
Chapter 2
Electronic Structures of Symmetric
Diradical Systems

Abstract In general, the electronic structures of a molecular system is characterized
by using the ‘‘diradical character’’, which is well defined in quantum chemistry and
implies a chemical index of a bond nature. In this chapter, we present analytical
expressions for electronic energies and wavefunctions of the ground- and excited
states as well as for the excitation energies and transition properties based on
symmetric two-site diradical models with different diradical characters using the
valence configuration interaction method.
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2.1 Symmetric Diradical Model Using the Valence
Configuration Interaction Method

In this section, we consider a symmetric two-site diradical molecular model, Ȧ – Ḃ
with two electrons in two active orbitals, which can present the essential features of
the electronic structures of general diradical molecules including open-shell poly-
cyclic aromatic hydrocarbons (PAHs) [1, 2], transition-metal dinuclear systems
[3–7] and so on. The symmetry-adapted bonding (g) and anti-bonding (u) molecular
orbitals (MOs), which are the natural orbitals (NOs) obtained from the spin-unre-
stricted, i.e., broken-symmetry (BS), solutions like the spin-unrestricted Hartree-
Fock (UHF) solution, are described using the atomic orbitals (AO), vA and vB

(which are mutually nonorthogonal and have an overlap SAB):

g xð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1þ SABð Þ
p vA xð Þ þ vB xð Þ½ �; and

u xð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1� SABð Þ
p vA xð Þ � vB xð Þ½ �:

ð2:1:1Þ
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The localized natural orbital (LNO) is defined as [8, 9]

a xð Þ � 1
ffiffiffi

2
p g xð Þ þ u xð Þ½ � � vA xð Þ; and

b xð Þ � 1
ffiffiffi

2
p g xð Þ � u xð Þ½ � � vB xð Þ:

ð2:1:2Þ

which are well localized on one site (A or B), while have generally small tails on
the other site, satisfying the orthogonal condition, ajbh i ¼ 0: In the dissociation
limit SAB ¼ 0ð Þ; the LNOs are apparently identical with the AOs. Using these two
types of basis sets, we describe the singlet BS MO solution. The BS MOs for the a

and b spins (referred to as wa
H and wb

H; respectively) are described using symmetry-
adapted MOs, g and u, by [10–12]

wa
H ¼ cos hð Þgþ sin hð Þu; and wb

H ¼ cos hð Þg� sin hð Þu: ð2:1:3Þ

where h is a mixing parameter of g and u and takes a value between 0 and p/4.
In another way using the LNOs, a and b, the BS MOs are given by [10–12]

wa
H ¼ cosxð Þaþ sin xð Þb; and wb

H ¼ cosxð Þbþ sin xð Þa; ð2:1:4Þ

where x 0�x� p=4ð Þ is a mixing parameter of these LNOs (&AOs). In the case

of h ¼ 0 x ¼ p=4ð Þ; the BS MOs are reduced to the symmetry-adapted MO, wa
H ¼

wb
H ¼ g: In contrast, in the case of h ¼ p=4 x ¼ 0ð Þ; the BS MOs correspond to the

LNOs, wa
H ¼ a and wb

H ¼ b: Thus, we can consider the two limits: (i) weak cor-
relation limit (MO limit) at h ¼ 0 x ¼ p=4ð Þ; giving symmetry-adapted closed-
shell MO (g), and (ii) strong correlation limit [valence bond (VB) limit] at h ¼
p=4 x ¼ 0ð Þ; giving LNOs (a and b). Namely, the different orbitals for different
spins (DODS) MOs represented by Eqs. (2.1.3) and (2.1.4) can describe both weak
and strong correlation limits, i.e., MO and VB limits, as well as the intermediate
correlation regime [10–12].

Let us consider a symmetric two-site diradical system with two electrons in two
orbitals, g and u (a and b) and the z-component of spin angular momentum Ms = 0
(singlet and triplet). For Ms = 0, there are two neutral and ionic determinants:

a�b
�

�

�

� core a�b
�

�

�

; �ba
�

�

�

� core �ba
�

�

�

neutralð Þ; ð2:1:5aÞ

and

a�aj i � core a�aj i; and b�b
�

�

�

� core b�b
�

�

�

ionicð Þ; ð2:1:5bÞ
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where core denotes the closed-shell inner orbitals, and the upper- and non-bar
indicate b and a spins, respectively. The electronic Hamiltonian H (in atomic units
(a.u.), �h ¼ m ¼ e ¼ 1 ) for this model system is represented by

