
Chapter 2
Theoretical Background

In this chapter, the theoretical background is presented covering design and
construction of AG codes for the encoder and decoder along with important parame-
ters. We also present a block diagram of the modified Sakata’s algorithm for the first
time. It shows how the construction of AG codes using Hermitian codes is performed
using a hard-input hard-output (HIHO) decoding algorithm. Fundamentals of TCs
encoder, decoder and interleaver design are shown. Examples of the construction of
BTCs are also presented.

2.1 Algebraic Geometric Codes

For a long time researchers attempted to realize a very long non-binary block code
with high code rate and large Hamming distance, however fulfilling these properties
by classical codes was not possible. In 1981, V. D. Goppa showed a way to construct
these codes which are now called Goppa codes or AG codes [1]. Goppa explained the
construction from affine points of an irreducible projective curve and a set of rational
functions defined on that curve. The famous Reed-Solomon (RS) code represents
the best and for most the simplest example that demonstrates the construction of
AG codes though it is constructed from the affine points of a projective line not a
projective curve which is the case of Goppa codes.

The number of affine points determines the length of an AG code, so the cardinality
of the chosen field restricts the length of RS codes which result in relatively short code
lengths. Replacing the projective line with a projective curve yields more affine points
which means longer code lengths while keeping the same size of the finite field [2, 3].
The longest possible codes can be obtained by choosing curves that have the
maximum number of affine points which are called maximal curves, so the objective
is always to find those curves whenever possible.

A possible reason that AG codes have not been studied and investigated very well
is that they require a good knowledge of the theory of algebraic geometry, a difficult

J. A. Alzubi et al., Forward Error Correction Based On Algebraic-Geometric Theory, 9
SpringerBriefs in Electrical and Computer Engineering,
DOI: 10.1007/978-3-319-08293-6_2, © The Author(s) 2014

10 2 Theoretical Background

and complicated branch of mathematics. To overcome the previously stated problem,
a simplified construction method was introduced in 1989 by Justesen et al. [4]. His
method requires a basic understanding of algebraic geometry to produce AG codes.
Although a limited number of AG codes—which is considered as a drawback—
can be constructed using this method compared with using a more complicated AG
approach, however this limited number of codes is still acceptable.

2.1.1 Construction of AG Code Parameters

According to Carrasco [5], an AG code can be constructed using Justesen’s simplified
method by choosing an irreducible affine smooth curve over a finite field. Classes of
good curves that could be used to produce good AG codes are the Hermitian curves,
elliptic curves, hyperelliptic curves, and so on, as they all have one point at infinity.

However, Hermitian curves with degree m = r + 1 where r = √
q are well

known from the previous classes of curves and most popular for constructing AG
codes defined over a finite field Fq [4]:

C(x, y) = xr+1 + yr + y (2.1)

To define the message length (k) and the designed minimum Hamming distance
(d∗), all affine points (the points causing the curve to vanish) as well as the point at
infinity on the chosen curve must be found. The number of the affine points which
satisfy C(x, y) = 0 is n = r3. Hasse-Weil bound gives an upper bound for the
number of affine points n [4]:

n ≤ 2γ
√

q + 1 + q (2.2)

where γ is the genus of the curve.
It is worth giving a complete explanation of the curve genus as it is difficult to find

a detailed simplified definition and method of genus computation. The genus is the
maximum number of cuttings along non-intersecting simple curves [6]. The process
of computing it is perhaps more interesting. Assume there exists a plane curve called
C which is defined by f (x, y) = 0 where f (x, y) is a two-dimensional polynomial
composed of two variables. The degree of this polynomial is m which is the largest
sum of the exponents of x and y in each term of the curve equation. Then the genus
of C is:

γ = (m − 1)(m − 2)

2
(2.3)

if and only if C is non-singular curve.
A nonsingular curve, also called smooth curve, is the one which has no singular

points. A singular point is defined as the point where something unusual happens on
the curve like a sharp corner (y2 = x3) or a crossing of two branches (y2 = x3 +x2).

2.1 Algebraic Geometric Codes 11

Otherwise, when the curve has a finite number of singular points, it is called a singular
curve [7].

As Hermitian curves saturate the Hasse-Weil bound, they called maximal curves
making them suitable to generate long AG codes. Justesen’s construction method
suggests a non-negative integer j which is bounded by [8]:

m − 2 ≤ j ≤
∣
∣
∣
∣

n − 1

m

∣
∣
∣
∣

(2.4)

Goppa or AG codes are of two types: functional Goppa codes (CL) and residue
Goppa codes (CΩ). The latter is the dual of the former. In both types, the block length
is equal to the number of affine points on the curve (n) [5]. To compute the length of
the message for an AG code, a set of rational functions with a pole of order equal or
less than the degree of the divisor (a) at the point at infinity (Q) must be found first
[6], where the degree of the divisor is limited to be greater than 2γ − 2 and less than
n (2γ < a < n). In Justesen’s simplified construction method a = mj . This set of
rational functions is also called the linear space of aQ which is denoted by L(aQ).

The number of elements in the previous set is equal to the message length k. It is
called the dimension of aQ and denoted by l(aQ) [8]. The Riemann-Roch theorem
is used to calculate l(aQ) [9, 10] which defines the message length k in functional
Goppa codes CL(D, aQ) as:

k = l(aQ) = deg(aQ) − γ + 1 = a − γ + 1 (2.5)

while the message length k in residue Goppa codes is defined by:

k = n − l(aQ) = n − a + γ − 1 (2.6)

For both types of AG codes, a lower bound of the Hamming distance of AG
codes is calculated and called the designed minimum Hamming distance d∗ as the
Hamming distance (d) cannot always be calculated accurately. Meeting the singleton
bound when calculating minimum Hamming distance is required as the value will
then be optimal [11]:

d = n − k + 1 (2.7)

However, the main disadvantage that must be mentioned regarding the use of AG
codes is that the designed minimum Hamming distance is affected inversely by the
genus of the curve. This means that the larger the genus, the smaller the designed
minimum Hamming distance, and vice versa. In contrast, the case of RS codes are
constructed over an affine line of degree one and genus equal to zero [5].

