
2. Stress and Strain Analysis and Measurement

The engineering design of structures using polymers requires a thorough knowledge

of the basic principles of stress and strain analysis and measurement. Readers of

this book should have a fundamental knowledge of stress and strain from a

course in elementary solid mechanics and from an introductory course in

materials. Therefore, we do not rigorously derive from first principles all the

necessary concepts. However, in this chapter we provide a review of the

fundamentals and lay out consistent notation used in the remainder of the text.

It should be emphasized that the interpretations of stress and strain distributions

in polymers and the properties derived from the standpoint of the traditional

analysis given in this chapter are approximate and not applicable to viscoelastic

polymers under all circumstances. By comparing the procedures discussed in

later chapters with those of this chapter, it is therefore possible to contrast and

evaluate the differences.

2.1. Some Important and Useful Definitions

In elementary mechanics of materials (Strength of Materials or the first under-

graduate course in solid mechanics) as well as in an introductory graduate

elasticity course five fundamental assumptions are normally made about the

characteristics of the materials for which the analysis is valid. These assump-

tions require the material to be,

• Linear
• Homogeneous
• Isotropic
• Elastic
• Continuum

Provided that a material has these characteristics, be it a metal or polymer, the

elementary stress analysis of bars, beams, frames, pressure vessels, columns, etc.

using these assumptions is quite accurate and useful. However, when these

assumptions are violated serious errors can occur if the same analysis

approaches are used. It is therefore incumbent upon engineers to thoroughly
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understand these fundamental definitions as well as how to determine if they are

appropriate for a given situation. As a result, the reader is encouraged to gain a

thorough understanding of the following terms:

Linearity: Two types of linearity are normally assumed: Material linearity

(Hookean stress-strain behavior) or linear relation between stress and strain;

Geometric linearity or small strains and deformation.

Elastic: Deformations due to external loads are completely and instanta-

neously reversible upon load removal.

Continuum: Matter is continuously distributed for all size scales, i.e. there

are no holes or voids.

Homogeneous: Material properties are the same at every point or material

properties are invariant upon translation.

Inhomogeneous or Heterogeneous: Material properties are not the same at

every point or material properties vary upon translation.

Amorphous: Chaotic or having structure without order. An example would

be glass or most metals on a macroscopic scale.

Crystalline: Having order or a regular structural arrangement. An example

would be naturally occurring crystals such as salt or many metals on the

microscopic scale within grain boundaries.

Isotropic: Materials which have the same mechanical properties in all

directions at an arbitrary point or materials whose properties are invariant

upon rotation of axes at a point. Amorphous materials are isotropic.

Anisotropic: Materials which have mechanical properties which are not the

same in different directions at a point or materials whose properties vary with

rotation at a point. Crystalline materials are anisotropic.

Plastic: The word comes from the Latin word plasticus, and from the Greek

words plastikos which in turn is derived from plastos (meaning molded)

and from plassein (meaning to mold). Unfortunately, this term is often used

as a generic name for a polymer (see definition below) probably because

many of the early polymers (cellulose, polyesters, etc.) appear to yield

and/or flow in a similar manner to metals and could be easily molded.

However, not all polymers are moldable, exhibit plastic flow or a definitive

yield point.

Viscoelasticity or Rheology: The study of materials whose mechanical

properties have characteristics of both solid and fluid materials. Visco-

elasticity is a term often used by those whose primary interest is solid
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mechanics while rheology is a term often used by those whose primary

interest is fluid mechanics. The term also implies that mechanical

properties are a function of time due to the intrinsic nature of a material

and that the material possesses a memory (fading) of past events. The

latter separates such materials from those with time dependent proper-

ties due primarily to changing environments or corrosion. All polymers

(fluid or solid) have time or temperature domains in which they are

viscoelastic.

Polymer: The word Polymer originates from the Greek word “polymeros”

which means many-membered (Clegg and Collyer 1993). Often the word

polymer is thought of as being composed of the two words; “poly” meaning

many and “mer” meaning unit. Thus, the word polymer means many units

and is very descriptive of a polymer molecule.

Several of these terms will be reexamined in this chapter but the intent

of the remainder of this book is to principally consider aspects of the last

three.

2.2. Elementary Definitions of Stress, Strain
and Material Properties

This section will describe the most elementary definitions of stress and strain

typically found in undergraduate strength of materials texts. These definitions

will serve to describe some basic test methods used to determine elastic material

properties. A later section will revisit stress and strain, defining them in a more

rigorous manner.

Often, stress and strain are defined on the basis of a simple uniaxial tension

test. Typically, a “dogbone” specimen such as that shown in Fig. 2.1a is used

and material properties such as Young’s modulus, Poisson’s ratio, failure (yield)

stress and strain are found therefrom. The specimen may be cut from a thin flat

plate of constant thickness or may be machined from a cylindrical bar. The

“dogbone” shape is to avoid stress concentrations from loading machine con-

nections and to insure a homogeneous state of stress and strain within the

measurement region. The term homogeneous here indicates a uniform state of

stress or strain over the measurement region, i.e. the throat or reduced central

portion of the specimen. Figure 2.1b shows the uniform or constant stress that is

present and that is calculated as given below.
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The engineering (average) stress can be calculated by dividing the applied

tensile force, P, (normal to the cross section) by the area of the original cross

sectional area A0 as follows,

σav ¼ P

A0

(2:1)

The engineering (average) strain in the direction of the tensile load can be found

by dividing the change in length, ΔL, of the inscribed rectangle by the original

length L0,

εav ¼
ðL
L0

dL

L0

¼ ΔL
L0

¼ L� L0

L0

(2:2)

or

εav ¼ L

L0

� 1 ¼ λ� 1 (2:3)

The term λ in the above equation is called the extension ratio and is sometimes

used for large deformations such as those which may occur with low modulus

rubbery polymers.

True stress and strain are calculated using the instantaneous (deformed at a

particular load) values of the cross-sectional area, A, and the length of the

rectangle, L,

σt ¼ F

A
(2:4)

and

εt ¼
ðL
L0

dL

L
¼ ln

L

L0

¼ ln 1þ εð Þ (2:5)

d0

L0

P PP
σ=P/A0

(a) (b)

Fig. 2.1 “Dogbone” tensile specimen
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True strain is related to the engineering strain as indicated in Eq. 2.5 and can also
be shown to differ from the engineering strain by higher order terms (ε2, ε3, etc.)
which are negligible for the small (linear) strain regime. Thus in the limit of

small strain, the true strain and engineering strain are identical. These and other

nonlinear measures are used for polymers and other materials undergoing large

deformations.

Hooke’s law is valid provided the stress varies linearly with strain and

Young’s modulus, E, may be determined from the slope of the stress-strain

curve or by dividing stress by strain,

E ¼ σav
εav

(2:6)

or

E ¼ P=A0

ΔL=L0

(2:7)

and the axial deformation over length L0 is,

δ ¼ ΔL ¼ PL0

A0E
(2:8)

Poisson’s ratio, ν, is defined as the absolute value of the ratio of strain transverse,
εy, to the load direction to the strain in the load direction, εx,

ν ¼ εy
εx

(2:9)

The transverse strain εy, of course can be found from,

εy ¼ d� d0

d0
(2:10)

and is negative for an applied tensile load.