H ¼ � 1
2

X

N

i¼1

r2
i �

X

N

i¼1

X

2

A¼1

ZA

riA
þ
X

N

i¼1

X

N

j [ i

1
rij
¼
X

N

i¼1

h ið Þ þ
X

N

i¼1

X

N

j [ i

1
rij
: ð2:1:6Þ

The valence configuration interaction (VCI) matrix of this Hamiltonian using
the LNO basis takes the form [8, 9]:

a�b
�
�

�H a�b
�

�

�

a�b
�
�

�H b�aj i a�b
�
�

�H a�aj i a�b
�
�

�H b�b
�

�

�

b�ah jH a�b
�

�

�

b�ah jH b�aj i b�ah jH a�aj i b�ah jH b�b
�

�

�

a�ah jH a�b
�

�

�

a�ah jH b�aj i a�ah jH a�aj i a�ah jH b�b
�

�

�

b�b
�
�

�H a�b
�

�

�

b�b
�
�

�H b�aj i b�b
�
�

�H a�aj i b�b
�
�

�H b�b
�

�

�

0

B

B

B

B

@

1

C

C

C

C

A

¼

0 Kab tab tab

Kab 0 tab tab

tab tab U Kab

tab tab Kab U

0

B

B

B

@

1

C

C

C

A

;

ð2:1:7Þ

where the energy of the neutral determinant, a�b
�
�

�H a�b
�

�

�

¼ b�ah jH b�aj i; is taken as the
energy origin (0). U denotes the difference between on- and neighbor-site Coulomb
repulsions U � Uaa � Ubb ¼ aajaað Þ � bbjbbð Þ½ �: Kab is a direct exchange integral
Kab ¼ abjbað Þ� 0½ �; and tab is a transfer integral [tab ¼ a�b

�
�

�H b�b
�

�

�

¼ ah jf bj i � 0;
where f is the Fock operator in the LNO representation] [9]. Each matrix element is
derived as follows.

a�b
�
�

�H a�b
�

�

�

¼ a�b
�
�

�

X

N

i¼1

hðiÞ a�b
�

�

�

þ a�b
�
�

�

X

N

i¼1

X

N

j [ i

1
rij

a�b
�

�

�

¼ ah jh aj i þ bh jh bj i þ
X

core

c

ch jh cj i þ 1
2

a�b
�
�

� a�b
�

�

�

þ 1
2

�ba
�
�

� �ba
�

�

�

þ 1
2

X

core

c

ach j acj i þ 1
2

X

core

c

cah j caj i

þ 1
2

X

core

c

�bc
�
�

� �bc
�

�

�

þ 1
2

X

core

c

c�b
�
�

� c�b
�

�

�

þ 1
2

X

core

c

X

core

c0
cc0h j cc0j i

¼ ah jh aj i þ bh jh bj i þ 1
2

a�b
�
�

� a�b
�

�

�

þ 1
2

�ba
�
�

� �ba
�

�

�

þ coreð Þ

¼ að hj jaÞ þ bð hj jbÞ þ 1
2

aa bbjð Þ þ bb aajð Þf g þ coreð Þ

¼ 2haa þ Uab þ coreð Þ;

ð2:1:8aÞ
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where all the terms concerning the core are denoted by ‘‘(core)’’, and
haa � ajhjað Þ½ � ¼ hbb due to the symmetry of the model system. Similarly, we
obtain

b�ah jH b�aj i ¼ 2haa þ Uab þ coreð Þ: ð2:1:8bÞ

Since these energies are defined as the energy origin 2haa þ Uab þ coreð Þ ¼ 0½ �;
the energies of ionic determinants are represented by

a�ah jH a�aj i ¼ b�b
�
�

�H b�b
�

�

�

¼ 2haa þ Uaa þ ðcoreÞ
¼ Uaa � Uab ¼ U;

ð2:1:8cÞ

where we use the relations:
Pcore

c ach j acj i ¼
Pcore

c bch j bcj i; haa ¼ hbb and Uaa ¼
Ubb; which come from the symmetry of the present system.

For off-diagonal elements, we obtain

a�b
�
�

�H b�aj i ¼ b�ah jH a�b
�

�

�

¼ a�b
�
�

� b�aj i ¼ ab bajð Þ ¼ Kab; ð2:1:8dÞ

a�b
�
�

�H a�aj i ¼ a�ah jH a�b
�

�

�

¼ �b
�
�

�h �aj i þ �ba
�
�

� �aaj i

þ
X

core

c

�bc
�
�

� �acj i ¼ �b
�
�

�f̂ �aj i ¼ tab;
ð2:1:8eÞ

a�b
�
�

�H b�b
�

�

�

¼ b�b
�
�

�H a�b
�

�

�

¼ b�ah jH a�aj i ¼ a�ah jH b�aj i
¼ b�ah jH b�b

�

�

�

¼ b�b
�
�

�H b�aj i ¼ tab;
ð2:1:8fÞ

and

a�ah jH b�b
�

�

�

¼ b�b
�
�

�H a�aj i ¼ a�ah j b�b
�

�

�

¼ ab abjð Þ ¼ Kab; ð2:1:8gÞ

where tab ¼ tba is used. By diagonalizing the CI matrix of Eq. (2.1.7), the four
solutions are obtained as follows [8].

