Chapter 2
The ER in Doping Super Lattices of HD
Non-parabolic Semiconductors

2.1 Introduction

The technological importance of super-lattices in general, and specifically doping
super-lattices [1-51] has already been stated in the preface and also in the refer-
ences of this chapter. In Sect. 2.2.1, of the theoretical background, the ER in
doping superlattices of HD non-linear optical semiconductors has been investi-
gated. The Sect. 2.2.2 contains the results for doping superlattices of HD III-V,
ternary and quaternary semiconductors in accordance with the three and the two
band models of Kane together with parabolic energy bands and they form the
special cases of Sect. 2.2.1. Sections 2.2.3, 2.2.4 and 2.2.5 contain the study of the
ER for doping superlattices of HD II-VI, IV-VI and stressed Kane type semi-
conductors respectively. Sections 2.3 and 2.4 contain the results and discussion
and the open research problems for this chapter.

2.2 Theoretical Background

2.2.1 The ER in Doping Superlattices of HD Non-linear
Optical Semiconductors

The dispersion relation of the conduction electrons in doping superlattices of HD
nonlinear optical materials can be expressed by using (1.2) and following the
method as given in [19-51] as
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where wspup (E,n,) = Real part of % , ni(=0,1,2...) is the
0Ese mH Mg

mini-band index for nipi structures and d, is the mini-band index for nipi structures
and dy is the superlattice period.
The EEM in this case assumes the form
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Fermi energy in the present case as measured from the edge of the conduction
band in vertically upward direction in the absence of any quantization.

From (2.2), we observe that the EEM is a function of the Fermi energy, nipi
subband index, scattering potential and the other material constants which is the
characteristic feature of doping superlattices of HD non-linear optical materials.

The subband energy (E\,up) can be written as
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The DOS function for doping superlattices of HD non-linear optical materials
can be expressed as

Mimax
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The electron concentration, can be written as

Nzmax

napN = 2—Real part sz G210 (Epntp; Mg, 1) + Goorip (Epneip, Mg, mi)] - (2.5)
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N

where, Gasup (Enin; g, 1) = > L(r)Gaiup(Eparp, g, 1)

r=1

The ER of doping superlattices of HDS can, in general, be expressed as

D 0
= _ [2DN0 peal part of [ fabNo - (2.6)
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where, the aforementioned physical variables are applicable only for electric
quantum limit. Thus by combining (2.5) and (2.6) we can study the ER in this case.
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The dispersion relation of the conduction electrons in doping superlattices of
nonlinear optical materials in the absence of band tails assumes the form

2m;;
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The EEM in this case can be written as

h2
m*(Epy,n;) = <7> R (E, n;)

E=Ep,
where,

2m|

) = 02802 patB {10 B (50 s (s Yo = (310 () (4 3 mo )
i

=@ (1) st (3 )lon(e wa(e) |

and Ep, is the Fermi energy in the present case as measured from the edge of the
conduction band in vertically upward direction in the absence of any quantization.
The subband energy (E1,;) can be written as

2 *
Y1 (Erni) = W3(Erni) (ni + %) %wS(Elni) (2.9)

The DOS function for doping superlattices of nonlinear optical materials can be
expressed as

Mimax
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the electron concentration, can be written as

ny = —Z [Ts1(Epu, i) + Ts2(Epu, )] (2.11)
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The electron concentration for the doping superlattices in quantum limit can be
expressed as

*
A

ny = {g_ﬂ [l/fl(EFO) — Y3(Ero) n; a)g(EFo)] (Vs (Ero)] " (2.12)
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where, Efq is the Fermi energy in the present case in the quantum limit and

_ wle?  \"’
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The ER at the electric quantum limit for doping superlattices in the absence of
band tails can be written as

_ _ —1
D_1n {_ano} (2.13)
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where, 71 is the electron concentration, Erg is the Fermi energy and Ej is the sub-
band energy at the electric quantum limit respectively.
In this case, Ejp can be determined from the equation as given by

*

Y1 (En) = '//3(E10)%WS(E10) (2.14)

Thus using (2.12), (2.13) and (2.14) we can study the ER in doping superlattices
of non-linear optical materials in the absence of band tails.

