Chapter 2
Electronic Structures of Symmetric
Diradical Systems

Abstract In general, the electronic structures of a molecular system is characterized
by using the “diradical character”, which is well defined in quantum chemistry and
implies a chemical index of a bond nature. In this chapter, we present analytical
expressions for electronic energies and wavefunctions of the ground- and excited
states as well as for the excitation energies and transition properties based on
symmetric two-site diradical models with different diradical characters using the
valence configuration interaction method.
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2.1 Symmetric Diradical Model Using the Valence
Configuration Interaction Method

In this section, we consider a symmetric two-site diradical molecular model, A-B
with two electrons in two active orbitals, which can present the essential features of
the electronic structures of general diradical molecules including open-shell poly-
cyclic aromatic hydrocarbons (PAHs) [1, 2], transition-metal dinuclear systems
[3-7] and so on. The symmetry-adapted bonding (g) and anti-bonding () molecular
orbitals (MOs), which are the natural orbitals (NOs) obtained from the spin-unre-
stricted, i.e., broken-symmetry (BS), solutions like the spin-unrestricted Hartree-
Fock (UHF) solution, are described using the atomic orbitals (AO), y, and yg
(which are mutually nonorthogonal and have an overlap Sap):

1

g(x) = Z(TSAB) [2a(x) + zp(x)], and
1

u(x) = m [ra(x) — xp ()]

(2.1.1)
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The localized natural orbital (LNO) is defined as [8, 9]

1
—[8(x) + u(x)] = ya(x), and

\? ’ (2.1.2)
51800 = U] % 15 ().

which are well localized on one site (A or B), while have generally small tails on
the other site, satisfying the orthogonal condition, {a|b) = 0. In the dissociation
limit (Sap = 0), the LNOs are apparently identical with the AOs. Using these two
types of basis sets, we describe the singlet BS MO solution. The BS MOs for the «
and f spins (referred to as y; and lﬁf,, respectively) are described using symmetry-
adapted MOs, g and u, by [10-12]

Vi = (cos 0)g + (sinf)u, and lpfl = (cos t)g — (sin O)u. (2.1.3)

where 0 is a mixing parameter of g and u and takes a value between O and n/4.
In another way using the LNOs, a and b, the BS MOs are given by [10-12]

Vg = (cosw)a + (sinw)b, and lpr = (cosw)b + (sinw)a, (2.1.4)

where w(0 < w <m/4) is a mixing parameter of these LNOs (x~ AOs). In the case
of 0 = 0(w = n/4), the BS MOs are reduced to the symmetry-adapted MO, yj; =
'//ﬁ = g. In contrast, in the case of 8 = n/4(w = 0), the BS MOs correspond to the

LNOs, yf; = a and l//g = b. Thus, we can consider the two limits: (i) weak cor-
relation limit (MO limit) at 0 = O(w = n/4), giving symmetry-adapted closed-
shell MO (g), and (ii) strong correlation limit [valence bond (VB) limit] at § =
n/4(w = 0), giving LNOs (a and b). Namely, the different orbitals for different
spins (DODS) MOs represented by Eqs. (2.1.3) and (2.1.4) can describe both weak
and strong correlation limits, i.e., MO and VB limits, as well as the intermediate
correlation regime [10-12].

Let us consider a symmetric two-site diradical system with two electrons in two
orbitals, g and u (a and b) and the z-component of spin angular momentum M; = 0
(singlet and triplet). For My = 0, there are two neutral and ionic determinants:

lab) = |core ab), |ba) = |core ba) (neutral), (2.1.5a)
and

laa) = |core aa), and |bb) = |core bb) (ionic), (2.1.5b)
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where core denotes the closed-shell inner orbitals, and the upper- and non-bar
indicate 5 and « spins, respectively. The electronic Hamiltonian H (in atomic units
(a.u.), h =m =e = 1) for this model system is represented by