Shear properties can be found from a right circular cylinder loaded in torsion

as shown in Fig. 2.2, where the shear stress, τ, angle of twist, θ, and shear strain,
γ, are given by,

τ ¼ Tr

J
, θ ¼ TL

JG
, γ ¼ δ

L
¼ rθ

L
(2:11)
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Herein, L is the length of the cylinder, T is the applied torque, r is the radial

distance, J is the polar second moment of area and G is the shear modulus. These

equations are developed assuming a linear relation between shear stress and strain

as well as homogeneity and isotropy. With these assumptions, the shear stress and

strain vary linearly with the radius and a pure shear stress state exists on any

circumferential plane as shown on the surface at point A in Fig. 2.2. The shear

modulus, G, is the slope of the shear stress-strain curve and may be found from,

G ¼ τ
γ

(2:12)

where the shear strain is easily found by measuring only the angular rotation, θ,
in a given length, L. The shear modulus is related to Young’s modulus and can

also be calculated from,

G ¼ E

2 1þ νð Þ (2:13)

As Poisson’s ratio, ν, varies between 0.3 and 0.5 for most materials, the shear

modulus is often approximated by, G~E/3.

While tensile and torsion bars are the usual methods to determine engineering

properties, other methods can be used to determine material properties such as

prismatic beams under bending or flexure loads similar to those shown in Fig. 2.3.

The elementary strength of materials equations for bending (flexural) stress,

σx, shear stress, τxy, due to bending and vertical deflection, v, for a beam loaded

in bending are,

σx ¼ Mzzy

Izz
, τxy ¼ VQ

Izzb
,

d2v

dx2
¼ Mzz

EIzz
(2:14)

where y is the distance from the neutral plane to the point at which stress is

calculated, Mzz is the applied moment, Izz is the second moment of the cross-

sectional area about the neutral plane, b is the width of the beam at the point of

T

T

T

X

rA

y
δ

θ

τxy

τ

Fig. 2.2 Typical torsion test specimen to obtain shear properties
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calculation of the shear stress,Q is the first moment of the area about the neutral

plane (see a strength of materials text for a more explicit definition of each of

these terms), and other terms are as defined previously.

For a beam with a rectangular cross-section, the bending stress, σx, varies
linearly and shear stress, τxy, varies parabolically over the cross-section as

shown in Fig. 2.4.

y

x
Mzz Mzz

L

P

P Paa

P

L RR

x

x

a1 a2 a3

y

P
(a)

(b)

(c)

Fig. 2.3 Beams in bending
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Fig. 2.4 Normal and shear stress variation in a rectangular beam in flexure
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Using Eq. 2.14, given the applied moment, M, geometry of the beam, and

deflection at a point, it is possible to calculate the modulus, E. Strictly speaking,
the equations for bending stress and beam deflections are only valid for pure

bending as depicted in Fig. 2.3a, b but give good approximations for other types

of loading such as that shown in Fig. 2.3c as long as the beam is not very short.

Very short beams require a shear correction factor for beam deflection.

As an example, a beam in three-point bending as shown in Fig. 2.5 is often

used to determine a “flex (or flexural) modulus” which is reported in industry

specification sheets describing a particular polymer.

The maximum deflection can be shown to be,

δmax ¼ PL3

48EI
(2:15)

from which the flexural (flex) modulus is found to be,

E ¼ PL3

48I

1

δmax

(2:16)

Fundamentally, any structure under load can be used to determine properties

provided the stress can be calculated and the strain can be measured at the same

location. However, it is important to note that no method is available to measure

stress directly. Stresses can only be calculated through the determination of

forces using Newton’s laws. On the other hand, strain can be determined directly

from measured deformations. That is, displacement or motion is the physically

measured quantity and force (and hence stress) is a defined, derived or calculated

quantity. Some might argue that photoelastic techniques may qualify for the

direct measurement of stress but it can also be argued that this effect is due to

L/2 L/2

P/2P/2

PNeutral axis
before deformation

Neutral axis
after deformation

δmax

Fig. 2.5 Three-point bend specimen

22 Polymer Engineering Science and Viscoelasticity: An Introduction



interaction of light on changes in the atomic and molecular structure associated

with a birefringent material, usually a polymer, caused by load induced dis-

placements or strain.

It is clear that all the specimens used to determine properties such as the

tensile bar, torsion bar and a beam in pure bending are special solid mechanics

boundary value problems (BVP) for which it is possible to determine a “closed

form” solution of the stress distribution using only the loading, the geometry,

equilibrium equations and an assumption of a linear relation between stress and

strain. It is to be noted that the same solutions of these BVP’s from a first course

in solid mechanics can be obtained using a more rigorous approach based on the

Theory of Elasticity.

While the basic definitions of stress and strain are unchanged regardless of

material, it should be noted that the elementary relations used above are often

not applicable to polymers. As will be discussed in detail in the next chapters,

polymers are inherently viscoelastic. For example, the rate of loading in a simple

tension test will change the value measured for E in a viscoelastic material since

modulus is inherently a function of time.

2.3. Typical Stress-Strain Properties

Properties of materials can be determined using the above elementary

approaches. Often, for example, static tensile or compression tests are performed

with a modern computer driven servo-hydraulic testing system such as the one

shown in Fig. 2.6. The applied load is measured by a load cell (shown in (a) just

above the grips) and deformation is found by either an extensometer (shown in

(b) attached to the specimen) or an electrical resistance strain gage shown in (c).

The latter is glued to the specimen and the change in resistance is measured as

the specimen and the gage elongate. (Many additional methods are available to

measure strain, including laser extensometers, moiré techniques, etc.). The

cross-sectional area of the specimen and the gage length are input into the

computer and the stress strain diagram is printed as the test is being run or can

be stored for later use. The reason for a homogeneous state of stress and strain is

now obvious. If a homogeneous state of stress and strain do not exist, it is only

possible to determine the average strain value over the gage length region with

this procedure and not the true properties of the material at a point.

Typical stress-strain diagrams for brittle and ductile materials are shown in

Fig. 2.7. For brittle materials such as cast iron, glass, some epoxy resins, etc., the

stress strain diagram is linear from initial loading (point 0) nearly to rupture
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(point B) when average strains are measured. As will be discussed subsequently,

stress and strain are “point” quantities if the correct mathematical definition of

each is used. As a result, if the strain were actually measured at a single point,

i.e., the point of final failure, the stress and strain at failure even for a brittle

material might be slightly higher than the average values shown in Fig. 2.7.

For ductile materials such as many aluminum alloys, copper, etc., the stress-

strain diagram may be nonlinear from initial loading until final rupture. How-

ever, for small stresses and strains, a portion may be well approximated by a

straight line and an approximate proportional limit (point A) can be determined.

For many metals and other materials, if the stress exceeds the proportional limit

a residual or permanent deformation may remain when the specimen is unloaded

and the material is said to have “yielded”. The exact yield point may not be the

same as the proportional limit and if this is the case the location is difficult to

determine. As a result, an arbitrary “0.2 % offset” procedure is often used to

determine the yield point in metals. That is, a line parallel to the initial tangent to

the stress-strain diagram is drawn to pass through a strain of 0.002 in./in. The

yield point is then defined as the point of intersection of this line and the stress-

strain diagram (point C in Fig. 2.7). This procedure can be used for polymers but

the offset must be much larger than 0.2 % definition used for metals. Procedures

to find the yield point in polymers will be discussed in Chaps. 3 and 11.