(i) Neutral triplet state (u symmetry)

T1uj i ¼ 1
ffiffiffi

2
p a�b

�

�

�

� b�aj i
� �

with energy 3E1u ¼ �Kab: ð2:1:9Þ

This triple state consists of only neutral determinants and is pure diraidcal.

(ii) Ionic singlet state (u symmetry)
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S1uj i ¼ 1
ffiffiffi

2
p a�aj i � b�b

�

�

�� �

with energy 1E1u ¼ U � Kab: ð2:1:10Þ

(iii) Lower singlet state (g symmetry)

S1g

�

�

�

¼ j a�b
�

�

�

þ b�aj i
� �

þ g a�aj i þ b�b
�

�

�� �

; ð2:1:11aÞ

where 2 j2 þ g2ð Þ ¼ 1 and j[ g[ 0: The energy is

1E1g ¼ Kab þ
U �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2 þ 16t2
ab

p

2
: ð2:1:11bÞ

In this state, 2j2 and 2g2 represent the weight of neutral and ionic con-
tributions, respectively, and the weight of neutral determinant is larger than
that of ionic one.

(iv) Higher singlet state (g symmetry)

S2g

�

�

�

¼ �g a�b
�

�

�

þ b�aj i
� �

þ j a�aj i þ b�b
�

�

�� �

; ð2:1:12aÞ

where 2 j2 þ g2ð Þ ¼ 1 and j[ g[ 0: The energy is

1E2g ¼ Kab þ
U þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2 þ 16t2
ab

p

2
: ð2:1:12bÞ

In this state, 2j2 and 2g2 represent the weight of ionic and neutral contributions,
respectively, and the weight of ionic determinant is larger than that of neutral one.

Here, we obtain [13]

j ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2 þ 16t2
ab

p

s

and

g ¼ 2 tabj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2 þ 16t2
ab

p

� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2 þ 16t2
ab

p

r :
ð2:1:13Þ
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If we define rt as rt � tab=Uj j; j and g are rewritten as [13],

j ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16r2
t

p

s

and g ¼ 2rt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16r2
t

p
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16r2
t

p

q : ð2:1:14Þ

A large tab and a small U, which lead to a large rt; correspond to the ease of the
electron transfer between sites A and B. Figure 2.1 shows the variations of j and g
with respect to rt: As decreasing rt; the coefficient (j) of the neutral determinant
increases toward 1=

ffiffiffi

2
p

at rt ¼ 0; while that (g) of the ionic determinant decreases
toward 0 at rt ¼ 0: This indicates that the mobility of electrons between sites A
and B governs the relative neutral (covalent) and ionic natures of the state,
resulting in determining the diradical nature.

2.2 Diradical Character of Symmetric Systems

2.2.1 Diradical Character in the VCI Model

The ground and excited states are also described using the symmetry-adapted
MOs, g and u, [Eq. (2.1.1)] as

g xð Þ ¼ 1
ffiffiffi

2
p a xð Þ þ b xð Þ½ � and u xð Þ ¼ 1

ffiffiffi

2
p a xð Þ � b xð Þ½ �: ð2:2:1Þ

We here employ the following determinants for Ms = 0 as an alternative basis to
the LNO basis:
g�gj i ground-state configuration with two electrons in HOMO
g�uj i and u�gj i HOMO to LUMO singly excited configuration
u�uj i HOMO to LUMO doubly excited configuration
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Fig. 2.1 Variations of j and
g with respect to rt
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By employing these bases, we can obtain four wavefunctions for the z-component
of spin angular momentum, Ms = 0, which are equivalent to those obtained by
the VCI method using the LNOs [Eqs. (2.1.9), (2.1.10), (2.1.11a) and (2.1.12a)]
[13]:

(i) Neutral triplet state (u symmetry)

T1uj i ¼ 1
ffiffiffi

2
p g�uj i � u�gj ið Þ ð2:2:2Þ

(ii) Ionic singlet state (u symmetry)

S1uj i ¼ 1
ffiffiffi

2
p g�uj i þ u�gj ið Þ ð2:2:3Þ

(iii) Lower singlet state (g symmetry)

S1g

�

�

�

¼ n g�gj i � f u�uj i ð2:2:4Þ

(iv) Higher singlet state (g symmetry)