N N 2 N N N N N
TR DA/ D) BEANE 3) DEE DVIU RS B) DEMENCAE)

i=1 i=1 A=1"1 i=1j>i i=1 i—1j>i¥

S
<0

The valence configuration interaction (VCI) matrix of this Hamiltonian using
the LNO basis takes the form [8, 9]:

(ab|H|ab) (ab|H|ba) (ab|H|aa) {ab|H|bb)
(ba|H|ab) (ba|H|ba) (ba|H|aa) (ba|H|bb)
(aa|H|ab) (aa|H|ba) (aa|H|aa) (aa|H|bb)
(bb|H|ab) (bb|H|ba) (bb|H|aa) (bb|H|bb)

(2.1.7)
0 Kab tap Lap

Kab 0 tap Lap
tap Lap U Kub
Tap Lap K, ab U

)

where the energy of the neutral determinant, (ab|H |ab) = (ba|H|ba), is taken as the
energy origin (0). U denotes the difference between on- and neighbor-site Coulomb
repulsions [U = U,, — Uy, = (aalaa) — (bb|bD)]. K,p is a direct exchange integral
[Ka» = (ablba) > 0], and 1, is a transfer integral [t,, = (ab|H|bb) = (alf|b) <0,
where fis the Fock operator in the LNO representation] [9]. Each matrix element is
derived as follows.

ab|H ab ab h(i ab ab — ab
(i) = ab| 300 ) |;;,U|
core

= (a|h|a) + (b|h|b) +Z c|hle) + <ab|yab>

1. 1 core 1 core
+ 3 {bal ’ba> + EZ (acllac) + EZ (cal|ca)
core ‘ core ‘ core core (2183)

+= Z bchc>+ Z<CbHCb ZZ {ec!||ec’)

= (alh|a) + (b|h|b) + 5 <al$‘ |ab) +§<Ba’|ﬁa> + (core)

= (alh|a) + (b|h|b) + % {(aa|bb) + (bblaa)} + (core)
= 2h4q + Uy + (COI'C),
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where all the terms concerning the core are denoted by “(core)”, and
haa|=(alhla)] = hpp due to the symmetry of the model system. Similarly, we
obtain

(balH|ba) = 2huq + Uy, + (core). (2.1.8b)

Since these energies are defined as the energy origin [2h,, + Uy + (core) = 0],
the energies of ionic determinants are represented by

(aa|H|aa) = (bb|H|bb) = 2hyq + Uaq + (core)

(2.1.8¢)
=Uy—Uy = U7

where we use the relations: > o (acl|ac) = > (bel|be), haa = hpp and Uyq =

.
Upp, which come from the symmetry of the present system.
For off-diagonal elements, we obtain

(ab|H|ba) = (ba|H|ab) = (ab||ba) = (ab|ba) = K, (2.1.8d)

(ab|H|aa) = (aa|H|ab) = (b|h|a) + (ba||aa)
£ (bellac) = (blfla) = 1o, (2.1.8¢)
(ab|H|bb) = <bl§’H|aZJ> = (ba|H|aa) = {(aa|H|ba)

_ _ 2.1.8f
= (ba|H|bb) = (bb|H|ba) = t,, ( )

and
(aa|H|bb) = (bb|H|aa) = (aa||bb) = (ablab) = K, (2.1.82)

where 7., = 15, 1s used. By diagonalizing the CI matrix of Eq. (2.1.7), the four
solutions are obtained as follows [8].
(i) Neutral triplet state (u symmetry)
1

|T) = 7 (Jab) — |ba)) with energy *E1y = —Kap. (2.1.9)

This triple state consists of only neutral determinants and is pure diraidcal.