Fig. 2.6 (a) Servo-hydraulic testing system: (b) extensometer, (c) electrical resistance

strain gage
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An approximate sketch of the stress-strain diagram for mild steel is shown in

Fig. 2.8a. The numbers given for proportional limit, upper and lower yield points

and maximum stress are taken from the literature, but are only approximations.

Notice that the stress is nearly linear with strain until it reaches the upper yield

point stress which is also known as the elastic-plastic tensile instability point. At

this point the load (or stress) decreases as the deformation continues to increase.

That is, less load is necessary to sustain continued deformation. The region

between the lower yield point and the maximum stress is a region of strain

hardening, a concept that is discussed in the next section. Note that if true stress

and strain are used, the maximum or ultimate stress is at the rupture point.

The elastic-plastic tensile instability point in mild steel has received much

attention and many explanations. Some polymers, such as polycarbonate, exhibit

a similar phenomenon. Both steel and polycarbonate not only show an upper and

lower yield point but visible striations of yielding; plastic flow or slip lines

(Luder’s bands), at an approximate angle of 54.7� to the load axis, occur in each
for stresses equivalent to the upper yield point stress. (For a description and an

example of Luder’s band formation in polycarbonate, see Fig. 3.7c). It has been
argued that this instability point (and the appearance of an upper and lower yield

point) in metals is a result of the testing procedure and is related to the evolution

of internal damage. That this is the case for polycarbonate will be shown in

Chap. 3. For a discussion of these factors for metals, see Drucker (1962) and

Kachanov (1986).

If the strain scale of Fig. 2.8a is expanded as illustrated in Fig. 2.8b, the
stress-strain diagram of mild steel is approximated by two straight lines; one for

the linear elastic portion and one which is horizontal at a stress level of the lower

yield point. This characteristic of mild steel to “flow”, “neck” or “draw” without

Strain, ε, %
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Ductile material
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Rupture
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Fig. 2.7 Stress-strain diagrams for brittle and ductile materials
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rupture when the yield point has been exceeded has led to the concepts of plastic,

limit or ultimate design. That is, just because the yield point has been exceeded

does not mean that the material cannot support load. In fact, it can be shown that

economy of design and weight savings can be obtained using limit design

concepts. Concepts of plasticity and yielding date back to St. Venant in about

1870 but the concepts of plastic or limit design including computational plas-

ticity evolved primarily in the latter half of the twentieth century (see

Westergaard (1964) for a discussion of the history of solid mechanics including

comments on the evolution of plasticity). Also, an excellent discussion of

plasticity and metal forming is given by Osakada (2010). Computational plas-

ticity has its origins associated with calculations of deformations beyond the

yield point for stress-strain diagrams similar to that of mild steel and will be

briefly discussed in Chap. 11 in the context of polymers.

As will be discussed in Chap. 3, the same procedures discussed in the present

chapter are used to determine the stress-strain characteristics of polymers. If

only a single rate of loading is used, similar results will be obtained. On the other

hand, if polymers are loaded at various strain rates, the behavior varies signif-

icantly from that of metals. Generally, metals do not show rate effects at ambient

temperatures. They do, however, show considerable rate effects at elevated

temperatures but the molecular mechanisms responsible for such effects are

very different in polymers and metals.

It is appropriate to note that industry specification sheets often give the elastic

modulus, yield strength, strain to yield, ultimate stress and strain to failure as

determined by these elementary techniques. One objective of this text is to

emphasize the need for approaches to obtain more appropriate specifications

for the engineering design of polymers.

(a) Stress-strain diagram for mild steel (b) Expanded scale up to 2%strain

ε0

Lower yield point, σLyp

Upper yield point, σuyp

σ

Proportional limit, σpL

0.020

415

0.02 0.2

Approximately 0.0012

Loweryield point

Upper
yield point

(M
P
a)

σ

Conventional σ−ε curve
True σ−ε curve

ε

Rupture

Fig. 2.8 Typical tensile stress-strain diagrams (not to scale)
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2.4. Idealized Stress-Strain Diagrams

The stress-strain diagrams discussed in the last section are often approximated by

idealized diagrams. For example, a linear elastic perfectly brittle material is

assumed to have a stress-strain diagram similar to that given in Fig. 2.9a. On the
other hand, the stress-strain curve formild steel can be approximated as a perfectly

elastic-plastic material with the stress-strain diagram given in Fig. 2.9b.
Metals (and polymers) often have nonlinear stress-strain behavior as shown in

Fig. 2.10a. These are sometimes modeled with a bilinear diagram as shown in

Fig. 2.10b and are referred to as a perfectly linear elastic strain hardeningmaterial.

Here the 0.2 % offset method for determining the yield point for metals is used

as an illustration. For polymers a different method must be used (See Chap. 3).

(a) Linear elastic perfectly brittle (b) Linear elastic perfectly plastic

0

E

0

E

σr is the rupture stress
σ

σr

σy is the yield point stress
σ

ε ε

σy

Fig. 2.9 Idealized uniaxial stress-strain diagrams

(a) Nonlinear behavior (b) Bilinear approximation

0

E

σy

0

E

σ

σy

σ

ε ε

Fig. 2.10 Nonlinear stress-strain diagram with linear elastic strain hardening approxi-

mation (σy is the yield point stress)
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2.5. Mathematical Definitions of Stress, Strain
and Material Characteristics

The previous sections give a brief review of some elementary concepts of solid

mechanics which are often used to determine basic properties of most engineer-

ing materials. However, these approaches are sometimes not adequate and more

advanced concepts from the theory of elasticity or the theory of plasticity are

needed. Herein, a brief discussion is given of some of the more exact modeling

approaches for linear elastic materials. Even these methods need to be modified

for viscoelastic materials but this section will only give some of the basic

elasticity concepts.

Definition of a Continuum A basic assumption of elementary solid mechanics

is that a material can be approximated as a continuum. That is, the material

(of mass ΔM) is continuously distributed over an arbitrarily small volume, ΔV,
such that,

Lim
ΔV!0

ΔM
ΔV

¼ dM

dV
¼ const: ¼ ρ ¼ density at a pointð Þ (2:17)

Quite obviously such an assumption is at odds with our knowledge of the atomic

and molecular nature of materials but is an acceptable approximation for most

engineering applications. The principles of linear elasticity, though based upon

the premise of a continuum, have been shown to be useful in estimating the

stress and strain fields associated with dislocations and other non-continuum

microstructural details.

Physical and Mathematical Definition of Normal Stress and Shear
Stress Consider a body in equilibrium under the action of external forces Fi

as shown in Fig. 2.11a. If a cutting plane is passed through the body as shown in
Fig. 2.11b, equilibrium is maintained on the remaining portion by internal forces

distributed over the newly exposed internal surface.
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At any arbitrary point p, the incremental resultant force, ΔFr, on the cut

surface can be broken up into a normal force in the direction of the normal, n, to
surface S and a tangential force parallel to surface S. The normal stress and the

shear stress at point p is mathematically defined as,

σn ¼ lim
ΔΑ!0

ΔFn
ΔA

τs ¼ lim
ΔΑ!0

ΔFs
ΔA

(2:18)

where ΔFn and ΔFs are the normal and shearing forces on the area ΔA
surrounding point p.

