which I leave

to the reader. Figure 2.19 shows the response normalized to the amplitude of the

ground motion for the same range of damping ratios as in Fig. 2.14. Note

the qualitative resemblance to Fig. 2.14. The quantitative differences stem from

the appearance of the damping in the acceleration term.

The force on the mass also varies with forcing frequency, but not in the

same way.

Figure 2.20 shows the normalized force for the same set of parameters:

f

kYG

¼ y� yGð Þ
YG

þ 2ς
_y � _yGð Þ
ωnYG

The force is zero at zero forcing frequency (nothing happens) and increases as the

forcing frequency increases. The higher the damping ratio, the higher the force for

large forcing frequency.

Fig. 2.19 Normalized response to harmonic ground motion
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2.4 Applications

2.4.1 Unbalanced Rotating Machinery

A piece of rotating machinery will react on its supports when rotating if it is not

balanced. Examples include everything from an asymmetrically loaded washing

machine to the turbine rotors in a jet engine. Automobile tires provide a homely

example. We can look at this as a one degree of freedom if we suppose motion to be

possible in only one direction.

Figure 2.21 shows a model of a system with a rotational imbalance. The small

mass m rotates with the central shaft and is offset a distance d from the rotation axis.

The shaft rotates at a rate ω as shown.We make this a one degree of freedom system

by supposing the machine to be constrained to purely vertical motion. The unbal-

anced mass exerts a centripetal force on the axle, hence on the machine. If we

denote the angle the unbalanced mass makes with the vertical by θ(¼ωt), then we

can write the vertical component of the centripetal force as mdω2 cos θ, and we can
write Eq. (2.4) as

€zþ 2ζωn _z þ ω2
nz ¼

md

M
ω2

� �
cos ωtð Þ ¼ md

M
ω2

� �
sin ωt� π

2

� �

In engineering practice we care about the long-term behavior of this system—

will it shake itself apart or destroy its mount? Therefore we do not care about the

Fig. 2.20 Normalized force on the mass (see text)
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transient for this problem and can address the particular solution alone. This is a

harmonically forced damped system, and we know the particular solution. We

simply modify Eq. (2.13a) to obtain

zP ¼ � 2ζωfωn

ω2
n � ω2

f

� �2 þ 2ζωfωnð Þ2
md

M
ω2
f

� �
cos ωf t� π

2

� �

þ ω2
n � ω2

f

� �
ω2
n � ω2

f

� �2 þ 2ζωfωnð Þ2
md

M
ω2
f

� �
sin ωf t� π

2

� �

where I have added a subscript f to the forcing frequency for clarity. We can write

this in a more compact form

zP ¼ � 2ζr

1� r2ð Þ2 þ 2ζrð Þ2
� � md

M
r2

� �
sin ωf tð Þ

� 1� r2ð Þ
1� r2ð Þ2 þ 2ζrð Þ2

� � md

M
r2

� �
cos ωf tð Þ ð2:33Þ

Fig. 2.21 Rotating machine

with an imbalanced rotor
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The amplitude of this can be gotten by substitution into Eq. (2.13b). That result is

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2ð Þ2 þ 2ζrð Þ2

q m

M
r2d ð2:34Þ

Now we see that the displacement is small at small forcing frequencies and is

asymptotically equal to the mass ratio times the offset as the forcing frequency

increases. (In most circumstances the product md is the only variable available. The
actual location of the imbalance is not easily found. In the case of balancing a tire,

weights are placed on the rim, so d and m can be determined independently for the

compensatory weights.) Figure 2.22 shows the displacement divided by d for a

mass ratio of 1/50. You can see the effects of resonance and the asymptotic result.

The force transmitted to the ground is often important. We can also obtain that

from prior work. In this case the ground is not moving, so we have

f ¼ kzþ c_z ¼ M ω2
nzþ 2ζωn _z

� �
We can plot the amplitude of f/dk as a function of the frequency ratio and the

damping ratio, as we did for the displacement. That result is shown in Fig. 2.23.