(i) Ionic singlet state (u symmetry)
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1S1) = \/% (Ja@) — |bb)) withenergy 'Ejy = U — K. (2.1.10)

(iii) Lower singlet state (g symmetry)

|S1¢) = rc(|ab) + |ba)) + n(|aa) + |bb)), (2.1.11a)

where 2(x?> + 5?) = 1 and x > n > 0. The energy is

U—+/U?+ 162
'Eig = K + + O (2.1.11b)

2

In this state, 2k and 25> represent the weight of neutral and ionic con-
tributions, respectively, and the weight of neutral determinant is larger than
that of ionic one.

(iv) Higher singlet state (g symmetry)

|S2) = —(|ab) + |ba)) + x(|aa) + |bb)), (2.1.12a)

where 2(x? +n?) = 1 and x > 5 > 0. The energy is

U++\/U?+ 161
i + O (2.1.12b)

'"Ery = Kap + >

In this state, 2x% and 2172 represent the weight of ionic and neutral contributions,
respectively, and the weight of ionic determinant is larger than that of neutral one.
Here, we obtain [13]

U

1
— 1+7
2 VU2 + 1612,

2|t (2.1.13)

n= .
\/(U + /U163, ) /U7 + 162,

K= and
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Fig. 2.1 Variations of x and 08 r
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If we define r; as r; = |t,,/U|, i and 5 are rewritten as [13],
1 1 2r,
K=~ ! (2.1.14)

l+—F—— and 5= :
2 VIt 167 \/(1+\/1+16r,2)\/1—|—16r,2

A large t,, and a small U, which lead to a large r,, correspond to the ease of the
electron transfer between sites A and B. Figure 2.1 shows the variations of k and 5
with respect to r;. As decreasing ry, the coefficient (k) of the neutral determinant
increases toward 1/ V2 at r, = 0, while that (i) of the ionic determinant decreases
toward O at r, = 0. This indicates that the mobility of electrons between sites A
and B governs the relative neutral (covalent) and ionic natures of the state,
resulting in determining the diradical nature.

2.2 Diradical Character of Symmetric Systems

2.2.1 Diradical Character in the VCI Model

The ground and excited states are also described using the symmetry-adapted
MOs, g and u, [Eq. (2.1.1)] as

1 1
g(x) = %[a(x) +b(x)] and u(x)= E[a(x) — b(x)]. (2.2.1)

We here employ the following determinants for M, = 0 as an alternative basis to
the LNO basis:

|g2) ground-state configuration with two electrons in HOMO

|git) and ug) HOMO to LUMO singly excited configuration

|uit) HOMO to LUMO doubly excited configuration



2.2 Diradical Character of Symmetric Systems 15

By employing these bases, we can obtain four wavefunctions for the z-component
of spin angular momentum, M; = 0, which are equivalent to those obtained by
the VCI method using the LNOs [Egs. (2.1.9), (2.1.10), (2.1.11a) and (2.1.12a)]
[13]:

(1) Neutral triplet state (u symmetry)

1
Tw) =—=(|gut) — |ug 222
) ﬁ(lgw |ug)) (222)
(i) Ionic singlet state (u symmetry)
S1) = 7= (1) + u@)) (223)
w) = —=(lgu u 2.
1 \/z 8 8
(iii)) Lower singlet state (g symmetry)
|S1g) = &lg8) — Cluir) (2.24)
(iv) Higher singlet state (g symmetry)
|S20) = Llgg) + ¢Jum) (22.5)

By substituting Eq. (2.2.1) into Eq. (2.2.4), we obtain

[S1) = ¢lag) — Cua) = 3 (¢ +0)(|ab) + b))

| 7 (2.2.6)
+5 (&= 0)(|aa) + [bb))-

By comparing the coefficients between Egs. (2.1.11a) and (2.2.6), we obtain

€=0 (2.2.7)

N —

1
K=§(5+C) and 7=

Therefore,

{=kK—1. (2.2.8)
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The diradical character (y) is defined as twice the weight of the doubly excited
configuration in the singlet ground state [14]:

y =20 =1— 4. (2.2.9)