Alternatively, the resultant force, ΔFr, at point p can be divided by the area,

ΔA, and the limit taken to obtain the stress resultant σr as shown in Fig. 2.12.
Normal and tangential components of this stress resultant will then be the normal

stress σn and shear stress τs at point p on the infinitesimal area ΔA.
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Fig. 2.11 Physical definition of normal force and shear force
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Fig. 2.12 Stress resultant definition
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Fig. 2.13 Cartesian components of internal stresses
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If a pair of cutting planes a differential distance apart are passed through the

body parallel to each of the three coordinate planes, a cube will be identified.

Each plane will have normal and tangential components of the stress resultants.

The tangential or shear stress resultant on each plane can further be represented

by two components in the coordinate directions. The internal stress state is then

represented by three stress components on each coordinate plane as shown in

Fig. 2.13. (Note that equal and opposite components will exist on the unexposed

faces). Therefore at any point in a body there will be nine stress components.

These are often identified in matrix form such that,

σij ¼
σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

0
@

1
A (2:19)

Using equilibrium, it is easy to show that the stress matrix is symmetric or,

τxy ¼ τyx, τxz ¼ τzx, τyz ¼ τzy (2:20)

leaving only six independent stresses existing at a material point.

Physical andMathematical Definition of Normal Strain and Shear Strain If

a differential element is acted upon by stresses as shown in Fig. 2.14a both

normal and shearing deformations will result. The resulting deformation in

the x-y plane is shown in Fig. 2.14b, where u is the displacement component

in the x direction and v is the displacement component in the y direction.
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Fig. 2.14 Definitions of displacements u and v and corresponding shear and normal

strains

2 Stress and Strain Analysis and Measurement 31



The unit change in the Δx dimension will be the strain εxx and is given by,

εxx ¼ lim
Δx!0

uþ Δu
Δx

Δx
� �

� u

Δx

8>><
>>:

9>>=
>>; (2:21)

with similar definitions for the unit change in the y and z directions. (The

assumption of small strain and linear behavior is implicit here with the assump-

tion that θ is small and thus its impact on Δu is ignored). Therefore the normal

strains in the three coordinate directions are defined as,

εxx ¼ lim
Δx!0

Δu
Δx

¼ ∂u
∂x

, εyy ¼ lim
Δy!0

Δv
Δy

¼ ∂v
∂y

,

εzz ¼ lim
Δz!0

Δw
Δz

¼ ∂w
∂z

(2:22)

where u, v and w are the displacement components in the three coordinate

directions at a point. Shear strains are defined as the distortion of the original

90� angle at the origin or the sum of the angles θ1 + θ2. That is, again using the

small deformation assumption,

tan θ1 þ θ2ð Þ � θ1 þ θ2ð Þ¼ lim
Δx,Δy!0

vþ Δv
ΔxΔx

� �� v

Δx
þ

uþ Δu
Δy

� �
� u

Δy

2
4

3
5
(2:23)

which leads to the three shear strains,

γxy ¼
∂v
∂x

þ ∂u
∂y

� �
, γxz ¼

∂w
∂x

þ ∂u
∂z

� �
, γyz ¼

∂w
∂y

þ ∂v
∂z

� �
(2:24)

Stresses and strains are often described using tensorial mathematics but in order

for strains to transform as tensors, the definition of shear strain must be modified

to include a factor of one half as follows,

εxy ¼ 1

2

∂v
∂x

þ ∂u
∂y

� �
, εxz ¼ 1

2

∂w
∂x

þ ∂u
∂z

� �
, εyz ¼ 1

2

∂w
∂y

þ ∂v
∂z

� �
(2:25)

The difference between the latter two sets of equations can lead to very errone-

ous values of stress when attempting to use an electrical strain gage rosette to

determine the state of stress experimentally. In Eq. 2.25 the traditional symbol ε
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with mixed indices has been used to identity tensorial shear strain. The symbol γ
with mixed indices will be used to describe non-tensorial shear strain, also called

engineering strain.

In general, as with stresses, nine components of strain exist at a point and

these can be represented in matrix form as,

εij ¼
εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

0
@

1
A (2:26)

Again, it is possible to show that the strain matrix is symmetric or that,

εxy ¼ εyx, εxz ¼ εzx, εyz ¼ εzy (2:27)

Hence there are only six independent strains.

Generalized Hooke’s Law As noted previously, Hooke’s law for one dimen-

sion or for the condition of uniaxial stress and strain for elastic materials is given

by σ¼E ε. Using the principle of superposition, the generalized Hooke’s law

for a three dimensional state of stress and strain in a homogeneous and isotropic

material can be shown to be,

εxx ¼ 1

E
σxx � ν σyy þ σzz

� �� 	
, γxy ¼

τxy
G

εyy ¼ 1

E
σyy � ν σxx þ σzzð Þ� 	

, γyz ¼
τyz
G

εzz ¼ 1

E
σzz � ν σxx þ σyy

� �� 	
, γxz ¼ τxz

G

(2:28)

where E, G and ν are Young’s modulus, the shear modulus and Poisson’s ratio

respectively. Only two are independent and as indicated earlier,

G ¼ E

2 1þ νð Þ (2:29)

The proof for Eq. 2.29 may be found in many elementary books on solid

mechanics.

Other forms of the generalized Hooke’s law can be found in many texts. The

relation between various material constants for linear elastic materials are shown

below in Table 2.1 where E, G and ν are previously defined and where K is the

bulk modulus and λ is known as Lame’s constant.
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Hooke’s law is a mathematical statement of the linear relation between stress

and strain and usually implies both small strains (ε2<< ε) and small deforma-

tions. It is also to be noted that in general elasticity solutions in two and three

dimensions, the displacement, stress and strain variables are functions of spatial

position, xi. This will be handled more explicitly in Chap. 9.

Again, it is important to note that stress and strain are point quantities, yet

methods for strain measurement are not capable of measuring strain at an

infinitesimal point. Thus, average values are measured and moduli are obtained

using stresses calculated at a point. For this reason, strains are best measured

where no gradients exist or are so small that an average is a good approximation.

