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Abstract The concept of nonlinear self-adjointness of differential equations,
introduced by the author in 2010, is discussed in detail. All linear equations and
systems are nonlinearly self-adjoint. Moreover, the class of nonlinearly self-adjoint
equations includes all nonlinear equations and systems having at least one local
conservation law. It follows, in particular, that the integrable systems possessing
infinite set of Lie-Bäcklund symmetries (higher-order tangent transformations) are
nonlinearly self-adjoint. An explicit formula for conserved vectors associated with
symmetries is provided for all nonlinearly self-adjoint differential equations and
systems. The number of equations contained in the systems under consideration can
be different from the number of dependent variables. A utilization of conservation
laws for constructing exact solutions is discussed and illustrated by computing non-
invariant solutions of the Chaplygin equations in gas dynamics.

1 Nonlinear Self-Adjointness

The concept of self-adjointness of nonlinear equations was introduced [1, 2] for
constructing conservation laws associated with symmetries of differential equations.
To extend the possibilities of the new method for constructing conservation laws the
notion of quasi self-adjointness was suggested in [3]. I introduce here the general
concept of nonlinear self-adjointness. It embraces the previous notions of self-adjoint

N. H. Ibragimov (B)

Laboratory “Group Analysis of Mathematical Models in Natural and Engineering Sciences”,
Ufa State Aviation Technical University, Ufa 450 000, Russia
e-mail: nailhib@gmail.com

N. H. Ibragimov
Research Centre ALGA: Advances in Lie Group Analysis,
Department of Mathematics and Science, Blekinge Institute of Technology,
SE-371 79 Karlskrona, Sweden

J.-F. Ganghoffer and I. Mladenov (eds.), Similarity and Symmetry Methods, Lecture Notes 61
in Applied and Computational Mechanics 73, DOI: 10.1007/978-3-319-08296-7_2,
© Springer International Publishing Switzerland 2014



62 N. H. Ibragimov

and quasi self-adjoint equations and includes the linear self-adjointness as a particular
case. But the set of nonlinearly self-adjoint equations is essentially wider and con-
tains, in particular, all linear equations and nonlinear equations and systems having
at least one local conservation law, including the so-called integrable systems. The
construction of conservation laws demonstrates a practical significance of the nonlin-
ear self-adjointness. Namely, conservation laws can be associated with symmetries
for all nonlinearly self-adjoint differential equations and systems.

1.1 Preliminaries

1.1.1 Notation

We will use the following notation. The independent variables are denoted by

x = (x1, . . . , xn).

The dependent variables are
u = (u1, . . . , um).

They are used together with their first-order partial derivatives u(1)

u(1) = {uα
i }, uα

i = Di (u
α)

and higher-order derivatives u(2), . . . , u(s), . . . , where

u(2) = {uα
i j }, uα

i j = Di D j (u
α), . . .

u(s) = {uα
i1···is

}, uα
i1···is

= Di1 · · · Dis (u
α).

Here Di is the total differentiation with respect to xi

Di = ∂

∂xi
+ uα

i
∂

∂uα
+ uα

i j
∂

∂uα
j

+ · · · . (1)

A locally analytic function f (x, u, u(1), . . . , u(k)) of any finite number of the
variables x, u, u(1), u(2), . . . is called a differential function. The set of all differential
functions is denoted by A. For more details see [4, Chap. 8].



Construction of Conservation Laws Using Symmetries 63

1.1.2 Linear Self-Adjointness

Recall that the adjoint operator F∗ to a linear operator F in a Hilbert space H with
a scalar product (u, v) is defined by

(Fu, v) = (u, F∗v), u, v ∈ H. (2)

Let us consider, for the sake of simplicity, the case of one dependent variable u
and denote by H the Hilbert space of real valued functions u(x) such that u2(x) is
integrable. The scalar product is given by

(u, v) =
∫

IRn

u(x)v(x)dx .

Let F be a linear differential operator in H. Its action on the dependent variable
u is denoted by F[u]. The Definition (2) of the adjoint operator F∗ to F

(F[u], v) = (u, F∗[v])

can be written, using the divergence theorem, in the simple form

vF[u] − uF∗[v] = Di (pi ) (3)

where v is a new dependent variable, and pi are any functions of x, u, v, u(1),

v(1), . . . It is manifest from Eq. (3) that the operators F and F∗ are mutually adjoint

(
F∗)∗ = F. (4)

In other words, the adjointness of linear operators is a symmetric relation.
The linear operator F is said to be self-adjoint if F∗ = F. In this case we say that

the equation F[u] = 0 is self-adjoint. Thus, the self-adjointness of a linear equation
F[u] = 0 can be expressed by the equation

F∗[v]
∣∣∣
v=u

= F[u]. (5)

1.1.3 Adjoint Equations to Nonlinear Differential Equations

Let us consider a system of m differential equations (linear or nonlinear)

Fα

(
x, u, u(1), . . . , u(s)

) = 0, α = 1, . . . , m (6)
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with m dependent variables u = (u1, . . . , um). Equation (6) involve the partial
derivatives u(1), . . . , u(s) up to order s.

Definition 1 The adjoint equation to equation (6) are given by

F∗
α

(
x, u, v, u(1), v(1), . . . , u(s), v(s)

) = 0, α = 1, . . . , m (7)

with

F∗
α

(
x, u, v, u(1), v(1), . . . , u(s), v(s)

) = δL
δuα

(8)

where L is the formal Lagrangian for Eq. (6) defined by 1

L = vβ Fβ ≡
m∑

β=1

vβ Fβ . (9)

Here v = (v1, . . . , vm) are new dependent variables, v(1), . . . , v(s) are their deriv-
atives, e.g., v(1) = {vα

i }, vα
i = Di (v

α). We use δ/δuα for the Euler-Lagrange
operator

δ

δuα
= ∂

∂uα
+

∞∑
s=1

(−1)s Di1 · · · Dis

∂

∂uα
i1···is

, α = 1, . . . , m

so that

δ(vβ Fβ)

δuα
= ∂(vβ Fβ)

∂uα
− Di

(
∂(vβ Fβ)

∂uα
i

)
+ Di Dk

(
∂(vβ Fβ)

∂uα
ik

)
− · · · .

The total differentiation (1) is extended to the new dependent variables

Di = ∂

∂xi
+ uα

i
∂

∂uα
+ vα

i
∂

∂vα
+ uα

i j
∂

∂uα
j

+ vα
i j

∂

∂vα
j

+ · · · . (10)

The adjointness of nonlinear equations is not a symmetric relation. In other words,
nonlinear equations, unlike the linear ones, do not obey the condition (4) of mutual
adjointness. Instead, the following equation holds

(
F∗)∗ = F̂ (11)

where F̂ is the linear approximation to F defined as follows. We use the temporary
notation F[u] for the left-hand side of Eq. (6) and consider F[u + w] by letting
w � 1. Then neglecting the nonlinear terms in w we define F̂ by the equation

1 See [2]. An approach in terms of variational principles is developed in [5].
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F[u + w] ≈ F[u] + F̂[w]. (12)

For linear equations we have F̂ = F, and hence Eq. (11) is identical with Eq. (4).
Let us illustrate Eq. (11) by the equation

F ≡ uxy − sin u = 0. (13)

Equation (8) yields

F∗ ≡ δ

δu
[v(uxy − sin u)] = vxy − v cos u (14)

and (
F∗)∗ ≡ δ

δv
[w(vxy − v cos u)] = wxy − w cos u. (15)

Let us find F̂ by using Eq. (12). Since sinw ≈ w, cosw ≈ 1 when w � 1, we have

F[u + w] ≡ (u + w)xy − sin(u + w)

= uxy + wxy − sin u cosw − sinw cos u

≈ uxy − sin u + wxy − w cos u

= F[u] + wxy − w cos u.

Hence, by (12) and(15), we have

F̂[w] = wxy − w cos u = (
F∗)∗ (16)

in accordance with Eq. (11).

1.1.4 The Case of One Dependent Variable

Let us consider the differential equation

F
(
x, u, u(1), . . . , u(s)

) = 0 (17)

with one dependent variable u and any number of independent variables. In this case
Definition 1 of the adjoint equation is written

F∗(x, u, v, u(1), v(1), . . . , u(s), v(s)
) = 0 (18)

where

F∗(x, u, v, u(1), v(1), . . . , u(s), v(s)
) = δ(vF)

δu
· (19)
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1.1.5 Construction of Adjoint Equations to Linear Equations

The following statement has been formulated in [1, 2].

Proposition 1 In the case of linear differential equations and systems, the adjoint
equations determined by Eq. (8) and by Eq. (3) coincide.

Proof The proof is based on the statement (see Proposition 8 in Sect. 2.1.2) that a
function Q(u, v) is a divergence, i.e., Q = Di (hi ), if and only if

δQ

δuα
= 0,

δQ

δvα
= 0, α = 1, . . . , m. (20)

Let the adjoint operator F∗ be constructed according to Eq. (3). Let us consider the
case of many dependent variables and write Eq. (3) as follows

vβ Fβ[u] = uβ F∗
β [v] + Di (pi ). (21)

Applying to (21) the variational differentiations and using Eq. (20) we obtain

δ(vβ Fβ[u])
δuα

= δβ
α F∗

β [v] ≡ F∗
α[v].

Hence, (8) coincides with F∗
α[v] given by (3).

Conversely, let F∗[v] be given by (8), i.e.,

F∗
β [v] = δ(vγ Fγ[u])

δuβ
·

Consider the expression Q defined by

Q = vβ Fβ[u] − uβ F∗
β [v] ≡ vβ Fβ[u] − uβ δ(vγ Fγ[u])

δuβ
·

Applying to the first expression for Q the variational differentiations δ/δuα weobtain

δQ

δuα
= δ(vβ Fβ[u])

δuα
− δβ

α F∗
β [v] ≡ F∗

α[v] − δβ
α F∗

β [v] = 0.

Applying δ/δvα to the second expression for Q we obtain

δQ

δvα
= δβ

α Fβ[u] − δ

δvα

[
uβ δ(vγ Fγ[u])

δuβ

]
≡ Fα[u] − δ

δvα

[
uβ δ(vγ Fγ[u])

δuβ

]
·
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The reckoning shows that

δ

δvα

[
uβ δ(vγ Fγ[u])

δuβ

]
= Fα[u]. (22)

Thus Q solves Eq. (20) and hence Eq. (21) is satisfied. This completes the proof.

Remark 1 Let us discuss the proof of Eq. (22) in the case of a second-order linear
operator for one dependent variable

F[u] = ai j (x)ui j + bi (x)ui + c(x)u.

Then we have

u
δ(vF[u])

δu
= u

[
cv − vDi (b

i ) + vDi D j (a
i j ) − bivi + 2vi D j (a

i j ) + ai jvi j

]
.

Whence, after simple calculations we obtain

δ

δv

[
u

δ(vF[u])
δu

]
=
[
cu + bi ui + ai j ui j

]

+
{

Di D j (a
i j u) − Di (a

i j u j ) − Di [u D j (a
i j )]
}

and, noting that the expression in the braces vanishes, arrive at Eq. (22).

Let us illustrate Proposition 1 by the following simple example.

Example 1 Consider the heat equation

F[u] ≡ ut − uxx = 0 (23)

and construct the adjoint operator to the linear operator

F = Dt − D2
x (24)

by using Eq. (3). Noting that due to

vut = Dt (uv) − uvt

vuxx = Dx (vux ) − vx ux = Dx (vux − uvx ) + uvxx

we have

vF[u] ≡ v(ut − uxx ) = u(−vt − vxx ) + Dt (uv) + Dx (uvx − vux ).

Hence
vF[u] − u(−vt − vxx ) = Dt (uv) + Dx (uvx − vux ).
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Therefore, denoting t = x1, x = x2,we obtain Eq. (3) with F∗[v] = −vt −vxx and
p1 = uv, p2 = uvx − vux . Thus, the adjoint operator to the linear operator (24) is

F∗ = −Dt − D2
x (25)

and the adjoint equation to the heat Eq. (23) is written −vt − vxx = 0, or

vt + vxx = 0. (26)

The derivation of the adjoint Eq. (26) and the adjoint operator (25) by the definition
(19) is much simpler. Indeed, we have

F∗ = δ(vut − vuxx )

δu
= −Dt (v) − D2

x (v) = −(vt + vxx ).

1.1.6 Self-Adjointness and Quasi Self-Adjointness

Recall that a linear differential operator F is called a self-adjoint operator if it is
identical with its adjoint operator, F = F∗. Then the equation F[u] = 0 is also
said to be self-adjoint. Thus, the self-adjointness of a linear differential equation
F[u] = 0 means that the adjoint equation F∗[v] = 0 coincides with F[u] = 0 upon
the substitution v = u. This property has been extended to nonlinear equations in
[2]. It will be called here the strict self-adjointness and defined as follows.

Definition 2 We say that the differential equation (17) is strictly self-adjoint if the
adjoint Eq. (18) becomes equivalent to the original Eq. (17) upon the substitution

v = u. (27)

It means that the equation

F∗(x, u, u, . . . , u(s), u(s)
) = λ F

(
x, u, . . . , u(s)

)
(28)

holds with a certain (in general, variable) coefficient λ.

Example 2 The Korteweg-de Vries (KdV) equation

ut = uxxx + uux

is strictly self-adjoint [1]. Indeed, its adjoint Eq. (18) has the form

vt = vxxx + uvx

and coincides with the KdV equation upon the substitution (27).
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In the case of linear equations the strict self-adjointness is identical with the usual
self-adjointness of linear equations.

Example 3 Consider the linear equation

utt + a(x)uxx + b(x)ux + c(x)u = 0. (29)

According to Eqs. (18) and (19), the adjoint equation to equation (29) is

δ

δu
{v[utt + a(x)uxx + b(x)ux + c(x)u]} ≡ D2

t (v) + D2
x (av) − Dx (bv) + cv = 0.

Upon substituting v = u and performing the differentiations it becomes

utt + auxx + (2a′ − b)ux + (a′′ − b′ + c)u = 0. (30)

According to Definition 2, Eq. (29) is strictly self-adjoint if Eq. (30) coincides with
Eq. (29). This is possible if

b(x) = a′(x). (31)

Definition 2 is too restrictive. Moreover, it is inconvenient in the case of systems
with several dependent variables u = (u1, . . . , um) because in this case Eq. (27) is
not uniquely determined as it is clear from the following example.

Example 4 Let us consider the system of two equations

u1
y + u2u2

x − u2
t = 0, u2

y − u1
x = 0 (32)

with two dependent variables, u = (u1, u2), and three independent variables t, x, y.

Using the formal Lagrangian (9)

L = v1(u1
y + u2u2

x − u2
t ) + v2(u2

y − u1
x )

and Eq. (8) we write the adjoint Eq. (7), changing their sign, in the form

v2y + u2v1x − v1t = 0, v1y − v2x = 0. (33)

If we use here the substitution (27), v = u with v = (v1, v2), i.e., let

v1 = u1, v2 = u2

then the adjoint system (33) becomes

u2
y + u2u1

x − u1
t = 0, u1

y − u2
x = 0
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which is not connected with the system (32) by the equivalence relation (28). But if
we set

v1 = u2, v2 = u1

the adjoint system (33) coincides with the original system (32).

The concept of quasi self-adjointness generalizes Definition 2 and is more con-
venient for dealing with systems (6). This concept was formulated in [3] as follows.
The system (6) is quasi self-adjoint if the adjoint system (7) becomes equivalent to
the original system (6) upon a substitution

v = ϕ(u) (34)

such that its derivative does not vanish in a certain domain of u

ϕ′(u) 	= 0, where ϕ′(u) =
∣∣∣
∣∣∣∂ϕα(u)

∂uβ

∣∣∣
∣∣∣. (35)

Remark 2 The substitution (34) defines a mapping

vα = ϕα(u), α = 1, . . . , m

from them-dimensional space of variables u = (u1, . . . , um) into them-dimensional
space of variables v = (v1, . . . , vm). It is assumed that this mapping is continuously
differentiable. The condition (35) guarantees that it is invertible, and hence Eqs. (7)
and (6) are equivalent. The equivalence means that the following equations hold with
certain coefficients λ

β
α

F∗
α

(
x, u,ϕ, . . . , u(s),ϕ(s)

) = λβ
α Fβ

(
x, u, . . . , u(s)

)
, α = 1, . . . , m (36)

where

ϕ = {ϕα(u)}, ϕ(σ) = {Di1 · · · Diσ

(
ϕα(u)

)}, σ = 1, . . . , s. (37)

It can be shown that the matrix ‖λβ
α‖ is invertible due to the condition (35).

Example 5 The quasi self-adjointness of nonlinear wave equations of the form

utt − uxx = f (t, x, u, ut , ux )

is investigated in [6]. The results of the paper [6] show that, e.g., the equation

utt − uxx + u2
t − u2

x = 0 (38)
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is quasi self-adjoint and that in this case the substitution (34) has the form

v = eu . (39)

Indeed, the adjoint equation to equation (38) is written

vt t − vxx − 2vutt − 2utvt + 2vuxx + 2uxvx = 0. (40)

After the substitution (39) the left-hand side of Eq. (40) takes the form(36)

vt t − vxx − 2vutt − 2utvt + 2vuxx + 2uxvx = −eu[utt − uxx + u2
t − u2

x ]. (41)

It is manifest from Eq. (41) that v given by (39) solves the adjoint Eq. (40) if one
replaces u by any solution of Eq. (38).

In constructing conservation laws one can relax the condition (35). Therefore I
generalize the previous definition of quasi self-adjointness as follows.

Definition 3 The system (6) is said to be quasi self-adjoint if the adjoint Eq. (7) are
satisfied for all solutions u of the original system (6) upon a substitution

vα = ϕα(u), α = 1, . . . , m (42)

such that

ϕ(u) 	= 0. (43)

In other words, the Eq. (36) hold after the substitution (42), where not all ϕα(u)

vanish simultaneously.

Remark 3 The condition (43), unlike (35), does not guarantee the equivalence of
Eqs. (7) and (6) because the matrix ‖λβ

α‖ may be singular.

Example 6 It iswell known that the linear heat Eq. (23) is not self-adjoint (not strictly
self-adjoint in the sense of Definition 2). It is clear from Eqs. (23) and (26). Let us
test Eq. (23) for quasi self-adjointness. Letting v = ϕ(u), we obtain

vt = ϕ′ut , vx = ϕ′ux , vxx = ϕ′uxx + ϕ′′u2
x

and the condition (36) is written

ϕ′(u)[ut + uxx ] + ϕ′′(u)u2
x = λ[ut − uxx ].

Whence, comparing the coefficients of ut in both sides, we obtain λ = ϕ′(u). Then
the above equation becomes
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ϕ′(u)[ut + uxx ] + ϕ′′(u)u2
x = ϕ′(u)[ut − uxx ].

This equation yields that ϕ′(u) = 0. Hence, Eq. (23) is quasi self-adjoint with the
substitution v = C, where C is any non-vanishing constant. This substitution does
not satisfy the condition (35).

Example 7 Let us consider the Fornberg-Whitham equation [7]

ut − utxx − uuxxx − 3ux uxx + uux + ux = 0. (44)

Equations (18) and (19) give the following adjoint equation

F∗ ≡ −vt + vt xx + uvxxx − uvx − vx = 0. (45)

It is manifest from the Eqs. (44) and (45) that the Fornberg-Whitham equation is
not strictly self-adjoint. Let us test it for quasi self-adjointness. Inserting in (45) the
substitution v = ϕ(u) and its derivatives

vt = ϕ′ut , vx = ϕ′ux , vxx = ϕ′uxx + ϕ′′u2
x , vt x = ϕ′utx + ϕ′′ut ux , . . .

then writing the condition (36) and comparing the coefficients for ut , utx , uxx , . . .

one can verify that ϕ′(u) = 0. Hence, Eq. (44) is quasi self-adjoint but does not
satisfy the condition (35).

1.2 Strict Self-Adjointness Via Multipliers

It is commonly known that numerous linear equations used in practice, e.g.,
linear evolution equations, are not self-adjoint in the classical meaning of the self-
adjointness. Likewise, useful nonlinear equations such as the nonlinear heat equation,
the Burgers equation, etc. are not strictly self-adjoint. We will see here that these and
many other equations can be rewritten in a strictly self-adjoint equivalent form by
usingmultipliers. The general discussion of this approachwill be given in Sect. 1.3.7.

1.2.1 Motivating Examples

Example 8 Let us consider the following second-order nonlinear equation

uxx + f (u)ux − ut = 0. (46)

Its adjoint Eq. (18) is written

vxx − f (u)vx + vt = 0. (47)
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It is manifest that the substitution v = u does not map Eq. (47) into Eq. (46). Hence
Eq. (46) is not strictly self-adjoint.

Let us clarify if Eq. (46) can be written in an equivalent form

μ(u)[uxx + f (u)ux − ut ] = 0 (48)

with a certain multiplier μ(u) 	= 0 so that Eq. (48) is strictly self-adjoint. The formal
Lagrangian for Eq. (48) is

L = vμ(u)[uxx + f (u)ux − ut ].

We have

δL
δu

= D2
x [μ(u)v] − Dx [μ(u) f (u)v] + Dt [μ(u)v]

+ μ′(u)v[uxx + f (u)ux − ut ] + μ(u) f ′(u)vux

whence, upon performing the differentiations

δL
δu

= μvxx + 2μ′vuxx + 2μ′uxvx + μ′′vu2
x − μ f vx + μvt .

The strict self-adjointness requires that

δL
δu

∣∣∣∣
v=u

= λ[uxx + f (u)ux − ut ].

This provides the following equation for the unknown multiplier μ(u)

(μ + 2uμ′)uxx + (2μ′ + uμ′′)u2
x − μ f ux + μut = λ[uxx + f (u)ux − ut ]. (49)

Since the right side of Eq. (49) does not contain u2
x we should have 2μ′ + uμ′′ = 0,

whence μ = C1u−1 + C2. Furthermore, comparing the coefficients of ut in both
sides of Eq. (49) we obtain λ = −μ. Now Eq. (49) takes the form

(C2 − C1u−1)uxx − (C1u−1 + C2) f ux = −(C1u−1 + C2)[uxx + f (u)ux ]

and yields C2 = 0. Thus, μ = C1u−1. We can let C1 = −1 and formulate the result.