Here, we use the orthonormal condition 2(x?+#?) =1 in Eq. (2.1.11a).
By substituting Eq. (2.1.13) into Eq. (2.2.9), we obtain [13]

1
y=1— (2.2.10)

U 2
I+ (4&1;)

which indicates that the diradical character is a function of U and #,,. By using
ri(= |ta/UJ), y is rewritten as [13]

1
[ [ — (2.2.11)

2
1+(;7)

Figure 2.2 shows the variation of y as a function of |¢,,/U|(= 1/r;). In the case of
|U/ts| — oo(r; — 0), y value approaches 1, while in the case of
|U/twp| < ~1(r; > ~ 1), it is close to 0. Because the transfer integral 7., and the
effective Coulomb repulsion U represent the ease and difficulty of electron transfer
between sites A and B, respectively, |U/t,;| — oo(r, — 0) implies the localization
of electrons on each site, leading to a pure diradical. On the contrary, the delo-
calization of electrons over two sites is realized for |U/tm|< ~1(r,> ~1),
corresponding to a stable bond. Variation in the mobility of electrons between sites
A and B corresponds to that in the diradical character. For example, the elongation
of the inter-site distance leads to the decrease in t,, and the increase in U, which
causes the decrease in ry, i.e., the increase in y.

Fig. 2.2 Diradical character 1.0
y versus U/t l(=1/r,)
0.8

0.6 -

04

Diradical Character y [-]

021

0.0 1 . .
0.1 1.0 10.0 100.0 1000.0

Wit [-]
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2.2.2 Diradical Character in the Spin-Unrestricted Single
Determinant Formalism with Spin-Projection Scheme

As mentioned in the previous section, although the diradical character (y) is
originally defined in the multi-configuration (MC)-SCF theory by twice the weight
of the doubly excited configuration in the singlet ground state [14], the MC-SCF
methods are generally difficult to apply to many electron systems due to its huge
computational demand. On the other hand, the single determinant scheme is
computationally favorable, while the spin-restricted (symmetry-adapted) single
determinant approaches like the spin-restricted Hartree-Fock (RHF) cannot be
used for obtaining the y value because of its lack of multiply excited configura-
tions. In contrast, the spin-unrestricted [broken-symmetry (BS)] single determinant
approaches like the spin-unrestricted HF (UHF) can take account of the multiply
excited configurations with low computational cost, which allows us to define the
diradical character within this formalism. Nevertheless, the spin-unrestricted
methods suffer from the spin contamination [15], which causes the unphysical
inclusion of higher spin states like a triplet state in the singlet ground state. This
could overshoot y value as compared to that at the MC-SCF level of theory, which
gives correct spin states, since the triplet component originating from the spin
contamination is a pure diradical state as shown by Eq. (2.1.9). Yamaguchi pro-
posed an approximate spin-projection scheme, which effectively eliminates the
spin contamination from the UHF solution, and presented an efficient calculation
scheme of diradical character in the approximate spin-projected spin-unrestricted
single determinant approaches [10, 11]. We here briefly explain this scheme.
The ground-state UHF wavefunction is written by

o = vl wivh), (22.12)

where the MOs for the « and f§ spins (/7 and lpf’ , respectively) satisfy the ortho-
X lpJX> = 0;}(X =, f#), and “H” indicates the

HOMO. The UHF MOs can be transformed to the corresponding orbitals (y; and #;)
with the unitary transformation [15] as

normal condition for each spin <l//

=Y WUs and n;=> ylvy, (2.2.13)

the orbital overlap of which is diagonal, Ty = (y,; | ;) = Tid;. Because the
wavefunction is invariant under the unitary transformation, the UHF wavefunction
given by Eq. (2.2.13) is rewritten as

P = [y - - ulln)- (2.2.14)



18 2 Electronic Structures of Symmetric Diradical Systems

The corresponding orbitals are connected with the natural orbitals (NOs) 4; and y;
of the UHF wavefunction by