2.2.2 The ER in Doping Superlattices of HD III-V, Ternary
and Quaternary Semiconductors

(a) The electron energy spectrum in doping superlattices of HD III-V, ternary
and quaternary materials can be expressed from (2.1) under the conditions
Aj=AL=A,0=0and mj =m] =me, as
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The EEM in this case assumes the form

* hz
m*(Epanp, ni,1,) = Real Part of (7) Ghspp(Eratip, Mg, i) (2.16)

where  Gasup (Epump, g, i) = 2"1‘ [T31 (B, ) + iT32(Brun, ) — (i +3)
Tiworp (Epnmp, 1))
The subband energy E,pup can be written as

. 1
(751 (E2n,mp, 1) + 1T32(Banmps 1) — <”i + 5) haopp (Eanupsng)] =0 (2.17)

The DOS function for doping superlattics of HD III-V, ternary and quaternary
materials can be expressed as

Mimax

ZGBHD E, g, ni)H(E — Eip) (2.18)
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The electron concentration, can be written as

Nimax

"¢ Real part ofz [Gasup (Epnmp, N> i) + Goarp (Epnnn, Mg 1)
n;=0

nypN =
nh

(2.19)

where, Gaunp (Ernin; g, 1) = Y L(1)Ga3up (Epurin, Mg 1)
r=1

Using (2.6) and (2.19) at the electric quantum limit, we can study the ER in this
case.

In the absence of band tails, the dispersion relation in this case assumes the
form

1 n2k?
In(E) = (i +5 hoo(E) + . (2.20)
where w9(E) = <7doasj;jlf(|1;)trlc)'
The EEM in this case can be written as
m*(Epn, ni) = mcRss (E, i) |, (2.21)

in WhiCh, Rgz(E, I’l,') = {[I]l(E)]/—(I’li +%)h[w19(E)]l}
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From (2.21), we observe that the EEM in this case is a function of the Fermi
energy, nipi subband index and the other material constants which is the charac-
teristic feature of doping superlattices of III-V, ternary and quaternary compounds
whose bulk dispersion relations is defined by the three band model of Kane.

The subband energies (E,,;) can be written as

51 (Egi) = (ni + %) ha1o(Eani) (2.22)

The DOS function in this case can be expressed as

Nimax
> " Rsy(E,ni)H(E — E) (2.23)
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ngV
NniPi(E) = T

The use of (2.23) leads to the expression of the electron concentration as

Nimax

megy _ _
=75 [Tso(Epuund) + Tsa (Ern)] (2.24)
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where Tg3(Fpn,n,-) = [III(FFn) — (l’l,‘ —‘r%)h&)]g(ﬁpn)] and T84(Epn,n,~) = ZL(}’)

r=1
T33(Epn, ;).
Using (2.24), the electron concentration in the electric quantum limit for doping
superlattices of III-V, ternary and quaternary materials can be written as

m
= (25 (B) — {01 /2)01o(Ea) (225)
where, Ejg is determined from the equation
1
I11(Ez) = 5 hos(Ex) (2.26)

Using (2.13) and (2.26) we can study, the ER in this case.

(b) The electron energy spectrum in doping superlattics of HD III-V, ternary and
quaternary materials whose energy band structures in the absence of band
tails are described by the two band model of Kane can be expressed from
(2.15) under the conditions A > E, or A < E,, as

R2k?
2m,

= [12(E;ng) — <”i +%> i roup (E, 1,)] (2.27)
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The EEM in this case assumes the form

h2
m* (EFnHD7 ni, ng) = (7) G,QSHD (EF11HD7 nga ni) (228)

where Gasup (EFamp; Mg, i) = zhlz [72(Ernrip; 1) — (ni + 3)io1onp (Eputip s 1) |
The subband energy Es,mp can be written as

1
aEsnaoong) ~ (13 Yo B =0 (229

The DOS function in this case is given by

Mimax

gvime
ZG25HD (E,ng,ni)H(E — E3nnp) (2.30)
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The electron concentration, can be written as

Mimax

Z (Gastip (Enip; gs 1) + Gasrp (Brarn, 1, 1i)] (2.31)
n;=0

8y

MpN = ——>~
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where, Gsup (Erump, g ni) = 3 L(r)Gasup (Erunp, g n;)
r=1

Using (2.31) and (2.6) at the electric quantum limit, we can study the ER in this
case.

