
Chapter 2
Response Functions

2.1 Causal Response

Response functions form a wide class of both classical and quantum quantities.
Synonyms of response functions are linear and non-linear susceptibilities of different
kinds, as well as polarizability and hyperpolarizabilities. The defining characteristic
of a response functionχ(t) is causality of a map that it establishes between perturbing
quantity E(t) and a responding quantity P(t).1 In case of a linear response function,
it is accomplished by an integral relation:

P(t) =
∞∫

0

χ(1)(τ )E(t − τ)dτ. (2.1)

One may examine by inspection that (2.1) guarantees that values of E(t) at times
earlier than t0 do not contribute to P(t0). It also allows for response P(t0) to persist
for all times t > t0 even if field E(t) is zero at these times. For example, taking time
profile as delta function for E(t) = E δ(t), and taking χ(1) as being non-zero only
on an interval 0 < t < tM leads to the following response P(t):

P(t) =
{

Eχ(1)(t) if 0 < t < tM

0 if t > tM
(2.2)

Multiplying (2.1) by eiωt , integrating in time t from −∞ to ∞, changing variable
in left hand side (LHS) t ′ = t − τ and using definition of Fourier Transforms one
gets frequency domain representation of linear response:

P(ω) = χ(1)(ω)E(ω), (2.3)

1 Both P(t) and E(t) are assumed to be observable (i.e. real).
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10 2 Response Functions

where linear response function is:

χ(1)(ω) =
∞∫

0

χ(1)(t)eiωt dt. (2.4)

Sometimes it is convenient to replace (2.4) with a conventional Fourier Transform
by multiplying χ(1)(t) by step function θ(t) and extending limits of integration to
−∞. Generalizations of (2.1) and (2.3) to higher order response are:

P(n)(t) =
∞∫

0

. . .

∞∫

0

χ(n)(τ1, . . . , τn)E(t − τ1) . . . E(t − τn)dτ1 . . . dτn, (2.5)

P(n)(ω) = 1

(2π)(n−1)

∞∫

0

. . .

∞∫

0

χ(n)(ω;ω1, . . . , ωn)E(ω1) . . . E(ωn) (2.6)

× δ(ω − ω1 − · · · − ωn) dω1 . . . dωn .

Delta function appearing in (2.6) enforces conservation of energy.

2.2 Kramers-Kronig

Causality of response functions leads to several properties that are intrinsic to this
class of functions.2 For linear response, from (2.4) it follows that χ(1)(−ω) =
(χ(1)(ω))∗. If ω is complex, then it turns into:

χ(1)(−ω∗) = (χ(1))∗(ω). (2.7)

Kramers-Kronig dispersion relations are the consequence of (2.7). Kramers-
Kronig relations connect real and imaginary parts of χ(1) via a Hilbert Transform:

�(χ(1)(ω)) = 1

π
P

∞∫

−∞

�(χ(1)(ξ))
ξ − ω

dξ, (2.8)

�(χ(1)(ω)) = − 1

π
P

∞∫

−∞

R�(χ(1)(ξ))
ξ − ω

dξ. (2.9)

2 The proof of these relations could be found in [1].
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These are routinely used in calculations as well as in experimental work, where
they are used for optical data inversion, for example for deducing dispersion from
absorption spectra.

Analog of (2.7) for general nonlinear case exists for real frequencies

χ(n)(−ω1, . . . ,−ωn) = (χ(n)(ω1, . . . , ωn))
∗, (2.10)

and for some nonlinear processes for complex frequencies. It has been shown that
analogs of Kramers-Kroning (2.8 and 2.9) for nonlinear processes in form of multidi-
mensional Hilbert Transforms do not generally exist. The cases for which they exist
include all orders of higher harmonic generation, for which KK takes the following
form:

�(χ(n)(−nω;ω, . . . , ω)) = 1

π
P

∞∫

−∞

�(χ(n)(−nω′;ω′, . . . , ω′))
ω′ − ω

dω′, (2.11)

�(χ(n)(−nω;ω, . . . , ω)) = − 1

π
P

∞∫

−∞

�(χ(n)(−nω′;ω′, . . . , ω′))
ω′ − ω

dω′. (2.12)

A further discussion of application of Kramers-Kronig relations to nonlinear op-
tics could be found in [2].

2.3 Symmetry Relations

In this section we specialize to the response functions that describe electronic
polarization by external electric fields E. These functions are tensors of (n + 1)
rank, where n is the order of nonlinearity. Besides symmetry relation (2.10) that
follows from causality of response, there are two other kinds of symmetries: one
related to structural symmetry of material and another to permutation properties of
response function.3

2.3.1 Permutation Symmetries

The most general of permutation symmetries is Intrinsic Permutation Symmetry.
It follows from the fact that one can not distinguish physical order of the fields
appearing in expressions of the following form:

χ
(n)
i j1 j2... jn

(−ωσ ;ω1, ω2, . . . , ωn)E j1(ω1)E j2(ω2) . . . E jn (ωn).