1 1
him e (i) and = —ee—— (=), (22,15
s ) =), (2219

which satisfy the orthonormal condition:

</1i | ,uj> =0 and </L1

)%'> = <.“i ’ Hj> = 0y (22.16)

From Egs. (2.2.15) and (2.2.16), the corresponding orbitals y; and #; are given with
the NOs /4; and p; as

_ \/W& . @m- (2.2.17)

Xi

and

B @)“" @m (2.2.18)

n;

Because the coefficients satisfy the following relation,

2 2
2(1+7T)) 200-17); |
{—2 } +{—2 } =1, (22.19)

Equations (2.2.17) and (2.2.18) can be rewritten with a mixing parameter 0; as,
¥; = cos 0;2; + sin 0;; (2.2.20)
and
n; = cos 0;4; — sin 0; ;. (2.2.21)

Here 0; ranges from 0 to n/4 due to cos0; > sin6; >0 [see Eq. (2.1.3)]. Using
these equations, the overlap integral 7; is expressed by

T; = cos® 0; — sin® 0; = cos 20;, (2.2.22)

where the orthonormal condition of NOs [Eq. (2.2.16)] is used.
We here confirm that 4; and y; are the natural orbitals of the UHF wavefunction.
Spin-less one-electron reduced density matrix of a N-electron system is defined as
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p(ri,r') :N/drz...drN'I’(r],rz,...,rN)'I’*(r'l,rz,...,rN). (2.2.23)

For the Hartree—Fock wavefunction YF = |¢,...¢y), it is simplified as
1 N p

p(ri,r'h) Z¢>a r)o (2.2.24)

Since the wavefunction is invariant under the unitary transformation, p(ry,r’;) of

the UHF wavefunction can be given with the UHF MOs (¥* and Y”) and the
corresponding orbitals (y; and #;) as

r17r1 ZW +Z‘//ﬁ lpﬂ*
—Zx, )y (r +Zm (ro)m; (r
= ZZCOS 0:2:(r1) 2 228111 Oit; (o) (r'1)

_Z]+TAIT1 +Z Ty) i (r) i (r'v),

where Egs. (2.2.20)—(2.2.22) are used. From the last equality, 4; and g, are shown
to be natural orbitals of the UHF solution with the occupation numbers of 1 + 7;
and 1 — T}, respectively. A corresponding orbital pair (y; and #;) constructs a pair
of NOs (4; and p;), where one of the NO pair (4;) possesses an occupation number
more than 1 (1 + 7;), while the occupation of the other NO (y;) is less than 1
(1 — T;). Namely, the total occupation of a NO pair is shown to be always 2 in the
single determinant formalism. Also, the bonding and anti-bonding orbitals for the
triplet state of this model obtained by the UHF method coincide with the NOs 4;
and y;, respectively, due to 7; = 0.

For singlet diradical systems with two electrons in the two highest occupied
corresponding orbitals (yy and #y), the wavefunction of the UHF ground state is
described by using the corresponding orbitals as

(2.2.25)

U = | ). (2:2.26)

By substituting Egs. (2.2.20) and (2.2.21) into this equation, ®"F is represented
with NOs as

Anfiy) — |ﬂLzH>)

_ 72 _
5T Vi) = 5 ) = 15 g V) — )},
(2.2.27)

@UHF — cos29‘)vH2H> — sin0uy i) — coswsine (

1+T




20 2 Electronic Structures of Symmetric Diradical Systems

where Eq. (2.2.22) (T = Ty) is used. The first term in the right-hand side of
Eq. (2.2.27) represents the RHF ground configuration, while the second one
indicates the doubly excited configuration from the highest occupied NO to the
lowest unoccupied NO. Both of these terms represent singlet states. The UHF
singlet ground state includes the RHF ground and doubly excited configurations,
which enable the UHF method to describe the diradical nature of systems. On the
other hand, the third term, composed of singly excited configurations, represents
the triplet component, which is the origin of spin contamination in UHF
wavefunctions.

