
Chapter 2
Supply Chain Management

Abstract Supply chain management deals with decisions on new facility loca-
tions, quantities to manufacture, modes of transporting the manufactured goods,
and information systems to use. Material and manufacturing requirements plan-
ning are conducted in a hierarchical manner. In other words, bill of materials and
master production schedule is constructed and then manufacturing orders are
released to satisfy the varying demands of the periods that are thought to be
deterministic. This chapter presents some of the important topics in supply chain
management.
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The term supply chain management (SCM) is attributed to Proctor and Gamble
(P&G). P&G used the term for tracking the flow of Pampers diapers through the
distribution channel [3]. As mentioned in the Chap. 1, supply chain management
deals with integration and coordination of location of facilities, production,
inventory control, and transportation of materials and products. This chapter deals
with key supply chain management decisions and planning throughout the supply
chain.

2.1 Key Supply Chain Decisions

Location of plants, warehouses, distribution centers (DCs), manufacturing quan-
tities, order dates, inventory policies, and transportation related decisions are very
important for supply chain success. Information system employed for the supply
chain is also a key in successful implementations. These decision problems need to
be elaborated in detail.

Manufacturers face the problem of shortage in production capacity as the
demand for an item increases. The cost of outsourcing might be more than the cost
of opening a new facility or increasing the capacity of the current one by extra
labor, equipment etc. in the long run that makes opening a new facility, increasing
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the capacity of the manufacturing plant more reasonable compared to outsourcing.
Installing new machines, employment of new workers, facilitating new equipment,
transportation vehicles might be necessary. Even opening a distinct plant might be
compulsory. Decision on the location of the new plant based on the outbound
transportation costs, operational costs within the new plant will be considered as
well then. Some of the optimization problems and solutions to these problems that
will lead to management decisions are reviewed in Sect. 4.2.

Location decision is a strategic one. On the other hand, manufacturers need to
decide on the production quantity at operational level. Before operations level
planning, aggregate planning should be achieved. Aggregate planning spans yearly
plans of productions. These plans are decomposed into shorter term productions
plans. Production quantity decision is complex since it comprises demand fore-
casts, actual demands, judgments of people from marketing, production and other
departments. Capacity of the plant regarding work staff level, machine level, etc. is
also a constraint for production quantity decisions. Material requirement planning
(MRP) is used to decide on the production levels of end items and sub-assemblies.
If the demand is known (or forecasted) and variable in each period, MRP may be
employed as a top-down approach. Production planning under probabilistic sta-
tionary demand is discussed in Sect. 2.2. MRP works as a push system since it
relies on forecast of the end items and production quantities push the production of
sub-assemblies. MRP structure and its relation to manufacturing planning is shown
in Fig. 2.1. MRP has bill of materials and master production schedule components.
If capacity constraints are considered then it becomes a more global planning tool
called manufacturing resource planning (MRP II) that is included in enterprise
resource planning (ERP).

For example, a toy laptop consists of an assembly of a screen and lower part
assembly. Lower-part assembly consists of a board on which chips are installed
and a keyboard. A tree that shows the dependency between these parts is called bill
of materials (BOM). BOM may be represented as a list or tree as shown in
Fig. 2.2.

Lead times (LT) are given in weeks. Based on the lead times, a toy laptop is
produced in 4 weeks. Table 2.1 shows the weekly demands for the next 6 weeks
starting from the fifth.

MRPII
MRP

MPS

BOM

Fig. 2.1 Hierarchical
relationship from BOM to
MRPII
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The company might receive returns throughout 6 weeks. Let’s assume sched-
uled receipts as given in Table 2.2.

The company updates the inventory according to scheduled receipts and it is
fair to assume that at the end of the last week the company policy requires an
inventory level of 10 laptops. Master production schedule is prepared netting the
demand by inventory information as shown in Table 2.3.

Now these plans are pushed to next levels down the bill of materials tree. The
MPS will be translated as gross requirement for lower part assembly, and screen.
There is no multiplicative factor since one laptop requires one from each sub-part
(screen, lower part assembly). Also, assuming that there will be no scheduled
receipt and on hand inventory for the sub-parts, we can MRP calculations for both
screen and lower part assembly as seen in Table 2.4.