Example 2.6 The Rotary Lawn Mower Consider the rotary lawn mower as a

real-life example of a rotating imbalance with one degree of freedom (at least in a

very simple model for which the wheels prevent sideways motion). Figure 2.24

Fig. 2.22 Normalized displacement vs. exciting frequency
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shows the bottom of a rotary lawn mower deck. It is reasonable to suppose that the

wheels prevent transverse motion, so that the only motion that might be generated

by an imbalance is in the nominal direction of travel. The force resisting this is

complicated, requiring us to understand the interaction of the wheels with grass-

covered ground. Since this is well beyond the scope of this text, let’s take a very

simple model and suppose there is no rolling resistance.

The blade shown is 533 mm (2100) long and its width is 54 mm (2 1/800). Its mass is

0.70 kg (weight 1 lb 8.5 oz), and it is made of steel. The mower wheel base is 686 mm

(2700) and its track is 508 mm (2000). We can model the blade as a uniform steel bar

with the same mass and length and a reasonable width, a bar 533 mm long, 54 mm

wide, and 3.10 mm thick. I take the mass of the entire lawn mower to be 15 kg.

How fast does the blade turn? Federal law limits the tip speed of the blade to

96.5 m/s (19,000 fpm). This speed is attained at approximately 3,460 rpm for this

blade. Browsing the Internet suggests that rotary push lawn mower engines are set

between 3,000 and 3,300 rpm. We can adopt some reasonable number, say

3,200 rpm, to explore the possible vibrations of this system caused by blade

imbalance. The equation of motion for the system as a whole is

M€y ¼ mdω2 cos ωtð Þ
where M denotes the entire mass, md the unbalanced moment, and ω the rotation

rate. The response is a simple 180� out of phase motion of amplitude md/M. This

agrees with Eq. (2.31) in the limit that r goes to infinity—zero natural frequency.

The worst case would have the location of the imbalance at the end of the blade,

0.4

0.3

0.2

0.1

2 4 6 8 10

Fig. 2.23 Dimensionless ground force for the imbalanced rotor. The red curve is the undamped

case. The blue curves show damping ratios from 0.1 to 0.9 in 0.1 increments. Damping increases

the transmitted force for high frequency excitation
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so that we have an amplitude of 10.5m/M inches. The unbalanced mass will be a

small fraction of the blade mass, which is a small fraction of the system mass, so we

do not expect much motion. However, there is a still a radial force on the motor

bearings of 1.123� 105mdN. A one gram unbalanced weight at the end of the blade

makes this number approximately 30 N, not a negligible load on a bearing.

2.4.2 Simple Air Bag Sensor

The actual air bag sensor is a MEMS3 device that we can look at as a small

cantilever beam as shown in Fig. 2.25. We can fit this into our one degree of

freedom model by finding the spring constant of the beam, either experimentally or

by calculating it (beyond our capabilities at the moment). If the mass is much larger

than the mass of the beam, then the calculation is simple, based on bending of a

cantilever beam under end loading. I leave that to you. We are going to need to

design an appropriate system eventually. For now, note that the system can be

redrawn to fit into our model of a system driven by the motion of its support, as

shown in Fig. 2.26. The sensor assembly is rigidly attached to the car so that the

motion of the case of the assembly is the same as that of the car.

Fig. 2.24 Lawn mower bottom (photo by the author)

3Microelectromechanical systems.
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Suppose the whole system to be moving to the right. When the vehicle hits a tree,

the case stops, but the mass wants to keep moving. If the mass moves far enough, it

will trigger the air bag, so we need to calculate how far it will travel for a given

deceleration. Denote the position of the mass with respect to the case by y, and
denote the motion of the case by yW. The basic force balance is

m €yþ €yWð Þ ¼ �c _y � ky

which can be converted to an equivalent of Eq. (2.4)

€yþ 2ζωn _y þ ω2
ny ¼ �€yW

Fig. 2.25 A simple sketch

of an air bag sensor

Fig. 2.26 Idealized model

of an air bag sensor
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We can get a general picture of how this works by neglecting damping (which

will be small in any case) and assuming a constant deceleration. We need to solve

€yþ ω2
ny ¼ �a0

subject to zero initial conditions. This is a problem for which the transient is all.