Proposition 2 Equation (46) becomes strictly self-adjoint if we rewrite it in the form

1

u
[ut − uxx − f (u)ux ] = 0. (50)
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Example 9 One can verify that the n-th order nonlinear evolution equation

∂u

∂t
− f (u)

∂nu

∂xn
= 0, f (u) 	= 0 (51)

with one spatial variable x is not strictly self-adjoint. The following statement shows
that it becomes strictly self-adjoint after using an appropriate multiplier.

Proposition 3 Equation (51) becomes strictly self-adjoint upon rewriting it in the
following equivalent form

1

u f (u)

[
∂u

∂t
− f (u)

∂nu

∂xn

]
= 0. (52)

Proof Multiplying Eq. (51) by μ(u) and taking the formal Lagrangian

L = vμ(u)[ut − f (u)un]

where un = Dn
x (u), we have

δL
δu

= −Dt [μ(u)v] − Dn
x [μ(u) f (u)v] + vμ′(u)ut − v[μ(u) f (u)]′un .

Noting that −Dt [μ(u)v] + vμ′(u)ut = −μ(u)vt and letting v = u we obtain

δL
δu

∣∣∣∣
v=u

= −μ(u)ut − Dn
x [μ(u) f (u)u] − [μ(u) f (u)]′uun .

If we take μ(u) = [u f (u)]−1, then μ(u) f (u)u = 1, μ(u) f (u) = u−1, and hence

δL
δu

∣∣∣∣
v=u

= − 1

u f (u)
[ut − f (u)un].

Thus, Eq. (52) satisfies the strict self-adjointness condition (28) with λ = −1. ��

1.2.2 Linear Heat Equation

Taking in (50) f (u) = 0, we rewrite the classical linear heat equation ut = uxx in
the following strictly self-adjoint form

1

u
[ut − uxx ] = 0. (53)

This result can be extended to the heat equation



Construction of Conservation Laws Using Symmetries 75

ut − Δu = 0 (54)

where Δu is the Laplacian with n variables x = (x1, . . . , xn). Namely, the strictly
self-adjoint form of Eq. (54) is

1

u
[ut − Δu] = 0. (55)

Indeed, the formal Lagrangian (9) for Eq. (55) has the form

L = v

u
[ut − Δu].

Substituting it in (19) we obtain

F∗ = −Dt

(v

u

)
− Δ

(v

u

)
− v

u2 [ut − Δu].

Upon letting v = u it becomes

F∗ = −1

u
[ut − Δu].

Hence, Eq. (55) satisfies the condition (28) with λ = −1.

1.2.3 Nonlinear Heat Equation

Consider the nonlinear heat equation ut − Dx (k(u)ux ) = 0, or

ut − k(u)uxx − k′(u)u2
x = 0. (56)

Its adjoint equation has the form

vt + k(u)vxx = 0.

Therefore it is obvious that (56) does not satisfy Definition 2. But it becomes strictly
self-adjoint if we rewrite it in the form

1

u

[
ut − k(u)uxx − k′(u)u2

x

]
= 0. (57)

Indeed, the formal Lagrangian (9) for Eq. (57) is written

L = v

u

[
ut − k(u)uxx − k′(u)u2

x

]
.
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Substituting it in (19) we obtain

F∗ = −Dt

(v

u

)
− D2

x

(v

u
k(u)

)
+ 2Dx

(v

u
k′(u)ux

)

− v

u
k′(u)uxx − v

u
k′′(u)u2

x − v

u2

[
ut − k(u)uxx − k′(u)u2

x

]
.

Letting here v = u we have

F∗ = −1

u

[
ut − k(u)uxx − k′(u)u2

x

]
.

Hence, Eq. (55) satisfies the strict self-adjointness condition (28) with λ = −1.

1.2.4 The Burgers Equation

Taking in (50) f (u) = u we obtain the strictly self-adjoint form

1

u
[ut − uxx ] − ux = 0 (58)

of the Burgers equation ut = uxx + uux .

1.2.5 Heat Conduction in Solid Hydrogen

According to [8], the heat conduction in solid crystalline molecular hydrogen at low
pressures is governed by the nonlinear equation (up-to positive constant coefficient)

ut = u2Δu. (59)

It is derived from the Fourier equation

ρ c∗
∂T

∂t
= ∇ · (k ∇T )

using the empirical information that the density ρ at low pressures has a constant
value,whereas the specific heat c∗ and the thermal conductivity k have the estimations

c∗ ∼= T 3, k ∼= T 3
(
1 + T 4

)−2
.
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It is also shown in [8] that the one-dimensional Eq. (59)

ut = u2uxx (60)

is related to the linear heat equation by a non-point transformation (Eq. (5) in [8]).
A similar relation was found in [9] for another representation of Eq. (60). The non-
point transformation of Eq. (60) to the linear heat equation

ws = wξξ (61)

is written in [10] as the differential substitution

t = s, x = w, u = wξ . (62)

It is also demonstrated in [10], Sect. 20, that Eq. (60) is the unique equation with
nontrivial Lie-Bäcklund symmetries among the equations of the form

ut = f (u) + h(u, ux ), f ′(u) 	= 0.

The connection between Eq. (60) and the heat equation is treated in [11] as a recip-
rocal transformation [11]. It is shown in [12] that this connection, together with
its extensions, allows to solve certain moving boundary problems in nonlinear heat
conduction.

Our Example 9 from Sect. 1.2.1 reveals onemore remarkable property of Eq. (60).
Namely, taking n = 2 and f (u) = u2 in Eq. (52) we see that Eq. (60) becomes strictly
self-adjoint if we rewrite it in the form

ut

u3 = uxx

u
· (63)

1.2.6 Harry Dym Equation

Taking in Example 9 from Sect. 1.2.1 n = 3 and f (u) = u3 we see that the Harry
Dym equation

ut − u3uxxx = 0 (64)

becomes strictly self-adjoint upon rewriting it in the form

ut

u4 − uxxx

u
= 0.
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1.2.7 Kompaneets Equation

The equations considered in Sects. 1.2.1–1.2.6 are quasi self-adjoint. For example,
for Eq. (51) we have

F∗ = −vt − Dn
x ( f (u)v) − v f ′(u)un

whence making the substitution

v = 1

f (u)

we obtain

F∗ = f ′

f 2
ut − f ′

f
un = f ′

f 2
[ut − f (u) un].

Hence, Eq. (51) is quasi self-adjoint.

Example 10 The Kompaneets equation

ut = 1

x2
Dx

[
x4(ux + u + u2)

]
(65)

provides an example of an equation that is not quasi self-adjoint. Indeed, Eq. (65)
has the formal Lagrangian

L = v[−ut + x2uxx + (x2 + 4x + 2x2u)ux + 4x(u + u2)].

The calculation yields the following adjoint equation to (65)

δL
δu

≡ vt + x2vxx − x2(1 + 2u)vx + 2(x + 2xu − 1)v = 0. (66)

Letting v = ϕ(u) one obtains

δL
δu

∣∣∣∣
v=ϕ(u)

= ϕ′(u)ut + x2uxx − x2(1 + 2u)ux ]

+ ϕ′′(u)x2u2
x + 2(x + 2xu − 1)ϕ(u).

Writing the quasi self-adjointness condition (36) in the form

δL
δu

∣∣∣∣
v=ϕ(u)

= λ[−ut + x2uxx + (x2 + 4x + 2x2u)ux + 4x(u + u2)]

and comparing the coefficients for ut in both sides one obtains λ = −ϕ′(u), so that
the quasi self-adjointness condition takes the form
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ϕ′(u)[ut + x2uxx − x2(1 + 2u)ux ] + ϕ′′(u)x2u2
x + 2(x + 2xu − 1)ϕ(u)

= ϕ′(u)[ut − x2uxx − (x2 + 4x + 2x2u)ux − 4x(u + u2)].

Comparing the coefficients for uxx in both sides we obtain ϕ′(u) = 0. Then the
above equation becomes (x + 2xu − 1)ϕ(u) = 0 and yields ϕ(u) = 0. Hence
the Kompaneets equation is not quasi self-adjoint because the condition (43) is not
satisfied.

Butwe can rewrite Eq. (65) in the strictly self-adjoint formby using amore general
multiplier than above, namely, the multiplier

μ = x2

u
· (67)

Indeed, upon multiplying by this μ Eq. (65) is written

x2

u
ut = 1

u
Dx

[
x4(ux + u + u2)

]
.

Its formal Lagrangian

L = v

u

{
−x2ut + Dx

[
x4(ux + u + u2)

]}

satisfies the strict self-adjointness condition (28) with λ = −1

δL
δu

∣∣∣∣
v=u

= −1

u

{
−x2ut + Dx

[
x4(ux + u + u2)

]}
.

Remark 4 Note that v = x2 solves Eq. (66) for any u.The connection of this solution
with the multiplier (67) is discussed in Sect. 1.3.7. See also Sect. 1.4.

1.3 General Concept of Nonlinear Self-Adjointness

Motivated by the examples discussed in Sects. 1.1 and 1.2 as well as other similar
examples, I have suggested in [13] the general concept of nonlinear self-adjointness
of systems consisting of any number of equations with m dependent variables. This
concept encapsulates Definition 2 of strict self-adjointness and Definition 3 of quasi
self-adjointness. The new concept has two different features. They are expressed
below by two different but equivalent definitions.
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1.3.1 Two Definitions and Their Equivalence

Definition 4 The system of m differential equations (compare with Eq.6)

Fᾱ

(
x, u, u(1), . . . , u(s)

) = 0, ᾱ = 1, . . . , m (68)

with m dependent variables u = (u1, . . . , um) is said to be nonlinearly self-adjoint
if the adjoint equations

F∗
α

(
x, u, v, u(1), v(1), . . . , u(s), v(s)

) ≡ δ(vβ̄ Fβ̄)

δuα
= 0, α = 1, . . . , m (69)

are satisfied for all solutions u of the original system (68) upon a substitution

vᾱ = ϕᾱ(x, u), ᾱ = 1, . . . , m (70)

such that
ϕ(x, u) 	= 0. (71)

In other words, the following equations hold

F∗
α

(
x, u,ϕ(x, u), . . . , u(s),ϕ(s)

) = λβ̄
α Fβ̄

(
x, u, . . . , u(s)

)
, α = 1, . . . , m (72)

where λ
β̄
α are undetermined coefficients, and ϕ(σ) are derivatives of (70)

ϕ(σ) = {Di1 · · · Diσ

(
ϕᾱ(x, u)

)}, σ = 1, . . . , s.

Here v and ϕ are the m-dimensional vectors

v = (v1, . . . , vm), ϕ = (ϕ1, . . . ,ϕm)

and Eq. (71) means that not all components ϕᾱ(x, u) of ϕ vanish simultaneously.

Remark 5 If the system (68) is over-determined, i.e.,m > m, then the adjoint system
(69) is sub-definite since it contains m < m equations for m new dependent variables
v. Vise versa, if m < m, then the system (68) is sub-definite and the adjoint system
(69) is over-determined.

Remark 6 The adjoint system (69), upon substituting there any solution u(x) of
Eq. (68), becomes a linear homogeneous system for the new dependent variables vᾱ.

The essence of Eq. (72) is that for the self-adjoint system (68) there exist functions
(70) that provide a non-trivial (not identically zero) solution to the adjoint system
(69) for all solutions of the original system (68). This property can be taken as the
following alternative definition of the nonlinear self-adjointness.
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Definition 5 The system (68) is nonlinearly self-adjoint if there exist functions vᾱ

given by (70) that solve the adjoint system (69) for all solutions u(x) of Eq. (68) and
satisfy the condition (71).

Proposition 4 The above two definitions are equivalent.

Proof Let the system (68) be nonlinearly self-adjoint by Definition 4. Then, accord-
ing to Remark 6, the system (68) satisfies the condition of Definition 5.

Conversely, let the system (68) be nonlinearly self-adjoint by Definition 5.
Namely, let the functions vᾱ given by (70) and satisfying the condition (71) solve
the adjoint system (69) for all solutions u(x) of Eq. (68). This is possible if and only
if Eq. (72) hold. Then the system (68) is nonlinearly self-adjoint by Definition 4. ��
Example 11 It has been mentioned in Example 2 that the KdV equation

ut = uxxx + uux (73)

is strictly self-adjoint. In terms of Definition 5 it means that v = u solves the adjoint
equation

vt = vxxx + uvx (74)

for all solutions of the KdV Eq. (73). One can verify that the general substitution of
the form (70), v = ϕ(t, x, u), satisfying Eq. (72) is given by

v = A1 + A2u + A3(x + tu) (75)

where A1, A2, A3 are arbitrary constants. One can also check that v given by Eq. (75)
solves the adjoint Eq. (74) for all solutions u of the KdV equation. The solution
v = x + tu is an invariant of the Galilean transformation of the KdV equation
and appears in different approaches (see [10, Sect. 22.5] and [14]). Thus, the KdV
equation is nonlinearly self-adjoint with the substitution (75).

Proposition 5 Any linear equation is nonlinearly self-adjoint.

Proof This property is the direct consequence of Definition 5 because the adjoint
equation F∗[v] = 0 to a linear equation F[u] = 0 does not involve the variable u. ��

1.3.2 Remark on Differential Substitutions

One can further extend the concept of self-adjointness by replacing the point-wise
substitution (70) with differential substitutions of the form

vᾱ = ϕᾱ(x, u, u(1), . . . , u(r)), ᾱ = 1, . . . , m. (76)

Then Eq. (72) will be written, e.g., in the case r = 1, as follows
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F∗
α

(
x, u,ϕ, . . . , u(s),ϕ(s)

) = λβ̄
α Fβ̄ + λ j β̄

α D j (Fβ̄). (77)

Example 12 The reckoning shows that the equation

uxy = sin u (78)

is not self-adjoint via a point-wise substitution v = ϕ(x, y, u), but it is self-adjoint
in the sense of Definition 4 with the following differential substitution

v = ϕ(x, y, ux , uy) ≡ A1[xux − yuy] + A2ux + A3uy (79)

where A1, A2, A3 are arbitrary constants. The adjoint equation to equation (78) is

vxy − v cos u = 0

and the self-adjointness condition (77) with the function ϕ given by (79) is satisfied
in the form

ϕxy − ϕ cos u = (A1x + A2)Dx (uxy − sin u)

+ (A3 − A1y)Dy(uxy − sin u). (80)

1.3.3 Nonlinear Heat Equation

One-Dimensional Case

Let us apply the new viewpoint to the nonlinear heat Eq. (56), ut = (k(u)ux )x ,

discussed in Sect. 1.2.3. We will take it in the expanded form

ut − k(u)uxx − k′(u)u2
x = 0, k(u) 	= 0. (81)

The adjoint Eqs. (18) to (81) is

vt + k(u)vxx = 0. (82)

We take the substitution (70) written together with the necessary derivatives

v = ϕ(t, x, u)

vt = ϕuut + ϕt , vx = ϕuux + ϕx (83)

vxx = ϕuuxx + ϕuuu2
x + 2ϕxuux + ϕxx

and arrive at the following self-adjointness condition (72)
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ϕuut + ϕt + k(u)[ϕuuxx + ϕuuu2
x + 2ϕxuux + ϕxx ]

= λ[ut − k(u)uxx − k′(u)u2
x ]. (84)

The comparison of the coefficients of ut in both sides of Eq. (84) yields λ = ϕu .

Then, comparing the terms with uxx we see that ϕu = 0. Hence Eq. (84) reduces to

ϕt + k(u)ϕxx = 0 (85)

and yields ϕt = 0, ϕxx = 0, whence ϕ = C1x + C2, where C1, C2 = const. We
have demonstrated that Eq. (81) is nonlinearly self-adjoint by Definition 4 and that
the substitution (70) has the form

v = C1 x + C2. (86)

The same result can be easily obtained by using Definition 5. We look for the
solution of the adjoint Eq. (82) in the form v = ϕ(t, x). Then Eq. (82) has the
form (85). Since it should be satisfied for all solutions u of Eq. (81), we obtain
ϕt = 0, ϕxx = 0, and hence Eq. (86).

Multi-dimensional Case

The similar analysis can be applied to the nonlinear heat equation with several vari-
ables x = (x1, . . . , xn)

ut = ∇ · (k(u)∇u) (87)

or
ut − k(u)Δu − k′(u)|∇u|2 = 0. (88)

The reckoning shows that the adjoint Eqs. (18) to (88) is written

vt + k(u)Δv = 0. (89)

It is easy to verify the nonlinear elf-adjointness by Definition 5. Namely, searching
for the solution of the adjoint Eq. (89) in the form v = ϕ(t, x1, . . . , xn), one obtains

ϕt + k(u)Δϕ = 0

whence
ϕt = 0, Δϕ = 0.

We conclude that Eq. (88) is self-adjoint and that the substitution (70) is given by

v = ϕ(x1, . . . , xn) (90)

whereϕ(x1, . . . , xn) is any solution of the n-dimensional Laplace equationΔϕ = 0.
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1.3.4 Anisotropic Nonlinear Diffusion Equation

Two-Dimensional Case

Consider the diffusion equation

ut = ( f (u)ux )x + (g(u)uy)y (91)

in an anisotropic two-dimensional medium (see [15–17], vol. 1, Sect. 10.8) with
arbitrary functions f (u) and g(u). The adjoint equation is

vt + f (u)vxx + g(u)vyy = 0. (92)

Using Definition 5 we obtain the following equations for nonlinear self-adjointness
of Eq. (91)

ϕt = 0, ϕxx = 0, ϕyy = 0. (93)

Integrating equations (93) we obtain the following substitution (70)

v = C1 xy + C2 x + C3 y + C4. (94)

Three-Dimensional Case

The three-dimensional anisotropic nonlinear diffusion equation has the following
form (see [15–17], vol. 1, Sect. 10.9)

ut = ( f (u)ux )x + (g(u)uy)y + (h(u)uz)z . (95)

Its adjoint equation is

vt + f (u)vxx + g(u)vyy + h(u)vzz = 0. (96)

Equation (95) is nonlinearly self-adjoint. In this case the substitution (94) is
replaced by

v = C1 xyz + C2 xy + C3 xz + C4 yz + C5 x + C6 y + C7 z + C8. (97)
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1.3.5 Nonlinear Wave Equations

One-Dimensional Case

Consider the following one-dimensional nonlinear wave equation

utt = (k(u)ux )x , k(u) 	= 0 (98)

or in the expanded form

utt − k(u)uxx − k′(u)u2
x = 0. (99)

The adjoint Eqs. (18) to (98) is written

vt t − k(u)vxx = 0. (100)

Proceeding as in One-Dimensional Case or applying Definition 5 to Eqs. (99) and
(100) by letting v = ϕ(t, x), we obtain the following equations that guarantee the
nonlinear self-adjointness of Eq. (98)

ϕt t = 0, ϕxx = 0. (101)

Integrating equation (101) we obtain the following substitution

v = C1 t x + C2 t + C3 x + C4. (102)

Multi-Dimensional Case

The multi-dimensional version of Eq. (98) with x = (x1, . . . , xν) is written

utt = ∇ · (k(u)∇u) (103)

or
utt − k(u)Δu − k′(u)|∇u|2 = 0. (104)

The adjoint equation is
vt t − k(u)Δv = 0. (105)

Using Definition 5 and searching the solution of the adjoint Eq. (105) in the form
v = ϕ(t, x1, . . . , xν), we obtain the equations

ϕt t = 0, Δϕ = 0.

Solving them we arrive at the following substitution (70)
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v = a(x)t + b(x) (106)

where a(x) and b(x) solve the ν-dimensional Laplace equation

Δa(x1, . . . , xν) = 0, Δb(x1, . . . , xν) = 0.

Hence Eq. (103) is nonlinearly self-adjoint.

Nonlinear Vibration of Membranes

Vibrations of a uniform membrane whose tension varies during deformations are
described by the following Lagrangian

L = 1

2

[
u2

t − k(u)
(

u2
x + u2

y

)]
, k′(u) 	= 0. (107)

The corresponding Euler-Lagrange equation

∂L

∂u
− Dt

(
∂L

∂ut

)
− Dx

(
∂L

∂ux

)
− Dy

(
∂L

∂uy

)
= 0

provides the nonlinear wave equation

utt = k(u) (uxx + uyy) + 1

2
k′(u)(u2

x + u2
y). (108)

Note that Eq. (108) differs from the two-dimensional nonlinear wave Eq. (104) by
the coefficient 1/2. Let us find out if this difference affects self-adjointness.

By applying (69) to the formal Lagrangian of Eq. (108) we obtain

F∗ = vt t − k(u) (vxx + vyy) − k′(u)(uxvx + uyvy + vuxx + vuyy)

− v

2
k′′(u)(u2

x + u2
y).

We take the substitution (70) together with the necessary derivatives (see Eq.83)

v = ϕ(t, x, y, u), vt = ϕuut + ϕt

vx = ϕuux + ϕx , vy = ϕuuy + ϕy

vxx = ϕuuxx + ϕuuu2
x + 2ϕxuux + ϕxx (109)

vyy = ϕuuyy + ϕuuu2
y + 2ϕyuuy + ϕyy

vt t = ϕuutt + ϕuuu2
t + 2ϕtuut + ϕt t

and substitute the expressions (109) in the self-adjointness condition (72)
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F∗∣∣
v=ϕ

= λ[utt − k(u) (uxx + uyy) − 1

2
k′(u)(u2

x + u2
y)].

Comparing the coefficients of utt we obtain λ = ϕu . Then we compare the coeffi-
cients of uxx and obtain ϕ k′(u) = 0. This equation yields ϕ = 0 because k′(u) 	= 0.
Thus, the condition (71) is not satisfied for the point-wise substitution (70). Fur-
ther investigation of Eq. (108) for the nonlinear self-adjointness requires differential
substitutions.