List representation of BOM
1 Laptop

1 Screen (LT=1week)
1 Lower part assembly (lpa) (LT = 1

week)
1 Keyboard (keyb.) (LT = 2weeks)
1 Board (LT = 1week)

4 Chips (LT = 2weeks)

Tree representation of BOM

laptop

lpascreen

boardKeyb.

chips

Fig. 2.2 Bill of materials

Table 2.1 Weekly demands for toy laptop

Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

50 60 45 70 78 40

Table 2.2 Scheduled toy laptop returns

Week 5 Week 8 Week 9 Week 10

5 10 13 6

Table 2.3 Master production schedule for toy laptop

Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

45 60 45 60 65 44
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Here orders quantities are the same with the lead time shifted requirements.
That is known as lot-for-lot ordering policy. Amount of order may differ based on
different ordering policies. Some of them are reviewed in Sect. 2.2.

Similar calculations are made for board and keyboard. MRP calculations are
shown in Tables 2.5 and 2.6.

Assuming that chips are similar to each other, one board requires four chips. So
ordering boards starting from third week pushes chip orders 2 weeks before with
the quantity of four times the amount of boards. Table 2.7 shows the MRP
calculations.

Here, demands are assumed to be deterministic. In reality, manufacturers resort
to safety stocks because of the uncertainty in demands. If we approximate the
cumulative distribution value for meeting the demand, i.e. normally distributed, we
can add safety stock to our demands to be used as new gross requirements. For
example, if we want to meet the demand (normally distributed) for toy laptop each
week with a probability of 95 %. Then average demand + standard deviation
times 1.65 (standard normal variate value) will give the new gross requirements.

Lead times might not be deterministic as well. They also can be adjusted, for
example by a multiplicative factor to include variability.

Capacity of the plant may be a constraint to produce the orders from MRP.
Capacity planning shifts MRP to MRP II (manufacturing resource planning)

Table 2.4 MRP calculation for screen and lower part assembly

Week 4 5 6 7 8 9 10

Gross requirements 45 60 45 60 65 44
Net requirements 45 60 45 60 65 44
Shifted requirements 45 60 45 60 65 44
Orders 45 60 45 60 65 44

Table 2.5 MRP calculations for board

Week 2 3 4 5 6 7 8 9 10

Gross requirements 45 60 45 60 65 44
Net requirements 45 60 45 60 65 44
Shifted requirements 45 60 45 60 65 44
Orders 45 60 45 60 65 44

Table 2.6 MRP calculations for keyboard

Week 2 3 4 5 6 7 8 9 10

Gross requirements 45 60 45 60 65 44
Net requirements 45 60 45 60 65 44
Shifted requirements 45 60 45 60 65 44
Orders 45 60 45 60 65 44
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paradigm that incorporates different departments of the company for production
planning. Capacity planning problem will be reviewed in Sect. 2.3.

MRP serves as a tool to make production quantity decision. However, MRP
assumes deterministic demands subject to changes in different periods. MRP is a
push system. The example above assumes a static MRP that has a fixed planning
horizon, 6 weeks. In reality an MRP needs to be run each period to manipulate
productions decisions. Rolling horizon approach implements only the first-period
decision of N-period problem [3]. When using rolling horizon approach, number of
periods should be long enough to make the first-period decision constant.

2.2 Ordering Policies

In this chapter, MRP calculations resulted in number of orders and we determined
the number based on a lot-for-lot policy. Order lot size is equal to the lead time
shifted requirements. However, this lot sizing policy is not necessarily optimal.
There are other order size policies and also there is an optimal policy.

The simplest model to start is for the uncapacitated single item lot sizing
problem (USILSP). A natural mixed integer formulation of the problem is given as
follows [1]:

min
XT

t¼1

stYt þ ctXt þ htItð Þ

subject to

It�1 þ Xt � Dt ¼ It; 8t

Xt� YtDtT ; 8t

Yt 2 0; 1f g; 8t

Xt; It� 0; 8t

st is the set-up cost in period t (t = 1,…,T). ct is unit production cost in period t. ht

is inventory holding cost in period t. Xt is the production quantity in period t. It is

Table 2.7 MRP calculations for chip

Week 1 2 3 4 5 6 7 8 9 10

Gross requirements 180 240 180 240 260 176
Net requirements 180 240 180 240 260 176
Shifted requirements 180 240 180 240 260 176
Orders 180 240 180 240 260 176
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the inventory at the end of period t. DtT ¼ Dt þ Dtþ1 þ � � � þ DT . Here, beginning
and ending inventory levels are zero.