So the actual designed minimum Hamming distance is [8, 10]:

d∗ = n − k − γ + 1 (2.8)

12 2 Theoretical Background

To compute the designed minimum Hamming distance for functional Goppa
codes, we substitute the value of message length for those codes into (2.8) and
get that:

d∗ = n − a (2.9)

Also for residue Goppa codes, the designed minimum Hamming distance can be
found by substituting the message length k into (2.8) and get:

d∗ = a − 2γ + 2 (2.10)

As Justesen’s simplified code have the same parameters as residue Goppa codes
since a = mj , then the code parameters are [8]:

K = n − mj + γ − 1 (2.11)

d∗ = mj − 2γ + 2 (2.12)

and the codeword length n is equal to the number of affine points on the curve as
mentioned earlier.

2.1.2 Designing AG Encoder

To generate a generator matrix for an AG code, all the points that satisfy the chosen
curve must be found which means all the points that make C(x, y) = 0 excluding
the point at infinity. For Harmitian curves, as previously said, the number of these
points is equal to n = r3 where r = √

q , and q is the finite field size [8].
A k two variables monomial basis is defined as: F = xa yb where 0 ≤ a < m

and b ≥ 0 and ordered using total graduated degree (<T). This method of ordering
follows the pattern: first-degree pair (a, b) = (0, 0); next-degree pair (a′, b′) is [12]:

(a′, b′) =
{

(a − 1, b + 1) if a > 0
(b + 1, 0) if a = 0

(2.13)

So, degree pairs ordering is: (0, 0) <T (1, 0) <T (0, 1) <T (2, 0) <T (1, 1) <T

(0, 2) <T (3, 0) <T (2, 1) <T (1, 2) <T (0, 3) <T (4, 0) <T (3, 1) <T (2, 2) . . .

This gives monomial basis (φi):

{

1, x, y, x2, xy, y2, x3, x2 y, xy2, y3, x4, x3 y, x2 y2, xy3, y4, x5, ...
}

(2.14)

It is worth explaining another ordering technique which is called partial ordering
as it will help to show the concrete difference between the two ordering techniques
and will be helpful in understanding steps of the decoding procedure later on. Assume
there are two pairs of integers a = (a1, a2) and b = (b1, b2) then [12]:

2.1 Algebraic Geometric Codes 13

a < b if a1 ≤ b1 ∧ a2 ≤ b2 ∧ a �= b (2.15)

To obtain the final non-systematic generator matrix of the code, each of the mono-
mial basis φi , i = 1, 2, ..., k in L(aQ) is evaluated at each affine point as the fol-
lowing:

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φ1(p1) φ1(p2) · · · φ1(pn−1) φ1(pn)

φ2(p1) φ2(p2) · · · φ2(pn−1) φ2(pn)

φ3(p1) φ3(p2) · · · φ3(pn−1) φ3(pn)
...

...
. . .

...
...

φk−1(p1) φk−1(p2) · · · φk−1(pn−1) φk−1(pn)

φk(p1) φk(p2) · · · φk(pn−1) φk(pn)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.16)

Extracting the original message from the decoded codeword is a difficult and
complex process when working with a non-systematic generator matrix. Multi-stage
shift register technique is used in cyclic codes like RS codes to produce systematic
generator matrix from a non-systematic one [5]. However, the technique does not
work for AG codes since they are not cyclic, so another technique called Gauss-
Jordan elimination could be used to convert the non-systematic generator matrix to
a systematic one, keeping in mind that any interchange in columns while applying
Gauss-Jordan elimination must be followed by same pattern on points [8, 13].

2.1.3 Designing AG Decoder

The traditional decoding technique for RS codes consists of two stages: the purpose
of the first stage is to find the error locations while the second stage attempts to
compute the error magnitudes for each of the found locations. AG codes follow the
previously described technique [14].

In 1969, the BM algorithm [15] was introduced as a way to produce a shortest
linear feedback shift register (LFSR) which yields a finite sequence of digits. By using
the BM algorithm in 1988, Sakata was able to develop his algorithm which generates
a set of minimal polynomials whose coefficients form a recursive relationship within
a two-dimensional array of finite field elements [12].

Justesen et al. [16] were able to improve Sakata’s algorithm in 1992. The aim of this
improvement was to decrease the decoding complexity of AG codes by generating
a set of error-locating polynomials (F) from a two-dimensional matrix containing
syndrome values for AG codes. The decoding process starts with computing the
elements in the two-dimensional syndromes array. Let us refer to the element location
in the two dimensional array by (Sa,b) where a is the row number and b is the column
number (a, b < q − 1). The syndrome value is defined by [16]:

Sa,b =
n

∑

i=1

ri xa
i yb

i =
n

∑

i=1

(ci + ei)xa
i yb

i =
n

∑

i=1

ei xa
i yb

i (2.17)

14 2 Theoretical Background

S0,0 S2,0S1,0

S0,1 S2,1S1,1

S0,2 S2,2S1,2

Sj-1,1

Sj,0 Sj+1,0

Sj,1

Sj+m-2,2

Sj+m-1,0 Sj+m,0

Sj+m-1,1

Sm,j+1-

Sm-1,j+2-m

S0,j

S2,j+m-2

S0,j+m-1 S1,j+m-1

S0,j+m

Known syndromes found from
the parity check matrix

Known syndromes found from
the recursive relationship among
the previous syndromes from
Hermitian curve

Unknown syndromes found by the
recursive relationship from the
Hermitian curve or majority voting

Fig. 2.1 General two-dimensional syndrome array

Let ri be a received element within the received codeword r , ci be a coded symbol,
ei the corresponding error magnitude in the i-th position, and (xi , yi) the i-th affine
point, for i ∈ I , I ⊆ {1, 2, 3, ..., n}. The general two-dimensional syndrome array
for the AG code constructed from the Hermitian curve defined by (2.1) is shown in
Fig. 2.1 [5].