1.3.6 Anisotropic Nonlinear Wave Equation

Two-Dimensional Case

The two-dimensional anisotropic nonlinear wave equation is (see [15–17, vol. 1,
Sect. 12.6])

utt = ( f (u)ux )x + (g(u)uy)y . (110)

Its adjoint equation has the form

vt t − f (u)vxx − g(u)vyy = 0. (111)

Proceeding as in Sect. 1.3.4 we obtain the following equations that guarantee the
self-adjointness of Eq. (110)

ϕt t = 0, ϕxx = 0, ϕyy = 0. (112)

Integrating equation (112) we obtain the following substitution (70)

v = C1 t xy + C2 t x + C3 t y + C4 xy + C5 t + C6 x + C7 y + C8. (113)

Remark 7 I provide here detailed calculations in integrating Eq. (112). The general
solution to the linear second-order equation ϕt t = 0 is given by

ϕ = A(x, y)t + B(x, y) (114)

with arbitrary functions A(x, y) and B(x, y). Substituting this expression for ϕ in
the second and third Eq. (112) and splitting with respect to t we obtain the following
equations for A(x, y) and B(x, y)

Axx = 0, Ayy = 0, Bxx = 0, Byy = 0.
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Substituting the general solution

A = a1(y)x + a2(y)

of the equation Axx = 0 in the equation Ayy = 0 and splitting with respect to x, we
obtain a′′

1 = 0, a′′
2 = 0, whence

a1 = c11y + c12, a2 = c21y + c22

where c11, . . . , c22 are arbitrary constants. Substituting these in the above expression
for A we obtain

A = c11xy + c12x + c21y + c22.

Proceeding likewise with the equations for B(x, y), we have

B = d11xy + d12x + d21y + d22

with arbitrary constant coefficients d11, . . . , d22. Finally, we substitute the resulting
A and B in the expression (114) for ϕ and, changing the notation, arrive at (113).

Three-Dimensional Case

The three-dimensional anisotropic nonlinear wave equation

utt = ( f (u)ux )x + (g(u)uy)y + (h(u)uz)z (115)

has the following adjoint equation

vt t − f (u)vxx − g(u)vyy − h(u)vzz = 0. (116)

In this case Eq. (112) are replaced by

ϕt t = 0, ϕxx = 0, ϕyy, ϕzz = 0

and yield the following substitution (70)

v = C1t xyz + C2t xy + C3t xz + C4t yz + C5t x + C6t y + C7t z

+ C8xy + C9xz + C10yz + C11t + C12x + C13y + C14z + C15. (117)

1.3.7 From Nonlinear to Strict Self-Adjointness

The approach of this section is not used for constructing conservation laws. But it
may be useful for other applications of the nonlinear self-adjointness.
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Theorem 1 The differential equation (17)

F
(
x, u, u(1), . . . , u(s)

) = 0 (118)

is nonlinearly self-adjoint (Definition 4) if and only if it becomes strictly self-adjoint
(Definition 2) upon rewriting in the equivalent form

μ(x, u)F
(
x, u, u(1), . . . , u(s)

) = 0, μ(x, u) 	= 0 (119)

with an appropriate multiplier μ(x, u).

Proof We will write the condition (72) for nonlinear self-adjointness of Eq. (118) in
the form

δ(vF)

δu

∣∣∣∣
v=ϕ(x,u)

= λ(x, u)F
(
x, u, u(1), . . . , u(s)

)
. (120)

Furthermore, invoking that the Eqs. (119) and (118) are equivalent, we will write the
condition (28) for strict self-adjointness of Eq. (119) in the form

δ(wμF)

δu

∣∣∣∣
w=u

= λ̃(x, u)F
(
x, u, u(1), . . . , u(s)

)
. (121)

Since w is a dependent variable and μ = μ(x, u) is a certain function of x, u, the
variational derivative in the left-hand side of (121) can be written as follows

δ(wμF)

δu
= w

∂μ

∂u
F + μw

∂F

∂u
− Di

(
μw

∂F

∂ui

)
+ Di D j

(
μw

∂F

∂ui j

)
− · · ·

= w
∂μ

∂u
F + δ(vF)

δu

where v is the new dependent variable instead of w defined by the formula

v = μ(x, u)w. (122)

Now the left side of Eq. (121) is written

δ(wμF)

δu

∣∣∣∣
w=u

= u
∂μ

∂u
F + δ(vF)

δu

∣∣∣∣
v=uμ(x,u)

· (123)

Let us assume that Eq. (118) is nonlinearly self-adjoint. Then Eq. (120) holds with a
certain given function ϕ(x, u). Therefore, we take the multiplier

μ(x, u) = ϕ(x, u)

u
(124)
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and reduce Eq. (123) to the following form

δ(wμF)

δu

∣∣∣∣
w=u

=
(

λ + ∂ϕ

∂u
− ϕ

u

)
F.

This proves that Eq. (121) holds with

λ̃ = ∂ϕ

∂u
− ϕ

u
+ λ.

Hence, Eq. (119) with the multiplier μ given by (124) is strictly self-adjoint.
Let us assume now that Eq. (119) with a certain multiplier μ(x, u) is strictly

self-adjoint. Then Eq. (121) holds. Therefore, if we take the function ϕ defined by
(see 124)

ϕ(x, u) = uμ(x, u) (125)

Equation (123) yields

δ(vF)

δu

∣∣∣∣
v=ϕ(x,u)

=
(

λ̃ − u
∂μ

∂u

)
F.

It follows that Eq. (120) holds with

λ = λ̃ − u
∂μ

∂u
·

We conclude that Eq. (118) is nonlinearly self-adjoint, thus completing the proof. ��
Example 13 The multiplier (67) used in Example 10 and the function ϕ = x2 that
provides a solution of the adjoint Eq. (66) to the Kompaneets equation are related by
Eq. (125).

Example 14 Let us consider the one-dimensional nonlinear wave Eq. (99),

utt − k(u)uxx − k′(u)u2
x = 0.

If we substitute in (124) the function ϕ given by the right-hand side of (102) we
will obtain the multiplier that maps Eq. (99) into the strictly self-adjoint equivalent
form. For example, taking (102) with C1 = C3 = C4 = 0, C2 = 1 we obtain the
multiplier

μ = t

u
·

The corresponding equivalent equation to equation (99) has the formal Lagrangian

L = tv

u
[utt − k(u)uxx − k′(u)u2

x ].
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We have

δL
δu

= D2
t

(
tv

u

)
− tv

u2 utt − D2
x

(
tv

u
k(u)

)
− tv

u
k′(u)uxx + tv

u2 k(u)uxx

+ 2Dx

(
tv

u
k′(u)ux

)
− tv

u
k′′(u)u2

x + tv

u2 k′(u)u2
x .

Letting here v = u we see that the strict self-adjointness condition is satisfied in the
following form

δL
δu

∣∣∣∣
v=u

= − t

u
[utt − k(u)uxx − k′(u)u2

x ].

1.4 Generalized Kompaneets Equation

1.4.1 Introduction

The equation

∂n

∂t
= 1

x2
∂

∂x

[
x4
(

∂n

∂x
+ n + n2

)]
(126)

known as the Kompaneets equation or the photon diffusion equation, was derived
independently by Kompaneets2 [18] and Weymann [19]. They take as a starting
point the kinetic equations for the distribution function of a photon gas3 and arrive,
at certain idealized conditions, at Eq. (126). This equation provides a mathematical
model for describing the time development of the energy spectrum of a low energy
homogeneous photon gas interacting with a rarefied electron gas via the Compton
scattering. Here n is the density of the photon gas (photon number density), t is time
and x is connected with the photon frequency ν by the formula

x = hν

kTe
(127)

where h is Planck’s constant and kTe is the electron temperature with the standard
notation k for Boltzmann’s constant. According to this notation, hν has the meaning
of the photon energy. The nonrelativistic approximation is used, i.e., it is assumed
that the electron temperatures satisfy the condition kTe � mc2, where m is the

2 He mentions in his paper that the work has been done in 1950 and published in Report # 336 of
the Institute of Chemical Physics of the USSR Academy of Sciences.
3 Weymann uses Dreicer’s kinetic equation [20] for a photon gas interacting with a plasma which
is slightly different from the equation used by Kompaneets.
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electron mass and c is the light velocity. The term low energy photon gas means that
hν � mc2.

The question arises if the idealized conditions assumed in deriving Eq. (126) may
be satisfied in the real world. For discussions of theoretical and observational evi-
dences for such possibility in astrophysical environments, for example in intergalactic
gas, see e.g., [21, 22] and the references therein. See also the recent publication [23].

1.4.2 Discussion of Self-Adjointness of the Kompaneets Equation

For unifying the notation, the dependent variable n in Eq. (126) will be denoted by
u and Eq. (126) will be written further in the form

ut = 1

x2
Dx
[
x4(ux + u + u2)

]
. (128)

Writing it in the expanded form

ut = x2uxx + (x2 + 4x + 2x2u)ux + 4x(u + u2) (129)

we have the following formal Lagrangian for Eq. (128)

L = v[−ut + x2uxx + (x2 + 4x + 2x2u)ux + 4x(u + u2)].

Working out the variational derivative of this formal Lagrangian

δL
δu

= Dt (v) + D2
x (x2v) − Dx [(x2 + 4x + 2x2u)v] + 2x2vux + 4x(1 + 2u)v

we obtain the adjoint equation to equation (128)

δL
δu

≡ vt + x2vxx − x2(1 + 2u)vx + 2(x + 2xu − 1)v = 0. (130)

If v = ϕ(u), then

vt = ϕ′(u)ut , vx = ϕ′(u)ux , vxx = ϕ′(u)uxx + ϕ′′(u)u2
x .

It follows that the quasi self-adjointness condition (36)

δL
δu

∣∣∣∣
v=ϕ(u)

= λ[−ut + x2uxx + (x2 + 4x + 2x2u)ux + 4x(u + u2)]

is not satisfied.
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Let us check if this condition is satisfied in the more general form (72)

δL
δu

∣∣∣∣
v=ϕ(t,x,u)

= λ[−ut + x2uxx + (x2 + 4x + 2x2u)ux + 4x(u + u2)]. (131)

In this case

vt = Dt [ϕ(t, x, u)] = ϕuut + ϕt

vx = Dx [ϕ(t, x, u)] = ϕuux + ϕx (132)

vxx = Dx (vx ) = ϕuuxx + ϕuuu2
x + 2ϕxuux + ϕxx .

Inserting (132) in the expression for the variational derivative given by (130) and
singling out in Eq. (131) the terms containing ut and uxx , we obtain the following
equation

ϕu[ut + x2uxx ] = λ[−ut + x2uxx ].

Since this equation should be satisfied identically in ut and uxx , it yieldsλ = ϕu = 0.
Hence ϕ = ϕ(t, x) and Eq. (131) becomes

ϕt + x2ϕxx − x2(1 + 2u)ϕx + 2(x + 2xu − 1)ϕ = 0. (133)

This equation should be satisfied identically in t, x and u. Therefore we nullify the
coefficient for u and obtain

xϕx − 2ϕ = 0

whence
ϕ(t, x) = c(t)x2.

Substitution in Eq. (133) yields c′(t) = 0. Hence, v = ϕ(t, x) = Cx2 with arbitrary
constantC. Since λ = 0 in (131) and the adjoint Eq. (130) is linear and homogeneous
in v, one can let C = 1. Thus, we have demonstrated the following statement.

Proposition 6 The adjoint Eq. (130) has the solution

v = x2 (134)

for any solution u of Eq. (128). In another words, the Kompaneets Eq. (128) is non-
linearly self-adjoint with the substitution (70) given by (134).

Remark 8 The substitution (134) does not depend on u. The question arises on
existence of a substitution v = ϕ(t, x, u) involving u if we rewrite Eq. (128) in an
equivalent form
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α(t, x, u)[−ut + x2uxx + (x2 + 4x + 2x2u)ux + 4x(u + u2)] = 0 (129′)

with an appropriate multiplier α 	= 0. This question is investigated in next section
for a more general model.

1.4.3 The Generalized Model

In the original derivation of Eq. (126) the following more general equation appears
accidentally (see [18], Eqs. (9), (10) and their discussion)

∂n

∂t
= 1

g(x)

∂

∂x

[
g2(x)

(
∂n

∂x
+ f (n)

)]
(135)

with undetermined functions f (u) and g(x). Then, using a physical reasoning,
Kompaneets takes f (u) = n(1 + n) and g(x) = x2. This choice restricts the sym-
metry properties of the model significantly. Namely, Eq. (126) has only the time-
translational symmetry with the generator

X = ∂

∂t
· (136)

The symmetry (136) provides only one invariant solution, namely the stationary
solution n = n(x) defined by the Riccati equation

dn

dx
+ n2 + n = C

x4
·

The generalized model (135) can be used for extensions of symmetry properties via
the methods of preliminary group classification [24, 25]. In this way, exact solutions
known for particular approximations to the Kompaneets equation can be obtained.
This may also lead to new approximations of the solutions by taking into account
various inevitable perturbations of the idealized situation assumed in theKompaneets
model (126).

So, we will take with minor changes in notation the generalized model (135)

ut = 1

h(x)
Dx
{
h2(x)[ux + f (u)]}, h′(x) 	= 0. (137)

It is written in the expanded form as follows

ut = h(x)
(
uxx + f ′(u)ux

)+ 2h′(x)
(
ux + f (u)

)
. (138)

We will write Eq. (138) in the equivalent form similar to (129′)

α(t, x, u)
[− ut + h(x)

(
uxx + f ′(u)ux

)+ 2h′(x)
(
ux + f (u)

)] = 0 (139)
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where α 	= 0. This provides the following formal Lagrangian

L = v α(t, x, u)
[− ut + h(x)

(
uxx + f ′(u)ux

)+ 2h′(x)
(
ux + f (u)

)]
(140)

where v is a new dependent variable. For this Lagrangian, we have

δL
δu

= Dt (vα) + D2
x [h(x)vα] − Dx [h(x) f ′(u)vα + 2h′(x)vα]

+ h(x) f ′′(u) v α ux + 2h′(x) f ′(u)vα

+ vαu
[− ut + h(x)

(
uxx + f ′(u)ux

)+ 2h′(x)
(
ux + f (u)

)]
.

The reckoning shows that

δL
δu

= Dt (vα) + h D2
x (vα) − h f ′Dx (vα) + (h′ f ′ − h′′)vα

+ vαu
[− ut + (uxx + f ′ux )h + 2(ux + f )h′]. (141)

Now we write the condition for the self-adjointness of Eq. (138) in the form

δL
δu

∣∣∣
v=ϕ(t,x,u)

= λ
[− ut + (uxx + f ′ux )h + 2(ux + f )h′] (142)

with an undetermined coefficient λ. Substituting (141) in (142) we have

Dt (ϕα) + h D2
x (ϕα) − h f ′ Dx (ϕα) + (h′ f ′ − h′′)ϕα

+ ϕαu
[− ut + (uxx + f ′ux )h + 2(ux + f )h′] (143)

= λ
[− ut + (uxx + f ′ux )h + 2(ux + f )h′].

Here ϕ = ϕ(t, x, u), α = α(t, x, u) and consequently (see (132))

Dt (ϕα) = (ϕα)u ut + (ϕα)t

Dx (ϕα) = (ϕα)u ux + (ϕα)x (144)

D2
x (ϕα) = (ϕα)u uxx + (ϕα)uu u2

x + 2(ϕα)xu ux + (ϕα)xx .

We substitute (141) in Eq. (143), equate the coefficients for ut in both sides of the
resulting equation and obtain (ϕα)u − ϕαu = −λ. Hence

λ = −αϕu .

Using this expression for λ and equating the coefficients for huxx in both sides of
Eq. (143) we get (ϕα)u + ϕαu = −αϕu . It follows that (ϕα)u = 0 and hence

αϕ = k(t, x).
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Now Eq. (143) becomes

kt + h(x)kxx − h′′(x)k + f ′(u)[h′(x)k − h(x)kx ] = 0.

If f ′′(u) 	= 0, the above equation splits into two equations

h′(x)k − h(x)kx = 0, kt + h(x)kxx − h′′(x)k.

The first of these equations yields k(t, x) = c(t)h(x), and then the second equation
shows that c′(t) = 0. Hence, k = C h(x) with C = const. Letting C = 1, we have

αϕ = h(x). (145)

Equation (145) can be satisfied by taking, e.g.,

α = h(x)

u
, ϕ = u. (146)

Thus, we have proved the following statement.

Proposition 7 Equation (137) written in the equivalent form

h(x)

u
ut = 1

u
Dx
{
h2(x)[ux + f (u)]} (147)

is strictly self-adjoint. In another words, the adjoint equation to equation (147)
coincides with (147) upon the substitution

v = u. (148)

In particular, let us verify by direct calculations that the original Eq. (128) becomes
strictly self-adjoint if we rewrite it in the equivalent form

x2

u
ut = 1

u
Dx
[
x4(ux + u + u2)

]
. (149)

Equation (149) reads

− x2

u
ut + x4

u
uxx +

[
(x4 + 4x3)

1

u
+ 2x4

]
ux + 4x3(1 + u) = 0 (150)

and has the formal Lagrangian

L = −x2
v

u
ut + x4

v

u
uxx +

[
(x4 + 4x3)

v

u
+ 2x4v

]
ux + 4x3(v + uv).
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Accordingly, the adjoint equation to equation (150) is written

Dt

(
x2

v

u

)
+ D2

x

(
x4

v

u

)
− Dx

[
(x4 + 4x3)

v

u
+ 2x4v

]

+ x2
v

u2 ut − x4
v

u2 uxx − (x4 + 4x3)
v

u2 ux + 4x3v = 0.

Letting here v = u one has v/u = 1 and after simple calculations arrives at Eq. (150).

1.5 Quasi Self-Adjoint Reaction-Diffusion Models

Let us consider the one-dimensional reaction-diffusion model described by the fol-
lowing system (see e.g., [26])

∂u

∂t
= f (u, v) + A

∂2u

∂x2
+ ∂

∂x

(
φ(u, v)

∂v

∂x

)

∂v

∂t
= g(u, v) + B

∂2v

∂x2
+ ∂

∂x

(
ψ(u, v)

∂u

∂x

)
. (151)

It is convenient to write Eq. (151) in the form

Dt (u) = AD2
x (u) + Dx [φ(u, v)Dx (v)] + f (u, v)

Dt (v) = B D2
x (v) + Dx [ψ(u, u)Dx (u)] + g(u, v). (152)

The total differentiations have the form

Dt = ∂

∂t
+ ut

∂

∂u
+ vt

∂

∂v
+ utt

∂

∂ut
+ utx

∂

∂ux
+ vt t

∂

∂vt
+ vt x

∂

∂vx
+ · · ·

Dx = ∂

∂x
+ ux

∂

∂u
+ vx

∂

∂v
+ utx

∂

∂ut
+ uxx

∂

∂ux
+ vt x

∂

∂vt
+ vxx

∂

∂vx
+ · · ·

(153)

and Eq. (152) are written

ut = Auxx + φvxx + [φuux + φvvx ] vx + f

vt = Bvxx + ψuxx + [ψuux + ψvvx ] ux + g. (154)

The formal Lagrangian for the system (154) is

L = z(Auxx − ut + φvxx + φuuxvx + φvv
2
x + f )

+ w(Bvxx − vt + ψuxx + ψuu2
x + ψvuxvx + g) (155)
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where z and w are new dependent variables. Equation (8) are written

F∗
1 = δL

δu
= D2

x

(
∂L

∂uxx

)
− Dt

(
∂L
∂ut

)
− Dx

(
∂L
∂ux

)
+ ∂L

∂u

F∗
2 = δL

δv
= D2

x

(
∂L

∂vxx

)
− Dt

(
∂L
∂vt

)
− Dx

(
∂L
∂vx

)
+ ∂L

∂v
·

Substituting here the expression (155) for L we obtain after simple calculations the
following adjoint Eq. (69) to the system (154)

Azxx + zt + ψvvxwx − φuvx zx + ψwxx + z fu + wgu = 0 (156)

Bwxx + wt + φuux zx − ψvuxwx + φzxx + z fv + wgv = 0. (157)

Let us investigate the system (154) for quasi self-adjointness (Definition 3). We
write the left-hand sides of Eqs. (156) and (157) as linear combinations of the left-
hand sides of Eq. (154)

Azxx + zt + ψvvxwx − φuvx zx + ψwxx + z fu + wgu

= (Auxx − ut + φvxx + φuuxvx + φvv
2
x + f )P (158)

+ (Bvxx − vt + ψuxx + ψuu2
x + ψvuxvx + g)Q

Bwxx + wt + φuux zx − ψvuxwx + φzxx + z fv + wgv

= (Auxx − ut + φvxx + φuuxvx + φvv
2
x + f )M (159)

+ (Bvxx − vt + ψuxx + ψuu2
x + ψvuxvx + g)N

where P, Q, M and N are undetermined coefficients. We write the substitution (42)
in the form

z = Z(u, v), w = W (u, v) (160)

and insert in the left-hand sides of Eqs. (158) and (159) these expressions for z, w
together with their derivatives

zt = Zuut + Zvvt , zx = Zuux + Zvvx

zxx = Zuuxx + Zvvxx + Zuuu2
x + 2Zuvuxvx + Zvvv

2
x

wt = Wuut + Wvvt , wx = Wuux + Wvvx

wxx = Wuuxx + Wvvxx + Wuuu2
x + 2Wuvuxvx + Wvvv

2
x .



Construction of Conservation Laws Using Symmetries 99

Equating the coefficients in front of ut and vt in both sides of Eqs. (158) and (159)
we obtain

P = −Zu, Q = −Zv, N = −Wv, M = −Wu . (161)

Now we calculate the coefficients for uxx and vxx , take into account Eq. (161) and
arrive at the following system of equations

2AZu + ψZv + ψWu = 0, (A + B)Zv + φZu + ψWv = 0

2BWv + φZv + ψWu = 0, (A + B)Wu + φZu + ψWv = 0. (162)

Equation (162) provide a linear homogeneous algebraic equations for the quantities

Zu, Zv, Wu, Wu

with the matrix ⎛
⎜⎜⎝
2A ψ ψ 0
φ A + B 0 ψ
0 φ φ 2B
φ 0 A + B ψ

⎞
⎟⎟⎠ .

This matrix has an inverse because its determinant is equal to

4(A + B)2(φψ − AB)

which does not vanish in the case of arbitrary A, B,φ and ψ. Hence, Eq. (162) yield

Zu = Zv = Wu = Wu = 0. (163)

It follows that Z(u, v) = C1, W (u, v) = C2. Thus, the substitution (42) has the
form

z = C1, w = C2 (164)

with arbitrary constants C1, C2. Then Eqs. (158) and (159) become

(C1 f + C2g)u = 0, (C1 f + C2g)v = 0

and yield
f̃ + g̃ = C,

where f̃ = C1 f, g̃ = C2g, and C = const. Since f̃ and g̃, along with f and g, are
arbitrary functions, we can omit the “tilde” and write

f + g = C. (165)
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Equation (165) provides the necessary and sufficient condition for the quasi self-
adjointness of the system (151). Thus, we have proved the following statement.