The objective function of the model minimizes the total cost that includes set-
up cost at each production run, production cost, and inventory cost over T periods.
First set of constraints imply that the inventory level at the end of period t is equal
to the sum of inventory level of the previous period and production amount in
period t minus the demand in the same period.

The model can be extended to include multiple facilities introducing Wjkt

transfer variables defined as quantity transferred from facility j to facility k in
period t. The new objective function includes transfer cost and inventory con-
straints include transferred products:

min
XF

j

XT

t¼1

sjtYjt þ cjtXjt þ hjtIjt þ
X

k 6¼j

rjktWjkt

 ! !

subject to

Ijt�1 þ Xjt þ
X

l6¼j

Wljt � Djt ¼ Ijt þ
X

k 6¼j

Wjkt; 8j; t

Xjt � Yjt

XF

j¼1

XT

i¼t

Dji; 8j; t

Yjt 2 0; 1f g; 8j; t

Xjt; Ijt;Wjkt � 0; 8j; k 6¼ j; t

Capacity constraints can be added to both of the models introduced above.
Since integer programming models are hard to solve, it might be efficient to use

heuristics to find a reasonable—not optimal solution to a lot sizing problem. Here
are some of the widely used ones:

1. Silver-Meal heuristic
2. Least unit cost heuristic
3. Part period heuristic

Silver-Meal is a myopic heuristic that works based on average cost per period. The
cost function of the heuristic spans future periods as long as the value of it increases.
C(t, t + n) is the cost in period t to cover periods from t to t + n, n + 1 periods. Dt is
the demand in period t, then the cost spanning n + 1 periods is found by:

C t; t þ nð Þ ¼ Sþ h
Xn

i¼0

iDtþi

The first period cost C(1, 1) is only the set-up (or order) cost S. The average cost
spanning two periods is:
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C 1; 2ð Þ
2
¼ Sþ h

P1
i¼0 iDtþi

2
¼ Sþ hD2

2
:

The average cost spanning three periods is:

C 1; 3ð Þ
3
¼ Sþ hD2 þ 2hD3

3
:

As we generalize it:

C 1; nþ 1ð Þ
nþ 1

¼ Sþ hD2 þ 2hD3 þ � � � þ nhDnþ1

nþ 1
:

The stopping criteria for the heuristic is

C t; t þ nð Þ
nþ 1

[
C t; t þ n� 1ð Þ

n
:

Once the heuristic stops, the lot size for period t is set as Dt þ Dtþ1 þ � � � þ Dtþn�1

and the heuristic starts over at period n + 1.
If we return to our toy laptop example in this chapter, shifted requirements for

laptop screen were 45, 60, 45, 60, 65 and 44. Let’s assume an $400 order cost for
screens and holding cost of $5. Then we can work out Silver-Meal heuristic.

C 1; 1ð Þ ¼ 400;
C 1; 2ð Þ

2
¼ 400þ 5� 60

2
¼ 350;

C 1; 3ð Þ
3
¼ 400þ 5� 60þ 2� 5� 45

3
¼ 383:33

We set the lot size for period one as 45 + 60 = 105 and start over from third
period.

C 3; 3ð Þ ¼ 400;
C 3; 4ð Þ

2
¼ 400þ 5� 60

2
¼ 350;

C 3; 5ð Þ
3
¼ 400þ 5� 60þ 2� 5� 65

3
¼ 450

We set the lot size for period three as 45 + 60 = 105 and start over from fifth
period.

C 5; 5ð Þ ¼ 400;
C 5; 6ð Þ

2
¼ 400þ 5� 44

2
¼ 310

Since all periods are over we set the lot size for period five as 65 + 44 = 109.
We can make cost comparison between lot-for-lot policy and Silver-Meal policy.