In the absence of band tails, the dispersion relation in this case assumes the
form

1 1 k>
E(1+aE)=mn +§ hano(E) + 5 z (2.32)
_ no\e\z 1/2
where wy(E) = (7‘103“ a HaE)mC) .
The EEM in this case can be written as
m*(EF,,,ni) = mchgz(E, ni)|E:EFn (233)

in which, Rig(E,n;) = {[1 4 20E] — (n; +3)hlwi9(E)]'}.

From (2.33), we observe that the EEM in this case is a function of the Fermi
energy, nipi subband index and the other material constants which is the charac-
teristic feature of doping superlattices of III-V, ternary and quaternary compounds

whose bulk dispersion relations is defined by the three band model of Kane.
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The subband energies (Es,;) can be written as
1
E3m'(1 + OCE3m') = (n,- + E) hwzo(E3m') (234)

The DOS function in this case can be expressed as

Fimax

Nmpl = m(gv Zngz E I’l E — E3m') (235)

The use of (2.35) leads to the expression of the electron concentration as

nlm ax

ngV
T Z Tss EFm + TSG(Eanzﬂ (2.36)
where Tss(Epny i) = [Epa(1 + 0Epn) — (ni + 5) oo (Epy) | and

T36(Epn,ni) = Y, L(r)Tss(Ern, ni).
r=I1

Thus using (2.36) in the electric quantum limit, we can study the ER in this
case.

(c) The electron energy spectrum in nipi structures of HD III-V, ternary and
quaternary materials whose energy band structures in the absence of band
tails are described by the parabolic energy bands can be expressed as

Rk 1
om, V3(E,ng) — it honp (B, 1) (2.37)

. ng\e\z 1/2
where wi1up(E) = ( gmnEnm

The EEM in this case assumes the form

. i
m (EFnHDania Ng) = (?)Glsz(EF"HDv ”g’nl) (2.38)

where G7up(Efurp; g, i) = Zhiz = [73(Eputins ng) — (ni 4 3)ho11p (Brnns 1) ]
The subband energy Ea4,,zp can be expressed as

1
[Vs (EamupsNg) — (ni + E) lio1ap (Eantp, Wg)] =0 (2.39)
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The DOS function in this case is given by

Nimax

Z Gorup(E, Hg, 1L n;))H(E — Esnip) (2.40)
n,:O
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The electron concentration, can be written as

Mimax

z (Ga100 (Erntins s 1) + Gasep (Epuan, Mg, i) (2.41)
n;=0

EvMe

MpN = ——>
nh?

where, Gagup(Erup, g, ni) = Y- L(r)Gazup (Brunp, 1, i)
r=1

Using (2.41) and (2.6) at the electric quantum limit, we can study the ER in this
case.
In the absence of band tails, the dispersion relation in this case assumes the form

1 R
E = h 242
< 2> “2F 2 (2.42)

nolel* 12
where w,; = (0—) .

doescme

The EEM in this case can be written as
m* (Epy,n;) = m, (2.43)

Thus the EEM in this case is a constant quantity.
The subband energies (E4y,;) can be written as

1
Eypi = (ni + E) hway (2.44)

The DOS function in this case can be expressed as

Mimax

Nuipi(E) = "B"N " H(E — Ey) (2.45)
nh oy

The use of (2.45) leads to the expression of the surface electron concentration as

Mimax

Fo(ns;) (2.46)
n=0

e megvkpT
0 Th?

where N4 = (EFn - E4n )/(kBT)
Thus using (2.46) in the electric quantum limit, we can study the ER in this case.
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2.2.3 The ER in Doping Superlattices of HD II-VI
Semiconductors

The 2D electron dispersion law in doping superlattices of HD II-VI semicon-
ductors can be expressed as

1 _
73(B ) = agk; + (ni + E) ficono (B, ng) £ Aoks, w30(E, 1)

ef? 1/2

nole

=" 2.47
<d0y§ (E, ”8)85"mﬁ> (247)