Theorem 2 The system (151) is quasi self-adjoint if and only if it has the form

∂u

∂t
= f (u, v) + A

∂2u

∂x2
+ ∂

∂x

(
φ(u, v)

∂v

∂x

)

∂v

∂t
= C − f (u, v) + B

∂2v

∂x2
+ ∂

∂x

(
ψ(u, v)

∂u

∂x

)
(166)

where φ(u, v), ψ(u, v), f (u, v) are arbitrary functions and A, B, C are arbitrary
constants. The substitution (42) is given by (164).

Remark 9 If we replace (160) by the general substitution (70), i.e., take

z = Z(t, x, u, v), w = W (t, x, u, v) (167)

then Eq. (164) will be replaced by

z = Z(t, x), w = W (t, x) (168)

with functions Z(t, x), W (t, x) satisfying the following equations

(ψvW − φu Z)x = 0 (169)

AZxx + Zt + ψWxx + ( f Z + gW )u = 0

BWxx + Wt + φZxx + ( f Z + gW )v = 0. (170)

1.6 A Model of an Irrigation System

Let us consider the second-order nonlinear partial differential equation

C(ψ)ψt = [K (ψ)ψx ]x + [K (ψ) (ψz − 1)
]

z − S(ψ). (171)

It serves as a mathematical model for investigating certain irrigation systems (see
[15–17], vol. 2, Sect. 9.8 and references therein). The dependent variable ψ denotes
the soil moisture pressure head, C(ψ) is the specific water capacity, K (ψ) is the
unsaturated hydraulic conductivity, S(ψ) is a source term. The independent variables
are the time t, the horizontal axis x and the vertical axis z which is taken to be positive
downward.
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The adjoint equation (69) to equation (171) has the form

C(ψ)vt + K (ψ)
[
vxx + vzz

]+ K ′(ψ)vz − S ′(ψ)v = 0. (172)

It follows from (172) that Eq. (171) is not nonlinearly self-adjoint if C(ψ), K (ψ)

and S(ψ) are arbitrary functions. Indeed, using Definition 5 of the nonlinear
self-adjointness and nullifying in (172) the termwith S ′(ψ)we obtain v = 0.Hence,
the condition (71) of the nonlinear self-adjointness is not satisfied.

However, Eq. (171) can be nonlinearly self-adjoint if there are certain relations
between the functions C(ψ), K (ψ) and S(ψ). For example, let us suppose that the
specific water capacity C(ψ) and the hydraulic conductivity K (ψ) are arbitrary, but
the source term S(ψ) is related with C(ψ) by the equation

S ′(ψ) = aC(ψ), a = const. (173)

Then Eq. (172) becomes C(ψ)[vt − av] + K (ψ)
[
vxx + vzz

] + K ′(ψ)vz = 0 and
yields

vz = 0, vxx = 0, vt − av = 0. (174)

We solve the first two Eq. (174) and obtain

v = p(t)x + q(t).

We substitute this in the third Eq. (174)

[p′(t) − ap(t)]x + q ′(t) − aq(t) = 0

split it with respect to x and obtain p′(t) − ap(t) = 0, q ′(t) − aq(t) = 0 whence

p(t) = beat , q(t) = leat , b, l = const.

Thus, Eq. (171) satisfying the condition Eq. (173) is nonlinearly self-adjoint, and the
substitution (70) has the form

v = (bx + l)eat . (175)

One can obtain various nonlinearly self-adjoint equations (171) by considering
other relations between C(ψ), K (ψ) and S(ψ) different from (173).
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1.7 Krichever–Novikov Equation

Let us consider the Krichever-Novikov equation [27] written in the form

F ≡ ut − uxxx + 3

2

u2
xx

ux
− P(u)

ux
= 0 (176)

where P(u) a polynomial of degree four with distinct roots. The nonlinear self-
adjointness of this equation has been investigated recently in [28]. Namely, it is
shown that Eq. (176) satisfies the nonlinear self-adjointness condition in the form

F∗∣∣
v=ϕ

= μ0F + μ1Dx (F) + μ2D2
x (F) + μ3D3

x (F) + μ4D4
x (F) (177)

with

μ0 = 2
uxx

u4
x

P ′(u) − 1

u2
x

P ′′(u)

μ1 = 2
uxxxx

u3
x

− 12
uxxx uxx

u4
x

+ 12
u3

xx

u5
x

+ 2

u3
x

P ′(u) − 8
uxx

u5
x

P(u)

μ2 = 4
uxxx

u3
x

− 9
u2

xx

u4
x

+ 2

u4
x

P(u), μ3 = 4
uxx

u3
x

, μ4 = − 1

u2
x

where v = ϕ is the differential substitution (76) with the following ϕ

ϕ = uxxxx

u2
x

+ 3
u3

xx

u4
x

− 4
uxx uxxx

u3
x

− 2
P(u)uxx

u4
x

+ P ′(u)

u2
x

· (178)

2 Construction of Conservation Laws Using Symmetries

Thewell-knownNoether’s theorem [29] states that if a variational integral is invariant
with respect to a one-parameter group of transformations then a certain formula
(see further Theorem 3) provides a conservation law for the corresponding Euler-
Lagrange equation. Thus, according to Noether’s theorem, the invariance of the
variational integral is a sufficient condition for existence of the conservation law.
It has been proved in [30] that the necessary and sufficient condition for existence
of this conservation law is the invariance of the extremal values (the values on the
solutions of the Euler-Lagrange equations) of the variational integral. The result
extends to multi-parameter symmetry groups.

The new approach based on the concept of nonlinear self-adjointness allows to
extend a connection between symmetries and conservation laws significantly.
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2.1 Discussion of the Operator Identity

2.1.1 Operator Identity and Alternative Proof
of Noether’s Theorem

Let us discuss some consequences of the operator identity4

X + Di (ξ
i ) = W α δ

δuα
+ Di Ni . (179)

Here

X = ξi ∂

∂xi
+ ηα ∂

∂uα
+ ζα

i
∂

∂uα
i

+ ζα
i1i2

∂

∂uα
i1i2

+ · · · (180)

W α = ηα − ξ j uα
j , α = 1, . . . , m (181)

δ

δuα
= ∂

∂uα
+

∞∑
s=1

(−1)s Di1 · · · Dis

∂

∂uα
i1···is

, α = 1, . . . , m (182)

and

Ni = ξi + W α δ

δuα
i

+
∞∑

s=1

Di1 · · · Dis (W α)
δ

δuα
i i1···is

, i = 1, . . . , n (183)

where the Euler-Lagrange operators with respect to derivatives of uα are obtained
from (182) by replacing uα by the corresponding derivatives, e.g.,

δ

δuα
i

= ∂

∂uα
i

+
∞∑

s=1

(−1)s D j1 · · · D js
∂

∂uα
i j1··· js

· (184)

The coefficients ξi , ηα in (180) are arbitrary differential functions (see Sect. 1.1.1)
and the other coefficients are determined by the prolongation formulae

ζα
i = Di (W α) + ξ j uα

i j , ζα
i1i2 = Di1 Di2(W α) + ξ j uα

j i1i2 , . . . . (185)

The derivation of Eq. (179) is essentially based on Eq. (185).

Remark 10 If we write the operator (180) in the equivalent canonical form5

4 The operator identity (179) was called in [31] the Noether identity and used for simplifying the
proof ofNoether’s theorem.A simple proof of the identity (179) can be found in [32]where Eq. (179)
is written as Eq. (19).
5 One can verify that if one uses the canonical form of the operator X, then the operator identity
(179) becomes identical with Eqs. (3), (6) in Noether’s paper [29] except for the notation. Noether
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X = W α ∂

∂uα
+ ζα

i
∂

∂uα
i

+ ζα
i1i2

∂

∂uα
i1i2

+ · · · (186)

then the prolongation formulae (185) become simpler

ζα
i = Di (W α), ζα

i1i2 = Di1 Di2(W α), . . . . (187)

The original proof ofNoether’s theorem [29] is based on the calculus of variations.
An alternative proof of this theorem has been given in [31] (see also [4, 10]). Let us
outline the latter proof based on the identity (179).

We consider the Euler-Lagrange equations

δL
δuα

= 0, α = 1, . . . , m. (188)

If we assume that the operator (180) is admitted by Eq. (188) and that the variational
integral

∫
L(x, u, u(1), . . .)dx

is invariant under the transformations of the group with the generator X then the
following equation holds

X (L) + Di (ξ
i )L = 0. (189)

Therefore, if we act on L by both sides of the identity (179)

X (L) + Di (ξ
i )L = W α δL

δuα
+ Di [Ni (L)]

and take into account Eqs. (188) and (189),we see that the vectorwith the components

Ci = Ni (L), i = 1, . . . , n (190)

satisfies the conservation equation

Di (C
i )

∣∣∣
(188)

= 0. (191)

For practical applications, when we deal with law order Lagrangians L, it is con-
venient to restrict the operator (183) on the derivatives involved in L and write the
expressions (190) in the expanded form

(Footnote 5 continued)
comments that in the case of the first-order Lagrangians her Eq. (3) is identical with the central
equation of Lagrange (Eqs. (4) and (5) in [29]).
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Ci = ξiL + W α

[
∂L
∂uα

i
− D j

(
∂L
∂uα

i j

)
+ D j Dk

(
∂L

∂uα
i jk

)
− · · ·

]
(192)

+ D j
(
W α

) [ ∂L
∂uα

i j
− Dk

(
∂L

∂uα
i jk

)
+ · · ·

]
+ D j Dk

(
W α

) [ ∂L
∂uα

i jk
− · · ·

]
.

Thus, Noether’s theorem can be formulated as follows.

Theorem 3 If the operator (180) is admitted by Eq. (188) and satisfies the condition
(189) of the invariance of the variational integral, then the vector (192) constructed
by Eq. (192) satisfies the conservation law (191).

Remark 11 The identity (179) is valid also in the case when the coefficients ξi , ηα of
the operator X involve not only the local variables x, u, u(1), u(2), . . . but also nonlo-
cal variables (see Sect. 2.5.6). Accordingly, the formula (192) associates conserved
vectors with nonlocal symmetries as well.

Remark 12 If the invariance condition (189) is replaced by the divergence condition

X (L) + Di (ξ
i )L = Di (Bi )

then the identity (179) leads to the conservation law (191)where the conserved vector
(190) is replaced with

Ci = Ni (L) − Bi , i = 1, . . . , n. (193)

2.1.2 Test for Total derivative and for Divergence

I recall here the well-known necessary and sufficient condition for a differential
function to be divergence, or total derivative in the case of one independent variable.

One can easily derive from the Definition (1) of the total differentiation Di the
following lemmas (see also [4], Sect. 8.4.1).

Lemma 1 The following infinite series of equations hold

∂

∂uα
Di = Di

∂

∂uα

D j
∂

∂uα
j

Di = Di
∂

∂uα
+ Di D j

∂

∂uα
j

D j Dk
∂

∂uα
jk

Di = Di Dk
∂

∂uα
k

+ Di D j Dk
∂

∂uα
jk

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
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Lemma 2 The following operator identity holds for every i and α

δ

δuα
Di = 0.

Proof Using Lemma 1 and manipulating with summation indices we obtain

δ

δuα
Di =

(
∂

∂uα
− D j

∂

∂uα
j

+ D j Dk
∂

∂uα
jk

− D j Dk Dl
∂

∂uα
jkl

+ · · ·
)

Di

= ∂

∂uα
Di − Di

∂

∂uα
− Di D j

∂

∂uα
j

+ Di Dk
∂

∂uα
k

+ Di D j Dk
∂

∂uα
jk

− Di Dk Dl
∂

∂uα
kl

− · · · = 0. ��
Proposition 8 A differential function f (x, u, u(1), . . . , u(s)) ∈ A is divergence

f = Di (h
i ), hi (x, u, . . . , u(s−1)) ∈ A (194)

if and only if the following equations hold identically in x, u, u(1), . . .

δ f

δuα
= 0, α = 1, . . . , m. (195)

The statement that the relation (194) implies (195) follows immediately from
Lemma 2. For the proof of the inverse statement that (195) implies (194), see [33],
Chap. 4, Sect. 3.5, and [32]. See also [4], Sect. 8.4.1.

We will use Proposition 8 also in the particular case of one independent variable
x and one dependent variable u = y. Then it is formulated as follows.

Proposition 9 A differential function f (x, y, y′, . . . , y(s)) ∈ A is the total deriva-
tive

f = Dx (g), g(x, y, y′, . . . , y(s−1)) ∈ A (196)

if and only if the following equation holds identically in x, y, y′, . . .

δ f

δy
= 0. (197)

Here δ f /δy is the Euler-Lagrange operator (184)

δ

δy
= ∂

∂y
− Dx

∂

∂y′ + D2
x

∂

∂y′′ − D3
x

∂

∂y′′′ + · · · . (198)
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2.1.3 Adjoint Equation to Linear ODE

Let us consider an arbitrary sth-order linear ordinary differential operator

L[y] = a0y(s) + a1y(s−1) + · · · + as−2y′′ + as−1y′ + as y (199)

where ai = ai (x).We know from Sect. 1.1.5 that the adjoint operator to (199) can be
calculated by using Eq. (8). I give here the independent proof based on the operator
identity (179).

Proposition 10 The adjoint operator to (199) can be calculated by the formula

L∗[z] = δ(zL[y])
δy

· (200)

Proof Let

X = w
∂

∂y
+ w′ ∂

∂y′ + w′′ ∂

∂y′′ + · · · (201)

be the operator (186) with one independent variable x and one dependent variable
u = y, where the prolongation formulae (187) are written using the notation

w′ = Dx (w), w′′ = D2
x (w), . . . . (202)

In this notation the operator (183) is written

N = w
δ

δy′ + w′ δ

δy′′ + w′′ δ

δy′′′ + · · · .

Having in mind its application to the differential function L[y] given by (199) we
consider the following restricted form of N

N = w
δ

δy′ + w′ δ

δy′′ + · · · + w(s−1) δ

δy(s)
· (203)

The identity (179) has the form

X = w
δ

δy
+ DxN . (204)

We act by both sides of this identity on zL[y], where z is a new dependent variable:

X (zL[y]) = w
δ(zL[y])

δy
+ DxN(zL[y]) . (205)

Since the operator (201) does not act on the variables x and z, we have
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X (zL[y]) = zX (L[y]). (206)

Furthermore we note that
X (L[y]) = L[w]. (207)

Inserting (206) and (207) in Eq. (205) we obtain

zL[w] − w
δ(zL[y])

δy
= Dx (Ψ ) (208)

where Ψ is a quadratic form Ψ = Ψ [w, z] defined by

Ψ = N(zL[y]). (209)

After replacing w with y Eq. (208) coincides with Eq. (3) for the adjoint operator

zL[y] − yL∗[z] = Dx (ψ) (210)

where L∗[z] is given by the formula (200) and ψ = ψ[y, z] is defined by

ψ[y, z] = Ψ [w, z]∣∣
w=y ≡ N(zL[y])∣∣

w=y . (211)
��

Remark 13 Let us find the explicit formula for ψ in Eq. (210) We write the operator
N given by Eq. (203) in the expanded form

N = w

[
∂

∂y′ − Dx
∂

∂y′′ + · · · + (−Dx )
s−1 ∂

∂y(s)

]

+ w′
[

∂

∂y′′ − Dx
∂

∂y′′′ + · · · + (−Dx )
s−2 ∂

∂y(s)

]

+ w(s−2)
[

∂

∂y(s−1)
− Dx

∂

∂y(s)

]
+ w(s−1) δ

δy(s)

act on zL[y] written in the form

zL[y] = as yz + as−1y′z + as−2y′′z + · · · + a1y(s−1)z + a0y(s)z

and obtain Ψ. We replace w with y in Ψ = Ψ [w, z] and ψ = ψ[y, z]

ψ[y, z] = y
[
as−1 z − (as−2 z)′ + · · · + (−1)s−1(a0 z)(s−1)

]

+ y′ [as−2 z − (as−3 z)′ + · · · + (−1)s−2(a0 z)(s−2)
]

(212)

+ y(s−2) [a1 z − (a0 z)′
]+ y(s−1) a0 z.
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The expression (212) is obtained in the classical literature using integration by
parts (see e.g., [34, Chap. 5, Sect. 4, Eq. (31′)]).

2.1.4 Conservation Laws and Integrating Factors
for Linear ODEs

Consider an sth-order homogeneous linear ordinary differential equation

L[y] = 0 (213)

where L[y] is the operator defined by Eq. (199). If L[y] is a total derivative

L[y] = Dx

(
ψ(x, y, y′, . . . , y(s−1))

)
(214)

the Eq. (213) can be written as a conservation law

Dx

(
ψ(x, y, y′, . . . , y(s−1))

)
= 0

whence upon integration one obtains a linear equation of order s − 1

ψ(x, y, y′, . . . , y(s−1)) = C1. (215)

We can also reduce the order of the non-homogeneous equation

L[y] = f (x) (216)

by rewriting it in the conservation form

Dx

[
ψ(x, y, y′, . . . , y(s−1)) −

∫
f (x)dx

]
= 0. (217)

Integrating it once we obtain the non-homogeneous linear equation of order s − 1

ψ(x, y, y′, . . . , y(s−1)) = C1 +
∫

f (x)dx .

Example 15 Consider the second-order equation

y′′ + y′ sin x + y cos x = 0.

We have
y′′ + y′ sin x + y cos x = Dx (y′ + y sin x).
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Therefore the second-order equation in question reduces to the first-order equation

y′ + y sin x = C1.

Integrating the latter equation we obtain the general solution

y =
[

C2 + C1

∫
e− cos x dx

]
ecos x

to our second-order equation. Dealing likewise with the non-homogeneous equation

y′′ + y′ sin x + y cos x = 2x

we obtain its general solution

y =
[

C2 +
∫ (

C1 + x2
)
e− cos x dx

]
ecos x .

If L[y] in Eq. (213) is not a total derivative, one can find an appropriate factor
φ(x) 	= 0, called an integrating factor, such that φ(x)L[y] becomes a total derivative

φ(x)L[y] = Dx

(
ψ(x, y, y′, . . . , y(s−1))

)
. (218)

A connection between integrating factors and the adjoint equations for linear equa-
tions is well known in the classical literature (see e.g., [34], Chap. 5, Sect. 4). Propo-
sition 9 gives a simple way to establish this connection and prove the following
statement.

Proposition 11 A function φ(x) is an integrating factor for Eq. (213) if and only if

z = φ(x), φ(x) 	= 0 (219)

is a solution of the adjoint equation 6 to Eq. (213)

L∗[z] = 0. (220)

Knowledge of a solution (219) to the adjoint equation (220) allows to reduce the
order of Eq. (213) by integrating Eq. (218)

ψ(x, y, y′, . . . , y(s−1)) = C1. (221)

Here C1 is an arbitrary constants and ψ defined according to Eqs. (209) and
(210), i.e.,

ψ = N(zL[y])∣∣
w=y . (222)

6 This statement is applicable to nonlinear ODEs as well, see [35].
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Proof If (219) is a solution of the adjoint Eq. (220), we substitute it in Eq. (210) and
arrive at Eq. (218). Hence φ(x) is an integrating factor for Eq. (213). Conversely, if
φ(x) is an integrating factor for Eq. (213), then Eq. (218) is satisfied. NowProposition
9 yields

δ(φ(x)L[y])
δy

= 0.

Hence (219) is a solution of the adjoint Eq. (220). Finally, Eq. (222) follows from
(210). ��
Example 16 Let us apply the above approach to the first-order equation

y′ + P(x)y = Q(x). (223)

Here L[y] = y′ + P(x)y. The adjoint Eq. (220) is written

z′ − P(x)z = 0.

Solving it we obtain the integrating factor

z = e
∫

P(x)dx .

Therefore we rewrite Eq. (223) in the equivalent form

[
y′ + P(x)y

]
e
∫

P(x)dx = Q(x)e
∫

P(x)dx (224)

and compute the function Ψ given by Eq. (209)

Ψ = N(zL[y]) = w
∂

∂y′ [z(y′ + P(x)y)] = wz = we
∫

P(x)dx .

Equation (222) yields
ψ = ye

∫
P(x)dx . (225)

Now we can take (224) instead of Eq. (216) and write it in the form (217) with ψ
given by (225). Then we obtain

Dx

[
ye
∫

P(x)dx −
∫

Q(x)e
∫

P(x)dxdx

]
= 0

whence

ye
∫

P(x)dx = C1 +
∫

Q(x)e
∫

P(x)dxdx .
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Solving the latter equation for y we obtain the general solution of Eq. (223)

y =
[

C1 +
∫

Q(x)e
∫

P(x)dxdx

]
e− ∫ P(x)dx . (226)

Example 17 Let us consider the second-order homogeneous equation

y′′ + sin x

x2
y′ +

(
cos x

x2
− sin x

x3

)
y = 0. (227)

Its left-hand side does not satisfy the total derivative condition (197) because

δ

δy

[
y′′ + sin x

x2
y′ +

(
cos x

x2
− sin x

x3

)
y

]
= sin x

x2
·

Therefore we will apply Proposition 11. The adjoint equation to equation (227) is
written

z′′ − sin x

x2
z′ + sin x

x3
z = 0.

We take its obvious solution z = x, substitute it in Eq. (209) and using (211) find

Ψ = N
[

xy′′ + sin x

x
y′ +

(
cos x

x
− sin x

x2

)
y

]
= sin x

x
w − w + xw′.

Therefore Eq. (221) is written

xy′ +
(
sin x

x
− 1

)
y = C1.