One approach when large gradients exist is to try to measure the gradient and

extrapolate to a point. The development of methods to measure strains within

very small regions has become a topic of great importance due to the

Table 2.1 Relation between various elastic constants. λ and G are often termed Lame’

constants and K is the bulk modulus

{A �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ λð Þ2 þ 8λ2

q
Lamé’s

modulus, λ
Shear

modulus, G

Young’s

modulus, E

Poisson’s

ratio, ν
Bulk

modulus, K

λ, G G 3λþ 2Gð Þ
λþ G

λ
2 λþ Gð Þ

3λþ 2G

3

λ, E A{ þ E� 3λð Þ
4

A{ � Eþ λð Þ
4λ

A{ þ 3λþ Eð Þ
6

λ, ν λ 1� 2νð Þ
2ν

λ 1þ νð Þ 1� 2νð Þ
ν

λ 1þ νð Þ
3ν

λ, K 3 K� λð Þ
2

9K K� λð Þ
3K� λ

λ
3K� λ

G, E 2G� Eð ÞG
E� 3G

E� 2G

2G

GE

3 3G� Eð Þ
G, ν 2Gν

1� 2ν
2G(1 + ν) 2G 1þ νð Þ

3 1� 2νð Þ
G,K 3K� 2G

3

9KG

3Kþ G

3K� 2G

2 3Kþ Gð Þ
E,ν νE

1þ νð Þ 1� 2νð Þ
E

2 1þ νð Þ
E

3 1� 2νð Þ
E,K 3K 3K� Eð Þ

9K� Eð Þ
3EK

9K� E

3K� E

6K

ν,K 3Kν
1þ ν

3K 1� 2νð Þ
2 1þ νð Þ

3K(1� 2ν)
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development of micro-devices and machines. Further, such concerns as interface

or interphase properties in multi-phase materials also creates the need for new

micro strain measurement techniques.

Indicial Notation and Compact Form of Generalized Hooke’s Law Because

of the cumbersome form of the generalized Hooke’s Law for material constitu-

tive response in three dimensions (Eq. 2.28), a shorthand notation referred to as

indicial or index notation is extensively used. Here we provide a brief summary

of indicial notation and further details may be found in many books on contin-

uum mechanics (e.g., Flügge 1972). In indicial notation, the subscripts on

tensors are used with very precise rules and conventions and provide a compact

way to relate and manipulate tensorial expressions.

The conventions are as follows:

• Subscripts indicating coordinate direction (x, y, z) can be generally

represented by a roman letter variable that is understood to take on the values

of 1, 2, or 3. For example, the stress tensor can be written as σij which then

gives reference to the entire 3� 3 matrix. That is the stress and strain matrices

given by Eqs. 2.19 and 2.26 become,

σij ¼
σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

0
@

1
Aεij ¼

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

0
@

1
A (2:30)

• Summation convention: if the same index appears twice in any term, sum-

mation is implied over that index (unless suspended by the phrase “no sum”).

For example,

σii ¼ σ11 þ σ22 þ σ33 (2:31)

• Free index: non-repeated subscripts are called free subscripts since they are

free to take on any value in 3D space. The count of the free indices on a

variable indicates the order of the tensor. e.g. Fi is a vector (first order tensor),

σij is a second order tensor.

• Dummy index: repeated subscripts are called dummy subscripts, since they

can be changed freely to another letter with no effect on the equation.

• Rule 1: The same subscript cannot appear more than twice in any term.

• Rule 2: Free indices in each term (both sides of the equation) must agree (all

terms in an equation must be of the same order).

Example of valid expression: vi¼ aijuj� λekldikl
• Rule 3: Both free and repeated indices may be replaced with others subject to

the rules.
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Example of valid expression: aijuj + di¼ aikuk + di
• Unlike in vector algebra, the order of the variables in a term is unimportant, as

the bookkeeping is done by the subscripts. For example consider the inner

product of a second order tensor and a vector:

Aijuj ¼ ujAij (2:32)

• Differentiation with respect to spatial coordinates is represented by a comma,

for example

dvi

dxj
¼ vi, j (2:33)

• The identity matrix is also referred to as the Kronecker Delta function and is

represented by

δij ¼ 1, if i ¼ j

0, if i 6¼ j

�
(2:34)

The properties of δij are thus

δii ¼ 3

δijvj ¼ vi
δijδjk ¼ δik
δijσjk ¼ σik

(2:35)

Although the conventions listed above may seem tedious at first, with a little

practice index notation provides many advantages including easier manipula-

tions of matrix expressions. Additionally, it is a very compact notation and the

rules listed above can often be used during manipulation to reduce errors in

derivations.

The generalized Hooke’s Law from Eq. 2.28 may be rewritten to relate

tensorial stress and strain in index notation as follows:

εij ¼ 1þ ν
E

σij � ν
E
σkkδij (2:36)

or

σij ¼ 2Gεij þ λεkkδij (2:37)
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Additionally, the strain-displacement relations, Eqs. 2.22 and 2.25, can be

written as

εij ¼ 1

2
ui, j þ uj, i
� �

(2:38)

where ui are the three displacement components, represented as u, v, and
w earlier (e.g., u2¼ v).

These expressions will be used extensively later in Chap. 9 when dealing with

viscoelasticity problems in two and three dimensions.

Consequences of Homogeneity and Isotropy Assumptions It is interesting to

examine the consequences if a material is linearly elastic but not homogeneous

or isotropic. For such a material, the generalized Hooke’s law is often expressed

using index notation as,

σij ¼ Eijkqεkq (2:39)

For a material that is nonhomogeneous, the material properties are a func-

tion of spatial position and Eijkq becomes Eijkq(x,y,z). The nonhomogeneity for

a particular material determines exactly how the moduli vary across the

material. The geometry of the material on an atomic or even microscale

determines symmetry relationships that govern the degree of anisotropy of

the material. Without regard to symmetry constraints, Eq. 2.39 could have

81 independent proportionality properties relating stress components to strain

components.

The complete set of nine equations (one for each stress) each with nine

coefficients (one for each strain term) can be found from Eq. 2.39. This is

accomplished using the summation convention over repeated indices. That is,

Eq. 2.39 is understood to be a double summation as follows,

σij ¼
X3
k¼1

X3
q¼1

Eijkqεkq (2:40)

(The expansion is left as an exercise for the reader. See problem 2.4).

If a material is nonlinear elastic as well as heterogeneous and anisotropic,

Eq. 2.39 becomes,

σij ¼ Eijkl x; y; zð Þεkl þ E
0
ijkl x; y; zð Þε2kl þ � � � (2:41)
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Again each term on the right hand side of Eq. 2.40 represents a double summa-

tion and each coefficient of strain is an independent set of material parameters.

Thus, many more than 81 parameters may be required to represent a nonlinear

heterogeneous and anisotropic material. Further, for viscoelastic materials, these

material parameters are time dependent. The introduction of the assumption of

linearity reduces the number of parameters to 81 while homogeneity removes

their spatial variation (i.e., the Eijkq parameters are now constants). Symmetry of

the stress and strain tensors (matrices) reduces the number of constants to 36.

The existence of a strain energy potential reduces the number of constants to 21.

Material symmetry reduces the number of constants further. For example, an

orthotropic material, one with three planes of material symmetry, has only 9

constants and an isotropic material, one with a center of symmetry, has only two

independent constants (and Eq. 2.39 reduces to Eq. 2.28). Now it is easy to see

why the assumptions of linearity, homogeneity and isotropy are used for most

engineering analyses.

A plane of material symmetry exists within a material when the material

properties (elastic moduli) at mirror-imaged points across the plane are identical.

For example, in the sketch given inFig. 2.15a, the yz plane is a plane of symmetry

and the elastic moduli would be the same at the material points A and B.