Sakata’s algorithm makes use of this two-dimensional array by creating a set of
error-locating polynomials (F) of the form [12]:

f (i)(x, y) =
∑

f (i)
k,l xk yl (2.18)

where the i-th polynomial in F is denoted by i , and the coefficients of the terms xk yl

in f (i)(x, y) is represented by f (i)(k, l). By reading every syndrome value in the two-
dimensional array using the total graduate degree order (<T), all polynomials in F
are updated in order to generate recursive relationships between known syndromes,
up to the current syndrome by changing all the coefficients of every polynomial
f (i)(x, y) [17]. However the generated recursive relationship needs to fulfill the
following equation [5]:

∑

f (i)
k,l S

a−t (i)1 +k,b−t (i)2 +l
= 0 (2.19)

where f (i)(x, y) is a polynomial in the set F and has x, y as variables of the
leading term with t (i)1 and t (i)2 representing their powers, respectively. Using the total
graduated degree ordering (<T) described previously, the syndromes in the two-

2.1 Algebraic Geometric Codes 15

dimensional array are read as following: S0,0, S1,0, S0,1, S2,0, S1,1, S0,2, S3,0, S2,1,
and so on until the last syndrome in the array which is S15,15.

The nonnegative integer j defined by (2.4) plays an important role in articulat-
ing the syndromes. However, the syndromes are categorized into two types: known
and unknown, where the known ones are from S0,0 to Sm, j+1−m . To compute the
syndromes S0,0 to S0, j Eq. (2.17) is used. By substituting the curve equation in the
equation representing the error-locating polynomial in (2.18), the following recursive
relationship is formed to calculate more known syndromes S j+1,0 to Sm, j+1−m [12]:

∑

k,l

Ck,l S
a−t (i)1 +k,b−t (i)2 +l

= 0 (2.20)

C0,1Sa−m+0,b−0+1 + C0,m−1Sa−m+0,b−0+m−1 + Cm,0Sa−m+m,b−0+0 = 0 (2.21)

where the coefficient of C(x, y) is Ck,l , and the powers of x and y for each term
in C(x, y) are k and l, respectively. This relationship could be simplified into the
following equation as all coefficients of C(x, y) are equal to one [5]:

Sa,b = Sa−m,b+1 + Sa−m,b+m−1 (2.22)

Next is the time to update the set F by testing all polynomials (f (i)(x, y) ∈ F) to
see whether they satisfy (2.19). If they do, then none needs to be changed. Otherwise,
if any of these polynomials do not satisfy (2.19) then this polynomial will be used in
the updating process of the set F because it has a discrepancy d f . This means that
the polynomial at this stage is not ideal and must be changed so that it satisfies (2.19)
after updating. The goal is to have a set of error-locating polynomials in F , and a
polynomial is said to be error-locating if and only if it satisfies (2.19) [5, 8, 12].

The polynomials that do not satisfy (2.19) by having a nonzero discrepancy will
be placed in a new set called auxiliary set (G). Also the point at which they were
placed is stored (ag, bg). At this stage of the decoder, a new set span(G) is generated
by the union of all sets less than or equal to each span(g(i)(x, y)) in G as in following
Equation [5]:

span(G) =
ϕ

∑

i=1

{(k, l) | (k, l) ≤ span(g(i)(x, y))} (2.23)

where (k, l) are a pair of positive integers and ϕ is the number of polynomials in the
set G. Span means that at the point (a, b) there is no polynomial with a leading term

xag−u(i)
1 ybg−u(i)

2 that can satisfy (2.19). It is defined as [12]:

span(g(i)(x, y)) = (ag − u(i)
1 , bg − u(i)

2) (2.24)

where g(i)(x, y) is a polynomial in the set G and has x , y as variables of the leading
terms with u(i)

1 and u(i)
2 representing their degrees, respectively.

16 2 Theoretical Background

0 1 2 3 4 5 k

0

1

2

3

4

l

Fig. 2.2 Graphical representation of span(G)

The maximal point within span(G) is defined as an interior corner while the
minimal point outside span(G) is called as exterior corner [5]. Both interior and
exterior corners are defined with respect to partial ordering which is denoted by (<)

as mentioned earlier. However, the values of the exterior corners are the degrees of
the polynomials in the set F and their number is the number of those polynomials.

Drawing span(G)makes it much easier to find the interior and exterior corners. An
example shows how drawing helps in finding out these corners. Assume span(G) =
{(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0)}. From Fig. 2.2, the exterior corners
are (4, 0), (2, 1), (1, 2), and (0, 3) as no other points outside span(G) are less than
them. In the same manner, it is shown that the interior corners are (3, 0), (1, 1), and
(0, 2) since these points are the greatest ones within span(G). Exterior corners are
marked with large white circles in the figure and the interior corners are marked with
large black circles [5].

2.1.3.1 Updating the Sets F and G

The polynomials in the set F with a nonzero discrepancy (d f �= 0) are stored in a new
set called FN . The union of this set with the set G results a new set called G ′ which
is the updated version of the set G (G ′ = G ∪ FN) [8]. Equation (2.23) is used to
calculate the span of each polynomial in G ′, then Eq. (2.22) is used to find span(G ′).
The interior corners are found then using span(G ′) so that any polynomial in the set
G ′ with span not equal to any of the interior corner will be removed. In case two or

2.1 Algebraic Geometric Codes 17

more polynomials in the set G ′ have span equal to any interior corner then any of
those polynomials will be kept. The point in the two-dimensional syndrome array
(ag, bg) where the discrepancies of remaining G ′ polynomials were nonzero and the
discrepancy of the set G ′ polynomials dg are stored [12]. G ′ at this stage is the final
update of the set G which will be used for the next point in the two-dimensional
syndrome array.