As mentioned in Sect. 2.2.1, the diradical character is defined by twice the
weight of the doubly excited configuration. We can define the diradical character
of the UHF ground state from Eq. (2.2.27) based on this definition. Since the UHF
wavefunction suffers from the spin contamination, we need to remove the triplet
component to obtain a pure singlet wavefunction, the procedure of which is

referred to as the spin-projection [10~12]. For simplicity, ®"HF is rewritten by
oY = C1@g + Cp®s + CiiPp, (2.2.28)
where C; = (1+1T)/2, Cy = —+/(1 =T?)/2, and Cyy = —(1 — T)/2. The first,

second and third terms in the right-hand side of Eq. (2.2.28) denote the ground,
singly excited and doubly excited configurations, respectively. The removal of the
second term (triplet) from the UHF wavefunction with keeping the ratio of the
coefficients of the first and third terms (C;/Cyy) provides the spin-projected UHF
(PUHF) wavefunction,

PPV = CldG + CpyPp. (2.2.29)

Here, the coefficients satisfy the relation: C{ / C{H =( / Cyyr. From the orthogonal
condition of ®YHF we obtain the relation,
c? c?
— 4 =1 (2.2.30)
1-C; 1-Cy
From Egs. (2.2.29) and (2.2.30), C; and Cy; can be determined by

(&
Cj=————= and (=

N pre

By inserting them into Eq. (2.2.29), we obtain

Cm

V1-C%

(2.2.31)

gronr _ G Cum 1+7T 1-T

@G + p = @G — Dp.
1-C3 V1-C2 V20 + 12 V2(1+T2)

(2.2.32)
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Therefore, the diradical character in the PUHF formalism is defined by [10-12]

2T
PUHF _ 2C/2 -1

y m= — W, (2233)

where the overlap integral 7 between the corresponding orbitals can be obtained
from the occupation number of the LUNO: nyyno = 1 — T. From the one-electron
reduced density matrix of the PUHF wavefunction, the spin-projected occupation
numbers of the HONO and LUNO are represented by

2 2
pune (L +T) "10NO PUHF
= = =2 — 2.2.34
goNo 1+T2 1+T2 y ( 3 a>
and
2
poe _ (1=T)" _ nfuno _ JPUHE (2.2.35b)

MLNo T Ty T

where ngono =1+ 7T and niyno =1 — T are employed [see Eq. (2.2.25)].
Although these equations are defined in singlet diradical systems in relation to
their HONO and LUNO, they can be extended to singlet multiradical systems. For
a 2n-radical system, the perfect-pairing type (only considering a doubly excitation
from HONO — i to LUNO + i) spin-projected diradical characters and occupation
numbers are defined as follows [10-12].

2T;
PUHF i
F =1- 2.2.36
% 1+ 72 (2230)
and
W =2 and R = (2237)

where 7; is obtained from the occupation number of LUNO +i:
neuNoti = 1 =T

2.3 Diradical Character Dependences of Excitation
Energies and Transition Properties

We here consider only the singlet states for Chap. 4, where (hyper) polarizabilities
of singlet molecular systems are discussed. The excitation energy of the triplet
state |T),) is discussed in Chap. 5, which focuses on singlet fission. In a symmetric
two-site diradical model (A®* — B*®) introduced in Sect. 2.1, there are three singlet
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Sog
My, s,,
SZg’S]g
Siy
E
‘LlS]g,S]u Slu’Slg
Sig

Fig. 2.3 Singlet states (Sig, Siu, S2¢) in a two-site diradical model. The excitation energies
(Es,.51, Es,,.5,;) and transition moments (usm_sm,ushhszg) are shown. The dashed arrows

indicate optically-allowed transitions

states, |Siy), [S1u) and |Sa,). Because [Si,) and |S,,) have the same symmetry
(g symmetry), the transition moment between these states disappears. Figure 2.3
shows the three-state model constructed from these singlet states together with the
excitation energies and transition moments.