Either the mass triggers the air bag during its first swing or it never will. This clearly

depends on the deceleration (note that constant a0 is a negative number) and the

natural frequency. The particular solution is constant, and the homogeneous solu-

tion is the usual expression in terms of sine and cosine. The final result after

applying initial conditions is

y ¼ a0
ω2
n

1� cos ωntð Þð Þ

I plot a scaled version as Fig. 2.27.

We see that the maximum displacement is twice the acceleration divided by the

natural frequency and that it takes place at ωnt¼ π. We want the air bag to trigger

early in the crash process, so we want a high natural frequency. The larger the

design frequency, the smaller the response for a given deceleration, so we want the

critical displacement to be small. Finally, we want the air bag to deploy only when

the deceleration is extreme, more than one would expect from normal operation of

the vehicle.

Fig. 2.27 Air bag sensor response
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2.4.3 Seismometers and Accelerometers

Both seismometers and accelerometers work on the same principle as the air bag

sensor. They have a proof mass connected to their world by a spring (and usually

some sort of damper, whether deliberate or a consequence of natural dissipation)

and a sensor that can detect motion between the proof mass and its world. The

former measures displacement of the Earth and the latter the acceleration of

whatever object it is attached to. How, then, are they different? We can address

this question by considering again the simple one degree of freedom problem driven

by ground motion.

Denote the motion of the proof mass by y and that of its world by yG. The
governing differential equation can be reduced to our standard form (recall how to

do this)

€yþ 2ζωn _y þ ω2
ny ¼ 2ζωn _yG þ ω2

nyG

where ζ denotes the damping ratio and ωn the natural frequency (here k/m). These
systems require an unsteady input, and we can characterize such an input by some

characteristic frequency. (In the case of a more complicated input, we can charac-

terize that by a suite of frequencies.) The response will depend on the input

frequency. Let

yG ¼ YG sin ωGtð Þ
where YG is a constant and ωG is the characteristic frequency. Substituting this into

the differential equation leads to

€yþ 2ζωn _y þ ω2
ny ¼ 2ζωnωGYG cos ωGtð Þ þ ω2

nYG sin ωGtð Þ
We care about the particular solution. (I’ll say a little more about this when

we’ve done the analysis.) The forcing is harmonic at ωG and the particular solution

must also be harmonic at ωG. We can write

y ¼ Y1 cos ωGtð Þ þ Y2 cos ωGtð Þ
and substitute that into the differential equation. There will be sine and cosine terms

on both sides of the equation, and they must satisfy the equation independently. The

final result for the differential motion will be

y� yG ¼ 2ζr3

1� r2ð Þ2 þ 4ζ2r2
YG cos ωGtð Þ þ r2 1� r2ð Þ

1� r2ð Þ2 þ 4ζ2r2
YG sin ωGtð Þ

where r denotes the ratio of the exciting frequency to the natural frequency: r¼ωG/ωn.

The damping will be small so that ζ is less than unity, probably considerably less

than unity. The amplitude and phase of this signal are given by
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A ¼ r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2ð Þ2 þ 4ζ2r2

q YG, ϕ ¼ tan �1 2r

1� r2ð Þ
� �

Figures 2.28, 2.29, and 2.30 show the amplitude divided by YG vs. r for r from
zero to ten in red for damping ratios of 0, 1 (critically damped), and 0.707. The two

blue lines are r2 and unity, respectively. We see that the response for small r goes
like the square of r, and for large r the response tends to a constant. Zero damping is

clearly inadmissible, and critical damping reduces the range where the blue and red

curves coincide. The intermediate damping seems to be a good choice. I encourage

you to investigate this question further.

Figure 2.30 suggests that we can use this instrument to measure different things

depending on whether r is large or small.