A

B

z

y

x

x1

-x1

y1

z1

y1

z1

Fig. 2.15 (a) Definition of a plane of material symmetry
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Experimentation is needed to determine if a material is homogeneous or

isotropic. One approach is to cut small tensile coupons from a three-dimensional

body and perform a uniaxial tensile or compressive test as well as a torsion test

for shear. Obviously, to obtain a statistical sample of specimens at a single point

would require exact replicas of the same material or a large number of near

replicas. Assuming that such could be accomplished for a body with points A

and B as in Fig. 2.15a, the following relationships would hold for homogeneity,

Exxxx

��
A
¼ Exxxx

��
B

Eyyyy

���
A
¼ Eyyyy

���
B

Ezzzz

��
A
¼ Ezzzz

��
B

(2:42)

That is, the modulus components are invariant (constant) for all directions at a

point (See Problem 2.5).

The above measurement approach illustrates the influence of heterogeneity

and anisotropy on moduli but is not very practical. A sonic method of measuring

properties, though not as precise as tensile or torsion tests, is often used and is

based upon the fact that the speed of sound, vs, in a medium is related to its

modulus of elasticity, E, and density, ρ, such that (Kolsky 1963),

vs ¼
ffiffiffi
E

ρ

s
(2:43)

The above is adequate for a thin long bar of material but for three-dimensional

bodies the velocity is related to both dilatational (volume change – see subse-

quent section for definition) and shear effects as well as geometry effects, etc.

It is to be noted that the condition of heterogeneity and anisotropy are

confronted when considering many materials used in engineering design. For

example, while many metals are isotropic on a macroscopic scale, they are

crystalline on a microscopic scale. Crystalline materials are at least anisotropic

and may be heterogeneous as well. Wood is both heterogeneous and anisotropic

as are many ceramic materials. Modern polymer, ceramic or metal matrix

composites such as fiberglass, etc. are both heterogeneous and anisotropic.

The mathematical analysis of such materials often neglects the effect of hetero-

geneity but does include anisotropic effects. (See Lekhnitskii (1963), Daniel and

Ishai (2005)).
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2.6. Principal Stresses

In the study of viscoelasticity as in the study of elasticity, it is mandatory to have

a thorough understanding of methods to determine principal stresses and strains.

Principal stresses are defined as the normal stresses on the planes oriented such

that the shear stresses are zero – the maximum and minimum normal stresses at a

point are principal stresses. The determination of stresses and strains in two

dimensions is well covered in elementary solid mechanics both analytically and

semi-graphically using Mohr’s circle. However, practical stress analysis prob-

lems frequently involve three dimensions. The basic equations for transforma-

tion of stresses in three-dimensions, including the determination of principal

stresses, will be given and the interested reader can find the complete develop-

ment in many solid mechanics texts.

Often in stress analysis it is necessary to determine the stresses (strains) in a

new coordinate system after calculating or measuring the stresses (strains) in

another coordinate system. In this connection, the use of index notation is very

helpful as it can be shown that the stressσ0
ij in a new coordinate system,x

0
i, can be

easily obtained from the σij in the old coordinate system, xi, by the equation,

σ
0
ij ¼ aikajqσkq (2:44)

where the quantities aij are the direction cosines between the axes x
0
i and xi and

may be given in matrix form as,

aij ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

0
@

1
A (2:45)

Figure 2.15b illustrates coordinate transformation for stress at a material point

in two dimensions, showing the primed and unprimed axis systems where the

angle between them is defined as θ. In Eq. 2.44, the repeated indices on the right
again indicate summation over the three coordinates, x,y,z or the indices 1,2,3. It
is left as an exercise for the reader to show that this process leads to the familiar

two-dimensional expressions found in the first course in solid mechanics (see

Problem 2.6),

σ
0
x ¼ σx cos 2θþ σy sin 2θþ 2τxysinθcosθ (2:46a)

or

σ
0
x ¼

σx þ σy
2

þ σx � σy
2

cos 2θþ τxy sin 2θ (2:46b)
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τ
0
xy ¼ � σx � σy

� �
sinθcosθþ τxy cos 2θ� sin 2θ

� �
(2:47a)

or

τ
0
xy ¼ � σx � σy

2
sin 2θþ τxy cos 2θ (2:47b)

Using Eq. 2.44 it is possible to show that the three principal stresses (strains) can

be calculated from the following cubic equation,

σ3i � I1σ2i þ I2σi � I3 ¼ 0 (2:48)

where the principal stresses, σi, are given by one of the three roots σ1, σ2 or σ3 and,

I1 ¼ σxx þ σyy þ σzz ¼ σ1 þ σ2 þ σ3

I2 ¼ σxxσyy þ σyyσzz þ σxxσzz � σ2xy � σ2yz � σ2xz ¼ σ1σ2 þ σ2σ3 þ σ3σ1

I3 ¼ σxxσyyσzz � σxxσ2yz � σyyσ2xz � σzzσ2xy þ 2σxyσyzσzx ¼ σ1σ2σ3

(2:49)

The quantities I1, I2, and I3 are the same for any arbitrary coordinate system

located at the same point and are therefore called invariants.

In two-dimensions when σzz¼ 0 and a state of plane stress exists, Eq. 2.48
reduces to the familiar form,

σ1,2 ¼ σxx þ σyy
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σxx � σyy

2

� �2

þ τxy
� �2r

(2:50)

Fig. 2.15 (b) Illustration of coordinate transformation in two dimensions
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where the comma does not indicate differentiation in this case, but is here used to

emphasize the similarity in form of the two principle stresses by writing them in

one equation. The proof of Eq. 2.50 is left as an exercise for the reader.

The directions of principal stresses (strains) are also very important. How-

ever, the development of the necessary equations will not be presented here but it

might be noted that the procedure is an eigenvalue problem associated with the

diagonalization of the stress (strain) matrix.

2.7. Deviatoric and Dilatational Components
of Stress and Strain

A general state of stress at a point or the stress tensor at a point can be separated

into two components, one of which results in a change of shape (deviatoric) and

one which results in a change of volume (dilatational). Shape changes due to a

pure shear stress such as that of a bar in torsion given in Fig. 2.2 are easy to

visualize and are shown by the dashed lines in Fig. 2.16a (assuming only a

horizontal motion takes place).

Shear Modulus Because only shear stresses and strains exist for the case of

pure shear, the shear modulus can easily be determined from a torsion test by

measuring the angle of twist over a prescribed length under a known torque, i.e.,

τxy

y

x

z

dy

dx

dz
σzz = σ3

σxx = σ1

σyy = σ2

σzz

σxx

σyy

θ

(a) (b)

Fig. 2.16 (a) Shape changes due to pure shear. (b) Normal stresses leading to a pure

volume change
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T ¼ θ
JG

L
(2:51)

where all terms are as previously defined in Eq. 2.11.

Bulk Modulus. Volume changes are produced only by normal stresses. For

example, consider an element loaded with only normal stresses (principal

stresses) as shown in Fig. 2.16b. The change in volume can be shown to be

(for small strains),

ΔV
V

¼ εxx þ εyy þ εzz (2:52)

Substituting the values of strains from the generalized Hooke’s law, Eq. 2.28,
gives,

ΔV
V

¼ 1� 2ν
E

σxx þ σyy þ σzz
� �

(2:53)

If Poisson’s ratio is ν ¼ 0.5, the change in volume is zero or the material is

incompressible. Here it is important to note that Poisson’s ratio for metals and

many other materials in the linear elastic range is approximately 0.33 (i.e., ν ~ 1/3).
However, near and beyond the yield point, Poisson’s ratio is approximately 0.5

(i.e., ν ~ 1/2). That is, when materials yield, neck or flow, they do so at constant

volume.