S2g

�

�

�

¼ f g�gj i þ n u�uj i ð2:2:5Þ

By substituting Eq. (2.2.1) into Eq. (2.2.4), we obtain

S1g

�

�

�

¼ n g�gj i � f u�uj i ¼ 1
2

nþ fð Þ a�b
�

�

�

þ b�aj i
� �

þ 1
2

n� fð Þ a�aj i þ b�b
�

�

�� �

:

ð2:2:6Þ

By comparing the coefficients between Eqs. (2.1.11a) and (2.2.6), we obtain

j ¼ 1
2

nþ fð Þ and g ¼ 1
2

n� fð Þ ð2:2:7Þ

Therefore,

f ¼ j� g: ð2:2:8Þ
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The diradical character (y) is defined as twice the weight of the doubly excited
configuration in the singlet ground state [14]:

y � 2f2 ¼ 1� 4jg: ð2:2:9Þ

Here, we use the orthonormal condition 2 j2 þ g2ð Þ ¼ 1 in Eq. (2.1.11a).
By substituting Eq. (2.1.13) into Eq. (2.2.9), we obtain [13]

y ¼ 1� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ U
4tab

� 	2
r ; ð2:2:10Þ

which indicates that the diradical character is a function of U and tab. By using
rt ¼ jtab=Ujð Þ; y is rewritten as [13]

y ¼ 1� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
4rt

� 	2
r : ð2:2:11Þ

Figure 2.2 shows the variation of y as a function of jtab=Uj � 1=rtð Þ: In the case of
jU=tabj ! 1 rt ! 0ð Þ; y value approaches 1, while in the case of
jU=tabj � 	 1 rt� 	 1ð Þ; it is close to 0. Because the transfer integral tab and the
effective Coulomb repulsion U represent the ease and difficulty of electron transfer
between sites A and B, respectively, jU=tabj ! 1 rt ! 0ð Þ implies the localization
of electrons on each site, leading to a pure diradical. On the contrary, the delo-
calization of electrons over two sites is realized for jU=tabj � 	 1 rt� 	 1ð Þ;
corresponding to a stable bond. Variation in the mobility of electrons between sites
A and B corresponds to that in the diradical character. For example, the elongation
of the inter-site distance leads to the decrease in tab and the increase in U, which
causes the decrease in rt; i.e., the increase in y.
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Fig. 2.2 Diradical character
y versus |U/tab|(=1/rt)
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2.2.2 Diradical Character in the Spin-Unrestricted Single
Determinant Formalism with Spin-Projection Scheme

As mentioned in the previous section, although the diradical character (y) is
originally defined in the multi-configuration (MC)-SCF theory by twice the weight
of the doubly excited configuration in the singlet ground state [14], the MC-SCF
methods are generally difficult to apply to many electron systems due to its huge
computational demand. On the other hand, the single determinant scheme is
computationally favorable, while the spin-restricted (symmetry-adapted) single
determinant approaches like the spin-restricted Hartree-Fock (RHF) cannot be
used for obtaining the y value because of its lack of multiply excited configura-
tions. In contrast, the spin-unrestricted [broken-symmetry (BS)] single determinant
approaches like the spin-unrestricted HF (UHF) can take account of the multiply
excited configurations with low computational cost, which allows us to define the
diradical character within this formalism. Nevertheless, the spin-unrestricted
methods suffer from the spin contamination [15], which causes the unphysical
inclusion of higher spin states like a triplet state in the singlet ground state. This
could overshoot y value as compared to that at the MC-SCF level of theory, which
gives correct spin states, since the triplet component originating from the spin
contamination is a pure diradical state as shown by Eq. (2.1.9). Yamaguchi pro-
posed an approximate spin-projection scheme, which effectively eliminates the
spin contamination from the UHF solution, and presented an efficient calculation
scheme of diradical character in the approximate spin-projected spin-unrestricted
single determinant approaches [10, 11]. We here briefly explain this scheme.

The ground-state UHF wavefunction is written by

U ¼ wa
1w

b
1 . . .wa

Hwb
H

�

�

�

E

; ð2:2:12Þ

where the MOs for the a and b spins (wa
i and wb

i ; respectively) satisfy the ortho-

normal condition for each spin wX
i

�

�

�
wX

j

D E

¼ dij X ¼ a;bð Þ; and ‘‘H’’ indicates the

HOMO. The UHF MOs can be transformed to the corresponding orbitals (vi and gi)
with the unitary transformation [15] as

vi ¼
X

s

wa
s Usi and gj ¼

X

s

wb
s Vsj; ð2:2:13Þ

the orbital overlap of which is diagonal, Tij ¼ vi

�

� gj

� �

¼ Tidij: Because the
wavefunction is invariant under the unitary transformation, the UHF wavefunction
given by Eq. (2.2.13) is rewritten as