2.4.3.1 Seismometers
If r is large, then

y� yG � 2ζ

r
YG cos ωGtð Þ � YG sin ωGtð Þ � �YG sin ωGtð Þ

The amplitude tends to YG and the phase to �π. The differential signal is propor-

tional to the input displacement and 180� out of phase with it. The sensor will

measure the displacement of the ground. Large rmeans that the natural frequency is

Fig. 2.28 The normalized amplitude of the response of an instrument driven by ground motion.

The horizontal axis is the ratio of the exciting frequency to the natural frequency. The horizontal

line is unity, and the curve is r2. The damping ratio is zero, and the large values of the red curve cut

off represent resonance at r¼ 1
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Fig. 2.29 The normalized amplitude of the response of an instrument driven by ground motion.

The horizontal axis is the ratio of the exciting frequency to the natural frequency. The horizontal

line is unity, and the curve is r2. The damping ratio is unity

Fig. 2.30 The normalized amplitude of the response of an instrument driven by ground motion.

The horizontal axis is the ratio of the exciting frequency to the natural frequency. The horizontal

line is unity, and the curve is r2. The damping ratio is 0.707
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small compared to the displacement frequency—a large mass and a weak spring.

Such a device can function as a seismometer, measuring ground motion at

frequencies greater than its own natural frequency. Figure 2.30 suggests that ground

motions at more than three times the natural frequency can be reliably measured.

Maximum earthquake frequencies are about 20 Hz (with significant energies well

below 1 Hz), so seismometers need very low natural frequencies. We can attain

low frequencies (in mechanical seismometers) by using a horizontal pendulum.

We know that the natural frequency of a pendulum is given by

ω2
n ¼

g

l

If the pendulum is nearly horizontal the effective gravity is reduced and periods in

excess of 30 s can be easily attained. It is also fairly easy to add damping to any such

system using a damper at the pivot.

Let’s take a look at how a pendulum responds to the motion of its pivot point. We

don’t need to worry about the horizontal aspect, just suppose that the effective

gravitational constant is reduced. We can start with the same pendulum equations

we had earlier in this chapter

m€y ¼ �T sin θ
m€z ¼ T cos θ � mg

The difference is that we must replace y by a term that takes account of the pivot

motion:

y ¼ yG þ l sin θ

The expression for z remains the same. It is an easy matter to follow the pendulum

argument to arrive at the modified equation for the pendulum [the equivalent of

Eq. (2.12a)]

€θ þ g

l
sin θ ¼ � cos θ

€yG
l

which linearizes to

€θ þ g

l
θ ¼ �€yG

l

We can add damping proportional to the rotation rate of the pendulum, to give

€θ þ c

ml
_θ þ g

l
θ ¼ �€yG

l

We can use this to design our damping. If we want ζ¼ 0.707, as in Fig. 2.28, we

simply write
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c

ml
¼ 2ζ

ffiffiffi
g

l

r
! c ¼ 2ζm

ffiffiffiffi
gl

p

2.4.3.2 Accelerometers
On the other hand, if r is small, then we have

y� yG � 2ζr3YG cos ωGtð Þ þ r2YG sin ωGtð Þ � ω2

ω2
n

YG sin ωGtð Þ

The amplitude tends to

r2YG ¼ ω2
G

ω2
n

YG

and the phase to zero. The output provides a direct measurement of the acceleration

(ωG
2yG) of the object to which the instrument is attached. This device can measure

acceleration at frequencies below the natural frequency of the instrument, so a high

natural frequency is desired. An accelerometer requires a tiny proof mass and a very

stiff spring. I will discuss actual accelerometers in Chap. 5.

Note that neither instrument is all that much affected by the damping, so

moderate damping (say ζ¼ 1/√2) can be introduced to reduce any ringing from

the sudden onset of the signal.

2.5 Preview of Things to Come

2.5.1 Introduction to Block Diagrams

We will have occasion to use block diagrams frequently in the course of this text.