Integrating this first-order linear equation we obtain the general solution of Eq. (227)

y =
(

C2 + C1

∫
1

x2
e
∫ sin x

x2
dxdx

)
xe− ∫ sin x

x2
dx

. (228)

2.1.5 Application of the Operator Identity to Linear PDEs

Using the operator identity (179) one can easily extend the Eqs. (210) and (211) for
linear ODEs to linear partial differential equations and systems. Let us consider the
second-order linear operator

L[u] = ai j (x)ui j + bi (x)ui + c(x)u (229)
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considered in Sect. 1.1.5, Remark 1. The adjoint operator is

L∗[v] ≡ δ(vF[u])
δu

= Di D j (a
i jv) − Di (b

iv) + cv. (230)

Let us take the operator identity (179)

X = W
δ

δu
+ Di Ni (231)

where X is the operator (186) with one dependent variable u

X = W
∂

∂u
+ Wi

∂

∂ui
+ Wi j

∂

∂ui j

and Ni are the operators (183)

Ni = W
δ

δui
+ W j

δ

δui j
= W

[
∂

∂ui
− D j

∂

∂ui j

]
+ W j

∂

∂ui j
·

We use above the notation Wi = Di (W ), Wi j = Di D j (W ). Now we proceed as in
Sect. 2.1.3. Namely, we act on vL[u] by both sides of the identity (231)

X (vL[u]) = W
δ(vL[u])

δu
+ Di Ni (vL[u])

take into account that X does not act on the variables xi , v, and that X (L[u])
= L[W ], use Eq. (230) and obtain

vL[W ]) − W L∗[v] = Di Ni (vL[u]).

Letting here W = u we arrive at the following generalization of Eq. (210)

vL[u] − uL∗[v] = Di (ψ
i ) (232)

where ψi are defined as in (211) and (212)

ψi = Ni (vL[u])∣∣W=u ≡ ai j (x)[vui − uvi ] + [bi (x) − Di
(
ai j (x)

)]uv. (233)

Equation (232) with ψi given by (233) is called Lagrange’s identity (see [36], p. 80).
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2.1.6 Application of the Operator Identity to Nonlinear
Equations

Let us apply the constructions of Sect. 2.1.5 to nonlinear equation (6)

Fα

(
x, u, u(1), . . . , u(s)

) = 0, α = 1, . . . , m. (234)

We write the operator (186) in the form

X = W α ∂

∂uα
+ W α

i
∂

∂uα
i

+ W α
i j

∂

∂uα
i j

+ · · ·

where W α
i = Di (W α), W α

i j = Di D j (W α), . . . . Then the operator (183) is written

Ni = W α
j

δ

δuα
i

+ W α δ

δuα
i j

+ · · · .

We act on vβ Fβ by both sides of the operator identity (179)

X = W α δ

δuα
+ Di Ni

denote by F∗
α[v] the adjoint operator defined by Eq. (8) and obtain

vβ F̂β[W ] − W αF∗
α[v] = Di (Ψ

i ) (235)

where
Ψ i = Ni (vβ Fβ)

and F̂β[W ] is the linear approximation to Fβ defined by (see also Sect. 1.1.3)

F̂β[W ] = X (Fβ) ≡ W α ∂Fβ

∂uα
+ W α

i
∂Fβ

∂uα
i

+ W α
i j

∂Fβ

∂uα
i j

+ · · · .

Remark 14 Equation (235) shows that F∗
α[v] = F̂∗

β [W ], i.e., the adjoint operator

F∗
α to nonlinear equation (234) is the usual adjoint operator F̂∗

β to the linear operator

F̂β[W ] (see also [37]). But the linear self-adjointness of F̂β[W ] is not identical
with the nonlinear self-adjointness of Eq. (234). For example, the KdV equation
F ≡ ut − uxxx − uux = 0 is nonlinearly self-adjoint (see Example 2 in Sect. 1.1.6).
But its linear approximation F̂[W ] = Wt − Wxxx −uWx − W ux is not a self-adjoint
linear operator. Moreover, all linear equations are nonlinearly self-adjoint.
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2.2 Conservation Laws: Generalities and Explicit Formula

2.2.1 Preliminaries

Let us consider a system of m differential equations

Fᾱ

(
x, u, u(1), . . . , u(s)

) = 0, ᾱ = 1, . . . , m (236)

with m dependent variables u1, . . . , um and n independent variables x1, . . . , xn .

A conservation law for Eq. (236) is written

[
Di (C

i )
]
(236)

= 0. (237)

The subscript |(236) means that the left-hand side of (237) is restricted on the solutions
of Eq. (236). In practical calculations this restriction can be achieved by solving
Eq. (236) with respect to certain derivatives of u and eliminating these derivatives
from the left-hand side of (237). For example, if (236) is an evolution equation

ut = Φ(t, x, u, ux , uxx )

the restriction |(236) can be understood as the elimination of ut . The n-dimensional
vector

C = (C1, . . . , Cn) (238)

satisfying Eq. (237) is called a conserved vector for the system (236). If its com-
ponents are functions Ci = Ci (x, u, u(1), . . .) of x, u and derivatives u(1), . . . of a
finite order, the conserved vector (238) is called a local conserved vector.

Since the conservation equation (237) is linear with respect toCi , any linear com-
bination with constant coefficients of a finite number of conserved vectors is again
a conserved vector. It is obvious that if the divergence of a vector (238) vanishes
identically, it is a conserved vector for any system of differential equations. This
is a trivial conserved vectors for all differential equations. Another type of trivial
conserved vectors for Eq. (236) are provided by those vectors whose components Ci

vanish on the solutions of the system (236). One ignores both types of trivial con-
served vectors. In other words, conserved vectors (238) are simplified by considering
them up to addition of these trivial conserved vectors.

The following less trivial operation with conserved vectors is particularly useful
in practice. Let

C1
∣∣
(236) = C̃1 + D2(H2) + · · · + Dn(Hn) (239)

the conserved vector (238) can be replaced with the equivalent conserved vector
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C̃ = (C̃1, C̃2, . . . , C̃n) = 0 (240)

with the components

C̃1, C̃2 = C2 + D1(H2), , . . . , C̃n = Cn + D1(Hn). (241)

The passage from (238) to the vector (240) is based on the commutativity of the total
differentiations. Namely, we have

D1D2(H2) = D2Dt (H2), D1Dn(Hn) = Dn Dt (Hn)

and therefore the conservation Eq. (237) for the vector (238) is equivalent to the
conservation equation

[
Di (C̃

i )
]
(236)

= 0

for the vector (240). If n ≥ 3, the simplification (241) of the conserved vector can
be iterated: if C̃2 contains the terms

D3(H̃3) + · · · + Dn(H̃n)

one can subtract them from C̃2 and add to C̃3, . . . , C̃n the corresponding terms

D2(H̃3), . . . , D2(H̃n).

Note that the conservation law (237) for equations (236) can be written in the
form

Di (C
i ) = μᾱFᾱ

(
x, u, u(1), . . . , u(s)

)
(242)

with undetermined coefficients μᾱ = μᾱ(x, u, u(1), . . .) depending on a finite num-
ber of variables x, u, u(1), . . . . If Ci depend on higher-order derivatives, Eq. (242)
is replaced with

Di (C
i ) = μᾱFᾱ + μi ᾱ Di

(
Fᾱ

)+ μi j ᾱ Di D j
(
Fᾱ

)+ · · · . (243)

It is manifest from Eq. (242) or Eq. (243) that the total differentiations of a con-
served vector (238) provide again conserved vectors. Therefore, e.g., the vector

D1(C) = (
D1(C

1), . . . , D1(C
n)
)

(244)

obtained from the known vector (238) is not considered as a new conserved vector.
If one of the independent variables is time, e.g., x1 = t, then the conservation

Eq. (237) is often written, using the divergence theorem, in the integral form
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d

dt

∫
IRn−1

C1 dx2 · · · dxn = 0. (245)

But the differential form (237) of conservation laws carries, in general, more infor-
mation than the integral form (245). Using the integral form (245) one may even lose
some nontrivial conservation laws. As an example, consider the two-dimensional
Boussinesq equations

Δψt − gρx − f vz = ψxΔψz − ψzΔψx

vt + f ψz = ψxvz − ψzvx (246)

ρt + N 2

g
ψx = ψxρz − ψzρx

used in geophysical fluid dynamics for investigating uniformly stratified incompress-
ible fluid flows in the ocean. Here Δ is the two-dimensional Laplacian

Δ = ∂2

∂x2
+ ∂2

∂z2

andψ is the stream function so that the x, z- components u, w of the velocity (u, v, w)

of the fluid are given by
u = ψz, w = −ψx . (247)

Equation (246) involve the physical constants: g is the gravitational acceleration, f
is the Coriolis parameter, and N is responsible for the density stratification of the
fluid. Each equation of the system (246) has the conservation form (237), namely

Dt (Δψ) + Dx (−gρ + ψzΔψ) + Dz(− f v − ψxΔψ) = 0

Dt (v) + Dx (vψz) + Dz( f ψ − vψx ) = 0 (248)

Dt (ρ) + Dx

(
N 2

g
ψ + ρψz

)
+ Dz(−ρψx ) = 0.

In the integral form (245) these conservation laws are written

d

dt

∫ ∫
Δψdxdz = 0,

d

dt

∫ ∫
vdxdz = 0,

d

dt

∫ ∫
ρdxdz = 0. (249)

We can rewrite the differential conservation equations (248) in an equivalent form
by using the operations (239)–(241) of the conserved vectors. Namely, let us apply
these operations to the first Eq. (248), i.e., to the conserved vector

C1 = Δψ, C2 = −gρ + ψzΔψ, C3 = − f v − ψxΔψ. (250)

Noting that
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C1 = Dx (ψx ) + Dz(ψz)

and using the operations (239)–(241) we transform the vector (250) to the form

C̃1 = 0, C̃2 = −gρ + ψt x + ψzΔψ, C̃3 = − f v + ψt z − ψxΔψ. (251)

The integral conservation equation (245) for the vector in (251) is trivial, 0 = 0.
Thus, after the transformation of the conserved vector (250) to the equivalent form
(251) we have lost the first integral conservation law in (249). But it does not mean
that the conserved vector (251) has no physical significance. Indeed, if we write the
differential conservation equation with the vector (251), we again obtain the first
equation of the system (246)

Dx (C̃
2) + Dz(C̃

3) = Δψt − gρx − f vz − ψxΔψz + ψzΔψx .

Let us assume that Eq. (236) have a nontrivial local conserved vector satisfying
Eq. (242). Then not all μβ̄ vanish simultaneously due to non-triviality of the con-
served vector. Furthermore, since μβ̄ Fβ̄ depends on x, u and a finite number of
derivatives u(1), u(2), . . . (i.e., it is a differential function) and has a divergence form,
the following equations hold (for a detailed discussion see [4], Sect. 8.4.1)

δ

δα

[
μβ̄ Fβ̄

(
x, u, u(1), . . . , u(s)

)] = 0, α = 1, . . . , m. (252)

Note that Eq. (252) are identical with Eq. (69) where the differential substitution
(76) is made with ϕᾱ = μᾱ. Hence, the system (236) is nonlinearly self-adjoint. I
formulate this simple observation as a theorem since it is useful in applications (see
Sect. 2.5).

Theorem 4 Any system of differential equation (236) having a nontrivial local con-
served vector satisfying Eq. (242) is nonlinearly self-adjoint.

2.2.2 Explicit Formula for Conserved Vectors

UsingDefinition 4of nonlinear self-adjointness and the theoremon conservation laws
proved in [1] by using the operator identity (179), we obtain the explicit formula for
constructing conservation laws associated with symmetries of any nonlinearly self-
adjoint system of equations. The method is applicable independently on the number
of equations in the system and the number of dependent variables. The result is as
follows.

Theorem 5 Let the system of differential equation (236) be nonlinearly self-adjoint.
Specifically, let the adjoint system (69)–(236) be satisfied for all solutions of Eq. (236)
upon a substitution (70)
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vᾱ = ϕᾱ(x, u), ᾱ = 1, . . . , m. (253)

Then any Lie point, contact or Lie-Bäcklund symmetry

X = ξi (x, u, u(1), . . .)
∂

∂xi
+ ηα(x, u, u(1), . . .)

∂

∂uα
(254)

as well as a nonlocal symmetry of Eq. (236) leads to a conservation law (237) con-
structed by the following formula

Ci = ξiL + W α

[
∂L
∂uα

i
− D j

(
∂L
∂uα

i j

)
+ D j Dk

(
∂L

∂uα
i jk

)
− · · ·

]
(255)

+ D j
(
W α

) [ ∂L
∂uα

i j
− Dk

(
∂L

∂uα
i jk

)
+ · · ·

]
+ D j Dk

(
W α

) [ ∂L
∂uα

i jk
− · · ·

]

where

W α = ηα − ξ j uα
j (256)

and L is the formal Lagrangian for the system (236)

L = vβ̄ Fβ̄ . (257)

In (255) the formal Lagrangian L should be written in the symmetric form with
respect to all mixed derivatives uα

i j , uα
i jk, . . . and the “non-physical variables” vᾱ

should be eliminated via Eq. (253).

One can omit in (255) the term ξiL when it is convenient. This term provides a
trivial conserved vector mentioned in Sect. 2.2.1 becauseL vanishes on the solutions
of Eq. (236). Thus, the conserved vector (255) can be taken in the following form

Ci = W α

[
∂L
∂uα

i
− D j

(
∂L
∂uα

i j

)
+ D j Dk

(
∂L

∂uα
i jk

)
− · · ·

]
(258)

+ D j
(
W α

) [ ∂L
∂uα

i j
− Dk

(
∂L

∂uα
i jk

)
+ · · ·

]
+ D j Dk

(
W α

) [ ∂L
∂uα

i jk
− · · ·

]
.

Remark 15 One can use Eq. (258) for constructing conserved vectors even if the sys-
tem (236) is not self-adjoint, in particular, if one cannot find explicit formulae (253)
or (76) for point or differential substitutions, respectively. The resulting conserved
vectors will be nonlocal in the sense that they involve the variables v connected with
the physical variables u via differential equations, namely, adjoint equations to (236).
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Remark 16 Theorem 5, unlike Nother’s theorem 3, does not require additional
restrictions such as the invariance condition (189) or the divergence condition men-
tioned in Remark 12.

2.3 A Nonlinearly Self-Adjoint Irrigation System

Let us apply Theorem 5 to Eq. (171) satisfying the condition (173)

C(ψ)ψt = [K (ψ)ψx ]x + [K (ψ) (ψz − 1)
]

z − S(ψ) (259)

S ′(ψ) = aC(ψ), a = const. (260)

The formal Lagrangian (257) for Eq. (259) has the form

L =
[
−C(ψ)ψt + K (ψ)(ψxx + ψzz) + K ′(ψ)(ψ2

x + ψ2
z − ψz) − S(ψ)

]
v. (261)

We will use the substitution (175) of the particular form

v = eat . (262)

Denoting t = x1, x = x2, z = x3 we write the conservation equation (237) in the
form

Dt (C
1) + Dx (C

2) + Dz(C
3) = 0. (263)

This equation should be satisfied on the solutions of Eq. (259).
The formal Lagrangian (261) does not contain derivatives of order higher than

two. Therefore in our case Eq. (258) take the simple form

Ci = W

[
∂L
∂ψi

− D j

(
∂L
∂ψi j

)]
+ D j (W )

∂L
∂ψi j

(264)

and yield

C1 = W
∂L
∂ψt

C2 = W

[
∂L
∂ψx

− Dx

(
∂L

∂ψxx

)]
+ Dx (W )

∂L
∂ψxx

C3 = W

[
∂L
∂ψz

− Dz

(
∂L

∂ψzz

)]
+ Dz(W )

∂L
∂ψzz

·

Substituting here the expression (261) for L we obtain
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C1 = −WC(ψ)v

C2 = W [2K ′(ψ)vψx − Dx (K (ψ)v)] + Dx (W )K (ψ)v

C3 = W [K ′(ψ)v(2ψz − 1) − Dz(K (ψ)v)] + Dz(W )K (ψ)v

where v should be eliminated by means of the substitution (262). So, we have

C1 = −WC(ψ)eat

C2 = [W K ′(ψ)ψx + Dx (W )K (ψ)]eat (265)

C3 = [W K ′(ψ)(ψz − 1) + Dz(W )K (ψ)]eat .

Since Eq. (259) does not explicitly involve the independent variables t, x, z, it
is invariant under the translations of these variables. Let us construct the conserved
vector (265) corresponding to the time translation group with the generator

X = ∂

∂t
· (266)

For this operator Eq. (256) yields

W = −ψt . (267)

Substituting (267) in Eq. (265) we obtain

C1 = C(ψ)ψte
at

C2 = −[K ′(ψ)ψtψx + K (ψ)ψt x ]eat (268)

C3 = −[K ′(ψ)ψt (ψz − 1) + K (ψ)ψt z]eat .

Now we replace in C1 the term C(ψ)ψt by the right-hand side of Eq. (259) to obtain

C1 = −S(ψ)eat + Dx
(
K (ψ)ψxe

at)+ Dz
(
K (ψ)(ψz − 1)eat) .

When we substitute this expression in the conservation Eq. (263), we can write

Dt
(
Dx
(
K (ψ)ψxe

at)) = Dx
(
Dt
(
K (ψ)ψxe

at)) .
Therefore we can transfer the terms Dx (. . .) and Dz(. . .) from C1 to C2 and C3,

respectively (see 241). Thus, we rewrite the vector (268), changing its sign, as follows

C1 = S(ψ)eat

C2 = [K ′(ψ)ψtψx + K (ψ)ψt x ]eat − Dt
(
K (ψ)ψxe

at)
C3 = [K ′(ψ)ψt (ψz − 1) + K (ψ)ψt z]eat − Dt

(
K (ψ)(ψz − 1)eat) .
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Working out the differentiation Dt in the last terms of C2 and C3 we finally arrive
at the following vector

C1 = S(ψ)eat , C2 = aK (ψ)ψxe
at , C3 = aK (ψ)(ψz − 1)eat . (269)

The reckoning shows that the vector (269) satisfies the conservation equation (263)
due to the condition (260). Note that C1 is the density of the conserved vector (269).

The use of the general substitution (175) instead of its particular case (262) leads
to the conserved vector with the density

C1 = S(ψ)(bx + l)eat .

This approach opens a new possibility to find a variety of conservation laws for
the irrigation model (171) by considering other self-adjoint cases of the model and
using the extensions of symmetry Lie algebras (see [15–17], vol. 2, Sect. 9.8).

2.4 Utilization of Differential Substitutions

2.4.1 Equation ux y = sin u

We return to Sect. 1.3.2 and calculate the conservation laws for Eq. (78)

uxy = sin u (270)

using the differential substitution (79)

v = A1[xux − yuy] + A2ux + A3uy (271)

and the admitted three-dimensional Lie algebra with the basis

X1 = ∂

∂x
, X2 = ∂

∂y
, X3 = x

∂

∂x
− y

∂

∂y
· (272)

The conservation equation for Eq. (270) will be written in the form

Dx (C
1) + Dy(C

2) = 0.

We write the formal Lagrangian for Eq. (270) in the symmetric form

L =
(
1

2
uxy + 1

2
uyx − sin u

)
v. (273)
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Equation (258) yield

C1 = 1

2
Dy(W )v − 1

2
Wvy, C2 = 1

2
Dx (W )v − 1

2
Wvx (274)

where we have to eliminate the variable v via the differential substitution (271).
Substituting in (274) W = −ux corresponding to the operator X1 from (272),

replacing v with (271) and uxy with sin u, then transferring the terms of the form
Dy(. . .) from C1 to C2 (see the simplification (241)) we obtain

C1 = A1 cos u, C2 = 1

2
A1u2

x .

We let A1 = 1 and conclude that the application of Theorem 5 to the symmetry X1
yields the conserved vector

C1 = cos u, C2 = 1

2
u2

x · (275)

The similar calculations with the operator X2 from (272) lead to the conserved vector

C1 = 1

2
u2

y , C2 = cos u. (276)

The third symmetry, X3 from (272), does not lead to a new conserved vector. Indeed,
in this case W = yuy − xux . Substituting it in the first formula (274) we obtain after
simple calculations

C1 = 1

2
A3u2

y − A2 cos u + Dy

[
(A2y + A3x)

(
1

2
ux uy + cos u

)]
.

Hence, upon transferring the term Dy(. . .) from C1 to C2 the resulting C1 will be a
linear combination with constant coefficients of the components C1 of the conserved
vectors (275) and (276). The samewill be true forC2.Therefore the conserved vector
provided by the symmetry X3 will be a linear combination with constant coefficients
of the conserved vectors (275) and (276).

One can also use the Noether theorem because Eq. (270) has the classical
Lagrangian, namely

L = −1

2
ux uy + cos u. (277)

Then the symmetries X1 and X2 provide again the conserved vectors (275) and (276),
respectively. But now we obtain one more conserved vector using X3, namely

C1 = x cos u − y

2
u2

y , C2 = x

2
u2

x − y cos u. (278)
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2.4.2 Short Pulse Equation

The differential equation (up to notation and appropriate scaling the physical
variables)

Dt Dx (u) = u + 1

6
D2

x (u
3) (279)

was suggested in [38] (see there Eq. (11), also [39]) as a mathematical model for
the propagation of ultra-short light pulses in media with nonlinearities, e.g., in silica
fibers. The mathematical model is derived in [38] by considering the propagation
of linearly polarized light in a one-dimensional medium and assuming that the light
propagates in the infrared range. The final step in construction of the model is based
on the method of multiple scales.

Equation (279) is connected with Eq. (270) by a non-point transformation which
is constructed in [40] as a chain of differential substitutions (given also in [39] by
Eq. (2)). Using this connection, an exact solitary wave solution (a pulse solution) to
Eq. (279) is constructed in [39]. One can also find in [40] a Lax pair and a recursion
operator for Eq. (279).

Note that Eq. (279) does not have a conservation form. I will find a conservation
law of equation (279) thus showing that it can be rewritten in a conservation form.
A significance of this possibility is commonly known and is not discussed here.

We write the short pulse Eq. (279) in the expanded form

uxt = u + 1

2
u2uxx + uu2

x (280)

so that the formal Lagrangian is written

L = v

[
uxt − u − 1

2
u2uxx − uu2

x

]
. (281)

Substituting (281) in (69) we obtain the following adjoint equation to equation (280)

vxt = v + 1

2
u2vxx . (282)

We first demonstrate the following statement.