The EEM in this case assumes the form as

12
* « = | =2 1
m* (Epunp, niy 1) = mL{ 120 [(/10) +4agy3(Bpnnp, 1) — 4aq <n1 + 5) T30 (Epurip, %)] }V’g(EFﬂHD«, M)

(2.48)
The subband energy can be written as
1
73(Eentp; Mg) = | ni + 3 hso(Eenup; Mg) (2.49)
The surface electron concentration per unit area in this case is given by
mpN = 45—;622 [G30tip (Efntin, Mg, i) + G3160 (Bt 11, 1i) | (2.50)
n;=0

where

_ — 1 — —
Gioup (Epnnp, g, i) = [(7»0)2 - 206{ (ni + 5) 1230 (Bpntip, Mgs i) — V3 (Brutin, Mg, nz)H

and G311 (Epntin, Mg, ni) = Y L(1)Gaonp (Eparin, Mg, i)
r=1

Using (2.50) and (2.6) at the electric quantum limit, we can study the ER in this
case.

In the absence of band-tails, the carrier dispersion law in doping superlattices of
II-VI compounds can be expressed as

1
1 - 2\’
E = agks2 + (ni + E)hwlo =+ Aoks, Wi = ( n0|e| *> (251)
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Using (2.51), the EEM in this case can be written as

—-1/2
m* (Epp,n;) = m’, {1 — o |:(Zo>2+4a(,)EFn — 4ay, <n,~ + %) mm] } (2.52)

Thus, the EEM in this case is a function of the Fermi energy, the nipi subband

index number and the energy spectrum constants due to the only presence of Ag.
The subband energies (Es,;) assume the form as

1
Egni = (ni + E) hawno (2.53)

The DOS function in this case can be expressed as

m*gvnimux as;
Nyini(E) = —= l———_|H(E — Egy 2.54
in(E) =" E[ | HE—Bw) (259

. . 7 _ =2 _
m Wthh, agy = 2\/035 and bg] (I’l,) = [ﬁ |:(/10) —4(16 (I’l,‘ + %)h(})]():H
The use of the (2.54) leads to the electron concentration as

\/u]% [2<\/ ngy + cs1(ni) — v/ Cm("i))D 22 -2 2' (2 )M}

(11 + cs1 ()™

(2.55)

bgi(n )+Eaam
T

Using (2.55) in the electric quantum limit we can study the ER in this case.

where, g, = % and cg; (n;) =

2.2.4 The ER in Doping Superlattices of HD IV-VI
Semiconductors

The 2D electron dispersion law in this case is given by

kg = 515(Ea rlg7 ni) (256)

where §5(E, e, 1i) = [2012(E, 713)]71[—512(15» N> 1) + \/5%3(E= g i) — 4012(E, 115)014(E, g, )],
ahi*Z (En

012(E,n,) = 4,,107,,17 513(E, g, ni) = B [791(E, 1) 611 (E, g, ni) + A1a(E, )],

014(E, ng,mi) = [A73(E, %)511(& Ng> i) + 274 (E, ﬂg)5?1(E7 N> i) — Z74(E, 1)),

. . o 12

11 (Esngymi) = 3mip (0,m,) (ni + 3) [WDU(E&,)]
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2

and m;ID(Ea ;/Ig) = [2;“74(E7 ’7g){_;L,73 (E7 rlg)

4),%6(E, fe)
+ /173 (E7 V/g)j';S(Ev ng) + 2/1/74(E7 '/]g))‘75(Ev ng) + 2174(E7 ng)}“;S(Ev ng)
VBB ) + 44 (B s (o)

- 2;”l74(E7 ng){_)“73(E> ;/Ig) + \//“33 (E7 '/Ig) + 4/174(E7 ;/Ig);"75 (Ev ng)}]
The EEM in this case assumes the form

}

h2
m*(EanD,ni,ng) = (7) 5/15(EF11HD711g7ni) (257)

The sub-band energy Ey, yp can be expressed as in this case as
0 = 615(Eonup; Mg, 1i) (2.58)

The surface electron concentration in this case is given by

nopN = s (G320 (Brntips Mg, 1) + G33up (EFutip, 1, 17)] (2.59)
2n 8 §
n;=0

where

G31ip (Epnmp, g, ni) = 515(EFnHD7 Mg, i) and Ga3up (Epump, g, 1i)

= ZL )G3260 (Epntip; 1, 1)

r=1

Using (2.59) and (2.6) at the electric quantum limit, we can study the ER in this
case.