Block diagrams provide schematic diagrams equivalent to the differential equations

governing any given system. Sometimes (for many people) this visual picture

makes it easier to understand the dynamics. (Some people are content with the

differential equations.) I will introduce block diagrams here in this simple setting,

using the standard form of the one degree of freedom system as given by Eq. (2.4),

reproduced here for convenience,

€yþ 2ζωn _y þ ω2
n ¼ a ð2:4Þ

I want to draw a picture of Eq. (2.4). The differential equation relates a function

and its derivatives to the input. The mathematical operations are all differentiations.

The mathematical operations in a block diagram are all integrations. The block

diagram is, in some sense, the inverse of the differential equation.

Let’s put together a block diagram of Eq. (2.4). This is a second-order equation

involving two differentiations. Its block diagram equivalent will require two
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integrations, which I will denote by triangles. There will be what I can call a

second-order spine at the heart of the diagram, which I show as Fig. 2.31a.

One reads this diagram form left to right. We start with €y, integrate to get _y, and
then integrate a second time to get y. (It is conventional to ignore initial conditions

when drawing block diagrams.) To complete the block diagram we need to have a

picture of €y, which we can obtain by solving Eq. (2.4) for €y:

€y ¼ �2ζωn _y � ω2
n þ a

There are three contributions to the second derivative—one from the input and

one each from y and its first derivative. Once we have the second derivative, we

integrate twice to get y. This is shown in Figure 2.31b, where I represent addition by
a circle and multiplication by a box. The block diagram of the standard one degree

of freedom system is shown as Fig. 2.31b.

The circle at the left gathers all three inputs to the second derivative: the

actual input and the two “feedback” inputs. I put feedback in quotation marks

here because I intend to use the word in a somewhat different sense later in the text.

In both the present and future cases, the feedback is literally a feedback—already

calculated variables are fed back to the beginning. The diagram is of what is called

an open-loop system, open because there is no direct connection from the output

y to the input a. Closing the loop, adding a connection from y back a, would make

it a closed-loop system, and the connection is what we will generally mean

by feedback. This process is the core of the second half of the text, beginning

in Chap. 7.

Figure 2.31b shows a scalar block diagram, and it has two integrators. We can

make a vector diagram of this and have a single (vector) integrator. This will be the

way we will represent complicated systems later in the text, so it is a good idea to

Fig. 2.31 (a) The spine

of a second-order system.

(b) Block diagram of the

standard one degree of

freedom system (Eq. 2.4)
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see how this goes. The easiest way to develop this picture is to go through

the analysis. Instead of treating y and its derivative as connected scalars, we treat

them as the components of a vector

x ¼ y
_y

	 

, y ¼ 1 0f gx

and then write the differential equations for this vector

d

dt

y
_y

	 

¼ _y

�ω2
ny� 2ζωn _y þ a

	 


Split out the external acceleration while maintaining the vector nature of the

equations

d

dt

y
_y

	 

¼ _y

�ω2
ny� 2ζωn _y

	 

þ 0

1

	 

a

This problem is linear so the homogeneous term on the right-hand side can be

rewritten as a matrix times a vector

d

dt

y
_y

	 

¼ 0 1

�ω2
n �2ζωn

	 

y
_y

	 

þ 0

1

	 

a, y ¼ 1 0f g y

_y

	 


We can write this system compactly in vector notation for any linear system, not

just the simple one degree of freedom problem we are addressing, as Eq. (1.1b)

augmented with a scalar output

_x ¼ Axþ ba, y ¼ cTx

from which it is easy to draw the vector block diagram (Fig. 2.32)

In fact, this diagram and the accompanying vector equation can be generalized to

systems that have more than one input and more than one output. In that case the

vectors b and c become matrices. This is an example of a state space formulation,

but I will defer further discussion of state space until Chap. 6.