Lot-for-lot policy will have only order costs of 6 9 400 = $2,400. Silver-Meal will
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have order costs of 3 9 400 = $1,200 and holding costs of 300 +
300 + 220 = $820. Total cost is $2,020. So, Silver-Meal saves around 16 % here.

Least unit cost heuristic can be viewed as a modified version of Silver-Meal
heuristic. Modification is made on the cost function. The cost function is divided
by the total demand, instead of number of periods.

We can write unit cost expressions for the first period spanning one period as:

C 1; 1ð Þ
D1

¼ S

D1
:

The unit cost expression spanning two periods starting from the first one is

C 1; 2ð Þ
D1 þ D2

¼ Sþ hD2

D1 þ D2
:

The unit cost expression spanning three periods starting from the first one is

C 1; 3ð Þ
D1 þ D2 þ D3

¼ Sþ hD2 þ 2hD3

D1 þ D2 þ D3
:

General unit cost expression spanning n + 1 periods starting from the first one is

C 1; nþ 1ð Þ
D1 þ � � � þ Dnþ1

¼ Sþ hD2 þ 2hD3 þ � � � þ nhDnþ1

D1 þ � � � þ Dnþ1
:

Stopping criteria for the heuristic is:

C t; t þ nð Þ
Dt þ � � � þ Dnþ1

[
C t; t þ n� 1ð Þ
Dt þ � � � þ Dn

:

The lot size for period t is set as Dt þ Dtþ1 þ � � � þ Dtþn�1 and the heuristic starts
over at period n + 1.

We can apply the unit cost heuristic to the same example:

C 1; 1ð Þ
D1

¼ 400
45
¼ 8:88;

C 1; 2ð Þ
D1 þ D2

¼ 400þ 5� 60
105

¼ 6:66;

C 1; 3ð Þ
D1 þ D2 þ D3

¼ 400þ 5� 60þ 2� 5� 45
150

¼ 7:66:

Stopping criteria is met. Lot size for the first period to span two periods is
45 + 60 = 105. We start over from the third period:

C 3; 3ð Þ
D3

¼ 400
45
¼ 8:88;

C 3; 4ð Þ
D3 þ D4

¼ 400þ 5� 60
105

¼ 6:66;

C 3; 5ð Þ
D3 þ D4 þ D5

¼ 400þ 5� 60þ 2� 5� 65
170

¼ 7:94:
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The lot size for the third period to span two periods is 45 + 60 = 105. Starting
over from fifth period:

C 5; 5ð Þ
D5

¼ 400
65
¼ 6:15;

C 5; 6ð Þ
D5 þ D6

¼ 400þ 5� 44
109

¼ 5:69:

The unit cost heuristic stops since the number of periods is reached. The lot size
for the fifth period to span two periods is 65 + 44 = 109. The lot sizes are the
same with Silver-Meal results. However, it is most likely that two heuristics will
result in different lot sizes solving bigger real world problems. Heuristics are not
guaranteed to find optimal solutions. Also, it is hard to judge which heuristic is
better for all scenarios.

Part period heuristic aims to balance set-up cost and inventory holding cost.
Assuming the inventory holding cost I(t, t + n) associated with carrying inventory
for n periods. If the inventory holding cost is greater than the set-up cost, then it is
reasonable to place a new order at the period t + n.

Using the data for the toy laptop example, the first period will not have any
inventory holding cost, I(1, 1) = 0. The holding cost for carrying from first to second
period I(1, 2) will be 5 9 60 = 300 that is less than the set-up cost. The holding cost
carrying till third period I(1, 3) will be 5 9 60 + 2 9 5 9 45 = 750 that is more
than the set-up cost, 400. So, we set the lot size for the first period 45 + 60 = 105,
and place a new order for the third period. Holding cost for the third period I(3, 3)
will be zero. I(3, 4) = 5 9 60 = 300 that is less than the set-up cost. I(3,
5) = 5 9 60 + 2 9 5 9 65 = 950 that is more than the set-up cost. The lot size for
the third period to cover two periods is 45 + 60 = 105. We place a new order for the
fifth period and the lot size is calculates as follows: I(5, 5) = 0, I(5,
6) = 5 9 44 = 220 that is less than the set-up cost. The heuristic stops since the
number of periods is reached. The lot size for the fifth period is 65 + 44 = 109.