3 In depth discussion of this subject could be found in [3].
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From this follows property that allows us to permute indices jk simultaneously with
the corresponding frequency ωk :

χ
(n)
i j1 j2... jn

(−ωσ ;ω1, ω2, . . . , ωn) = χ
(n)
i j2 j1... jn

(−ωσ ;ω2, ω1, . . . , ωn). (2.13)

As a result, number of distinct permutations enters as a factor for the series of equiva-
lent terms in calculations of polarization response. For example, χ(2)i jk (−ωσ ;ω1, ω2)

= χ
(2)
ik1
(−ωσ ;ω2, ω1) and second order polarization will become:

P(2)i (−ωσ ) = 1

2π 2!
∑

jk

D
∫
χ
(2)
i jk (−ωσ ;ω1, ω2)

× E j (ω1)Ek(ω2) δ(ωσ − ω1 − ω2) dω2,

where D = 2 is a number of distinct permutations of fields E(ω), 2!—coefficient of
Taylor expansion, and 2π is Fourier Transform factor.

In case of lossless media I m(χ(n)) = 0 and IPS becomes Full Permutation Sym-
metry , where all indices can be permuted simultaneously with corresponding fre-
quencies:

χ
(n)
i j1 j2... jn

(−ωσ ;ω1, ω2, . . . , ωn) = χ
(n)
jn j2 j1...i

(−ωn;ω2, ω1, . . . ,−ωσ )
= χ

(n)
j1 j2i ... jn

(−ω1;ω2,−ωσ , . . . , ωn). (2.14)

In case of lossles I m(χ(n)) = 0 and dispersionless media Re(χ(n)) = const.
one has Kleinman Symmetry which allows one to permute indices without regard to
frequencies:

χ
(n)
i j1 j2... jn

(−ωσ ;ω1, ω2, . . . , ωn) = χ
(n)
jn j2 j1...i

(−ωσ ;ω1, ω2, . . . , ωn)

= χ
(n)
j1 j2i ... jn

(−ωσ ;ω1, ω2, . . . , ωn). (2.15)

2.3.2 Structural Symmetries

Spatial arrangement of atoms in molecules and solids is frequently symmetric. The
point group of material structural symmetry S is a finite subgroup of the full symme-
try group of Hamiltonian. It can be shown that the related response functions must
also possess the same point group. Let S(g)nm be a matrix representing gth element
of this group. Since a response function of nth order is a tensor of n + 1 rank, it
transforms according to:
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χ
′(n)
p i ..., j =

∑
s k ...,m

χ
(n)
s k ...,m S(g)ps S(g)ik . . . S(g)jm . (2.16)

If the order of the group is Ng then, there exist Ng constraints of type (2.16) that can
be used to reduce the number of independent elements. As an illustration consider
inversion symmetry that is an element of Th , Oh and other point groups. Its matrix
representation is S(inversion)

i j = −δi j . In case of even order (nonlinear) response
function, from (2.16) follows:

χ
′(2n)
p i ..., j = −

∑
s k ...,m

χ
(2n)
s k ...,mδpsδik . . . δ jm = −χ(2n)

p i ..., j = 0. (2.17)

Therefore even orders of nonlinear response vanish if the material possesses inversion
symmetry. The tables indicating non-vanishing elements for the first, second and third
order response functions for several point groups may be found in [4].

2.4 Quantum Field Theory Response Formalism

Typically, (hyper) polarizabilities are defined as coefficients of Taylor series expan-
sion of polarization P(t):

P(t) = χ(1)E(t)+ 1

2!χ
(2)E2(t)+ · · · (2.18)

In this expansion, the hyperpolarizabilities are formally partial derivatives of the
“total”, generally time dependent polarization in respect to the electric field E(t):

χ
(2)
i jk = D ∂2 Pi

2! ∂E j∂Ek
, (2.19)

where D is degeneracy factor. This definition is purely classical and is frequently
supplemented by a qualification such as “…if the series converge, then the hyperpo-
larizabilities could be defined as (2.18) …”. Since convergence of (2.18) generally
requires electric field to be small E << 1, it raises a question whether the classi-
cal definition has any relevance in Nonlinear optics, because in practice the electric
field has to be strong in order for the nonlinear phenomena to appear. One may even
go as far as to question the existence and the applicability of response functions to
the description of any strong field phenomena. In this section we try to address this
issue. We define the optical response functions through the quantum density–density
response functions that are in turn related to higher order density fluctuations.