Fig. 2.32 Vector block

diagram. The thick lines
denote vector variables and

the thin lines scalar variables
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2.5.2 Introduction to Simulation: The Simple Pendulum

Most models of engineering problems are nonlinear. We can address linearized

versions of these analytically, but frequently this is not sufficient. There is not much

one can do analytically with nonlinear problems, and what there is is beyond the

scope of this text (although this problem can be pursued further analytically, and I

will do that). We can, however, address nonlinear problems numerically by

integrating the governing equations. I will refer to this process as simulation, and
to the results as a simulation. Numerical integration in time is usually based on

finite differences, replacing the derivatives by differences. The most commonly

used integration methods are the various Runge-Kutta schemes. Runge-Kutta

schemes have different orders of accuracy. The more accurate the scheme, the

longer the integration takes. Fourth-order accuracy is usually chosen, and it is also

common to use an adaptive step size routine, taking larger steps where the solution

is varying slowly. A thorough discussion of numerical integration is beyond the

scope of the text. I refer the interested reader to Press et al. (1992), which not only

contains the material but is one of the clearest mathematics books I know. Simula-

tion is not only useful for modeling the dynamics of a mechanism, but it can be used

to assess the validity of a linear solution: how well does the linear solution agree

with the simulation? I will use commercial software to integrate the nonlinear

equations, which can always be converted to a set of quasilinear first-order

equations. I did the integrations in this book using Mathematica version 8.0.4.0,

for which I believe the integration scheme to be a fourth-order adaptive step size

Runge-Kutta scheme.

Example 2.7 Simulating the Simple Pendulum We found a solution for the

simple pendulum that was valid for small angles. Let us assess how small these

angles need to be by simulating the pendulum, integrating Eq. (2.12a), reproduced

here for convenience.

€θ þ g

l
sin θ ¼ 0 ð2:12aÞ

We can convert this to a pair of first-order equations (state space form) for the state

vector

x ¼ θ
_θ

	 


which gives a pair of coupled ordinary differential equations.

_θ ¼ ω, _ω ¼ � g

l
sin θ
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We can compare the linear and nonlinear response by comparing the behavior of the

system starting from rest at θ¼ θ0. The linear solution for this case is θ0cos(√(g/l )t).
I can set g¼ 1¼ l without loss of generality. This makes the period of the linear

pendulum equal 2π.
Figure 2.33 shows the linear and nonlinear response of the pendulum over two

linear periods for an initial offset of π/36 (5�). The nonlinear solution (in red) is

overlain almost perfectly by the linear solution, in blue. This suggests that 5� is

certainly small enough, at least for a few periods.

There’s not much visible difference in two periods for initial offsets of 10 and

15�. We can begin to detect a difference at 20�, as shown in Fig. 2.34. The nonlinear
solution lags the linear solution, and, while it is periodic, it is no longer harmonic.

(In fact, the nonlinear solution is never harmonic, as I will show eventually.)

If we go to 90� we see a sharp difference between the linear and nonlinear

solutions, although the nonlinear solution still looks quite harmonic. This is shown

in Fig. 2.35.

Finally, if I start the system in a nearly inverted position (0.99π) the entire

character of the nonlinear solution changes, so much so that I have to plot four

linear periods to give a good impression of the result, shown in Fig. 2.36.

Fig. 2.33 Response of a pendulum started from rest at 5� from vertical
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Fig. 2.34 Response of a pendulum started from rest at 20� from vertical

Fig. 2.35 Response of a pendulum started from rest at 90� from vertical
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Exercises

1. Verify Eq. (2.2).

2. Solve the following differential equation with its initial conditions

d2y

dt2
þ 2y ¼ 0, y 0ð Þ ¼ 1,

dy

dt

����
t¼0

¼ 0

3. Solve the following differential equation with its initial conditions

d2y

dt2
þ 2y ¼ sin tð Þ, y 0ð Þ ¼ 0,

dy

dt

����
t¼0

¼ 1

4. Find the natural frequency of a pendulum using the energy approach.

5. Find the amplitude and phase of the motion in terms of A and B in Eqs. (2.3)

and (2.4).