In the case when all the stresses on the element in Fig. 2.16b are equal

(σxx¼ σyy¼ σzz¼ σ), a spherical state of stress (hydrostatic stress) is said to

exist and,

ΔV
V

¼ 1� 2ν
E

3σð Þ (2:54)

By equating Eqs. 2.52 and 2.54 the Bulk Modulus can be defined as the ratio of

the hydrostatic stress, σ, to volumetric strain or unit change in volume (ΔV/V),

K ¼ E

3 1� 2νð Þ (2:55)

Notice that the bulk modulus becomes infinite, K~1, if the material is incom-

pressible and Poisson’s ratio is, ν ~ 1/2.

Obviously, one method for obtaining the bulk modulus of a material would be

to create a hydrostatic compression (or tension) state of stress and measure the

resulting volume change.
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Dilatational and Deviatoric Stresses for a General State of Stress For a

general stress state, the dilatational or volumetric component is defined by the

mean stress or the average of the three normal stress components shown in

Fig. 2.13,

σ ¼ σm ¼ σxx þ σyy þ σzz
3

¼ 1

3
σkk (2:56)

In Eq. 2.56 care has been taken to provide three different symbolic ways of

indicating the volumetric stress, σ, σm, or σkk/3 to emphasize the many notations

found in the literature. Since the sum of the normal stresses is the first Invariant,

I1, the mean stress, σm, will be the same for any axis orientation at a point

including the principal axes as shown in Eq. 2.56. Thus, independent of axis
orientation the general stress state can be separated into a volumetric component

plus a shear component as shown in Fig. 2.17. That is, if the stresses responsible
for volumetric changes are subtracted from a general stress state, only stresses

responsible for shape changes remain. This statement can be expressed in

matrix form as,

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

0
@

1
A ¼

σm 0 0

0 σm 0

0 0 σm

0
@

1
Aþ

sxx sxy sxz
syx syy syz
szx szy szz

0
@

1
A (2:57)

or in index notation as

σij ¼ 1

3
σkkδij þ sij (2:58)

where sij are the deviator (shape change) components of stress and δij is the

Kronecker Delta function as defined earlier (Eq. 2.34).

y

x

z

dy

dx

dz

σyx

σxy

σzy

σzx

σyz

σxz

σzz

σyy

σxx

y

x

z

dy

dx

dzσm

σm

σm

y

x

z

dy

dx

dz

syx

sxy

szy

szx

syz

sxz

szz

syy

sxx

Fig. 2.17 Separation of a general stress state into dilatational and deviator stresses
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Since the trace of the first two matrices in Eq. 2.52 are the same, i.e.,

σkk ¼ σxx þ σyy þ σzz ¼ 3σm (2:59)

the trace of the third matrix is zero, i.e.,

skk ¼ sxx þ syy þ szz ¼ 0 (2:60)

Using Eq. 2.60, the deviator matrix can be separated into five simple shear stress

systems,

sxx sxy sxz

syx syy syz

szx szy szz

0
B@

1
CA ¼

0 sxy 0

syx 0 0

0 0 0

0
B@

1
CAþ

0 0 0

0 0 syz

0 szy 0

0
B@

1
CAþ

0 0 sxz

0 0 0

szx 0 0

0
B@

1
CA

þ
sxx 0 0

0 �sxx 0

0 0 0

0
B@

1
CAþ

0 0 0

0 �szz 0

0 0 szz

0
B@

1
CA

(2:61)

That the stress states given by the first three matrices on the right side of Eq. 2.61
are pure shear states is obvious. The last two are also pure shear states but at 45�

to the indicated axis as shown in Fig. 2.18.

Therefore each term in Eq. 2.61 represents a pure shear state and results in

only shape changes with no volume change.

τx'y'
τx'y'

y'

x'

y

x

sxx

-sxx

Fig. 2.18 Pure shear state
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Strains can also be separated into dilatational and deviatoric components and

the equation for strain analogous to Eq. 2.58 is,

εij ¼ eij þ εmδij or εij ¼ eij þ 1

3
εkkδij (2:62)

where eij are the deviatoric strains and em ¼ 1
3
εkk is the dilatational component.

Clearly the trace of the strain tensor equivalent to Eq. 2.59 can be recovered

from Eq. 2.62.

The generalized Hooke’s law given by Eq. 2.28 or Eq. 2.36 can now be

written in terms of deviatoric and dilatational stresses and strains using the

equations above as well as Eqs. 2.52–2.55

sij ¼ 2Geij
σkk ¼ 3Kεkk

(2:63)

The importance of the concept of a separating the stress (and strain) tensors into

dilatational and deviatoric components is due to the observation that viscoelastic

and/or plastic (meaning yielding, not polymers) deformations in materials are

predominately due to changes in shape. For this reason, volumetric effects can

often be neglected and, in fact, the assumption of incompressibility is often

invoked. If this assumption is used, the solution of complex boundary value

problems (BVP) are often greatly simplified. Such an assumption is often made

in analyses using the theory of plasticity and theory of viscoelasticity and each

will be discussed in later chapters.

Further, the observation that deformations in viscoelastic materials such as

polymers is more related to changes of shape than changes of volume suggest

that shear and volumetric tests may be more valuable than the traditional

uniaxial test.

It can be shown that additional invariants exist for both dilatational and

deviatoric stresses. For a derivation and description of these see Fung (1965)

and Shames et al. (1992). The invariants for the deviator state will be used briefly

in Chap. 11 and are therefore given below.

J1 ¼ σ1 þ σ2 þ σ3 ¼ 0

J2 ¼ 3σ2m � I2

J3 ¼ I3 � J2σm � σ3m

(2:64)

All invariants have many different forms other than those given herein.
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2.8. Failure (Rupture or Yield) Theories

Simply stated, failure theories are attempts to have a method by which the failure

of a material can be predicted and thereby prevented. Most often the physical

property to be limited is determined by experimental observations and then a

mathematical theory is developed to accommodate observations. To date, no set

of universal failure criteria has been determined which is suitable for all mate-

rials. Because of the large interest in light weight but strong materials such as

polymer, metal and ceramic matrix composites (PMC, MMC and CMC respec-

tively) that will operate at high temperatures or under other adverse conditions

there has been much activity in developing special failure criteria appropriate for

individual materials. As a result, the number of failure theories now is in the

hundreds. Here we will only give the essential features of the classical theories,

which were primarily developed for metals. For this reason, it is suggested that

the reader keep an open mind and be extremely careful when investigating the

behavior of polymers using these traditional methods. It is virtually certain that

actual behavior will not always be well represented using any of the following

theories due to the time dependent nature of polymer based materials. The same

statement is likely true for most of the current popular theories used for

composites.

Ductile materials often have a stress-strain diagram similar to that of mild

steel shown in Fig. 2.8 and can be approximated by a linear elastic-perfectly

plastic material with a stress-strain diagram such as that given in Fig. 2.9b.
Failure for ductile materials is assumed to occur when stresses or strains exceed

those at the yield point. Materials such as cast iron, glass, concrete and epoxy are

very brittle and can often be approximated as perfectly linear elastic-perfectly

brittle materials similar to that given in Fig. 2.9a. Failure for brittle materials is

assumed to occur when stresses or strains reach a value for which rupture

(separation) will occur.