Firstly, we provide the analytical expressions of the excitation energies using
several dimensionless physical quantities and diradical characters. Using Eqgs.
(2.1.10), (2.1.11b), (2.1.12b) and (2.2.11), we obtain [13]

1 —+/1+16r2
ESlmSlg = lElu - lE]g = 2K, + U<] — L)

2

U 1
=2l =2} (2.3.1)

2 1-(1-y)

and
U
Es, s, = 'Epg — 'Ejg = Uy /1 + 1617 = ————— (2.3.2)
V1-(01-y)

where rg is defined as rx = 2K,,/U. Second, the analytical expressions of the
transition moments along the A-B bond axis are considered. The transition
moments between |Slg> and |Sy,) are obtained from Egs. (2.1.10) and (2.1.11a)
as [13]
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K, 510 = —(Sig|r1 + r2[Stu)
— (w(ab| + ) + n((aal + (0b]) Y + {5 (1) ~ [06)) |
—— 5 (Blria) + 5 wlblla) + s rlalp)
—\%n{@llrl@ (alria)} +7n{ (blr|b) + (B|r[B)}
— V2n{(blrlb) — (alrla)},

w(alrlb) —

(2.3.3)
where the following relations are employed:

(alrb) = (blrla) = (a|r|b) = (b|r|a) = (alr|b)
(alr|a) = (a|r|a) = (a|r|a) . (2.3.4)
(blr|b) = (b|r|b) = (b|r|b)

Since (a|r|a) and (b|r|b) represent the expectation values of the bond-axis compo-
nent of the position (r) of electrons using the LNOs a and b, respectively, (b|r|b) —
(a|r|a) indicates the dipole t = eRpa [With Rgs = Ry, — = (b|r|b) — (a|r|a),
an effective distance between the two radicals], with the e, the electron charge
magnitude, equal to 1 in a.u. Thus, we obtain [13]

Hsip.50 = V21RpA- (2.3.5)
In the same manner, we obtain the transition moment between |S;,) and }Szg> [13],
Bp5 = —(Stulri +1r2lSa) = V2i{ (b]r|b) — (alr|a)} = V2KRpa.  (2.3.6)

The transition moment (/‘S, s,,) between |S 1g> and |S,) is proportional to the
coefficient (1) of the ionic term in the singlet ground state {S 1 g> while that (ug Sne )
between |Sy,) and |Szg> is to the coefficient (x) of the neutral term in ‘S 1 g>, which
is also that of the ionic term in the excited singlet state |Szg>. Therefore, the
increase in the diradical character (corresponding to the increase in the weight of
the neutral term) of the singlet ground state ’Slg> leads to the decrease in ug s,
and the increase in ug ¢ . This is because the ionic component of ’Slg> (|Szg>)
decreases (increases) with respect to the increase in the diradical character of ‘Sl g>
[see Egs. (2.1.11a) and (2.1.12a)], while |S;,) keeps the pure ionic nature [see
Eq. (2.1.10)]. The transition moment between the ionic (|aa) — |b5>) and neutral
(|ab) + |ba)) terms becomes 0, while that between the ionic terms (|aa) — |bb)
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and |aa) + |bb)) has a finite value (= 2{(a|r|a) — (b|r|b)}). Therefore, larger
ionic components in |Slg> and |Szg> leads to larger amplitudes of the transition
moments i, ¢ and g o . We here present the expressions of the transition
moments as a function of the diradical character y by using Eq. (2.1.14) [13],

( )2_ (\/5 R )2_ 8Vt2R123A
,uSIg,Slu NEKBA (1 + \/1 + 16rt2)\/1 + 167’,2

—%{1_ 1—(1—y)2}, (23.7)

and

(Ks,, s )2 = (\/EKRBA)ZZ R2LA 1—1-71
1002 2 1+ 16r?