To underline the quantum mechanical nature of nonlinear optical response we need
to extend the textbook theory of linear response [5] to higher orders. The many-body
Hamiltonian is taken in second quantization:
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Ĥ =
∫

d3x ψ̂†(x) T (x) ψ̂(x)+ 1

2

∫ ∫
d3x d3x ′ ψ̂†(x)ψ̂†(x ′)

× e

|r − r′| ψ̂(x
′)ψ̂(x)+ Ĥ ext (2.20)

where x = (x, t, spin), ck , c†
k are field annihilation and creation operators, ψk(x)

are single particle states and ψ̂ , ψ̂† are field operators: ψ̂(x) = ∑
k ψk(x) ck ,

ψ̂†(x) = ∑
k ψ

†
k (x) c†

k . The external interaction is described in general by Ĥ ext =∫
d3x n̂(x) φext (x), where n̂(x) is density operator n̂(x) = ψ̂†(x)ψ̂(x). Taking exter-

nal potential asφext (x) = e r ·E(t) leads to one of the forms of dipole approximation
for photon-electron interaction:

Ĥ ext = e
∑

i j

〈i | r · E(t) | j 〉c†
i c j =

∫
d3x ψ̂†(x) er · E(t) ψ̂†(x)

= e
∫

d3x n̂(x) r · E(t). (2.21)

Next, we expand the many-body state vector |ΨS(t)〉 in terms of time ordered products
of external interaction T (Hext (t ′) . . . Hext (t

′...′))

|ΨS(t)〉 = e− i H t
� (1 − i

�

∫
dt ′ Hext (t ′)

− 1

2! �2

∫
dt ′ dt ′′ T (Hext (t ′)Hext (t ′′)) + . . .) |ΨS(0)〉 (2.22)

and use it to compute the density fluctuation δ〈n̂(x)〉:

δ 〈n̂(x)〉 = 〈ΨS(t)|n̂S(x)|ΨS(t)〉 − 〈ΨS(0)|n̂S(x)|ΨS(0)〉 = 〈n̂(x)〉 − 〈n̂(x)〉0.

(2.23)
We observe that the density fluctuation could be represented as a series with kth term
being a function of kth power of external potential φext :

δ〈n̂(x, t)〉 =
∑

k

δ〈n̂(k)(x, t; (φext )k)〉. (2.24)

The non-linear response starts with the second order contribution

δ〈n̂(2)(x)〉 = 1

2! �2

∫
d4x ′d4x ′′ φext (x ′)φext (x ′′)

× 〈ΨS(0)|[[n̂H (x
′), n̂H (x)], n̂H (x

′′)]|ΨS(0)〉. (2.25)

Introducing the second order density-density response function Ξ(2)



2.4 Quantum Field Theory Response Formalism 15

Ξ(2)(x; x ′, x ′′) = θ(t − t ′)θ(t ′ − t ′′) 〈ΨS(0)|[[n̂H (x ′), n̂H (x)], n̂H (x ′′)]|ΨS(0)〉
�2 〈ΨS(0)|ΨS(0)〉 ,

(2.26)
the second order density fluctuation could be written as

δ〈n̂(2)(x, ω)〉 = 1

4π

∫
Ξ(2)(ω;ω′, ω′′, x, x′, x′′)φext (ω′, x′)φext (ω′′, x′′)

× δ(ω − ω′ − ω′′)d3x ′d3x ′′dω′dω′′. (2.27)

For the finite systems, such as molecules, we can use the density fluctuation to directly
compute polarization P (in practice only a change in polarization ΔP(t) is relevant)

P =
∫

d3x x δ〈n̂(x)〉, (2.28)

which could also be written as a series analogous to (2.24) :

P(t) =
∑

k

P(k)(t, (E)k). (2.29)

The second term corresponds to the second order nonlinear optical response:

P(2)(t) =
∫

d3x x δ〈n̂(2)(x, t)〉 = 1

2!
∫
χ
(2)
i jk (t; t ′, t ′′)E j (t

′)Ek(t
′′)dt ′dt ′′, (2.30)

where χ(2)i jk is the first hyperpolarizability. Fourier transforming (2.30) yields

P(2)i (ω) = K

∫
χ
(2)
i jk (ω;ω′, ω′′)E j (ω

′)Ek(ω
′′)δ(ω − ω′ − ω′′)dω′dω′′, (2.31)

where K is factor from Table 5.2. Comparing (2.27) and (2.31) we see that optical
susceptibilities could be obtained directly from density-density response function:

χ(2)(ω;ω′, ω′′) =
∫
Ξ(2)(ω;ω′, ω′′, x, x′, x′′) x x′ x′′ d3xd3x ′d3x ′′.