For this problem three of the heuristics gave the same result associated with a
total cost value of $2,020.

Besides IP models and heuristic methods, dynamic programming approaches
are used for lot sizing as well. Dynamic programming breaks the problem into
overlapping sub-problems, solves each sub-problem optimally and uses these
solutions for finding the optimal solution to the original problem. Here, finding the
optimal lot sizes can be represented as a directed acyclic network. Then, the
shortest path on the acyclic network gives the optimal solution, lot sizing policy.
Dynamic programming can be employed to find the shortest path on the directed
acyclic network. Nodes of the network represent the periods. An extra node is
added to represent the end of periods. Arc (i, j) represents that ordering happens at
period i and the lot size is Di + Di+1 + _ + Dj-1 and next ordering happens at
period j. The network for the toy laptop example is shown in Fig. 2.3.

For example, if the optimal lot sizing policy required ordering in the first, third,
and the fifth period that would mean path 1–3–5–7 (for toy laptop example, we
need seven nodes). Arc weights (cij) are the costs that include set-up and/or
inventory holding cost. Cij is defined as the cost of ordering in period i to cover
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demand through period j - 1. Let fi be the minimum cost starting at node i with
the order placed in period i. Then we define a recursion:

fi ¼ min cij þ fj

� �
; i\j; i ¼ 1; . . .; n

The minimum cost for the ending node is zero, fn+1 = 0.
Our example has six period, seven nodes, f7 = 0.
f6 ¼ min c6j þ fj

� �
¼ 400. Here j can only take the value seven.

f5 ¼ min c5j þ fj
� �

¼ min
c56 þ f6
c57 þ f7

� �
¼ min

400þ 400
620þ 0

� �
¼ 620; j ¼ 7

f4 ¼ min c4j þ fj

� �
¼ min

c45 þ f5

c46 þ f6

c47 þ f7

8
<

:

9
=

; ¼ min
400þ 620
725þ 400
1;165þ 0

8
<

:

9
=

; ¼ 1;020; j ¼ 5

f3 ¼ min c3j þ fj
� �

¼ min

c34 þ f4

c35 þ f5
c36 þ f6

c37 þ f7

8
><

>:

9
>=

>;
¼ min

400þ 1;020
700þ 620

1;350þ 400
2;010þ 0

8
><

>:

9
>=

>;
¼ 1;320; j ¼ 5

f2 ¼ min c2j þ fj
� �

¼ min

c23 þ f3

c24 þ f4
c25 þ f5

c26 þ f6

c27 þ f7

8
>>><

>>>:

9
>>>=

>>>;
¼ min

400þ 1;320
625þ 1;020
1;090þ 620
2;065þ 400

2;945þ 0

8
>>><

>>>:

9
>>>=

>>>;
¼ 1;635; j ¼ 4

f1 ¼ min c1j þ fj

� �
¼ min

c12 þ f2

c13 þ f3
c14 þ f4

c15 þ f5
c16 þ f6

c17 þ f7

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

¼ min

400þ 1;635
700þ 1;320

1;150þ 1;020
2;050þ 620
3;350þ 400

4;450þ 0

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

¼ 2;020;

j ¼ 3

41 2 3 5 6 7

Fig. 2.3 Directed acyclic network for the toy laptop example
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To obtain lot sizes, we backtrack the solution. Last solution informs that j = 2, lot
size is equal to the first period’s demand, 45. Next order is in period two, where j
value is four. So, the lot size will cover demands for periods two and three that is
105. Next order is in period four, where j value is five. The lot size is equal to the
demand in period four, 60. The next order is in period five, where j value is seven.
The lot size will cover demands for periods five and six that is 109.

So the optimal solution is the path 1–3–5–7. Lot sizing policy is ordering 105 in
the first period, 105 in the third period and 109 in the fifth period. As seen in the
results before, heuristics also found the optimal solution for this example.

Till here, we assumed deterministic demands. However in real world scenarios,
it is highly likely that demand changes fitting a statistical distribution. Newsboy
model is a widely used approach. We can assume the demand D as a random
variable. A boy purchases Q newspapers to sell and based on the demand, he has
an underage cost cu (when demand is more than the number of newspapers, Q) or
overage cost co (when Q is greater than the demand). Then the optimal number of
newspapers to purchase is found by:

F Qð Þ ¼ cu

cu þ co

Here, F(Q) is the cumulative distribution function of demand at Q. That’s the
probability that the demand is less than Q.