The carrier energy spectrum in doping superlattices of IV-VI compounds in the
absence of band tails can be written as

kg = (h2519)—1 |:—Sg()(E, n,-) + \/S%O(E’ n,') + 4519521(E, n,)] (260)

in which, Sj9 = (ﬁ)ﬂzo(ﬂn,‘) = {%_ ( ) + 1n+le+ 2m —
2 (i + 3)T(E))

2m; my

— (i + T(E)+
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1(8) =22 5),m(0) = (m"’f’m) on(E) = (d,'n(E)>
= () E%{(%)—( 0 G eor=3 G- ()

oER* 1 i 1
E n) = |E(1 E)+——(n+=|TE)+=—|nm+=|TE)(1 E
Sea(Bm) = [ Q1+ o8) 4 5 (5 )1(E) 3= (43 ) TCE + 28)

il (s3]

Using (2.60) the EEM in this case can be written as

m*(Epn, ni) = Rea(E,mi) | p_p, (2.61)

where,

Sz()(E n')[Szo(E n,-)]/+ 2519[521(E ni)]/
1/2
|:{[S20 E n } +4S19521(E I’l)

Rea(E, i) = (2819) " | —(S0(E, mi))' +

Thus, one can observe that the EEM in this case is a function of both the Fermi
energy and the nipi subband index number together with the spectrum constants of
the system due to the presence of band non-parabolicity.

The subband energies (Ejo,;) can be written as

2

ni ni i ni ni l
10 2)”]7 10 2 10 2”11 10 2

_ [% T(Evon) (”f * %)}

(2.62)
The DOS function in this case assumes the form as
Nupi(E) = 25> Raa(E.m)H(E ~ Evon) (2.63)

n;=0
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The use of (2.63) leads to the expression of the electron concentration as

Mimax

8v = =
= Tss(Epa,1;) + Tsg(Epn, 1i 2.64
a5y Sy T Erm )+ Tos(Ers ) (2.64)

no

where, Tgs(Epy,ni) = |:_S20(EFn7ni) + \/[SZO(EFnani)]2+4SIQSZI(EFnani):| and

Ts6(Epn,ni) = Y, L(r)Tss(Ern, ni).
r=1

The electron concentration at the quantum limit can be defined through the
equation

g = #;S]g [520 (Ero,0) + \/[Szo (EFO,O)]2+4519521 (EF070):| (2.65)

2.2.5 The ER in Doping Superlattices of HD Kane Type
Semiconductors

The 2D dispersion relation in this case is given by
P (E, )k + Qui(E )k + Sii(E,ng)010(E, ng,ni) = 1 (2.66)

where

1/2
I’lo€2

dossemz (E, 1)

2 . 1
519(E; ’/Igv ni) = ﬁmzz(o’ ng) (l’l,‘ + 5)

and the expression for m.(E,1,) has already been given in (1.209) of Chap. 1.
The EEM in this case assumes the form

2

h
m*(EFn[-[D,ni,V]g) = (7) 5/20(EF11HD7ng7ni) (267)

(1 = S11(Epunp; 1) 019(EFntip, g, 1i)]
where 620(Epnup; Mg, i) = s s
\/PII(EFnHD;ng)Qll(EFnHDarlg)

The sub-band energy Ejs,,zp can be expressed as in this case as

S11(E1sntp; 1g)019 (Ersnap; Mg, i) = 1 (2.68)
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The surface electron concentration in this case is given by

Mimax

napN = 5—;2 (G34110 (BFntin, Mg i) + Gasap (Epump, g, 1)) (2.69)
n,:O

where  Gsapp (Epump, gy Mi) = 020 (Eputin, ng,ni) and  Gsspp (Erntin, fg: i) =
s —

> L(t)Gaaup (Epump, g, 1)

r=1

Using (2.69) and (2.6) at the electric quantum limit, we can study the ER in this
case.