The Eqs. (2.29) and (2.18) are both the expansions of the total polarization in the
external electric fields, and therefore the terms with the same power of electric field
must be equal. This should convince the reader that the hyperpolarizabilities obtained
via a classical expansion of the total polarization are in fact quantum mechanical
quantities. Their existence and properties are governed by the mechanisms of photon-
electron interaction that is specific for a system. Each kth term is related to k-
photon process, and the number of the terms is restricted by the energy conservation.
Therefore, the classical expansion (2.18) should be viewed as a finite polynomial
rather then series, and the question of its convergence is not relevant.

http://dx.doi.org/10.1007/978-3-319-08320-9_5
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|g

|g

|m

|m

ω2

ω1

−ω3 = −(ω1 +ω2)

− e3

h̄2 ∑m ∑m (
r i
gmr j

mm
r k
m g

(ωgm+ω1+iΓgm)(ωgm +ω3+iΓgm )
m

g

m’

Partial contribution to Second order process
Left - partial diagram; Center - SOS expression;

Right - energy diagram.

Fig. 2.1 A partial diagram for second order process: χ(2)(−ω3;ω1, ω2). |m〉 and |m′〉 are virtual
states

2.5 Diagrammatic Technique for Susceptibilities

In this section we present rules that facilitate drawing pictorial representation of
nth order of polarization expansions of type (2.31) and writing down corresponding
expressions for matrix elements χ(n)i j ...k . This diagrammatic technique is analogous to
construction of non-relativistic Feynman Diagrams [6, 7]. The resulting expressions
for χ(n) are essentially the same as those one would obtain from matrix elements of
electric dipole operator using wavefunctions calculated to nth order of perturbation
theory. For nth order process

1. Draw a (vertical) line. On the line draw n + 1 vertices.
2. This will partition line into n + 2 segments. Label first and the last segments

with initial |g〉 and final states |g′〉. Label remaining segments with intermediate
(generally virtual) states: |m〉, |m′〉, . . ..

3. Each vertex corresponds to a matrix element of external potential, that in case of
electric dipole interaction becomes 〈m′|e r j |m〉 = e r j

m′m . Here r j is j th Cartesian
component of position operator r̂ . Distribute components over vertices.

4. Draw a (horizontal) arrow in/out of each vertex. Label arrows pointing to vertex
with +ω. This corresponds to absorption of photon with energy �ω. Label arrows
pointing out of vertex with −ω′. This corresponds to emission of photon with
energy �ω′.
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5. For each intermediate state |m〉 write down propagator 1
Δmg−iΓmg

where Δmg is

energy of state |m〉: Δmg = Em − Eg + �
∑

i ±ωi , and Γmg is line width of
|m〉 → |g〉 transition

6. Write down expression corresponding to the diagram by summing up over all
intermediate states m products of n + 1 vertices with n propagators.

7. Repeat the steps above for all permutations of frequencies ωi , sum up resulting
expressions.

For example, for a second order process that starts at ground state, then absorbs
two photons with energies �ω1 and �ω2 , then emits a photon with energy �ω3 =
�(ω1 +ω2) and ends at ground state one gets diagram (Fig. 2.1) with corresponding
expression:

−e3

�2

∑
mm′

r i
gmr j

mm′rk
m′g

(ωgm + ω1 + iΓgm)(ωgm′ + ω3 + iΓgm′)
. (2.32)

Diagrams resulting in permutation of ω1,ω2 and ω3 are shown on diagram
(Fig. 2.2), and the summed expression is

χ
(2)
i jk (−ω3;ω1, ω2) = − e3

�2

∑
m

∑
m′
(

r i
gmr j

mm′rk
m′g

(ωgm + ω1 + iΓgm)(ωgm′ + ω3 + iΓgm′)

+ r j
gmrk

mm′r i
m′g

(ωgm + ω1 + iΓgm)(ωgm′ − ω2 + iΓgm′)

+ rk
gmr j

mm′r i
m′g

(ωgm − ω3 + iΓgm)(ωgm′ − ω2 + iΓgm′)

+ r j
gmr i

mm′rk
m′g

(ωgm + ω2 + iΓgm)(ωgm′ + ω3 + iΓgm′)

+ r i
gmrk

mm′r
j

m′g
(ωgm + ω2 + iΓgm)(ωgm′ − ω1 + iΓgm′)

+ rk
gmr i

mm′r
j

m′g
(ωgm − ω3 + iΓgm)(ωgm′ + ω1 + iΓgm′)

). (2.33)

Diagrams with corresponding expressions are a useful tool in analysis of vari-
ous nonlinear processes. However, the expressions obtained are virtually useless for
calculations of susceptibilities of real materials. The reason is that it requires sum-
mation over an infinite number of states m,m′, . . .. These obviously include excited
states, which are difficult to obtain for any systems except very few simple atoms
and molecules. Actual application of this technique is known as Sum Over States
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Fig. 2.2 Non-equivalent diagrams for second order process: χ(2)(−ω3;ω1, ω2)

approach, and involves additional approximations. A typical approximation is a trun-
cation of infinite summation to just a few states, sometimes as little as two or three.
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