The exterior corners are found using span(G ′) to update the set F . As mentioned
earlier, the number of the exterior corners identifies the number of the polynomials
in the updated set F ′. Also their values are the powers of the leading terms of these
polynomials [5]. The polynomials in the set F are updated using one of three cases
for each of the exterior corners (ε1, ε2), however these cases must be applied in the
following order [8, 18]:

Case I If the difference set (F /FN) has a polynomial f (i)(x, y) with
(t (i)1 , t (i)2) = (ε1, ε2), then the new minimal polynomial h(i)(x, y) ∈ F ′ will be
the same:

h(i)(x, y) = f (i)(x, y) (2.25)

Case II If there is a polynomial f (i)(x, y) ∈ FN with (t (i)1 , t (i)2) ≤ (ε1, ε2) and
ε1 > a or ε2 > b, then the new minimal polynomial h(i)(x, y) ∈ F ′ is generated
using:

h(i)(x, y) = xε1−t (i)1 yε2−t (i)2 − f (i)(x, y) (2.26)

Case III If there is a polynomial g(i)(x, y) ∈ G having span greater than or equal
to (a −ε1, b−ε2) and a polynomial f (i)(x, y) ∈ FN with (t (i)1 , t (i)2) ≤ (ε1, ε2), then
the new minimal polynomial h(i)(x, y) ∈ F ′ is generated using:

h(i)(x, y) = xε1−t (i)1 yε2−t (i)2 f (i)(x, y) − d f

dg
x p1 y p2 g(i)(x, y) (2.27)

where (p1, p2) = span(g(i)(x, y))−(a−ε1, b−ε2). Whenever, an update occurs to
the set F , a new set denoted by Δ is developed. It will be used for the MV technique
as part of the decoding procedure and also for termination of the decoding algorithm
when required. It is defined as [8]:

λ−1
∑

k=1

Δk (2.28)

where λ represents the number of all polynomials in the set F . Further, Δk is defined
by:

Δk =
{

(k, l) | (k, l) ≤
(

t (k)
1 − 1, t (k+1)

2 − 1
)}

(2.29)

where (k, l) are a pair of positive integers.

18 2 Theoretical Background

A major modification was introduced to the decoding algorithm which was
concerned with adding a termination criteria for the algorithm when |Δ| becomes
greater than the number of errors that the decoder can handle [5, 8]. In such case, the
MV scheme will choose a false value for the unknown syndrome which will affect
the accuracy of finding the remaining unknown syndromes resulting in inaccurate
decoding.

After completing the two-dimensional syndrome array, all polynomials in the set
F are said to be error-correcting polynomials which means when substituting the
curve points into any of those polynomials, the error locations are the points that
make the polynomial vanish [18].

A modified version of Sakata’s algorithm is illustrated in the flow chart shown in
Fig. 2.3. The best of our knowledge, this flow chart is the first published illustration
in the literature.

2.1.3.2 Majority Voting

Sakata’s algorithm uses the technique of substituting the curve Eq. (2.1) into (2.19)
to come up with a recursive relationship among the previous syndromes to find the
unknown syndromes of the type Sa,b where a ≤ m. This can be true if and only if all
previous syndromes are known. If any of those previous syndromes are unknown,
then the MV technique is used to compute the unknown syndromes of the type Sa,b

where a < m [5, 12].
The following example will help clarify the idea. For an algebraic geometric code

constructed from a Hermitian curve of the form given in (2.1) with degree m = 5,
Eq. (2.22) can be used to compute the syndrome S8,1:

S8,1 = S8−5,1+1 + S8−5,5−1 (2.30)

= S3,2 + S3,4 (2.31)

This only holds if both S3,2 and S3,4 are known. Otherwise, MV technique is used
to find the unknown ones.

In 1993 Feng and Rao [19] introduced the MV scheme which Sakata et al. used
later in 1995 [17] to design a hard-decision decoding technique for AG codes. For
an unknown syndrome of the type Sa,b where a < m, any minimal polynomial
f (i)(x, y) ∈ F will be used to find a candidate syndrome value. It turns out that
there are four possible scenarios to be encountered depending on some conditions
which will be explained in detail below[17].

Scenario one: The candidate syndrome value is vi if a = t (i)1 and b = t (i)2 can be
calculated by using the following equation which is derived from (2.19):

∑

(k,l)≤T

(

t (i)1 ,t (i)2

)

f (i)
k,l S

k+a−t (i)1 ,l+b−t (i)2
= −vi (2.32)

2.1 Algebraic Geometric Codes 19

Fig. 2.3 Flow chart of modified version of Sakata’s algrithm

20 2 Theoretical Background

Scenario two: The candidate syndrome value is wi if a + m = t (i)1 and b − t (i)2 =
m − 1 can be calculated by using the following equation:

∑

(k,l)<T

(

t (i)1 ,t (i)2

)

f (i)
k,l S

k+a+m−t (i)1 ,l+b−m+1−t (i)2
− Sa,b−m+2 = −wi (2.33)

Scenario three: If both scenarios one and two are fulfilled which means (2.32)
and (2.33) are satisfied, then there will be two candidate values vi and wi for the
syndrome from this minimal polynomial.

Scenario four: If none of the above three scenarios are fulfilled, then the chosen
minimal polynomial f (i)(x, y) ∈ F is not capable of finding a candidate syndrome
value, so a different minimal polynomial f (i)(x, y) ∈ F will be considered.