The electron dispersion law in the doping superlattices of stressed Kane type
semiconductors can be written as

k K2 Lm0 (1N
[aO(E)f*@O(E)]er[EO(E)]z h <,+2) 12(E) = (2.70)

= no\e|2 % * = 2= Q C
where w1, (E) = T (E) and m}(E) = h°co(E) 5z [co(E)].

The use of (2.70) leads to the expression of the EEM as

. "
mI(Eani) = (?)R%(E, I’l,') (271)
E=Ep,
where,
Fus(Em) = h@o(E))/b"(E) + (EO(E»/%(E)] - [Eo(lE)]zzm?O) (ni+%>(012(E)}
_ |@(EYbo(E) 2m(0) (1Y 1, [aEhEEE o) (1)
|: [E()(E ]2 i ( i+ 2)[ )]Z(E)]:| + [ [EO(E)]3 7 < i + 2)[0]2(E)]
(2.72)

Thus, the EEM is a function of the Fermi energy and the nipi subband index due
to the presence of stress and band non-parabolicity only.
The subband energies (E»s,;) can be written as

1 2m§(0) < 1>
— ni +—= wlz(E25m') =1 (273)
[ (Ezsm'ﬂ2 h 2
The DOS function can be written as
Nupi(E) = 23> Ras(E.m)H(E — Exsy) (2.74)

n,-:O
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Thus, using (2.74), the electron concentration in doping superlattices of stressed
compounds can be expressed as

ny = —Z C3(Epn, ni) + Cs(Epn, n;) (2.75)

where C3 (Epn, I’li) =q (Epn)g()(Epn) |:1 — Zmi(O) (I’li + %) (li)lzéEF’)x;z] and C4(Epn, ni)
Co\LFn

= gL(}’)C3(Eani)

The use of (2.75) leads to the expression of the electron statistics at the electric
quantum limit and at low temperatures as

o = 50 (B, o (B, [1 - #@;)hw(ﬁ) (2.76)

Using (2.76), we can study the ER in this case.

2.3 Result and Discussions

Using the appropriate equations together with the energy band constants as given
in Table 1.1, the ER in the quantum limit has been plotted for the doping
superlattices of HD tetragonal compounds (taking HD Cds;As, as an example) as a
function of electron concentration as shown in curve (a) of Fig. 2.1. The curve (b)
corresponds to ¢ = 0 and the curve (c) exhibits the dependence of the ER on ng in
accordance with the HD three-band model of Kane, respectively. The plots (d) and
(e) correspond to the HD two-band model of Kane and that of HD parabolic energy
bands. By comparing the curves (a) and (b) of Fig. 2.1, one can assess the influ-
ence of crystal field splitting of the ER in doping superlattices of HD Cd;As,.
Figure 2.2 represents all cases of Fig. 2.1 for doping superlattices of HD nonlinear
optical materials taking HD CdGeAs, as an example. It appears from Figs. 2.1 and
2.2 that, the ER in doping superlattices of HD nonlinear optical materials increases
with increasing carrier degeneracy as expected for degenerate materials.

Using the appropriate equations one can numerically evaluate the ER in the
quantum limit as a function of electron concentration in doping superlattices of
HD III-V compounds by using the HD InAs, and InSb as shown in Figs. 2.3 and
2.4 by curves (a), (b) and (c) respectively, in accordance with three and two band
models of Kane together with the model of parabolic energy bands.

Taking doping superlattices of HD Hg; ,Cd,Te as an example of HD ternary
compounds, the ER has been plotted for both the structures as a function of
electron concentration as shown in Fig. 2.5 for all cases of the Fig. 2.3. It appears
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Fig. 2.1 The plot of the ER in the quantum limit for doping superlattices of HD Cd;As, as a
function of electron concentration in accordance with a the generalized band model, b § = 0,
¢ the three band model of Kane, d the two band model of Kane and e the parabolic energy bands
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2
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Fig. 2.2 The plot of the ER in the quantum limit for doping superlattices of HD CdGeAs, as a
function of electron concentration in accordance with a the generalized band model, b § = 0,
c the three band model of Kane, d the two band model of Kane and e the parabolic energy bands

from the Fig. 2.5 that the ER in the quantum limit in both cases of doping

superlattices of ternary compounds increases with increasing electron concentra-
tion as usual for the degenerate compounds. Taking doping superlattices of HD
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Fig. 2.3 The plot of the ER in the quantum limit for doping superlattices of HD InAs as a
function of electron concentration in accordance with a the three band model of Kane, b the two
band model of Kane and ¢ the parabolic energy bands
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Fig. 2.4 The plot of the ER in the quantum limit for doping superlattices of HD InSb as a
function of electron concentration in accordance with a the three band model of Kane, b the two
band model of Kane and ¢ the parabolic energy bands