6. Consider a simple pendulum initially in equilibrium (pointing straight down).

What happens when the pendulum bob is struck impulsively in the horizontal

direction? Find the maximum angle in terms of the momentum transferred

using the linear approximation.

7. Find the equations of motion for a general pendulum for which the rod is not

massless. Find the frequency of oscillation in the linear (small θ) limit.

Fig. 2.36 Response of a pendulum started from rest in an almost vertical position
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8. Consider the system shown in Fig. 2.8. Write the differential equations from a

free body diagram approach. How does gravity enter the problem? What is the

difference between gravity and the spring?

9. Find the general solution to the homogeneous damped equation of motion when

ζ¼ 1.

10. Verify the damped impulse response Eq. (2.19).

11. Find the limit of the damped impulse response as ζ! 1 from below.

12. Complete the particular solution for an undamped system excited by a¼ t3.
13. What is the damping ratio for a mass-spring-damper system in which every

maximum amplitude is 2 % less than the prior maximum? Suppose that the

mass weighs 1 lb and the spring constant is 10 lb/in, what is the value of

c (include units)?
14. The deflection of the spring when the system is at rest is half an inch. The mass

weighs 20 lbs. The amplitude of a free vibration decreases from 0.4 in to 0.1 in

in 20 cycles. What is the damping constant in lb-sec/in?

15. A damped vibrating system consists of a spring of k¼ 20 lb/in and a weight of

10 lbs. It is damped so that each maximum amplitude is 99 % of the maximum

one full cycle earlier. (a) Find ωn. (b) Find the damping constant. (c) What

amplitude of a force at ωn will keep the amplitude of oscillation at 1 in?

16. Find an analytic expression for the force on a mass subject to support motion in

the absence of damping.
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17. Find the effective spring constant for the system shown in the diagram

mass-spring system for Ex. 17.

18. Show that dampers add in the same way as springs.

19. Verify Eqs. (2.18a), (2.18b), and (2.19).

20. Apply Eqs. (2.12a) and (2.12b) to the system shown in Fig 2.8.

21. A typical speed bump is about two feet wide and two inches high. Suppose it to

have a sinusoidal shape and calculate the response of the simple vehicle

examined above for various speeds. Do you think that speed bumps would be

effective? Discuss.

22. Find the response of a damped mass-spring system to support motion, as shown

in Figs. 2.18 and 2.19.

23. Design a pendulum seismometer with a period of 60 s and a damping ratio of

0.707.

24. Draw the block diagram for the linear pendulum.

25. Draw a block diagram for the two degree of freedom system

m1€y1 þ k y1 � y2ð Þ ¼ f 1, m2€y2 þ k y2 � y1ð Þ ¼ f 2

26. Show that the system of Prob. 12 has a solution y1¼ y0 + v0t¼ y2 if f1¼ 0¼ f2.
Can you construct a physical system that is represented by the two differential

equations?

27. Draw a block diagram for the air bag sensor.

28. Draw a block diagram for the rotating imbalance.

29. Find the eigenvalues and eigenvectors for the system shown in Prob. 8.

The following exercises are based on the chapter, but require additional input.

Feel free to use the Internet and the library to expand your understanding of the

questions and their answers.

30. Find the natural frequency of a cantilever beam with a mass at its free end if the

mass of the beam can be neglected.

31. Consider an inverted pendulum with two springs of constant k on either side, as
shown in the figure. The pendulum can move 2� in either direction before

coming into contact with the springs. Do not worry about the angles of the

springs.
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Exercise 31

Set up the equations of motion.

32. The metronome is based on an inverted pendulum with an adjustable position

of the bob. How does it work?

33. Why does increasing the damping ratio beyond unity delay the decay of the

system?

34. Design an air bag sensor. You will need to learn about how a car crashes.

35. Make a dissipation model for the U-tube of Ex. 2.3 based on fluid viscosity and

calculate the behavior of the damped system. Calculate the behavior of the

system if the height starts with a 10 % offset. (Choose the viscosity small

enough to have an underdamped system.)
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