:RZ%{H 1—(1—y)2}. (2:38)

Next, we investigate the diradical character dependences of the transition
moments and excitation energies for the singlet three states of the symmetric two-
site model, which give us valuable information and help us understand the features
of (non)linear optical responses in symmetric diradical systems. Since in usual
cases, ri takes a very small value, we here consider a symmetric two-site system
with a fixed Rga and rx = 0. The nondimensional (ND) transition moments and
excitation energies are defined by [13]

— 'uS]gaSlu . #SIU:SZg
HND $14,81. = Ren HND $14,55y = Ron
(2.3.9)
E _ Eslmslg d E _ E52g~51g
ND S14,81e = U an ND S$2,S1e = U

Figure 2.4 shows the variations of the squared ND transition moments
(tnp Slg,Slu)z and (unp s,u,sza)z with respect to the diradical character y. For y = 0,

both (uxp Slg,Slu)z and (pnp Sll.,szg)z are equal to 0.5. As increasing y from 0 to 1,

(tnp Slgvslu)z monotonically decreases toward 0, while (unp S]u,Szg)2 increases
toward 1. The diradical character dependences of the ND excitation energies
END 51,51, and Enp $50.5, are shown in Fig. 2.5. With increasing the diradical
character, both of the ND excitation energies decrease toward 1, where the
decreases are rapid in the small diradical character region, while they are gradual
in the intermediate and large diradical character regions. The reduction in the
small diradical character region is significant in Exps, s, as compared with
END 55,51, - Finally, we consider the effect of rx on the diradical character depen-
dence of Enps,s, From Egs. (2.3.1), (2.3.2), (2.3.5) and (2.3.6), other
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Fig. 2.4 Diradical character
() dependences of squared
nondimensional transition

2
moments <uND Slg>slu) and

2
(.UND s.‘.‘szg)

Fig. 2.5 Diradical character
() dependences of
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rg = 0

Fig. 2.6 Diradical character
() dependences of
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nondimensional singlet excitation energies and transition moments are found to
only depend on the diradical character. As seen from Eq. (2.3.1), Enps,,.s,,
decreases as increasing the diradical character and thus converges to a value,
1 — rg, which shows the decrease of Enp s, 5,, With the increase of rg as shown in
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Fig. 2.6. As seen from Eq. (2.2.10), the diradical character y tends to increase
when U becomes large. It is therefore predicted that the excitation energy Eg,, s,,
decreases, reaches a stationary value, and in some cases (with very large U) it
increases with increasing y values [13, 16]. Such behavior is found to be contrasted
with the well-known feature that a closed-shell m-conjugated system exhibits an
increase of the oscillator strength of the first optically-allowed excitation and a
decrease of the excitation energy with increasing the m-conjugation.

Finally, itis noteworthy that the diradical character y Eq. (2.2.10) can be ex-pressed
by the excitation energies [Egs. (2.1.9), (2.1.10), (2.1.11b), and (2.1.12b)] as

\E,, —3E 2 AEg, — AE 2
y=1- 1_<%) —1_ 1_(M) . (23.10)
By, —'Eq, AEs )

where the first right-hand side includes the energies of the four electronic states
(see Sect. 2.1). The second rhs, AEy) (= 'Eyy — 'Eig), AE(y) (= 'Exy — 'Eyg) and
AEr(=3Ey, — 'Eyy) correspond to the excitation energies of the higher singlet
state of g symmetry (two-photon allowed excited state), of the lower singlet state
with u symmetry (one-photon allowed excited state), and of the triplet state with u
symmetry, respectively, where AEy)and AEqcorrespond to the lowest-energy
peaks of the one- and two-photon absorption spectra, respectively, while AE7 can
be obtained from phosphorescence and ESR measurement. Since the diradical
character is not an observable but a purely theoretical quantity, this expression is
very useful for estimating the diradical character for real molecular systems by
experiments [12].
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