The next step in calculating the MV is to generate two new sets:

K1 = {(k, l) | 0 ≤ k ≤ a ∧ 0 ≤ l ≤ b}
K2 = {(k, l) | 0 ≤ k < m ∧ 0 ≤ l ≤ b − m + 1} (2.34)

where (k, l) are a pair of positive integers. A set K = K1 ∪ K2 is computed also.
The MV decision is made based on the number of elements in the set K j which is
found for each candidate syndrome value δ1, δ2, δ3, . . . as [17]:

K j =
⎛

⎝
⋃

vi =δ j

Ai ∪
⋃

wi =δ j

Bi

⎞

⎠

/

Δ (2.35)

where Ai and Bi are defined by:

Ai =
{

(k, l) ∈ K | k + t (i)1 ≤ a ∧ l + t (i)2 ≤ b
}

Bi =
{

(k, l) ∈ K | k + t (i)1 ≤ a + m ∧ l + t (i)2 ≤ b − m + 1
}

(2.36)

2.1.3.3 Error Magnitudes

To find the error magnitude for AG codes (generated from Hermitain curves), the
points on the curve are categorized into four types. The magnitude of the error will
be calculated based on the error location on the curve which means it does matter
where the error occurs in order to find its magnitude [8].

The following four categories of points on the curve will be useful in the method
described below. The method depends on calculations of a one-dimensional inverse
discrete Fourier transform (IDFT), knowledge of the unknown syndromes up to
syndrome Sq−1,q−1, and the curve properties [17, 20].

2.1 Algebraic Geometric Codes 21

Category one: For error occurring at the point where both coordinates x and y are
zeros, i.e., P(0,0). The error value is found by subtracting the error values of errors
which occurred at all other points types P(x,0), P(0,y), and P(x,y) as following:

∑

pi ∈p(x,y)

ei = Sq−1,q−1

∑

pi ∈p(0,y)

ei = S0,q−1 − Sq−1,q−1 (2.37)

∑

pi ∈p(x,0)

ei = Sq−1,0 − Sq−1,q−1

This leads to:

ei =
∑

i

ei −
∑

pi ∈p(x,y)

ei −
∑

pi ∈p(0,y)

ei −
∑

pi ∈p(x,0)

ei

= S0,0 − Sq−1,q−1 − (S0,q−1 − Sq−1,q−1) − (Sq−1,0 − Sq−1,q−1) (2.38)

However, for the codes constructed from the curves over a finite field of characteristic
two, Eq. (2.38) can be simplified to:

ei = S0,0 + Sq−1,0 + Sq−1,q−1 + S0,q−1 (2.39)

Category two: For all errors occurring at the points of zero x-coordinate and
nonzero y-coordinate, i.e., P(0,y), the following mapping is defined:

m →
{

αm for 0 ≤ m ≤ q − 2
0 for m = q − 1

(2.40)

and the one-dimensional IDFT equation is:

En =
q−2
∑

i=0

S0,q−1−iα
ni (2.41)

where α is the primitive element of the finite field and En is the summation of all
error values occurred at the points of nonzero y-coordinate αn . Luckily, Hermitian
curves (the focus here) have a property that whenever there is a point on the curve
of zero x-coordinate and nonzero y-coordinate, there will be no points on the curve
with the same y-coordinate value with nonzero x-coordinate (αm, αn). Which means
that En is in fact the error magnitude of the error at the point P(0,y) = (0, αn).

Category three: For all errors occurring at the points of nonzero x-coordinate
and zero y-coordinate, i.e., P(x,0), the same mapping (2.40) as above takes place and
the one-dimensional IDFT relation is:

22 2 Theoretical Background

Em =
q−2
∑

i=0

Sq−1−i,0α
mi (2.42)

where α is the primitive element of the finite field and Em is the summation of all
error values happening at the points of nonzero x-coordinate αm . The property of
Hermitian curves mentioned above still applies which says there are no points on the
curve with the same x-coordinate value αm and nonzero y-coordinate. Hence, Em is
in fact the error magnitude of the error at the point P(x,0) = (αm, 0).

Category four: A two-dimensional IDFT is used for errors occurring at the points
of nonzero x-coordinate and nonzero y-coordinate, P(x,y). The error magnitude of
the error at any point Pi = (x, y) is given by:

ei =
q−2
∑

a=0

q−2
∑

b=0

Sa,bx−a
i y−b

i (2.43)

where ei is the error magnitude of the error that happened at the point Pi , and q is
the size of the finite field. However, before Sakata et al. started this method in 1995,
which was later improved by Liu [20] in 1999, a very lengthy and complex method
was found by solving Eq. (2.17).

2.1.4 Complete Hard-Decision Decoding Algorithm
for AG Codes Constructed From Hermitian Curves

In this section, we describe the details of the decoding algorithm used to decode AG
codes constructed from Hermitian curves. It is used for iterative decoding [4, 5, 8]
later in this book.
Step 1: Known syndromes computation:

a. The known syndromes S0,0, . . . , S0, j can be found by applying Eq. (2.17).
b. The known syndromes S j+1,0, . . . , Sm, j−m+1 can be found using Eq. (2.22).

Step 2: Finding the error location:
The known syndromes and some of the unknown syndromes up to S0, j+m are needed
to find the error locations.

a. Run Sakata’s algorithm with known syndromes (found in step 1) as input; some
unknown syndromes are found using (2.22) when syndrome is of the form Sa,b

for b ≥ m − 1.
b. Run Sakata’s algorithm with unknown syndromes (found in step 2-a) as input;

when having a syndrome of the form Sa,b for a ≥ m, then (2.22) is used to compute
the value of the unknown syndrome or MV scheme is used if the syndrome has
the form Sa,b for a < m.