U ¼ v1�g1. . .vH�gHj i: ð2:2:14Þ
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The corresponding orbitals are connected with the natural orbitals (NOs) ki and li

of the UHF wavefunction by

ki ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1þ Tið Þ
p vi þ gið Þ and li ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1� Tið Þ
p vi � gið Þ; ð2:2:15Þ

which satisfy the orthonormal condition:

ki

�

� lj

� �

¼ 0 and ki

�

� kj

� �

¼ li

�

� lj

� �

¼ dij: ð2:2:16Þ

From Eqs. (2.2.15) and (2.2.16), the corresponding orbitals vi and gi are given with
the NOs ki and li as

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1þ Tið Þ
p

2
ki þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1� Tið Þ
p

2
li: ð2:2:17Þ

and

gi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1þ Tið Þ
p

2
ki �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1� Tið Þ
p

2
li: ð2:2:18Þ

Because the coefficients satisfy the following relation,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1þ Tið Þ
p

2

( )2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1� Tð Þi
p

2

( )2

¼ 1; ð2:2:19Þ

Equations (2.2.17) and (2.2.18) can be rewritten with a mixing parameter hi as,

vi ¼ cos hiki þ sin hili ð2:2:20Þ

and

gi ¼ cos hiki � sin hili: ð2:2:21Þ

Here hi ranges from 0 to p=4 due to cos hi� sin hi� 0 [see Eq. (2.1.3)]. Using
these equations, the overlap integral Ti is expressed by

Ti ¼ cos2 hi � sin2 hi ¼ cos 2hi; ð2:2:22Þ

where the orthonormal condition of NOs [Eq. (2.2.16)] is used.
We here confirm that ki and li are the natural orbitals of the UHF wavefunction.

Spin-less one-electron reduced density matrix of a N-electron system is defined as
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q r1; r
0
1ð Þ ¼ N

Z

dr2. . .drNW r1; r2; . . .; rNð ÞW
 r01; r2; . . .; rNð Þ: ð2:2:23Þ

For the Hartree–Fock wavefunction WHF ¼ /1. . ./Nj i; it is simplified as

q r1; r
0
1ð Þ ¼

X

a

/a r1ð Þ/
a r01ð Þ: ð2:2:24Þ

Since the wavefunction is invariant under the unitary transformation, q r1; r
0
1ð Þ of

the UHF wavefunction can be given with the UHF MOs (wa and wb) and the
corresponding orbitals (vi and gi) as

q r1; r
0
1ð Þ ¼

X

i

wa
i r1ð Þwa


i r01ð Þ þ
X

i

wb
i r1ð Þwb


i r01ð Þ

¼
X

i

vi r1ð Þv
i r01ð Þ þ
X

i

gi r1ð Þg
i r01ð Þ

¼
X

i

2cos2hiki r1ð Þk
i r01ð Þ þ
X

i

2sin2hili r1ð Þl
i r01ð Þ

¼
X

i

1þ Tið Þki r1ð Þk
i r01ð Þ þ
X

i

1� Tið Þli r1ð Þl
i r01ð Þ;

ð2:2:25Þ

where Eqs. (2.2.20)–(2.2.22) are used. From the last equality, ki and li are shown
to be natural orbitals of the UHF solution with the occupation numbers of 1þ Ti

and 1� Ti; respectively. A corresponding orbital pair (vi and gi) constructs a pair
of NOs (ki and li), where one of the NO pair (ki) possesses an occupation number
more than 1 (1þ Ti), while the occupation of the other NO (li) is less than 1
(1� Ti). Namely, the total occupation of a NO pair is shown to be always 2 in the
single determinant formalism. Also, the bonding and anti-bonding orbitals for the
triplet state of this model obtained by the UHF method coincide with the NOs ki

and li; respectively, due to Ti ¼ 0:
For singlet diradical systems with two electrons in the two highest occupied

corresponding orbitals (vH and gH), the wavefunction of the UHF ground state is
described by using the corresponding orbitals as

UUHF ¼ vH�gHj i: ð2:2:26Þ

By substituting Eqs. (2.2.20) and (2.2.21) into this equation, UUHF is represented
with NOs as

UUHF ¼ cos2h kH
�kH

�

�

�

� sin2h lL�lLj i � cosxsinx kH�lLj i � lL
�kH

�

�

�� �

¼ 1þ T

2
kH

�kH

�

�

�

� 1� T

2
lL�lLj i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� T2

2

r

1
ffiffiffi

2
p kH�lLj i � lL

�kH

�

�

�� �


 �

;

ð2:2:27Þ
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where Eq. (2.2.22) T � THð Þ is used. The first term in the right-hand side of
Eq. (2.2.27) represents the RHF ground configuration, while the second one
indicates the doubly excited configuration from the highest occupied NO to the
lowest unoccupied NO. Both of these terms represent singlet states. The UHF
singlet ground state includes the RHF ground and doubly excited configurations,
which enable the UHF method to describe the diradical nature of systems. On the
other hand, the third term, composed of singly excited configurations, represents
the triplet component, which is the origin of spin contamination in UHF
wavefunctions.