Proposition 12 Equation (279) is not nonlinearly self-adjoint with a substitution

v = ϕ(t, x, u) (283)

but it is nonlinearly self-adjoint with the differential substitution

v = ut − 1

2
u2ux . (284)
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Proof We write the nonlinear self-adjointness condition (72)
[
vxt − v − 1

2
u2vxx

]
(283)

= λ[uxt − u − 1

2
u2uxx − uu2

x ]

substitute here the expression (283) for v and its derivatives

vxx = ϕuuxx + ϕuuu2
x + 2ϕxuux + ϕxx

vxt = ϕuuxt + ϕuuux ut + ϕxuut + ϕtuux + ϕxt (285)

and first obtain λ = ϕu by comparing the terms with the second-order derivatives of
u. This reduces the nonlinear self-adjointness condition to the following equation

ϕuuux ut + ϕxuut + ϕtuux + ϕxt − ϕ + ϕxx )

− 1

2
u2(ϕuuu2

x + 2ϕxuux = −ϕu[u + uu2
x ]. (286)

The terms with ut in Eq. (286) yield ϕuu = ϕxu = 0. Then we take the term with u2
x

and obtain ϕu = 0. Hence
ϕ = a(t, x).

Now Eq. (286) gives axx = 0, axt − a = 0, whence a = 0. Thus

ϕ = 0

i.e., the substitution (283) is trivial. This proves the first part of Proposition 12. Its
second part is proved by similar calculations with the substitution

v = ϕ(t, x, u, ux , ut ). ��

I will not reproduce these rather lengthy calculations, but instead we will verify that
the substitution (284) maps any solution of Eq. (270) into a solution of the adjoint
Eq. (282). First we calculate

vx = uxt − 1

2
u2uxx − uu2

x

and see that on the solutions of Eq. (270) we have vx = u. Now we calculate other
derivatives and verify that on the solutions of Eq. (270) the following equations hold

vx = u, vt = utt − 1

2
u2uxt − uux ut , vxt = ut , vxx = ux . (287)
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It is easily seen that Eq. (282) is satisfied. Namely, using (284) and (287) we have

vxt − v − 1

2
u2vxx = ut −

(
ut − 1

2
u2ux

)
− 1

2
u2ux = 0.

ThemaximalLie algebra of point symmetries of Eq. (279) is the three-dimensional
algebra spanned by the operators

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = u

∂

∂u
+ x

∂

∂x
− t

∂

∂t
· (288)

Let us construct the conservation laws

Dt (C
1) + Dx (C

2) = 0 (289)

for the basis operators (288).
Since the formal Lagrangian (281) does not contain derivatives of order higher

than two, Eq. (258) are written (see 264)

Ci = W

[
∂L
∂ui

− D j

(
∂L
∂ui j

)]
+ D j (W )

∂L
∂ui j

·

In our case we have

C1 = − W Dx

(
∂L
∂utx

)
+ Dx (W )

∂L
∂utx

C2 =W

[
∂L
∂ux

− Dt

(
∂L
∂uxt

)
− Dx

(
∂L

∂uxx

)]
(290)

+ Dt (W )
∂L
∂uxt

+ Dx (W )
∂L

∂uxx
·

Substituting in (290) the expression (281) for L written in the symmetric form

L = v

[
1

2
utx + 1

2
uxt − u − 1

2
u2uxx − uu2

x

]
(291)

we obtain

C1 = −1

2
Wvx + 1

2
vDx (W )

C2 = −W
[
uvux + 1

2
vt − 1

2
u2vx

]
+ 1

2
vDt (W ) − 1

2
u2vDx (W ). (292)

Since v should be eliminated via the differential substitution (284), we further sim-
plify this vector by replacing vx with u according to the first Eq. (287) and obtain
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C1 = −1

2
W u + 1

2
vDx (W )

C2 = −W
[
uvux + 1

2
vt − 1

2
u3
]

+ 1

2
vDt (W ) − 1

2
u2vDx (W ) (293)

where v and vt should be replaced with their values given in Eqs. (284) and (287).
Let us construct the conserved vectors using the symmetries (288). Their com-

mutators are

[X1, X3] = −X1, [X2, X3] = X2.

Hence, according to [10], Sect. 22.4, the operator X3 plays a distinguished role.
Namely, the conserved vectors associated with X1 and X2 can be obtained from the
conserved vector provided by X3 using the adjoint actions of the operators X1 and
X2, respectively. Therefore we start with X3. Substituting in (293) the expression

W = u + tut − xux

corresponding to the symmetry X3, eliminating the terms of the form Dx (A) from
C1 and adding them to C2 in the form Dt (A) according to the simplification (241),
we obtain after routine calculations the following conserved vector

C1 = u2, C2 = u2ux ut − u2
t − 1

4
u4 − 1

4
u4u2

x . (294)

The conservation Eq. (289) for the vector (294) holds in the form

Dt (C
1) + Dx (C

2) = 2
(

ut − 1

2
u2ux

)(
u + 1

2
u2uxx + uu2

x − uxt

)
. (295)

Let us turn now to the operators X1 and X2 from (288). To simplify the calculations
it is useful to modify Eq. (293) as follows. Noting that

vDx (W ) = Dx (vW ) − Wvx

we rewrite the vector (292) in the form

C1 = −Wvx , C2 = −W
[
uvux − 1

2
u2vx

]
+ vDt (W ) − 1

2
u2vDx (W ).

Then (293) is replaced with

C1 = −uW

C2 = −W
[
uvux − 1

2
u3
]

+ vDt (W ) − 1

2
u2vDx (W ). (296)
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Substituting in the first formula (296) to expression W = −ut corresponding the
operator X1 we obtain C1 = uut . This is the time derivative of C1 from (294).
Hence the symmetry X1 leads to a trivial conserved vector obtained from the vector
(294) by the differentiation Dt , in accordance with [10]. Likewise, it is manifest
from (296) that the operator X2 leads to a trivial conserved vector obtained from the
conserved vector (294) by the differentiation Dx . Thus we have demonstrated the
following statement.

Proposition 13 The Lie point symmetries (288) of Eq. (280) yield one non-trivial
conserved vector (294). Accordingly, the short pulse Eq. (280) can be written in the
following conservation form

Dt

(
u2
)

+ Dx

(
u2ux ut − u2

t − 1

4
u4 − 1

4
u4u2

x

)
= 0. (297)

2.5 Gas Dynamics

2.5.1 Classical Symmetries and Conservation Laws

Let us consider the polytropic gasdynamic equations

vt + (v · ∇)v + 1

ρ
∇ p = 0

ρt + v · ∇ρ + ρ∇ · v = 0 (298)

pt + v · ∇ p + γ p∇ · v = 0

where γ is a constant known as the polytropic (or adiabatic) exponent. The indepen-
dent variables are the time and the space coordinates

t, x = (x1, . . . , xn), n ≤ 3. (299)

The dependent variables are the velocity, the density and the pressure

v = (v1, . . . , vn), ρ, p. (300)

Equation (298) with arbitrary γ have the Lie algebra of point symmetries spanned by

X0 = ∂

∂t
, Xi = ∂

∂xi
, Y0 = t

∂

∂t
+ xi ∂

∂xi
, Yi = t

∂

∂xi
+ ∂

∂vi

Xi j = x j ∂

∂xi
− xi ∂

∂x j
+ v j ∂

∂vi
− vi ∂

∂v j
, i < j (301)

Z0 = ρ
∂

∂ρ
+ p

∂

∂ p
, Z1 = t

∂

∂t
− vi ∂

∂vi
+ 2ρ

∂

∂ρ
, i, j = 1, . . . , n
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and the following classical conservation laws

d

dt

∫

Ω(t)

ρdω = 0 − Conservation of mass

d

dt

∫

Ω(t)

(
1

2
ρ|v|2 + p

γ − 1

)
dω = −

∫

S(t)

p v · νd S − Energy

d

dt

∫

Ω(t)

ρvdω = −
∫

S(t)

p νdS − Momentum

d

dt

∫

Ω(t)

ρ(x × v)dω = −
∫

S(t)

p(x × ν)dS − Angular momentum

d

dt

∫

Ω(t)

ρ(tv − x)dω = −
∫

S(t)

tp νdS − Center-of-mass.

The conservation laws are written in the integral form by using the standard symbols

Ω(t) − arbitrary n-dimensional volume, moving with fluid
S(t) − boundary of the volumeΩ(t)
ν − unit (outer) normal vector to the surface S(t).

If we write the above conservation laws in the general form

d

dt

∫

Ω(t)

T dω = −
∫

S(t)

(χ · ν)dS (302)

then the differential form of these conservation laws will be

Dt (T ) + ∇ · (χ + T v) = 0. (303)

2.5.2 Adjoint Equations and Self-Adjointness When n = 1

Theorem 4 from Sect. 2.2.1 shows that the system of gasdynamic Eq. (298) is non-
linearly self-adjoint. Let us illustrate this statement in the one-dimensional case

vt + vvx + 1

ρ
px = 0, ρt + vρx + ρvx = 0, pt + vpx + γ pvx = 0. (304)

We write the formal Lagrangian in the form

L = U
(
vt + vvx + 1

ρ
px

)
+ R(ρt + vρx + ρvx ) + P(pt + vpx + γ pvx ) (305)
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and obtain the following adjoint system for the new dependent variables U, R, P

δL
δv

≡ −Ut − vUx − ρRx + (1 − γ)Ppx − γ pPx = 0

δL
δρ

≡ −Rt − vRx − 1

ρ2
U px = 0 (306)

δL
δ p

≡ −Pt − 1

ρ
Ux + 1

ρ2
Uρx + (γ − 1)Pvx − vPx = 0.

Let us take, e.g., the conservation of energy from Sect. 2.2.1. Then we have

T = 1

2
ρv2 + p

γ − 1
, χ = pv

and using the differential form (303) of the energy conservation we obtain following
the Eq. (242)

Dt

(
1

2
ρv2 + p

γ − 1

)
+ Dx

(
1

2
ρv3 + γ

γ − 1
pv

)

= ρv
(
vt + vvx + 1

ρ
px

)
+ v2

2
(ρt + vρx + ρvx ) + 1

γ − 1
(pt + vpx + γ pvx ).

(307)

Hence, the adjoint Eq. (306) are satisfied for all solutions of the gasdynamic Eq. (298)
upon the substitution

U = ρv, R = v2

2
, P = 1

γ − 1
· (308)

This conclusion can be easily verified by the direct substitution of (308) in the adjoint
system (306). Namely, we have

δL
δv

∣∣∣∣
(308)

= −ρ
(
vt + vvx + 1

ρ
px

)
− v(ρt + vρx + ρvx )

δL
δρ

∣∣∣∣
(308)

= −v
(
vt + vvx + 1

ρ
px

)
(309)

δL
δ p

∣∣∣∣
(308

= 0.
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2.5.3 Adjoint System to Equations (298) with n ≥ 2

For gasdynamicEq. (298)with twoand three spacevariables xi the formalLagrangian
(305) is replaced by

L = U ·
(

vt + (v · ∇)v + 1

ρ
∇ p
)

+ R(ρt + v · ∇ρ + ρ∇ · v)

+ P(pt + v · ∇ p + γ p∇ · v) (310)

where the vector U = (U 1, . . . , U n) and the scalars R, P are new dependent vari-
ables. Using this formal Lagrangian, we obtain the following adjoint system instead
of (306)

δL
δv

≡ − Ut − (v · ∇)U + (U · ∇)v − (∇ · v)U

− ρ∇ R + (1 − γ)P∇ p − γ p∇ P = 0

δL
δρ

≡ − Rt − v · ∇ R − 1

ρ2
U · ∇ p = 0 (311)

δL
δ p

≡ − Pt − 1

ρ
(∇ · U) + 1

ρ2
U · ∇ρ + (γ − 1)P(∇ · v) − v · ∇ P = 0.

The nonlinear self-adjointness of the system (298) can be demonstrated as in the
one-dimensional case discussed in Sect. 2.5.2.

2.5.4 Application to Nonlocal Symmetries of the Chaplygin Gas

The Chaplygin gas is described by the one-dimensional gasdynamic Eq. (304) with
γ = −1, i.e.,

vt + vvx + 1

ρ
px = 0, ρt + vρx + ρvx = 0, pt + vpx − pvx = 0. (312)

Equation (312) have the same maximal Lie algebra of Lie point symmetries as
Eq. (304) with arbitrary γ. This algebra is spanned by the symmetries (301) in the
one-dimensional case, namely

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = t

∂

∂x
+ ∂

∂v
, X4 = t

∂

∂t
+ x

∂

∂x

X5 = ρ
∂

∂ρ
+ p

∂

∂ p
, X6 = t

∂

∂t
− v

∂

∂v
+ 2ρ

∂

∂ρ
· (313)
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But the Chaplygin gas has more symmetries than an arbitrary one-dimensional poly-
tropic gas upon rewriting it in Lagrange’s variables obtained by replacing x and ρ
with τ and q, respectively, obtained by the following nonlocal transformation

τ =
∫

ρdx, q = 1

ρ
· (314)

Then the system (312) becomes

qt − vτ = 0, vt + pτ = 0, pt − p

q
vτ = 0 (315)

and admits the 8-dimensional Lie algebra with the basis

Y1 = ∂

∂t
, Y2 = ∂

∂τ
, Y3 = ∂

∂v
, Y4 = t

∂

∂t
+ τ

∂

∂τ

Y5 = τ
∂

∂τ
+ p

∂

∂ p
− q

∂

∂q
, Y6 = v

∂

∂v
+ p

∂

∂ p
+ q

∂

∂q
(316)

Y7 = ∂

∂ p
+ q

p

∂

∂q
, Y8 = t

∂

∂v
− y

∂

∂ p
− yq

p

∂

∂q
·

It is shown in [24] that the operators Y7, Y8 from (316) lead to the following nonlocal
symmetries for Eq. (312)

X7 = σ
∂

∂x
− ∂

∂ p
+ ρ

p

∂

∂ρ

X8 =
(

t2

2
+ s

)
∂

∂x
+ t

∂

∂v
− τ

∂

∂ p
+ ρ τ

p

∂

∂ρ
(317)

where τ , s,σ are the following nonlocal variables

τ =
∫

ρdx, s = −
∫

τ

p
dx, σ = −

∫
dx

p
· (318)

They can be equivalently defined by the compatible over-determined systems

τx = ρ, τt + vτx = 0

sx = − τ

p
, st + vsx = 0 (319)

σx = − 1

p
, σt + vσx = 0

or
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τx = ρ, τt = −vρ

sx = − τ

p
, st = vτ

p
(320)

σx = − 1

p
, σt = v

p
·

Let us verify that the operator X7 is admitted by Eq. (312). Its first prolongation
is obtained by applying the usual prolongation procedure and eliminating the partial
derivatives σx and σt via Eq. (320). It has the form

X7 = σ
∂

∂x
− ∂

∂ p
+ ρ

p

∂

∂ρ
− vvx

p

∂

∂vt
+ vx

p

∂

∂vx
− vpx

p

∂

∂ pt
+ px

p

∂

∂ px

+
(

ρt

p
− ρpt

p2
− vρx

p

)
∂

∂ρt
+
(
2
ρx

p
− ρpx

p2

)
∂

∂ρx
· (321)

The calculation shows that the invariance condition is satisfied in the following form:

X7

(
vt + vvx + 1

ρ
px

)
= 0

X7(ρt + vρx + ρvx ) = 1

p
(ρt + vρx + ρvx ) − ρ

p2
(pt + vpx − pvx )

X7(pt + vpx − pvx ) = 0.

One can verify likewise that the invariance test for the operator X8 is satisfied in the
following form

X8(vt + vvx + 1

ρ
px ) = 0

X8(ρt + vρx + ρvx ) = τ

p
(ρt + vρx + ρvx ) − ρτ

p2
(pt + vpx − pvx )

X8(pt + vpx − pvx ) = 0.

The operators Y1, . . . , Y6 from (316) do not add to the operators (313) new sym-
metries of the system (312).

Thus, the Chaplygin gas described by Eq. (312) admits the eight-dimensional
vector space spanned by the operators (313) and (317). However this vector space
is not a Lie algebra. Namely, the commutators of the dilation generators X4, X5, X6
from (313)with the operators (317) are not linear combinations of the operators (313)
and (317) with constants coefficients. The reason is that the operators X4, X5, X6
are not admitted by the differential equation (319) for the nonlocal variables τ , s,σ.

Therefore I will extend the action of the dilation generators to τ , s,σ so that the
extended operators will be admitted by Eq. (319).
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Let us take the operator X4. We write it in the extended form

X ′
4 = t

∂

∂t
+ x

∂

∂x
+ α

∂

∂τ
+ β

∂

∂s
+ μ

∂

∂σ

where α,β,μ are unknown functions of t, x, v, ρ, p, τ , s,σ. Then we make the
prolongation of X ′

4 to the first-order partial derivatives of the nonlocal variables with
respect to t and x by treating τ , s,σ as new dependent variables and obtain

X ′
4 = t

∂

∂t
+ x

∂

∂x
+ α

∂

∂τ
+ β

∂

∂s
+ μ

∂

∂σ

+ [Dt (α) − τt ] ∂

∂τt
+ [Dx (α) − τx ] ∂

∂τx

+ [Dt (β) − st ] ∂

∂st
+ [Dx (β) − sx ] ∂

∂sx

+ [Dt (μ) − σt ] ∂

∂σt
+ [Dx (μ) − σx ] ∂

∂σx
·

Now we require the invariance of the Eq. (319)

X ′
4(τx − ρ) = 0, X ′

4(τt + vτx ) = 0

X ′
4

(
sx + τ

p

)
= 0, X ′

4(st + vsx ) = 0 (322)

X ′
4

(
σx + 1

p

)
= 0, X ′

4(σt + vσx ) = 0.

As usual, Eq. (322) should be satisfied on the solutions of Eq. (319). Let us solve the
equations X ′

4(τx − ρ) = 0, X ′
4(τt + vτx ) = 0. They are written

[Dx (α) − τx ](319) = 0, [Dt (α) − τt + v (Dx (α) − τx )](319) = 0. (323)

Since τx = Dx (α), the first equation in (323) is satisfied if we take

α = τ .

With this α the second equation in (323) is also satisfied because τt + vτx = 0. Now
the first equation in the second line of Eq. (322) becomes

[
Dx (β) − sx + τ

p

]
(319)

= Dx (β) − 2sx = 0

and yields
β = 2s.
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Table 1 The structure of the Lie algebra L8

X1 X2 X3 X ′
4 X ′

5 X ′
6 X7 X8

X1 0 0 X2 X1 0 X1 0 X3

X2 0 0 0 X2 0 0 0 0
X3 −X2 0 0 0 0 −X3 0 0
X ′
4 −X1 −X2 0 0 0 0 0 X8

X ′
5 0 0 0 0 0 0 −X7 0

X ′
6 −X1 0 X3 0 0 0 0 2X8

X7 0 0 0 0 X7 0 0 0
X8 −X3 0 0 −X8 0 −2X8 0 0

The second equation in the second line of Eq. (322) is also satisfied with this β.

Applying the same approach to the third line of Eq. (322) we obtain

μ = σ.

After similar calculations with X5 and X6 we obtain the following extensions of
the dilation generators

X ′
4 = t

∂

∂t
+ x

∂

∂x
+ τ

∂

∂τ
+ 2s

∂

∂s
+ σ

∂

∂σ

X ′
5 = ρ

∂

∂ρ
+ p

∂

∂ p
+ τ

∂

∂τ
− σ

∂

∂σ
(324)

X ′
6 = t

∂

∂t
− v

∂

∂v
+ 2ρ

∂

∂ρ
+ 2τ

∂

∂τ
+ 2s

∂

∂s
·

The operators (317) and (324) together with the operators X1, X2, X3 from (313)
span the eight-dimensional Lie algebra L8 admitted by Eqs. (312) and (319). The
algebra L8 has the following commutator Table1.

Let us apply Theorem 5 to the nonlocal symmetries (317) of the Chaplygin gas.
The formal Lagrangian (305) for Eq. (312) has the form

L = U
(
vt + vvx + 1

ρ
px

)
+ R(ρt + vρx + ρvx ) + P(pt + vpx − pvx ). (325)

Accordingly, the adjoint system (306) for the Chaplygin gas is written

δL
δv

≡ −Ut − vUx − ρRx + 2Ppx + pPx = 0

δL
δρ

≡ −Rt − vRx − 1

ρ2
U px = 0 (326)

δL
δ p

≡ −Pt − 1

ρ
Ux + 1

ρ2
Uρx − 2Pvx − vPx = 0.
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Let us proceed as in Sect. 2.5.2. Namely, let us first construct solutions to the adjoint
system (326) by using the known conservation laws given in Sect. 2.2.1. Since the
one-dimensional equation does not have the conservation of angular momentum, we
use the conservation of mass, energy, momentum and center-of-mass and obtain the
respective differential conservation equations (see the derivation of Eq. (307))

Dt (ρ) + Dx (ρv) = ρt + vρx + ρvx (327)

Dt (ρv2 − p) + Dx (pv + ρv3) = 2ρv
(
vt + vvx + 1

ρ
px

)

+ v2(ρt + vρx + ρvx ) − (pt + vpx − pvx ) (328)

Dt (ρv) + Dx (p + ρv2) = ρ
(
vt + vvx + 1

ρ
px

)

+ v(ρt + vρx + ρvx ) (329)

Dt (tρv − xρ) + Dx (tp + tρv2 − xρv)

= tρ
(
vt + vvx + 1

ρ
px

)
+ (tv − x)(ρt + vρx + ρvx ). (330)

Equations (327)–(330) give the following solutions to the system of the adjoint
equation (326)

U = 0, R = 1, P = 0 (331)

U = 2ρv, R = v2, P = −1 (332)

U = ρ, R = v, P = 0 (333)

U = tρ, R = tv − x, P = 0. (334)

The formal Lagrangian (325) contains the derivatives only of the first order. There-
fore Eq. (258) for calculating the conserved vectors take the simple form

Ci = W α ∂L
∂uα

i
, i = 1, 2. (335)

We denote

t = x1, x = x2, v = u1, ρ = u2, p = u3.