2.1 Algebraic Geometric Codes 23

c. Run Sakata’s algorithm with unknown syndromes (found step 2-b) as input and
find more unknown syndromes using (2.22) when syndrome is of the form Sa,b

for b ≥ m − 1.
d. Substitute the points on the curve into any of the minimal (error-locating) poly-

nomials in set F to find its roots as these roots are the error locations.

Step 3: Finding magnitudes of errors:
The unknown syndromes from S j+1+m,0 up to the last syndrome of the two-
dimensional syndrome array Sq−1,q−1 are needed to compute the error magnitudes.

a. Equation (2.22) is used to find the value of the unknown syndrome if it is of the
form Sa,b for a ≥ m.

b. If the unknown syndrome is of the form Sa,b for a < m, then to compute its value,
a recursive relationship between the syndromes should be formed by substituting
the last minimal polynomial in the set F in Eq. (2.19).

c. Find the error values using IDFT:

• When the error location is at the origin point Px,y = (0, 0), then Eq. (2.39) is
used to find the error magnitude.

• When the error is located at a point with zero x-coordinate and nonzero
y-coordinate Px,y = (0, y), then Eq. (2.41) is used to find the error
magnitude.

• When the error is located at a point with nonzero x-coordinate and zero
y-coordinate Px,y = (x, 0), then Eq. (2.42) is used to find the error
magnitude.

• When the error is located at a point with nonzero x-coordinate and nonzero
y-coordinate Px,y = (x, y), then Eq. (2.43) is used to find the error magnitude.

Step 4: Error correction:
To correct the errors in terms of extracting the original message, the error values
found in step 3 at the positions found in step 2 are added into the received codeword
to give the decoded codeword. Then the original message is the first k symbols from
the decoded codeword as the code is systematic.

2.2 Turbo Codes

Turbo coding was a breakthrough in channel coding introduced in 1993 by a group
of French researchers [21, 22] as a new class of error correction codes with a relevant
iterative decoding method. Turbo coding was not just a new set of codes but a new
way of thinking about channel coding. These codes showed performance close to
Shannon’s capacity limit [21]. This represented a significant gain in power efficiency
over other coding techniques known at that time.

The operation of a turbo codec relies on some basic ideas: using uncorrelated
inputs, divide and conquer, and processing information iteratively. The information
to be transmitted is stored in a memory in order to be scrambled to produce two

24 2 Theoretical Background

Upper RSC Encoder

Interleaver (α)

Lower RSC Encoder

Upper RSC Parity Bits

Lower RSC Parity Bits

Input Data Systematic Output Bits

Fig. 2.4 Turbo encoder

uncorrelated sequences that are then encoded and transmitted. This idea is the key
to the incomparable performance of turbo codes [23].

Since TCs were introduced, they have been useful for low-power applications such
as satellite, deep-space communications, and for interference limited applications
such as third generation (3G) cellular and personal communication services. Even
though TCs have been a “hot topic” in the research literature over the past decade,
there is still a relative lack of basic and fundamental papers serving as a starting point
for researchers in this field [24]. The following sections in this chapter will briefly
describe the main three components of a turbo codec (turbo encoder, interleaver, and
turbo decoder).

2.2.1 Turbo Encoder

The basic turbo code encoder is produced using parallel concatenation of two identi-
cal recursive systematic convolutional (RSC) encoders separated by arbitrary inter-
leaver (other interleavers could also be used such as block interleaver) [21, 25] as
shown in Fig. 2.4.

This way of constructing an encoder is called parallel concatenation because the
two encoders operate on the same input bits, rather than one encoding the output
of the other. As a result, TCs are called parallel concatenated convolutional codes
(PCCC) [26].

Both encoders have the same rate (r = 1/2), the upper encoder receiving
data directly while the lower one receives it after being randomly interleaved by a
permutation function α which maps bits in position i to position α(i). It is
important to note that this interleaver α works in a block-wise manner, interleav-
ing L bits at a time. Hence, TCs are actually block codes [25]. As both encoders
receive the same input sequence in permuted fashion then only one of the systematic
outputs needs to be transmitted. In most turbo encoders, the systematic output of the
upper encoder is sent along with the parity bits of both of them. The overall rate of a

2.2 Turbo Codes 25

TC consisting of parallel concatenation of two systematic codes with rate (r = 1/2)

is (r = 1/3). However, this rate can be increased if a subset of the parity bits is
stopped from being transmitted by a process called puncturing. The code rate of a
TC is increased to (r = 1/2) if the odd indexed parity bits and all systematic bits
from the upper encoder are transmitted along with the even indexed parity bits from
the other encoder [24].

2.2.2 Interleaver

The interleaver in turbo coding is a pseudorandom block scrambler which permutes
N input bits with no repetitions by reading it into the interleaver and reading it
out pseudorandomly [23, 25]. The interleaver has two main roles in TC: converting
the small memory convolutional codes into long block codes, and decorrelating the
inputs to both decoders so that an iterative sub-optimal decoding algorithm based
on information exchange between the two decoders can be applied. This role of the
interleaver makes it necessary that the same interleaving pattern should be available at
the decoding side [21, 22]. If the input sequences to the two decoders are decorrelated,
then there is a high possibility that after correction some of the errors in one decoder
and some of the remaining errors become correctable in the second decoder [25].

2.2.3 Turbo Decoder

The TC decoder is constructed in a similar way as the encoder. Two simple soft-input
soft-output (SISO) decoders are interconnected to each other in a serial concatenation.
An interleaver is installed between the two decoders to spread out error bursts coming
from the output of first decoder [21].

TCs can be decoded by maximum a posteriori (MAP) or maximum likelihood
(ML) decoding methods. These decoders could be implemented only for small size
interleavers as they are too complex for medium and large interleaver sizes [26].
The realistic value of TCs lies in the availability of a simple sub-optimal decoding
algorithm [21, 26].

