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1 Introduction

A better understanding of convection is crucial for reducing the intrinsic errors
present in climate models [4]. Many atmospheric processes related to precipitation
have large scale correlations in time and space, which are the result of the
coupling between several non-linear mechanisms with different temporal and spatial
characteristic scales. Despite the diversity of individual rain events, a recent array
of statistical measures presents surprising statistical regularities giving support
to the hypothesis that atmospheric convection and precipitation may be a real-
world example of Self-Organised Criticality (SOC) [2, 16]. The usual approach
consists of looking at the occurrence of rain by days or months. For “episodic”
rain events, similar to avalanches in cellular-automaton models, scale-free rain event
distributions are found [13]. However, a power-law distribution (i.e., scale-free)
of the observable is not sufficient evidence for SOC dynamics, as there are many
alternative mechanisms that give rise to such behaviour (see for example [7, 11]).

Further support for the SOC hypothesis was given by Peters and Neelin [14],
who found a relation between satellite estimates of rain rate and water vapour
over the tropical oceans compatible with a phase transition, in which large parts
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of the troposphere would be in a convectively active phase. In addition, it was
shown that the system was close to the transition point. They also related it
to the concept of atmospheric quasi-equilibrium [1], which argues that, since
driven processes are generally slow compared to convection, the system should
typically be in a far-from equilibrium statistically stationary state, where driving
and dissipation are in balance. In addition, recent works have shown that local event
size distributions present signs of universality in the system, as was expected in the
SOC framework [5, 6, 12]. The resulting rain event size distributions were found to
be well approximated by power laws of similar exponents over broad ranges, with
differences in the large-scale cutoffs of the distributions. The possible consequences
of this framework for the prediction of atmospheric phenomena still remain unclear.

2 Data and Methods

In this contribution we use very high-resolution (1 min) local rain intensities across
different climates described in [12], stochastic convective models [15] and SOC
models such as the BTW model and the Manna model, for investigating how
predictable the time series of rain activity and rain event sizes are [2, 10].

We use the hazard function Hq as a decision variable, which is sensitive to
clustering or repulsion between events in the time series. The conventional precursor
pattern technique requires a large amount of data, does not capture long memory and
has been found to perform worse than the hazard function in similar analysis [3].
The function Hq is defined as the probability that a threshold-crossing event will
occur in the next �t , conditional on no previous event within the past tw, i.e.,

Hq.twI�t/ D
R twC�t

tw
Pq.�/ d�

R1
tw

Pq.�/ d�
; (1)

where q corresponds to the different thresholds on sizes and �t is set to 1 min for
the rain data and one parallel update for the SOC models. The various quantities are
illustrated in Fig. 1.

Note that the hazard function gives us a probabilistic forecast and in order
to perform a deterministic prediction we will need to consider a discrimination
threshold.

Fig. 1 Sketch of the hazard
function variables
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We also evaluate the quality of the prediction with the receiver operating
characteristics method (ROC) [8]. For any binary prediction (occurrence or non-
occurrence of an event) four possible outcomes can occur: true positive (TP), false
positive (FP), true negative (TN) and false negative (FN); see Fig. 2.

ROC curves compare sensitivity and specificity. The sensitivity is defined as
the number of correctly predicted occurrences divided by the total number of
actual occurrences, and the specificity as the number of correctly predicted non-
occurrences divided by the total number of actual non-occurrences:

sensitivity D TP

TP C FN
; specificity D TN

FP C TN
: (2)

Each threshold on the decision variable will give a different point on the ROC
curve. If we consider the minimum possible threshold we will always predict the
occurrence of an event, for which the sensitivity is one and the specificity zero.
The diagonal in Fig. 3 corresponds to random prediction. Points above the diagonal
represent good predictions (better than random) and points below poor predictions.

Fig. 2 Four possible outcomes of a binary prediction in a contingency table
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Fig. 3 Example of ROC curves data on the slow time scale for rainfall data (a) and for the 2D
BTW SOC model simulated data (b)
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3 Results

We find that on the events scale (slow time scale), rain data renormalise to a trivial
Poisson point process for large thresholds, while for small thresholds events cluster.
This is in contrast to the anti-clustering of high-threshold events in the 2D BTW
model as a result of finite-size effects and the building up of correlations, seen
previously by Garber et al. [9]; see Fig. 3a, b.

However, rain data has an unavoidable threshold on intensity due to the device
resolution that blurs the interpretation of the results on the event scale. At the level
of intensities (slow time scale), we find that prediction is insensitive to all but very
high thresholds.
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