As mentioned in Sect. 2.2.1, the diradical character is defined by twice the
weight of the doubly excited configuration. We can define the diradical character
of the UHF ground state from Eq. (2.2.27) based on this definition. Since the UHF
wavefunction suffers from the spin contamination, we need to remove the triplet
component to obtain a pure singlet wavefunction, the procedure of which is
referred to as the spin-projection [10–12]. For simplicity, UUHF is rewritten by

UUHF ¼ CIUG þ CIIUS þ CIIIUD; ð2:2:28Þ

where CI ¼ 1þ Tð Þ=2; CII ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� T2ð Þ=2
p

; and CIII ¼ � 1� Tð Þ=2: The first,
second and third terms in the right-hand side of Eq. (2.2.28) denote the ground,
singly excited and doubly excited configurations, respectively. The removal of the
second term (triplet) from the UHF wavefunction with keeping the ratio of the
coefficients of the first and third terms (CI=CIII) provides the spin-projected UHF
(PUHF) wavefunction,

UPUHF ¼ C0IUG þ C0IIIUD: ð2:2:29Þ

Here, the coefficients satisfy the relation: C0I
�

C0III ¼ CI

�

CIII. From the orthogonal
condition of UUHF, we obtain the relation,

C2
I

1� C2
II

þ C2
III

1� C2
II

¼ 1: ð2:2:30Þ

From Eqs. (2.2.29) and (2.2.30), C0I and C0III can be determined by

C0I ¼
CI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C2
II

p and C0III ¼
CIII
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C2
II

p : ð2:2:31Þ

By inserting them into Eq. (2.2.29), we obtain

UPUHF ¼ CI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C2
II

p UG þ
CIII
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C2
II

p UD ¼
1þ T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ T2Þ
p UG �

1� T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ T2Þ
p UD:

ð2:2:32Þ
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Therefore, the diradical character in the PUHF formalism is defined by [10–12]

yPUHF ¼ 2C02III ¼ 1� 2T

1þ T2
; ð2:2:33Þ

where the overlap integral T between the corresponding orbitals can be obtained
from the occupation number of the LUNO: nLUNO ¼ 1� T . From the one-electron
reduced density matrix of the PUHF wavefunction, the spin-projected occupation
numbers of the HONO and LUNO are represented by

nPUHF
HONO ¼

ð1þ TÞ2

1þ T2
¼ n2

HONO

1þ T2
¼ 2� yPUHF ð2:2:34aÞ

and

nPUHF
LUNO ¼

ð1� TÞ2

1þ T2
¼ n2

LUNO

1þ T2
¼ yPUHF; ð2:2:35bÞ

where nHONO ¼ 1þ T and nLUNO ¼ 1� T are employed [see Eq. (2.2.25)].
Although these equations are defined in singlet diradical systems in relation to
their HONO and LUNO, they can be extended to singlet multiradical systems. For
a 2n-radical system, the perfect-pairing type (only considering a doubly excitation
from HONO - i to LUNO + i) spin-projected diradical characters and occupation
numbers are defined as follows [10–12].

yPUHF
i ¼ 1� 2Ti

1þ T2
i

; ð2:2:36Þ

and

nPUHF
HONO�i ¼ 2� yPUHF

i ; and nPUHF
LUNOþi ¼ yPUHF

i ; ð2:2:37Þ

where Ti is obtained from the occupation number of LUNOþ i :
nLUNOþi ¼ 1� Ti.

2.3 Diradical Character Dependences of Excitation
Energies and Transition Properties

We here consider only the singlet states for Chap. 4, where (hyper) polarizabilities
of singlet molecular systems are discussed. The excitation energy of the triplet
state T1uj i is discussed in Chap. 5, which focuses on singlet fission. In a symmetric
two-site diradical model (A� � B�) introduced in Sect. 2.1, there are three singlet
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states, S1g

�

�

�

, S1uj i and S2g

�

�

�

. Because S1g

�

�

�

and S2g

�

�

�

have the same symmetry
(g symmetry), the transition moment between these states disappears. Figure 2.3
shows the three-state model constructed from these singlet states together with the
excitation energies and transition moments.

Firstly, we provide the analytical expressions of the excitation energies using
several dimensionless physical quantities and diradical characters. Using Eqs.
(2.1.10), (2.1.11b), (2.1.12b) and (2.2.11), we obtain [13]

ES1u;S1g
� 1E1u � 1E1g ¼ �2Kab þ U 1� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16r2
t

p

2

 !