The idea behind turbo decoding is improving the reliability of the second decoder
output by feeding it with extrinsic information that has been extracted out of the
first decoder output. Then the reliability of the first decoder’s output is improved
by feeding the first decoder with extrinsic information extracted from the second
decoder’s output. This process will keep iterating until no further improvement can
be made on the performance of the turbo decoder [24].

26 2 Theoretical Background

2.3 Block Turbo Codes

In 1994 Ramesh Pyndiah introduced BTCs as an alternative to classical convolutional
TCs which were introduced a year before for applications requiring either high code
rates (R > 0.8), very low error floors, or low complexity decoders that operate at
several hundreds of megabits per second or higher [27].

BTCs are constructed as the data to be encoded is set in an l-dimensional hyper-
cube with dimensional lengths denoted by (k1, k2, . . . , kl). Here all the dimensional
sub-codes are encoded in the systematic linear block code (ni , ki , dmini), where ni

represents the length of the code, ki is the length of the information bit, dmini is the
minimum Hamming distance, and ri = ki/ni the code rate of the i-th dimensional
sub-code. As a result for the l-dimensional BTC, the codeword length is

∏l
i=1 ni ; the

information bit length is
∏l

i=1 ki ; the minimum Hamming distance is
∏l

i=1 dmini; and
the code rate is

∏l
i=1 ri . Note that a higher dimensional number of the BTC implies

a more complex implementation so the two-dimensional BTC seems to be the right
choice for communication systems because of its relatively simple implementation
and suitable structure for high code rate codes [28].

The RS code or Bose-Chaudhuri-Hocguenghem (BCH) code can be chosen as the
component code of a two-dimensional BTC. The RS code has better error correction
performance but due to its very high decoding complexity, the BCH code is usually
preferred for practical applications [23].

To encode a two-dimensional BTC whose component code is a BCH code, first
the k1 ×k2 information bits are set into a matrix of k2 rows and k1 columns. Then the
k2 rows are horizontally or row-wise encoded by applying BCH(n1, k1, dmin1) and
k1 columns are vertically or column-wise encoded by applying BCH(n2, k2, dmin2)

as shown in Fig. 2.5 [25].
In addition, a row/column interleaver is used in between the two BCH encoders

to guarantee the information bit that is horizontally encoded in the first BCH encoder
can be vertically encoded in the second BCH encoder. One can see that this encoding
technique is identical to encoding a BCH serial concatenated code in which the same
interleaver used. Encoding with this technique leads to a BTC with the following
parameters: n = n1 × n2, k = k1 × k2, and dmin = dmin1 × dmin2.

Concerning the decoding process, let us consider the decoding of binary linear
block code c(n, k, dmin). While for high rate block code whose codeword length is
too long, ML decoding requires very large code numbers and the complexity of the
decoding algorithm increases exponentially. Therefore, a decoding technique with
much lower complexity and small degradation in performance for the linear block
code was introduced by Chase in 1972 and used by Pyndiah in 1994 [27]. It should
be noted that the previous technique is also suitable for decoding non-binary codes
like RS codes.

2.4 Summary 27

n2

k1

k2

Information
bits

Checks on

columns

Checks

on rows

Checks on

checks

n1

Fig. 2.5 The encoding structural diagram of the two-dimensional BTC

2.4 Summary

In this chapter, an overview of the concepts of AG code construction, encoding,
and decoding techniques has been presented in detail which forms a foundation for
understanding the subsequent chapters.

AG code construction sets out the code parameters such as the message length,
codeword length, minimum Hamming distance, and the capabilities of code in locat-
ing and correcting errors. The encoding part was mainly composed of generating
a non-systematic generator matrix and converting that into a systematic one using
Gauss-Jordan elimination technique. For decoding, a full description was given of
Sakata’s algorithm and the MV technique was explained as well. Finding the mag-
nitudes of errors depending on their locations was also explained.

Also in this chapter, the basics of TC were reviewed through a brief description
of the main three components of TC (turbo encoder, interleaver, and turbo decoder).
BTCs were introduced briefly as a prelude to more detailed explanations to follow
in the next chapters.

References

1. Goppa VD (1981) Codes on algebraic curves. Soviet Math Dokl 24:75–91
2. Ozbudak F, Stichtenoth H (1999) Constructing codes from algebraic curves. IEEE Trans Inf

Theory 45(7):2502–2505. doi:10.1109/18.796391
3. Tsfasman MA, Vladut SG, Zink T (1982) Modular curves, shimura curves and goppa codes,

better than Varshamov-Gilbert bound. Math Nachtrichten 109:21–28

http://dx.doi.org/10.1109/18.796391

28 2 Theoretical Background

4. Justesen J, Larsen K, Jensen H, Havemose A, Hoholdt T (1989) Construction and decoding of
a class of algebraic geometry codes. IEEE Trans Inf Theory 35(4):811–821. doi:10.1109/18.
32157

5. Carrasco RA, Johnston M (2008) Non-binary error control coding for wireless communication
and data storage. Wiley, New York. doi:10.1002/9780470740415.fmatter. http://dx.doi.org/10.
1002/9780470740415.fmatter

6. Kirwan F (1992) Complex algebraic curves. London mathematical society student texts, vol.
23. Cambridge University Press, Cambridge. doi:10.2277/0521423538

7. Walker RJ (1978) Algebraic curves. Princeton mathematical series, vol. 13. Springer-Verlag,
New York

8. Johnston M, Carrasco RA (2005) Construction and performance of algebraic-geometric codes
over awgn and fading channels. IEE Proc Commun 152(5):713–722. doi:10.1049/ip-com:
20045153

9. Blake I, Heegard C, Hoholdt T, Wei V (1998) Algebraic-geometry codes. IEEE Trans Inf
Theory 44(6):2596–2618. doi:10.1109/18.720550