Lot size re-order systems reviews the system continuously. The system has two
variables R and Q. When inventory level hits R, Q units are ordered. As we assume
a lead time L, demand during the lead time becomes the source of uncertainty. S is
the set-up cost, p is the penalty cost per unit for unsatisfied demand. Then the
following equations are solved back and forth iteratively [3]:

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D Sþ pnðRÞ½ �

h

r
;

1� F Rð Þ ¼ Qh
ph
:

F(R) is the cumulative distribution function of D. One approximation is setting Q
value to EOQ value and solving it for R. n(R) is the expected number of shortages
in a cycle:

E max D� R; 0ð Þð Þ ¼
Z1

R

ðx� RÞf ðxÞdx

(Q, R) values are found through continuous review policy. In periodic review
systems (s, S) policy is used. When the inventory on hand is less than or equal to s,
quantity up to S is ordered.
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2.3 Capacity Planning

Demands may not be able to be satisfied each period because of some capacity
restrictions. Even, lot size decisions may not be feasible because of the capacity
constraints. Considering toy laptop example, D (here, net requirements) = (45, 60,
45, 60, 65, 44) we can assume that production capacities for each period
Cap = (50, 50, 50, 50, 50, 50). The following constraints must be satisfied to
maintain feasibility.

Xj

i¼1

Capi�
Xj

i¼1

Di; j ¼ 1; . . .; 6

We can check if the problem is feasible.
First period constraint: 50� 45 is satisfied.
Second period constraint: 100� 105 is not satisfied. We don’t need to check

remaining constraints since the problem became infeasible. We cannot satisfy the
demands of the first two periods with our available resources for the first two
periods. However, all of the constraints were satisfied, then the next step would be
to find an initial feasible solution. For example, as we increase the capacities for
each period to 60, the problem becomes feasible. We can shift back demands to
find initial solution. Fifth period net requirements is more than our capacity, so five
units are shifted to third period. Then our new production/ordering schedule
becomes D0 = (45, 60, 50, 60, 60, 44). Now we can improve the initial solution.
There may be different approaches to improve the solution, we adopt one men-
tioned by Nahmias [3]. The idea is to shift production orders back as long as the
holding costs is less than the set-up costs starting from the last period. In our
example, we don’t have enough capacity in previous periods to shift 44 back.

Production decisions may change based on the structure of the demand
(deterministic vs. stochastic, stationary). Inventory review policies (periodic
review vs. continuous review) may affect the production decisions as well.

Inventory policy decisions is based on the costs associated with holding
inventory and set-up costs. Economic order quantity (EOQ) model is a simple
approximation for a quantity decision based on total production cost. The simplest
EOQ model assumes that demand rate is constant. Once the order of Q is given
(when the inventory level hits zero), the inventory level is updated to Q immedi-
ately. In other words, the model assumes lead time zero. Shortage is not allowed.
Each order has a fixed set-up cost of S, variable cost of c per unit, and a holding
cost h per unit per inventory holding time is charged. Usually holding cost is
expressed as a percentage of c. The objective is finding the Q level that will
minimize the average production cost per period (usually a year). Each ordering
cycle will have a cost of S + cQ. Assuming that cycle length is L, dividing the cost
expression by L will give the cost per unit time. Q units are used by demand rate D.
Hence, L = Q/D. The average inventory level per cycle is Q/2 since Q decreases
linearly. Then, we compute average annual (periodical in general) cost (AAC) as:
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AAC Qð Þ ¼ Sþ cQ

L
þ hQ

2
¼ Sþ cQ

Q=D
þ hQ

2
¼ SD

Q
þ Dcþ hQ

2

Last three terms include average periodical set-up cost, purchase cost, and
inventory cost. The cost function is convex function. Hence, the Q value based on
the first derivative of the expression will be the global optimum. In other words,
Q value that satisfies AAC(Q)0 = 0 is the optimal value denoted as Q* known as
EOQ. The EOQ formulation is:

Q� ¼
ffiffiffiffiffiffiffiffiffi
2SD

h

r

For example, if the weekly demand for laptop toy is 500 units and set-up cost to
initiate the order is $200, and a laptop has a variable cost of $5 per unit, assuming a
holding cost of 10 % of variable cost per period, we can find the optimal order
quantity:

Q� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 200 � 500

0:5

r
ffi 633

Here, set-up cost is relatively high compared to holding cost. It is reasonable to
order in high quantities once every 9 days (663/500 translated to days, assuming
7 days a week). Since set-up cost are usually high in batch or mass production, this
example also shows that to achieve just in time (JIT) production or eliminate
inventory set-up time reductions (assuming set-up costs are proportional to set-up
time) is a critical point. As JIT requires frequent orders of small batch sizes.

After decision of order or production quantities, transportation decisions should
be made. The company may have a contract with third party carriers or may use its
own trucks and transportation facilities to deliver products to customers. Espe-
cially, international firms need to consider modes of transportation, inbound and
outbound logistics costs. Road, railway, waterway, air, and pipelines are common
modes of transportation. Intermodal transportations are possible as well.

Road transportation is preferred inside a country. The main rule is to be able to
carry as long and as much as possible to minimize the transportation cost. Mon-
itoring this mode of transportation is easy. Perishable and non-perishable items
may be carried. Some disadvantages are: there may be delays due to traffic, some
regulations may be a restriction on driving routes, might be affected by weather
conditions and subject to accidents that will lead to severe damages on products.

Railway transportation has a capacity and cost advantage compared to road
transportation. Even, it is safer and more reliable. A disadvantage is that railways
are limited worldwide and rail freight destinations may be far away from customer.
Hence, delivery to customer needs to be handled after railway transportation.

Waterway is used to carry heavy and huge items. This mode of transportation is
slow and may be cheap compared to road and railway. Disadvantages are long lead
times, subject to bad weather influence, inter-country restrictions are available.
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Air transportation is the fastest and the most expensive mode of transportation.
Air transportation is due to flight schedule cancellations or changes and may have
restriction on items to deliver.

Pipeline transportation is used for transferring gas, petroleum products, and
sewage. The flow is slow, and investment cost is high. However, this mode is not
affected by weather conditions and flow goes on continuously. Pneumatic tubes are
used for example in hospitals to deliver documents, blood samples etc.

Chopra [2] gives the intercity weight (in millions of tons) and distance (in
billions of ton-miles) capacities, freight expenses (in billions of dollars) and rev-
enue (cents per ton-mile) in US shown in Table 2.8.

Of course transportation costs may affect facility location decisions. Review of
some optimization problems regarding transportation is in Sect. 4.1.

Remarks

• Key supply chain management decisions include selection of new facility
locations, manufacturing quantities, transportation, and information system
related decisions.

• MRP is a push system that deals which resource planning in a hierarchical
manner. Running MRP system relies of bill of materials and master production
schedule. Demands are viewed as deterministic, varying by period.

• Different lot sizing policies exist. Integer programming formulation for the
uncapacitated single item lot sizing problem gives the optimal solution.

• Heuristic approaches include Silver-Meal, unit cost, and part period heuristics.
• Lot sizing can be represented as a directed acyclic network. Dynamic pro-

gramming may be employed to find the shortest path of the network that is the
optimal lot sizing policy.

• Newsboy model is used in periodic review problems. It ignores set-up cost.
• (Q, R) policy requires continuous review. Once the inventory level hits R,

Q quantity is ordered. In periodic review (s, S) policy S–I is ordered if the
inventory on hand (I) is less than or equal to s.

• Economic order quantity (EOQ) model assumes a constant demand rate.
Shortage in fulfilling orders is not allowed.

• Different modes of transportation have benefits and disadvantages and they
have an effect on supply chain success.

Table 2.8 Comparison of transportation modes

Mode Intercity tonnage Intercity ton-miles Freight expense Revenue

Road 3,745 1,051 402 9.1TL, 26.1LTL
Railway 1,972 1,421 35 2.4
Waterway 1,005 473 25 0.7
Air 16 14 23 56.3
Pipeline 1,142 628 (oil) 9 1.4
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