¼ U

2
1� 2rK þ

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1� yð Þ2
q

8

>

<

>

:

9

>

=

>

;

; ð2:3:1Þ

and

ES2g;S1g
� 1E2g � 1E1g ¼ U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16r2
t

q

¼ U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1� yð Þ2
q ; ð2:3:2Þ

where rK is defined as rK � 2Kab=U. Second, the analytical expressions of the
transition moments along the A–B bond axis are considered. The transition
moments between S1g

�

�

�

and S1uj i are obtained from Eqs. (2.1.10) and (2.1.11a)
as [13]

S2g

S1u

S1g

µS1u ,S2g

µS1g,S1u
ES1u ,S1g

ES2g,S1g

Fig. 2.3 Singlet states (S1g, S1u, S2g) in a two-site diradical model. The excitation energies

ES1u ;S1g
;ES2g ;S1g

� �

and transition moments lS1g ;S1u
; lS1u ;S2g

� 	

are shown. The dashed arrows

indicate optically-allowed transitions
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lS1g;S1u
¼ � S1g

�
�

�r1 þ r2 S1uj i

¼ � j a�b
�
�

�þ b�ah j
� �

þ g a�ah j þ b�b
�
�

�

� �
 �

r1 þ r2ð Þ 1
ffiffiffi

2
p a�aj i � b�b

�

�

�� �


 �

¼ � 1
ffiffiffi

2
p j �b

�
�

�r �aj i þ 1
ffiffiffi

2
p j ah jr bj i � 1

ffiffiffi

2
p j bh jr aj i þ 1

ffiffiffi

2
p j �ah jr �b

�

�

�

� 1
ffiffiffi

2
p g ah jr aj i þ �ah jr �aj if g þ 1

ffiffiffi

2
p g bh jr bj i þ �b

�
�

�r �b
�

�

�
 �

¼
ffiffiffi

2
p

g bð rj jbÞ � að rj jaÞf g;
ð2:3:3Þ

where the following relations are employed:

ah jr bj i ¼ bh jr aj i ¼ �ah jr �b
�

�

�

¼ �b
�
�

�r �aj i ¼ að rj jbÞ
ah jr aj i ¼ �ah jr �aj i ¼ að rj jaÞ
bh jr bj i ¼ �b

�
�

�r �b
�

�

�

¼ bð rj jbÞ

8

<

:

: ð2:3:4Þ

Since að rj jaÞ and bð rj jbÞ represent the expectation values of the bond-axis compo-
nent of the position (r) of electrons using the LNOs a and b, respectively, bð rj jbÞ �
að rj jaÞ indicates the dipole l = eRBA [with RBA : Rbb - Raa = bð rj jbÞ � að rj jaÞ,

an effective distance between the two radicals], with the e, the electron charge
magnitude, equal to 1 in a.u. Thus, we obtain [13]

lS1g;S1u
¼

ffiffiffi

2
p

gRBA: ð2:3:5Þ

In the same manner, we obtain the transition moment between S1uj i and S2g

�

�

�

[13],

lS1u;S2g
¼ � S1uh jr1 þ r2 S2uj i ¼

ffiffiffi

2
p

j bð rj jbÞ � að rj jaÞf g ¼
ffiffiffi

2
p

jRBA: ð2:3:6Þ

The transition moment (lS1g;S1u
) between S1g

�

�

�

and S1uj i is proportional to the
coefficient (g) of the ionic term in the singlet ground state S1g

�

�

�

, while that (lS1u;S2g
)

between S1uj i and S2g

�

�

�

is to the coefficient (j) of the neutral term in S1g

�

�

�

, which

is also that of the ionic term in the excited singlet state S2g

�

�

�

. Therefore, the
increase in the diradical character (corresponding to the increase in the weight of
the neutral term) of the singlet ground state S1g

�

�

�

leads to the decrease in lS1g;S1u

and the increase in lS1u;S2g
. This is because the ionic component of S1g

�

�

�

( S2g

�

�

�

)

decreases (increases) with respect to the increase in the diradical character of S1g

�

�

�

[see Eqs. (2.1.11a) and (2.1.12a)], while S1uj i keeps the pure ionic nature [see
Eq. (2.1.10)]. The transition moment between the ionic ( a�aj i � b�b

�

�

�

) and neutral

a�b
�

�

�

þ b�aj i
� �

terms becomes 0, while that between the ionic terms ( a�aj i � b�b
�

�

�
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and a�aj i þ b�b
�

�

�

) has a finite value ¼ 2 að rj jaÞ � bð rj jbÞf gð Þ. Therefore, larger

ionic components in S1g

�

�

�

and S2g

�

�

�

leads to larger amplitudes of the transition
moments lS1g;S1u

and lS1u;S2g
. We here present the expressions of the transition

moments as a function of the diradical character y by using Eq. (2.1.14) [13],

ðlS1g;S1u
Þ2 ¼

ffiffiffi

2
p

gRBA

� 	2
¼ 8r2

t R2
BA

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16r2
t

p
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16r2
t

p

¼ R2
BA

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1� yð Þ2
q


 �

; ð2:3:7Þ

and

ðlS1u;S2g
Þ2 ¼

ffiffiffi

2
p

jRBA

� 	2
¼ R2

BA

2
1þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16r2
t

p

 !