10. Pretzel O (1998) Codes and algebraic curves. Oxford University Press, New York
11. Wicker SB (1995) Error control systems for digital communication and storage. Prentice-Hall,

Upper Saddle River
12. Sakata S (1988) Finding a minimal set of linear recurring relations capable of generating a

given finite two-dimensional array. J Symbolic Comput 5(3):321–337. doi:10.1016/S0747-
7171(88)80033-6. http://www.sciencedirect.com/science/article/pii/S0747717188800336

13. Atkinson K (1989) An introduction to numerical analysis, 2nd edn. Wiley, New York. http://
www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471624896

14. Reed IS, Solomon G (1960) Polynomial codes over certain finite fields. J Soc Ind Appl Math
8(2):300–304

15. Massey J (1969) Shift-register synthesis and bch decoding. IEEE Trans Inf Theory 15(1):122–
127. doi:10.1109/TIT.1969.1054260

16. Justesen J, Larsen K, Jensen H, Hoholdt T (1992) Fast decoding of codes from algebraic plane
curves. IEEE Trans Inf Theory 38(1):111–119. doi:10.1109/18.108255

17. Sakata S, Justesen J, Madelung Y, Jensen H, Hoholdt T (1995) Fast decoding of algebraic-
geometric codes up to the designed minimum distance. IEEE Trans Inf Theory 41(6):1672–
1677. doi:10.1109/18.476240

18. Saints K, Heegard C (1995) Algebraic-geometric codes and multidimensional cyclic codes:
a unified theory and algorithms for decoding using Grobner bases. IEEE Trans Inf Theory
41(6):1733–1751. doi:10.1109/18.476246

19. Feng GL, Rao TRN (1993) Decoding algebraic-geometric codes up to the designed minimum
distance. IEEE Trans Inf Theory 39(1):37–45. doi:10.1109/18.179340

20. Liu CW (1999) Determination of error values for decoding Hermitian codes with the inverse
affine Fourier transform. IEICE Trans Fundam Electron Commun Comput Sci 82(10):2302–
2305. http://ci.nii.ac.jp/naid/110003208168/en/

21. Berrou C, Glavieux A, Thitimajshima P (1993) Near shannon limit error-correcting coding and
decoding: turbo-codes. 1. In: IEEE International Conference on Communications (ICC’93),
vol. 2. pp. 1064–1070. doi:10.1109/ICC.1993.397441

22. Berrou C, Glavieux A (1996) Near optimum error correcting coding and decoding: turbo-codes.
IEEE Trans Commun 44(10):1261–1271. doi:10.1109/26.539767

23. Sklar B (1988) Digital communications: fundamentals and applications. Prentice-Hall, Upper
Saddle River

24. Valenti MC (1998) Turbo codes and iterative processing. In: Proceedings IEEE New Zealand
Wireless Communications Symposium, pp. 216–219

25. Vucetic B, Yuan J (2000) Turbo codes: principles and applications. Kluwer Academic, Boston.
http://www.loc.gov/catdir/enhancements/fy0820/00033104-t.html

26. Benedetto S, Montorsi G (1996) Unveiling turbo codes: some results on parallel concatenated
coding schemes. IEEE Trans Inf Theory 42(2):409–428. doi:10.1109/18.485713

http://dx.doi.org/10.1109/18.32157
http://dx.doi.org/10.1109/18.32157
http://dx.doi.org/10.1002/9780470740415.fmatter
http://dx.doi.org/10.1002/9780470740415.fmatter
http://dx.doi.org/10.1002/9780470740415.fmatter
http://dx.doi.org/10.2277/0521423538
http://dx.doi.org/10.1049/ip-com:20045153
http://dx.doi.org/10.1049/ip-com:20045153
http://dx.doi.org/10.1109/18.720550
http://dx.doi.org/10.1016/S0747-7171(88)80033-6
http://dx.doi.org/10.1016/S0747-7171(88)80033-6
http://www.sciencedirect.com/science/article/pii/S0747717188800336
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471624896
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471624896
http://dx.doi.org/10.1109/TIT.1969.1054260
http://dx.doi.org/10.1109/18.108255
http://dx.doi.org/10.1109/18.476240
http://dx.doi.org/10.1109/18.476246
http://dx.doi.org/10.1109/18.179340
http://ci.nii.ac.jp/naid/110003208168/en/
http://dx.doi.org/10.1109/ICC.1993.397441
http://dx.doi.org/10.1109/26.539767
http://www.loc.gov/catdir/enhancements/fy0820/00033104-t.html
http://dx.doi.org/10.1109/18.485713

References 29

27. Pyndiah R, Glavieux A, Picart A, Jacq S (1994) Near optimum decoding of product codes. In:
Proceedings of IEEE GLOBECOM ’94, pp. 339–343. doi:10.1109/GLOCOM.1994.513494

28. Pyndiah RM (1998) Near-optimum decoding of product codes: block turbo codes. IEEE Trans
Commun 46(8):1003–1010. doi:10.1109/26.705396

http://dx.doi.org/10.1109/GLOCOM.1994.513494
http://dx.doi.org/10.1109/26.705396

http://www.springer.com/978-3-319-08292-9

	2 Theoretical Background
	2.1 Algebraic Geometric Codes
	2.1.1 Construction of AG Code Parameters
	2.1.2 Designing AG Encoder
	2.1.3 Designing AG Decoder
	2.1.4 Complete Hard-Decision Decoding Algorithm for AG Codes Constructed From Hermitian Curves

	2.2 Turbo Codes
	2.2.1 Turbo Encoder
	2.2.2 Interleaver
	2.2.3 Turbo Decoder

	2.3 Block Turbo Codes
	2.4 Summary
	References