In this notation conservation Eq. (237) will be written in the form

[
Dt (C

1) + Dx (C
2)
]
(312)

= 0. (336)
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Writing (335) in the form

C1 = W 1 ∂L
∂vt

+ W 2 ∂L
∂ρt

+ W 3 ∂L
∂ pt

C2 = W 1 ∂L
∂vx

+ W 2 ∂L
∂ρx

+ W 3 ∂L
∂ px

and substituting the expression (325) for Lwe obtain the following final expressions
for computing the components of conserved vectors

C1 = U W 1 + RW 2 + PW 3 (337)

C2 = (vU + ρR − pP)W 1 + vRW 2 +
(
1

ρ
U + vP

)
W 3 (338)

where
W α = ηα − ξi uα

i , α = 1, 2, 3. (339)

We will apply Eqs. (337) and (338) to the nonlocal symmetries (317). First we
write the expressions (339) for the operator X7 from (317)

W 1 = −σvx , W 2 = ρ

p
− σρx , W 3 = −(1 + σ px ). (340)

Then we substitute (340) in (337) and (338) and obtain four conserved vectors by
replacing U, R, P with each of four different solutions (331)–(334) of the adjoint
system (326). Some of these conserved vectors may be trivial. We select only the
nontrivial ones.

Let us calculate the conserved vector obtained by eliminating U, R, P by using
the solution (331), U = 0, R = 1, P = 0. In this case (337) and (338) and (340)
yield

C1 = W 2 = ρ

p
− σρx (341)

C2 = ρW 1 + vW 2 = −σρvx + ρ

p
v − σvρx .

We write
−σρx = −Dx (σρ) + ρσx

replace σx with −1/p according to Eq. (319) and obtain

C1 = −Dx (σρ).
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Therefore application of the operations (239)–(241) yields C̃1 = 0 and

C̃2 = −σρvx + ρ

p
v − σvρx − Dt (σρ)

= −σρvx + ρ

p
v − σvρx − σρt − σtρ

= −σ(ρt + vρx + ρvx ).

We have replaced σt with v/p according to Eq. (320). The above expression for C̃2

vanishes on Eq. (312). Hence, the conserved vector (341) is trivial.
Utilization of the solutions (332) and (333) also leads to trivial conserved vectors

only. Finally, using the solution (334)

U = tρ, R = tv − x, P = 0

we obtain, upon simplifying by using the operations (239)–(241), the following
nontrivial conserved vector

C1 = σρ, C2 = σρv + t. (342)

The conservation Eq. (336) is satisfied in the following form

Dt (C
1) + Dx (C

2) = σ(ρt + vρx + ρvx ). (343)

Note that we canwriteC2 in (342)without t since it adds only the trivial conserved
vector with the components C1 = 0, C2 = t. Thus, removing t in (342) and using
the definition of σ given in (318) we formulate the result.

Proposition 14 The nonlocal symmetry X7 of the Chaplygin gas gives the following
nonlocal conserved vector

C1 = −ρ

∫
dx

p
, C2 = −ρv

∫
dx

p
· (344)

Mow we use the operator X8 from (317). In this case

W 1 = t −
(

t2

2
+ s

)
vx

W 2 = ρτ

p
−
(

t2

2
+ s

)
ρx (345)

W 3 = −τ −
(

t2

2
+ s

)
px .
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Substituting in (337) and (338) the expressions (345) and the solution (331) of
the adjoint system, i.e., letting U = 0, R = 1, P = 0, we obtain

C1 = W 2 = ρτ

p
−
(

t2

2
+ s

)
ρx

C2 = ρW 1 + vW 2 = tρ + ρvτ

p
−
(

t2

2
+ s

)
(ρvx + vρx ).

Noting that

−
(

t2

2
+ s

)
ρx = −ρτ

p
− Dx

(
t2

2
ρ + ρs

)

we reduce the above vector to the trivial conserved vector C̃1 = 0, C̃2 = 0.
Taking the solution (332) of the adjoint system, i.e., letting

U = 2ρv, R = v2, P = −1

we obtain

C1 = 2ρvW 1 + v2W 2 − W 3

= 2tρv + ρτv2

p
+ τ −

(
t2

2
+ s

)
Dx

(
ρv2 − p

)

C2 = (3ρv2 + p)W 1 + v3W 2 + vW 3

= t (3ρv2 + p) + ρτv3

p
− vτ

−
(

t2

2
+ s

)
(3ρv2vx + v3ρx + pvx + vpx ).

Then, upon rewriting C1 in the form

C1 = 2tρv + 2τ − Dx

[(
t2

2
+ s

)
(ρv2 − p)

]

and applying the operations (239)–(241) we arrive at the following conserved vector

C1 = tρv + τ , C2 = t (ρv2 + p). (346)

The conservation Eq. (336) is satisfied for (346) in the following form

Dt (C
1) + Dx (C

2) = tρ

(
vt + vvx + 1

ρ
px

)
+ tv(ρt + vρx + ρvx ). (347)
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Taking the solution (333) of the adjoint system, i.e., letting

U = ρ, R = v, P = 0

we obtain

C1 = ρW 1 + vW 2, C2 = 2ρvW 1 + v2W 2 + W 3.

Substituting the expressions (345) forW 1, W 2, W 3 and simplifying as in the previous
case we obtain the conserved vector

C1 = tρ, C2 = tρv − τ . (348)

The conservation Eq. (336) is satisfied for (346) in the following form

Dt (C
1) + Dx (C

2) = t (ρt + vρx + ρvx ). (349)

Finally, we take the solution (334), U = tρ, R = tv − x, P = 0, and obtain

C1 = tρW 1 + (tv − x)W 2, C2(2tρv − xρ)W 1 + (tv2 − xv)W 2 + tW 3.

Simplifying as above, we arrive at the conserved vector

C1 =
(

t2

2
− s

)
ρ, C2 =

(
t2

2
− s

)
ρv − tτ . (350)

The conservation Eq. (336) is satisfied for (346) in the following form

Dt (C
1) + Dx (C

2) =
(

t2

2
− s

)
(ρt + vρx + ρvx ). (351)

Substituting in the conserved vectors (346), (348) and (350) the definition (318)
of the nonlocal variables we formulate the result.

Proposition 15 The nonlocal symmetry X8 of the Chaplygin gas gives the following
nonlocal conserved vectors

C1 = tρv +
∫

ρdx, C2 = t (ρv2 + p) (352)

C1 = tρ, C2 = tρv −
∫

ρdx (353)



Construction of Conservation Laws Using Symmetries 141

C1 =
[

t2

2
+
∫

1

p

(∫
ρdx

)
dx

]
ρ

C2 =
[

t2

2
+
∫

1

p

(∫
ρdx

)
dx

]
ρv − t

∫
ρdx . (354)

Theorem 6 Application of Theorem 5 to two nonlocal symmetries (317) gives four
nonlocal conservation laws (344) and (352)–(354) for the Chaplygin gas (312).

2.5.5 Steady Two-Dimensional Gas Flow

Consider the steady two-dimensional equations of gasdynamics

(ρu)x + (ρv)y = 0, usx + vsy = 0

px + ρ(uux + vuy) = 0, py + ρ(uvx + vvy) = 0 (355)

where s denotes the specific entropy. It is shown in [41] that the Bateman-type
reciprocal transformations provide the following nonlocal symmetry of equations
(355)

X = α
∂

∂x
+ σ

∂

∂y
− p2

∂

∂ p
− pu

∂

∂u
− pv

∂

∂v
− (u2 + v2)ρ2

∂

∂ρ

where α and σ are nonlocal variables determined by the equations

αx = p + ρv2, αy = −ρuv

and
σx = −ρuv, σy = p + ρu2

respectively. Using this nonlocal symmetry and the nonlinear self-adjointness of the
system (355), the following nonlocal conserved vector is constructed in [41]

C1 = ρpu + u(u2 + v2)ρ2 + α(ρu)x + σ(ρu)y

C2 = ρpv + v(u2 + v2)ρ2 + α(ρv)x + σ(ρv)y . (356)

The vector (356) satisfies the conservation law in the following form

Dx (C
1) + Dy(C

2) = 2[p + ρ(u2 + v2)][(ρu)x + (ρv)y]
+ρu[px + ρ(uux + vuy)] + ρv[py + ρ(uvx + vvy)]
+α[(ρu)x + (ρv)y]x + σ[(ρu)x + (ρv)y]y

and the nonlocal conservation law that this symmetry
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2.5.6 The Operator Identity for Nonlocal Symmetries

Example 18 Let us verify that the operator identity (179) is satisfied for the non-
local symmetry X7 of the Chaplygin gas. To this end, we have to verify that the
coefficients of

∂

∂v
,

∂

∂ρ
,

∂

∂ p
,

∂

∂vt
,

∂

∂vx
,

∂

∂ρt
,

∂

∂ρx
,

∂

∂ pt
,

∂

∂ px
(357)

in both sides of (179) are equal. Using the first prolongation (321) of X7 and the
definition of the nonlocal variable σ given in Eq. (320) we see that the left-hand side
of the identity (179) is written

X7 + Di (ξ
i ) = σ

∂

∂x
− ∂

∂ p
+ ρ

p

∂

∂ρ
− vvx

p

∂

∂vt
+ vx

p

∂

∂vx
− vpx

p

∂

∂ pt

+ px

p

∂

∂ px
+
(

ρt

p
− ρpt

p2
− vρx

p

)
∂

∂ρt
+
(
2
ρx

p
− ρpx

p2

)
∂

∂ρx
− 1

p
· (358)

Then we use the expressions (340) of W α for the operator X7, substitute them in the
definition (183) of Ni and obtain in our approximation

N1 = −σvx
∂

∂vt
+
(

ρ

p
− σρx

)
∂

∂ρt
− (1 + σ px )

∂

∂ pt

N2 = σ − σvx
∂

∂vx
+
(

ρ

p
− σρx

)
∂

∂ρx
− (1 + σ px )

∂

∂ pt
·

Now the right-hand side of (179) is written

W 1 δ

δv
+ W 2 δ

δρ
+ W 3 δ

δ p
+ Dt N1 + DxN2

= −σvx

[
∂

∂v
− Dt

∂

∂vt
− Dt

∂

∂vx

]

+
(

ρ

p
− σρx

)[
∂

∂ρ
− Dt

∂

∂ρt
− Dx

∂

∂ρx

]

− (1 + σ px )

[
∂

∂ p
− Dt

∂

∂ pt
− Dx

∂

∂ px

]
(359)

+ Dt

[
−σvx

∂

∂vt
+
(

ρ

p
− σρx

)
∂

∂ρt
− (1 + σ px )

∂

∂ pt

]

+ Dx

[
σ − σvx

∂

∂vx
+
(

ρ

p
− σρx

)
∂

∂ρx
− (1 + σ px )

∂

∂ pt

]
·

Making the changes in two last lines of Eq. (359) such as
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Dt

[
−σvx

∂

∂vt

]
= −σvx Dt

∂

∂vt
− Dt (σvx )

∂

∂vt

= −σvx Dt
∂

∂vt
−
(

v

p
vx + σvt x

)
∂

∂vt

one can see that the coefficients of the differentiations (357) in (358) and (359)
coincide. Inspection of the coefficients of the differentiations in higher derivatives
vt t , vt x , vxx , . . . requires the higher-order prolongations of the operator X7.

Exercise 7 Verify that the operator identity (179) is satisfied in the same approxi-
mation as in Example 18 for the nonlocal symmetry operator X8 from (317).

2.6 Comparison With the “Direct Method”

2.6.1 General Discussion

Theorem 5 allows to construct conservation laws for equations with known symme-
tries simply by substituting inEq. (258) the expressionsW α andL given byEqs. (256)
and (256), respectively.

The “direct method” means the determination of the conserved vectors (238)
by solving Eq. (237) for Ci . Upon restricting the highest order of derivatives of u
involved in Ci , Eq. (237) splits into several equations. If one can solve the resulting
system, one obtains the desired conserved vectors. Existence of symmetries is not
required.

To the best of my knowledge, the direct method was used for the first time in 1798
by Laplace [42]. He applied the method to Kepler’s problem in celestial mechanics
and found a new vector-valued conserved quantity (see [42], Book II, Chap. III,
equations (P)) known as Laplace’s vector.

The application of the direct method to the gasdynamic Eq. (298) allowed to
demonstrate in [43] that all conservation laws involving only the independent and
dependent variables (299) and (300) were provided by the classical conservation
laws (mass, energy, momentum, angular momentum and center-of-mass) given in
Sect. 2.5.1 and the following two special conservation laws

d

dt

∫

Ω(t)

{
t (ρ|v|2 + np) − ρ x · v

}
dω = −

∫

S(t)

p (2tv − x) · νdS

d

dt

∫

Ω(t)

{
t2(ρ|v|2 + np) − ρx · (2tv − x

}
dω = −

∫

S(t)

2tp (tv − x) · νdS

that were found in [44] in the case γ = (n + 2)/n by using the symmetry ideas.
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All local conservation laws for the heat equation ut − uxx = 0 have been found
by the direct method in [45] (see [15–17, vol. 1, Sect. 10.1] and [46]). Namely it has
been shown by considering the conservation equations of the form

Dt [τ (t, x, u, ux , uxx , . . .)] + Dx [ψ(t, x, u, ux , uxx , . . .)] = 0

that all such conservation laws are given by

Dt [ϕ(t, x)u] + Dx [uϕx (t, x) − ϕ(t, x)ux ] = 0

where v = ϕ(t, x) is an arbitrary solution of the adjoint equation vt + vxx = 0
to the heat equation. Similar result can be obtained by applying Theorem 5 for any
linear equation, e.g., for the heat equation ut − Δu = 0 with any number of spatial
variables x = (x1, . . . , xn).Namely, applying formula (258) to the scaling symmetry
X = u∂/∂u we obtain the conservation law

Dt [ϕ(t, x)u] + ∇ · [u∇ϕ(t, x) − ϕ(t, x)∇u] = 0

where v = ϕ(t, x) is an arbitrary solution of the adjoint equation vt + Δv = 0 to
the heat equation. This conservation law embraces the conservation laws associated
with all other symmetries of the heat equation.

Various mathematical models for describing the geological process of segregation
and migration of large volumes of molten rock were proposed in the geophysical
literature (see the papers [47–51] and the references therein). One of them is known
as the generalized magma equation and has the form

ut + Dz
[
un − un Dz

(
u−mut

)] = 0, n, m = const. (360)

It is accepted as a reasonable mathematical model for describing melt migration
through the Earth’s mantle. Several conservation laws for this model have been
calculated by the direct method in [47, 48] and interpreted from symmetry point of
view in [49]. It is shown in [52] that Eq. (360) is quasi self-adjointwith the substitution
(34) given by v = u1−n−m if m + n 	= 1 and v = ln |u| if m + n = 1. These
substitutions show that Eq. (360) is strictly self-adjoint (Definition 2) if m + n = 0.
Using the quasi self-adjointness, the conservation laws are easily computed in [52].

Some simplification of the direct method was suggested in [37]. Namely, one
writes the conservation equation in the form (242)

Di (C
i ) = μᾱFᾱ

(
x, u, u(1), . . . , u(s)

)
(361)

and first finds the undetermined coefficients μᾱ by satisfying the integrability con-
dition of Eq. (361), i.e., by solving the equations (see Proposition 8 in Sect. 2.1.2)

δ

δuα

[
μβ̄(x, u, u(1), . . .) Fβ̄

(
x, u, u(1), . . . , u(s)

)] = 0, α = 1, . . . , m. (362)
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Then, for each solutionμᾱ of Eq. (362), the componentsCi of the corresponding con-
served vector are computed from Eq. (361). In simple situations Ci can be detected
merely by looking at the right-had side of Eq. (361), see further Example 19.

Remark 17 Note that Eq. (362) should be satisfied on the solutions of Eq. (236).
Then the left-hand side of (362) can be written as

F∗
α

(
x, u, v, . . . , u(s), v(s)

)∣∣∣
v=μ(x,u,u(1),...)

with F∗
α defined by Eq. (69).

The reader can find a detailed discussion of the direct method in the recent book
[14]. I will compare two methods by considering few examples and exercises.

2.6.2 Examples and Exercises

Example 19 (See [14, Sect. 1.3]). Let us consider the KdV Eq. (73)

ut = uxxx + uux (73)

and write the condition (362) for μ = μ(t, x, u). We have

δ

δu
[μ(t, x, u)(ut − uxxx − uux )]

= −Dt (μ) + D3
x (μ) + Dx (uμ) − μux + (ut − uxxx − uux )

∂μ

∂u

= −Dt (μ) + D3
x (μ) + u Dx (μ) + (ut − uxxx − uux )

∂μ

∂u
·

In accordance with Remark 17, we consider this expression on the solutions of the
KdV equation and see that Eq. (362) coincides with the adjoint Eqs. (73) and (74)

Dt (μ) = D3
x (μ) + u Dx (μ). (363)

Its solution is given in Example 11 and has the form (75)

μ = A1 + A2u + A3(x + tu), A1, A2, A3 = const.

Thus, we have the following three linearly independent solutions of Eq. (363)

μ1 = 1, μ2 = u, μ3 = (x + tu).

and the corresponding three Eq. (361)
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Dt (C
1) + Dx (C

2) = ut − uxxx − uux (364)

Dt (C
1) + Dx (C

2) = u(ut − uxxx − uux ) (365)

Dt (C
1) + Dx (C

2) = (x + tu)(ut − uxxx − uux ). (366)

In this simple example the components C1, C2 of the conserved vector can be
easily seen from the right-hand sides of Eqs. (364)–(366). In the case of (364) and
(365) it is obvious. Therefore let us consider the right-hand side of Eq. (366). We see
that

(x + tu)ut = Dt

(
xu + 1

2
tu2
)

− 1

2
u2

−(x + tu)uux = −Dx

(
1

2
xu2 + 1

3
tu3
)

+ 1

2
u2

−(x + tu)uxxx = −Dx (xuxx + tuuxx ) + uxx + tux uxx

= Dx

(
ux + 1

2
tu2

x − xuxx − tuuxx

)
.

Hence, the right-hand side of Eq. (366) can be written in the divergence form

(x + tu)(ut − uxxx − uux )

= Dt

(
t
u2

2
+ xu

)
+ Dx

[
ux + t

(
u2

x

2
− uuxx − u3

3

)
− x

(
u2

2
+ uxx

)]
.

The expressions under Dt (· · · ) and Dx (· · · ) give C1 and C2, respectively, in (366).
Note that the corresponding conservation law

Dt

(
t
u2

2
+ xu

)
+ Dx

[
ux + t

(
u2

x

2
− uuxx − u3

3

)
− x

(
u2

2
+ uxx

)]
= 0 (367)

was derived from the Galilean invariance of the KdV equation (see [10, Sect. 22.5])
and by the direct method (see [14, Sect. 1.3.5]).

The similar treatment of the right-hand sides of the Eqs. (364) and (365) leads to
Eq. (73) and to the conservation law

Dt (u
2) + Dx

(
u2

x − 2uuxx − 2

3
u3
)

= 0 (368)

respectively. Theorem 5 associates the conservation law (368) with the scaling sym-
metry of the KdV equation.

Exercise 8 Apply the directmethod to the short pulse Eq. (280) using the differential
substitution (284). In this case Eq. (361) is written
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Dt (C
1) + Dx (C

2) = ut uxt − 1

2
u2ux uxt

−
(

u + 1

2
u2uxx + uu2

x

)
ut + 1

2
u3ux + 1

4
u4ux uxx + 1

2
u3u3

x . (369)

Exercise 9 Consider the Boussinesq Eq. (246). Taking its formal Lagrangian

L = ω
[
Δψt − gρx − f vz − ψxΔψz + ψzΔψx

]
+ μ

[
vt + f ψz − ψxvz + ψzvx

]+ r
[
ρt + (N 2/g)ψx − ψxρz + ψzρx

]

where ω,μ, r are new dependent variables, we obtain the adjoint system to Eq. (246)

δL
δψ

= 0,
δL
δv

= 0,
δL
δρ

= 0. (370)

It is shown in [53] that the system (246) is self-adjoint. Namely, the substitution

ω = ψ, μ = −v, r = −(g2/N 2) ρ (371)

maps the adjoint system (370) into the system (246). Using the so eatablished self-
adjointness, nontrivial conservation laws were constructed via Theorem 5. Apply
the direct method to the system (246). Note that knowledge of the substitution (371)
gives the following Eq. (361)

Dt (C
1) + Dx (C

2) + Dz(C
3) = ψ

[
ψt xx + ψt zz − gρx − f vz

− ψx
(
ψzxx + ψzzz

)+ ψz
(
ψxxx + ψxzz

)]− v
[
vt + f ψz − ψxvz + ψzvx

]
(372)

− g2

N 2 ρ
[
ρt + N 2

g
ψx − ψxρz + ψzρx

]
.

Example 20 Let us consider the conservation Eq. (343)

Dt (C
1) + Dx (C

2) = σ(ρt + vρx + ρvx )

where σ is connected with the velocity v and the pressure p of the Chaplygin gas by
Eq. (319)

σx = − 1

p
, σt + vσx = 0.

In this example Eq. (362) are not satisfied. Indeed, we have
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δ

δv
[σ(ρt + vρx + ρvx )] = σρx − Dx (σρ) = −ρσ = ρ

∫
dx

p
	= 0

δ

δρ
[σ(ρt + vρx + ρvx )] = σt − Dx (σv) + σvx = −(σt + vσx ) = 0

δ

δ p
[σ(ρt + vρx + ρvx )] = 0.

Example 21 Let us consider the conservation Eq. (347)

Dt (C
1) + Dx (C

2) = tρ

(
vt + vvx + 1

ρ
px

)
+ tv(ρt + vρx + ρvx ).

Here Eq. (362) are not satisfied. Namely, writing

tρ

(
vt + vvx + 1

ρ
px

)
+ tv(ρt + vρx + ρvx )

= tρvt + 2tρvvx + tpx + tvρt + tv2ρx

we obtain

δ

δv

[
tρvt + 2tρvvx + tpx + tvρt + tv2ρx

]
= −ρ

δ

δρ

[
tρvt + 2tρvvx + tpx + tvρt + tv2ρx

]
= −v

δ

δ p

[
tρvt + 2tρvvx + tpx + tvρt + tv2ρx

]
= 0.

Exercise 10 Check if Eq. (362) are satisfied for the conservation Eqs. (349) and
(351).

3 Utilization of Conservation Laws for Constructing
Solutions of PDEs

In this part we will discuss a method for constructing exact solutions for systems
of nonlinear partial differential equations. The method is based on knowledge of
conservation laws of the equations under consideration and therefore it is called the
method of conservation laws.