¼ R2
BA

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1� yð Þ2
q


 �

: ð2:3:8Þ

Next, we investigate the diradical character dependences of the transition
moments and excitation energies for the singlet three states of the symmetric two-
site model, which give us valuable information and help us understand the features
of (non)linear optical responses in symmetric diradical systems. Since in usual
cases, rK takes a very small value, we here consider a symmetric two-site system
with a fixed RBA and rK = 0. The nondimensional (ND) transition moments and
excitation energies are defined by [13]

lND S1g;S1u
�

lS1g;S1u

RBA

; lND S1u;S2g
�

lS1u;S2g

RBA

;

END S1u;S1g
�

ES1u;S1g

U
and END S2g;S1g

�
ES2g;S1g

U

ð2:3:9Þ

Figure 2.4 shows the variations of the squared ND transition moments

ðlND S1g;S1u
Þ2 and ðlND S1u;S2g

Þ2 with respect to the diradical character y. For y = 0,

both ðlND S1g;S1u
Þ2 and ðlND S1u;S2g

Þ2 are equal to 0.5. As increasing y from 0 to 1,

ðlND S1g;S1u
Þ2 monotonically decreases toward 0, while ðlND S1u;S2g

Þ2 increases

toward 1. The diradical character dependences of the ND excitation energies
END S1u;S1g

and END S2g;S1g
are shown in Fig. 2.5. With increasing the diradical

character, both of the ND excitation energies decrease toward 1, where the
decreases are rapid in the small diradical character region, while they are gradual
in the intermediate and large diradical character regions. The reduction in the
small diradical character region is significant in END S1u;S1g

as compared with
END S2g;S1g

. Finally, we consider the effect of rK on the diradical character depen-
dence of END S1u;S1g

. From Eqs. (2.3.1), (2.3.2), (2.3.5) and (2.3.6), other
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nondimensional singlet excitation energies and transition moments are found to
only depend on the diradical character. As seen from Eq. (2.3.1), END S1u;S1g

decreases as increasing the diradical character and thus converges to a value,
1� rK , which shows the decrease of END S1u;S1g

with the increase of rK as shown in
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Fig. 2.4 Diradical character
(y) dependences of squared
nondimensional transition
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Fig. 2.5 Diradical character
(y) dependences of
nondimensional excitation
energies END S1u ;S1g

and
END S2g ;S1g

in the case of
rK ¼ 0
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Fig. 2.6. As seen from Eq. (2.2.10), the diradical character y tends to increase
when U becomes large. It is therefore predicted that the excitation energy ES1u;S1g

decreases, reaches a stationary value, and in some cases (with very large U) it
increases with increasing y values [13, 16]. Such behavior is found to be contrasted
with the well-known feature that a closed-shell p-conjugated system exhibits an
increase of the oscillator strength of the first optically-allowed excitation and a
decrease of the excitation energy with increasing the p-conjugation.

Finally, it is noteworthy that the diradical character y Eq. (2.2.10) can be ex-pressed
by the excitation energies [Eqs. (2.1.9), (2.1.10), (2.1.11b), and (2.1.12b)] as

y ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
1E1u � 3E1u

1E2g � 1E1g

� �2
s

¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
DESðuÞ � DET

DESðgÞ

� �2
s

; ð2:3:10Þ

where the first right-hand side includes the energies of the four electronic states
(see Sect. 2.1). The second rhs, DEsðgÞð� 1E2g � 1E1gÞ, DEsðuÞð� 1E2u � 1E1gÞ and

DETð� 3E1u � 1E1gÞ correspond to the excitation energies of the higher singlet
state of g symmetry (two-photon allowed excited state), of the lower singlet state
with u symmetry (one-photon allowed excited state), and of the triplet state with u
symmetry, respectively, where DEsðuÞand DEsðuÞcorrespond to the lowest-energy
peaks of the one- and two-photon absorption spectra, respectively, while DET can
be obtained from phosphorescence and ESR measurement. Since the diradical
character is not an observable but a purely theoretical quantity, this expression is
very useful for estimating the diradical character for real molecular systems by
experiments [12].
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