In,_,Ga,As,P,_, lattice matched to HD InP as an example of quaternary com-
pounds the ER in the quantum limit has been further been plotted as a function of
electron concentration as shown in Fig. 2.6 in accordance with the three and two
band models of Kane together with the isotropic parabolic energy band model for
both the cases. It appears that the ER increases with increasing ngy as usual. From
Figs. 2.5 and 2.6, one can assess the influence of energy band constants on the ER
for doping superlattices of ternary and quaternary materials respectively. Using the
appropriate equations, the ER in the quantum limit has been plotted for the doping
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Fig. 2.5 The plot of the ER in the quantum limit for doping superlattices of HD Hg;_,Cd,Te as a

function of electron concentration in accordance with a the three band model of Kane, b the two
band model of Kane and ¢ the parabolic energy bands
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Fig. 2.6 The plot of the ER in the quantum limit for doping superlattices of HD In;_ Ga,As,P_,
lattice matched to InP as a function of electron concentration in accordance with a the three band
model of Kane, b the two band model of Kane and c¢ the parabolic energy bands

superlattices of CdS, as a function of carrier concentration as shown by curves (a)
and (b) in Fig. 2.7 for both Ay # 0 and /o = O respectively. This has been pre-
sented for the purpose of assessing the influence of the splitting of the two spin
states by the spin-orbit coupling and the crystalline field on the ER for doping
superlattices of II-VI materials. In Fig. 2.8, the ER in the quantum limit has been
plotted for the HD doping superlattices of (a) PbTe, (b) PbSnTe and (c) Pb;_,Sn,Se
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Fig. 2.7 The plot of the ER in the quantum limit for doping superlattices of HD CdS as a
function of carrier concentration in accordance with a Ao #0and b =0
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Fig. 2.8 The plot of the ER in the quantum limit as a function of electron concentration for the
doping superlattices of HD a PbTe, b PbSnTe and ¢ Pb; ,Sn,Se

as a function of electron concentration in accordance with the Dimmock model.
For relatively low values of electron concentration, the values of the ER for the
three materials exhibit convergence behavior whereas for relatively large values of
ny, the numerical values differ widely from each other in this case. In Fig. 2.9, the
ER in the quantum limit has been plotted for the doping superlattices of stressed
HD InSb as a function of electron concentration.
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Fig. 2.9 The plot of the ER in the quantum limit as a function of electron concentration for the
doping superlattices of stressed HD InSb in which the curve a is in the presence of stress and
curve b is under absence of stress

The plot (a) of Fig. 2.9 exhibits the ER for the doping superlattices of stressed
HD InSb in the presence of the stress while the plot (b) shows the same in the
absence of the stress. In the presence of the stress, the magnitude of the ER is
being increased as compared with the same under stress free condition.

2.4 Open Research Problems

R.2.1 Investigate the ER in the presence of an arbitrarily oriented non-quan-
tizing magnetic field for nipi structures of HD nonlinear optical semi-
conductors by including the electron spin. Study all the special cases for
HD III-V, ternary and quaternary materials in this context.

R.2.2 Investigate the ERs in nipi structures of HD IV-VI, II-VI and stressed
Kane type compounds in the presence of an arbitrarily oriented non-
quantizing magnetic field by including the electron spin.

R.2.3 Investigate the ER for nipi structures of all the materials as stated in R.2.1.

R.2.4 Investigate the ER for all the problems from R.2.1 to R.2.3 in the presence
of an additional arbitrarily oriented electric field.

R.2.5 [Investigate the ER for all the problems from R.2.1 to R.2.3 in the presence
of arbitrarily oriented crossed electric and magnetic fields.
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