Application of themethod to theChaplygin gas allowed to construct new solutions
containing several arbitrary parameters. One can verify that these solutions cannot
be obtained as group invariant solutions.
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3.1 General Discussion of the Method

As mentioned in Sect. 2.1.4, one can integrate or reduce the order of linear ordinary
differential equations by rewriting them in a conservation form (217). Likewise one
can integrate or reduce the order of a nonlinear ordinary differential equation as well
as a system of ordinary differential equations using their conservation laws. Namely,
a conservation law

Dx

(
ψ(x, y, y′, . . . , y(s−1))

)
= 0 (373)

for a nonlinear ordinary differential equation

F(x, y, y′, . . . , y(s)) = 0 (374)

yields the first integral
ψ(x, y, y′, . . . , y(s−1)) = C1. (375)

We will discuss now an extension of this idea to partial differential equations.
Namely,wewill apply conservation laws for constructing particular exact solutions of
systems of partial differential equations. Detailed calculations are given in examples
considered in the next sections.

Let us assume that the system (236)

Fᾱ

(
x, u, u(1), . . . , u(s)

) = 0, ᾱ = 1, . . . , m (376)

has a conservation law (237)

[
Di (C

i )
]
(376)

= 0 (377)

with a known conserved vector

C =
(

C1, . . . , Cn
)

(378)

where
Ci = Ci (x, u, u(1), . . .

)
, i = 1, . . . , n.

We write the conservation Eq. (377) in the form (361)

Di (C
i ) = μᾱFᾱ

(
x, u, u(1), . . . , u(s)

)
. (379)

For a given conserved vector (378) the coefficients μᾱ in Eq. (379) are known
functions μᾱ = μᾱ(x, u, u(1), . . .).
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We will construct particular solutions of the system (376) by requiring that on
these solutions the vector (378) reduces to the following trivial conserved vector

C =
(

C1(x2, . . . , xn), , . . . , Cn(x1, . . . , xn−1)
)

. (380)

In other words, we look for particular solutions of the system (376) by adding to
Eq. (376) the differential constraints

C1 (x, u, u(1), . . .
) = h1(x2, x3, . . . , xn)

C2 (x, u, u(1), . . .
) = h2(x1, x3, . . . , xn)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (381)

Cn (x, u, u(1), . . .
) = hn(x1, . . . , xn−1)

where Ci
(
x, u, u(1), . . .

)
are the components of the known conserved vector (378).

Due to the constraints (381), the left-hand side of Eq. (379) vanishes identically.
Hence the number of equations in the system (376) will be reduced by one.

The differential constraints (381) can be equivalently written as follows

D1

[
C1 (x, u, u(1), . . .

)] = 0

D2

[
C2 (x, u, u(1), . . .

)] = 0

· · · · · · · · · · · · · · · · · · · · · · · · · (382)

Dn
[
Cn (x, u, u(1), . . .

)] = 0.

Remark 18 The overdetermined system of m + n Eqs. (376) and (382) reduces to
m + n − 1 equations due to the conservation law (377).

3.2 Application to the Chaplygin Gas

3.2.1 Detailed Discussion of One Case

Let us apply the method to the Chaplygin gas equations (312)

vt + vvx + 1

ρ
px = 0

ρt + vρx + ρvx = 0 (383)

pt + vpx − pvx = 0.
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We will construct a particular solution of the system (383) using the simplest
conservation law (327)

Dt (ρ) + Dx (ρv) = ρt + vρx + ρvx . (384)

The conservation Eq. (384) is written in the form (379) with the following conserved
vector (378)

C1 = ρ, C2 = ρv. (385)

The differential constraints (381) are written as follows

ρ = g(x), ρv = h(t). (386)

Thus we look for solutions of the form

ρ = g(x), v = h(t)

g(x)
· (387)

The functions (387) solve the second equation in (383) because the conservation law
(384) coincides with the second Eq. (383) (see Remark 18). Therefore it remains to
substitute (387) in the first and third equations of the system (383). The result of this
substitution can be solved for the derivatives of p

px = −h′ + h2g′

g2
, pt = −hg′

g2
p + hh′

g
− h3g′

g3
· (388)

The compatibility condition pxt = ptx of the system (388) gives the equation

(
g′′ − 2

g′2

g

)
p = g2

h′′

h
− 2g′h′ − h2 g′′

g
+ 2h2 g′2

g2
· (389)

For illustration purposes I will simplify further calculations by considering the par-
ticular case when the coefficient in front of p in Eq. (389) vanishes

g′′ − 2
g′2

g
= 0. (390)

The solution of Eq. (390) is

g(x) = 1

ax + b
, a, b = const. (391)

Substituting (391) in Eq. (389) we obtain

h′′ + 2ahh′ = 0 (392)



152 N. H. Ibragimov

whence

h(t) = k tan(c − akt) (393)

if a 	= 0, and
h(t) = A t + B (394)

if a = 0.
If the constant a in (391) does not vanish, we substitute (391) and (393) in

Eq. (388), integrate them and obtain

p = k2(ax + b) + Q cos(c − akt), Q = const. (395)

In the case a = 0 the similar calculations yield

p = −Ax + b

2
A2t2 + ABbt + Q, Q = const. (396)

Thus, using the conservation law (384) we have arrived at the solutions

ρ = 1

ax + b
v = k(ax + b) tan(c − akt) (397)

p = k2(ax + b) + Q cos(c − akt)

and

ρ = 1

b
v = b(A t + B) (398)

p = −Ax + b

2
A2t2 + ABbt + Q.

3.2.2 Differential Constraints Provided by Other Conserved
Vectors

The conservation laws (328) and (330) give the following differential constraints
(381)

ρv2 − p = g(x), pv + ρv3 = h(t) (399)

ρv = g(x), p + ρv2 = h(t) (400)

tρv − xρ = g(x), tp + tρv2 − xρv = h(t). (401)
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The nonlocal conserved vectors (346), (348) and (350) lead to the following
differential constraints (381)

tρv + τ = g(x), p + ρv2 = h(t) (402)

tρ = g(x), tρv − τ = h(t) (403)(
t2

2
− s

)
ρ = g(x),

(
t2

2
− s

)
ρv − tτ = h(t). (404)

The constraints (402) are not essentially different from the constraints (400). It is
manifest if we write them in the form (382).

3.3 Application to Nonlinear Equation Describing
an Irrigation System

The method of Sect. 3.1 can be used for constructing particular solutions not only of
a system, but of a single partial differential equations as well.

Let us consider the nonlinear Eq. (171)

C(ψ)ψt = [K (ψ)ψx ]x + [K (ψ) (ψz − 1)
]

z − S(ψ) (405)

satisfying the nonlinear self-adjointness condition (173)

S ′(ψ) = aC(ψ), a = const. (406)

and apply the method of Sect. 3.1 to the conserved vector (269)

C1 = S(ψ)eat , C2 = aK (ψ)ψxe
at , C3 = aK (ψ)(ψz − 1)eat . (407)

The conditions (381) are written

S(ψ)eat = f (x, z), aK (ψ)ψxe
at = g(t, z), aK (ψ)(ψz − 1)eat = h(t, x).

These conditions mean that the left-hand sides of the first, second and third equation
do not depend on t, x and z, respectively. Therefore they can be equivalently written
as the following differential constraints (see Eq.382)

aS(ψ) + S′(ψ)ψt = 0, [K (ψ)ψx ]x = 0,
[
K (ψ) (ψz − 1)

]
z = 0. (408)

The constraints (408) reduce Eqs. (405) and (406). Hence, the particular solutions of
Eq. (405) provided by the conserved vector (407) are described by the system
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aC(ψ) − S ′(ψ) = 0, aS(ψ) + S′(ψ)ψt = 0

[K (ψ)ψx ]x = 0,
[
K (ψ) (ψz − 1)

]
z = 0. (409)

4 Approximate Self-Adjointness and Approximate Conservation
Laws

The methods developed in this paper can be extended to differential equations with a
small parameter in order to construct approximate conservation laws using approxi-
mate symmetries. I will illustrate this possibility by examples. The reader interested
in approximate symmetries can find enough material in [15–17], vol. 3, Chaps. 2
and 9.

4.1 The Van Der Pol Equation

The van der Pol equation has the form

F ≡ y′′ + y + ε(y′3 − y′) = 0, ε = const. 	= 0. (410)

4.1.1 Approximately Adjoint Equation

We have

δ

δy

{
z
[

y′′ + y + ε
(

y′3 − y′)]} = z′′ + z + εDx

(
z − 3zy′2) .

Thus, the adjoint equation to the van der Pol equation is

F∗ ≡ z′′ + z + ε
(

z′ − 3z′y′2 − 6zy′y′′) = 0.

We eliminate here y′′ by using Eq. (410), consider ε as a small parameter and
write F∗ in the first order of precision with respect to ε. In other words, we write

y′′ ≈ −y. (411)

Then we obtain the following approximately adjoint equation to equation (410)

F∗ ≡ z′′ + z + ε
(

z′ − 3z′y′2 + 6zyy′) = 0. (412)
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4.1.2 Approximate Self-Adjointness

Let us investigate Eq. (410) for approximate self-adjointness. Specifically, I will
call Eq. (410) approximately self-adjoint if there exists a non-trivial (not vanishing
identically) approximate substitution

z ≈ f (x, y, y′) + εg(x, y, y′) (413)

such that F given by Eq. (410) and F∗ defined by Eq. (412) approximately satisfy the
condition (72) of nonlinear self-adjointness. In other words, the following equation
is satisfied in the first-order of precision in ε

F∗∣∣
z= f +εg

= λF. (414)

Note, that the unperturbed equation y′′+y = 0 is nonlinearly self-adjoint. Namely
it coincides with the adjoint equation z′′ + z = 0 upon the substitution

z = αy + β cos x + γ sin x, α,β, γ = const. (415)

Therefore we will consider the substitution (413) of the following restricted form

z ≈ f (x, y) + εg(x, y, y′). (416)

In differentiating g(x, y, y′) we will use Eq. (411) because we make out calcula-
tions in the first order of precision with respect to ε. Then we obtain

z′ = Dx ( f ) + εDx (g)
∣∣
y′′=−y ≡ fx + y′ fy + ε(gx + y′gy − ygy′)

z′′ = D2
x ( f ) + εD2

x (g)
∣∣
y′′=−y ≡ fxx + 2y′ fxy + y′2 fyy + y′′ fy

+ ε(gxx + 2y′gxy − 2ygxy′ + y′2gyy (417)

− 2yy′gyy′ + y2gy′ y′ − ygy − y′gy′).

Substituting (417) in (412) and solving Eq. (414) with ε = 0 we see that f is
given by Eq. (415). Then λ = C and the terms with ε in Eq. (414) give the following
second-order linear partial differential equation for g(x, y, y′)

g + D2
x (g)

∣∣
y′′=−y = α

(
4y′3 − 6y2y′ − 2y′)

+ β
(
sin x − 3y′2 sin x − 6yy′ cos x

)

+ γ
(
3y′2 cos x − cos x − 6yy′ sin x

)
. (418)
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The standard existence theorem guarantees that Eq. (418) has a solution. It is
manifest that the solution does not vanish because g = 0 does not satisfy Eq. (418).
We conclude that the van der Pol equation (410) with a small parameter ε is
approximately self-adjoint. The substitution (416) satisfying the approximate self-
adjointness condition (414) has the form

z ≈ αy + β cos x + γ sin x + εg(x, y, y′) (419)

where α, β, γ are arbitrary constants and g(x, y, y′) solves Eq. (418).

4.1.3 Exact and Approximate Symmetries

If ε is treated as an arbitrary constant, Eq. (410) has only one point symmetry, namely
the one-parameter group of translations of the independent variable x . We will write
the generator X1 = ∂/∂x of this group in the form (186)

X1 = y′ ∂

∂y
· (420)

If ε is a small parameter, then Eq. (410) has, along with the exact symmetry (420),
the following 7 approximate symmetries ([15–17], vol. 3, Sect. 9.1.3.3)

X2 =
{
4y − ε

[
y2y′ + 3xy

(
y2 + y′2)]} ∂

∂y

X3 =
{
8 cos x + ε

[(
4 − 3y′2 − 9y2

)
x cos x + 3(xy2)′ sin x

]} ∂

∂y

X4 =
{
8 sin x + ε

[(
4 − 3y′2 − 9y2

)
x sin x − 3(xy2)′ cos x

]} ∂

∂y

X5 = {
24y2 cos x − 24yy′ sin x + ε

[(
12yy′ + 9yy′3 + 9y3y′)x sin x

+ (12y2 − 9y2y′2 − 6y4
)
sin x − (12y2 − 9y2y′2 − 9y4

)
x cos x

− 3y3y′ cos x
]} ∂

∂y
(421)

X6 = {
24y2 sin x + 24yy′ cos x − ε

[(
12yy′ + 9yy′3 + 9y3y′)x cos x

+ (12y2 − 9y2y′2 − 6y4
)
cos x + (12y2 + 9y2y′2 + 9y4

)
x sin x

+ 3y3y′ sin x
]} ∂

∂y

X7 = {
4y cos 2x − 4y′ sin 2x + ε

[
3
(
yy′2 − y3

)
x cos 2x

− 3y2y′ cos 2x + 6y2y′x sin 2x + 2(y − y3) sin 2x
]} ∂

∂y

X8 = {
4y sin 2x + 4y′ cos 2x − ε

[
3
(
y3 − yy′2)x sin 2x
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+ 3y2y′ sin 2x + 6y2y′x cos 2x + 2(y − y3) cos 2x
]} ∂

∂y
·

4.1.4 Approximate Conservation Laws

We can construct now approximate conserved quantities for the van der Pol equation
using the formula (258) and the approximate substitution (419). Inserting in (258)
the formal Lagrangian

L = z
[

y′′ + y + ε
(

y′3 − y′)]

we obtain

C = W
[
−z′ + ε

(
3y′2z − z

)]
+ W ′z. (422)

Let us calculate the conserved quantity (422) for the operator X1 given by
Eq. (420). In this case W = y′, W ′ = y′′, and therefore (422) has the form

C = −y′z′ + ε
(
3y′3 − y′) z + y′′z.

We eliminate here y′′ via Eq. (410), use the approximate substitution (419) and obtain
(in the first order of precision with respect to ε) the following approximate conserved
quantity

C = − α
(

y2 + y′2)+ β
(
y′ sin x − y cos x

)− γ
(
y′ cos x + y sin x

)

+ ε
(
2αyy′3 + 2βy′3 cos x + 2γy′3 sin x − yg − y′ Dx (g)

∣∣
y′′=−y

)
. (423)

Differentiating it and using the Eqs. (410) and (411) we obtain

Dx (C) =εy′[α (4y′3 − 6y2y′ − 2y′)+ β
(
sin x − 3y′2 sin x − 6yy′ cos x

)

+ γ
(
3y′2 cos x − cos x − 6yy′ sin x

)
− g − D2

x (g)
∣∣
y′′=−y

]
+o(ε)

(424)

where o(ε) denotes the higher-order terms in ε. The Eqs. (418) and (424) show that
the quantity (423) satisfies the approximate conservation law

Dx (C)
∣∣
(410) ≈ 0. (425)
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Let us consider the operator X2 from (421). In this case we have

W = 4y − ε
[

y2y′ + 3xy
(

y2 + y′2)]

W ′ ≈ 4y′ − ε
[
2y3 + 5yy′2 + 3x

(
y2y′ + y′3)] . (426)

Proceeding as above we obtain the following approximate conserved quantity

C = 4y′(β cos x + γ sin x) − 4y(γ cos x − β sin x)

+ ε
{
2αy2

(
4y′2 − y2 − 2

)
+ 4y′g − 4y Dx (g)

∣∣
y′′=−y

+
[
7yy′2 − 3xy′(y2 + y′2) − 2y3 − 4y

]
(β cos x + γ sin x) (427)

+
[

y2y′ + 3xy(y2 + y′2)
]
(γ cos x − β sin x)

}
.

The calculation shows that the quantity (427) satisfies the approximate conservation
law (425) in the following form

Dx (C) = 4(β cos x + γ sin x)
[

y′′ + y + ε
(

y′3 − y′)] (428)

+ 4εy
[
α
(
4y′3 − 6y2y′ − 2y′)+β

(
sin x − 3y′2 sin x − 6yy′ cos x

)

+ γ
(
3y′2 cos x − cos x − 6yy′ sin x

)
− g − D2

x (g)
∣∣
y′′=−y

]
+ o(ε).

Continuing this procedure, one can construct approximate conservation laws for
the remaining approximate symmetries (421).

4.2 Perturbed KdV Equation

Let us consider again the KdV equation (73)

ut = uxxx + uux

and the following perturbed equation

F ≡ ut − uxxx − uux − εu = 0. (429)

We will follow the procedure described in Sect. 4.1.
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4.2.1 Approximately Adjoint Equation

Let us write the formal Lagrangian for Eq. (429) in the form

L = v [−ut + uxxx + uux + εu] . (430)

Then

δL
δu

= vt − vxxx − Dx (uv) + vux + εv = vt − vxxx − uvx + εv.

Hence, the approximately adjoint equation to equation (429) has the form

F∗ ≡ vt − vxxx − uvx + εv = 0. (431)

4.2.2 Approximate Self-Adjointness

Asmentioned in Sect. 1.3.1, Example 11, the KdVEq. (73) is nonlinearly self-adjoint
with the substitution (75)

v = A1 + A2u + A3(x + tu). (75)

Therefore in the case of the perturbed Eq. (429) we look for the substitution

v = φ(t, x, u) + εψ(t, x, u)

satisfying the nonlinear self-adjointness condition

F∗∣∣
v=φ+εψ

= λF (432)

in the first-order of precision in ε, in the following form

v = A1 + A2u + A3(x + tu) + εψ(t, x, u). (433)

When we substitute the expression (433) in the definition (431) of F∗, the terms
without ε in Eq. (432) disappear by construction of the substitution (75) and give
λ = A2 + A3t. Then we write Eq. (432), rearranging the terms, in the form

εψu[ut − uxxx − uux ] − 3εuxx [uxψuu + ψxu]
− εux [u2

xψuuu + 3uxψxuu + 3ψxxu] + ε[ψt − ψxxx − uψx

+ A1 + A2u + A3(x + tu)] = −ε(A2 + A3t)u. (434)
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In view Eq. (429), the first term in the first line of Eq. (434) is written ε2uψu . Hence,
this term vanishes in our approximation. The terms with uxx in the first line of
Eq. (434) yield

ψuu = 0, ψxu = 0

whence

ψ = f (t)u + g(t, x).

The third bracket in the first line of Eq. (434) vanishes, and Eq. (434) becomes

[ f ′(t) − gx (t, x)]u + gt (t, x) − gxxx (t, x) + 2[A2 + A3t]u + A1 + A3x = 0.

After rather simple calculations we solve this equation and obtain

g(t, x) = A4 − A1t + (A5 + 2A2 − A3t)x, f (t) = A6 + A5t − 3

2
A3t2.

We conclude that the perturbed KdV equation (429) is approximately self-adjoint.
The approximate substitution (433) has the following form

v ≈ A1 + A2u + A3(x + tu) (435)

+ ε

[(
A6 + A5t − 3

2
A3t2

)
u + A4 − A1t + (A5 + 2A2 − A3t)x

]
.

4.2.3 Approximate Symmetries

Recall that the Lie algebra of point symmetries of the KdV equation (73) is spanned
by the following operators

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = t

∂

∂x
− ∂

∂u

X4 = 3t
∂

∂t
+ x

∂

∂x
− 2u

∂

∂u
· (436)

Following the method for calculating approximate symmetries and using the ter-
minology presented in [15–17], vol. 3, Chap. 2, we can prove that all symmetries
(436) are stable. Namely the perturbed equation (429) inherits the symmetries (436)
of the KdV equation in the form of the following approximate symmetries
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X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = t

∂

∂x
− ∂

∂u
+ ε

(
1

2
t2

∂

∂x
− t

∂

∂u

)

X4 = 3t
∂

∂t
+ x

∂

∂x
− 2u

∂

∂u
− ε

[
9

2
t2

∂

∂t
+ 3t x

∂

∂x
− (6tu + 3x)

∂

∂u

]
· (437)

4.2.4 Approximate Conservation Laws

We can construct now the approximate conservation laws

[
Dt (C

1) + Dx (C
2)
]
(429)

≈ 0 (438)

for the perturbed KdV equation (429) using its approximate symmetries (437), the
general formula (258) and the approximate substitution (435). Inserting in (258) the
formal Lagrangian (430) we obtain

C1 = −Wv, C2 = W [uv + vxx ] − vx Dx (W ) + vD2
x (W ). (439)

I will calculate here the conserved vector (439) for the operator X4 from (437).
In this case we have

W = −2u − 3tut − xux + ε

(
6tu + 3x + 9

2
t2ut + 3t xux

)
. (440)

We further simplify the calculations by taking the particular substitution (435) with
A2 = 1, A1 = A3 = · · · = A6 = 0. Then

v = u + 2εx . (441)

Substituting (440) and (441) in the first component of the vector (439) and then
eliminating ut via Eq. (429) we obtain

C1 ≈ (2u + 3tut + xux )(u + 2εx) − ε
(
6tu + 3x + 9

2
t2ut + 3t xux

)
u

= 2u2 + 3tuuxxx + 3tu2ux + xuux + ε
(

xu + 6t xuxxx + 3t xuux

+ 2x2ux − 3tu2 − 9

2
t2uuxxx − 9

2
t2u2ux

)
.

Upon singling out the total derivatives in x, it is written

C1 ≈ 3

2
u2 − 3ε

(
xu + 3

2
tu2
)

+ Dx

[1
2

xu2 + tu3 − 3

2
tu2

x + 3tuuxx (442)

+ ε
(
2x2u + 3

2
t xu2 − 3

2
t2u3 − 6tux + 6t xuxx + 9

4
t2u2

x − 9

2
t2uuxx

)]
.
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Then we substitute (440) and (441) in the second component of the vector (423),
transfer the term Dx (. . .) from C1 to C2, multiply the resulting vector (C1, C2) by
2/3 and arrive at the following vector

C1 = u2 − 2ε
[
xu + 3

2
tu2
]

C2 = u2x − 2

3
u3 − 2uuxx + ε

[
xu2 − 2ux + 2xuxx + 2tu3 − 3tu2x + 6tuuxx

]
.

(443)

The approximate conservation law (438) for the vector (443) is satisfied in the fol-
lowing form

Dt (C
1) + Dx (C

2) = 2u(ut − uxxx − uux − εu)

− 2ε(x + 3tu)(ut − uxxx − uux ) + o(ε).
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