The following are the simple statements and expressions for three well known

and often used failure theories. They are described in terms of principal stresses,

where σ1>σ2>σ3, and a failure stress in a uniaxial tensile test, σfjtensile, which
is either the rupture stress or the yield stress as appropriate for the material.

Typically, tensile and compression properties as found in a uniaxial test are

assumed to be the same.
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Maximum Normal Stress Theory (Lame-Navier) Failure occurs when the

largest principal stress (either tension or compression) is equal to the maximum

tensile stress at failure (rupture or yield) in a uniaxial tensile test.

σ1 ¼ σf jtensile (2:65)

Maximum Shear Stress Theory (Tresca) Failure occurs when the maximum

shear stress at an arbitrary point in a stressed body is equal to the maximum shear

stress at failure (rupture or yield) in a uniaxial tensile test.

τmax ¼ σ1 � σ3
2

¼ τmaxjtensile ¼
σf jtensile

2

σ1 � σ3 ¼ σf jtensile
(2:66)

Maximum Distortion Energy (or Maximum Octahedral Shear Stress) The-
ory (von Mises) Failure occurs when the maximum distortion energy

(or maximum octahedral shear stress) at an arbitrary point in a stressed medium

reaches the value equivalent to the maximum distortion energy (or maximum

octahedral shear stress) at failure (yield) in simple tension

σ21 þ σ22 þ σ23 � σ1σ2 þ σ2σ3 þ σ3σ1ð Þ ¼ 2σ2f
��
tensile

(2:67)

Development of the octahedral shear stress can be found in many texts and

will not be given here. However, it is appropriate to note the geometry of the

octahedral plane. That is, if a diagonal plane is identified for stressed element as

shown in Fig. 2.19a such that the normal to the diagonal plane makes an angle of

54.7�, the stress state will be as shown in Fig. 2.19b. The resultant shear stress on
this octahedral plane, so named because there are eight such planes at a point, is

the octahedral shear stress. The octahedral shear stress and the octahedral plane

is very important especially for polymers as the majority of viscoelastic behavior

is associated with shear or deviatoric response as opposed bulk or dilational

response. This is discussed in more detail in the next section.
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Comparison Between Theory and Experiment Comparisons between theory

and experiment have been made for many materials. Shown in Fig. 2.20 are the

graphs in stress space for the equations for the three theories given above. Also

shown is experimental data on five different metals as well as four different

polymers. It will be noted that cast iron, a very brittle material agrees well with

the maximum normal stress theory while the ductile materials of steel and

aluminum tend to agree best with the von Mises criteria. Polymers tend to be

better represented by von Mises than the other theories.

z

x

y

dz

dx

dy

τzx

τxz

τyz

τxy

τzy

τxy

σyy

σzz

σxx

54.7°
54.7°

σn

τoct

54.7°

(a) (b)

Fig. 2.19 Definition of the octahedral shear stress
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2.9. Atomic Bonding Model for Theoretical
Mechanical Properties

Materials scientists and engineers have long sought methods to determine the

mechanical properties of materials from knowledge of the bonding properties of

individual atoms, which, of course, hold materials together. Observation of

elastic behavior suggests the existence of both attractive and repulsive forces

between individual atoms. Stretching an elastic bar in tension, stretches the

atomic bonds and release of the load allows the bonds to return to their original

equilibrium positions. Likewise, compression causes atoms to move closer

together and release of the load allows the atoms to return to their equilibrium

position. A hypothetical tensile (or compressive) bar composed of perfectly

packed atoms is shown in Fig. 2.21. The distances between the centers of four

Von Mises
Lame
Navier

Tresca

-1.0

1.0

-1.0
1.0

Polymers
PC

-0.5

-0.5

0.5

0.5

PVC
PMMA

PS

Metals
3S-H AI

2024-T4 AI
Ni-Cr-Mo Steel
Cast Iron
AISI 1023 Steel

Fig. 2.20 Comparison between failure theories and experiment (Data from Dowling

(1993): metal p. 252, polymer p. 254)
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neighboring atoms, mnpq, form a rhombus. When stretched, the strains in the

vertical and horizontal directions, εx and εy, can be calculated from geometrical

changes in the position of the spheres and the ratio can be shown to give a

Poisson’s ratio of ν¼ 1/3, which is close to the measured value for metals and

many materials. The proof is left as an exercise for the reader (see Problem 2.8).

This simple calculation tends to give some confidence in the use of an atomic

model to represent mechanical behavior.

Now consider just two atoms in equilibrium with each other as shown in

Fig. 2.22. Application of a tensile force, FT, will induce an attractive force, FA,

between the two atoms in order to maintain equilibrium. Application of a

compressive force will induce a repulsive force, FR, between the two atoms to

maintain equilibrium. These attractive and repulsive forces will vary depending

upon the separation distance. It is to be noted that the attractive forces in

interatomic bonds are largely electrostatic in nature. For example, Coulomb’s

law for electrostatic charges indicates that the force is inversely proportional to

the square of the spacing. The repulsive forces are caused by the interactions of

the electron shells of the atoms and is somewhat difficult to estimate directly.

The variation of attractive and repulsive forces and energies with separation

distance are given in Fig. 2.22d–e, where r0 is the equilibrium spacing. The

forms of the equations agree with physical observations but the values of the

constants α, β, m and n vary for different materials. Obviously, the effect of

dislocations, vacancies, grain boundaries, etc. complicates the picture in metals

and the long molecular chains, entanglements and other defects complicate the

picture in polymers. The energy equations and diagrams given in Fig. 2.22 can

be simply calculated from the force diagram using the basic definitions of work

and energy given in elementary mechanics. This proof is left as an exercise for

the reader.

Obviously, if the tensile forces are large enough, the distance between atoms

can become so great that the attractive force will tend to zero and no force would

be required for the atom to be in equilibrium. On the other hand, the application

of a compressive forces can not force the two atoms to merge and the repulsive

force will increase without bound. For this reason, it should be possible to

calculate the theoretical strength of a material if sufficient information is

known about the bonding forces in atoms of a particular material. This interpre-

tation has been used by many (see for example, (Courtney (1990), McClintock

and Argon (1966), Richards (1961), Shames and Cozzarelli (1992)) to formulate

nonlinear stress-strain relations, laws for creep, plasticity effects, etc. However,

as far as is known by the authors, no direct experimental verification has ever

been made and, at best, such deduction must be termed empirical.
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Not withstanding the empirical nature of the force and energy variations in

Fig. 2.22, this approach does give insight to the strength limitations of materials.

For example, by examination of Fig. 2.22d it can be shown that for a perfect

crystalline arrangement of atoms as in Fig. 2.21 that the strength of a material

should be the same order of magnitude as its elastic modulus (see Richards

1961). The fact that no material has such high strength properties is an indication

of weaknesses caused by imperfections in their molecular structure

(e.g. imperfections such as dislocations, vacancies, etc.). Even near perfect

crystalline materials do not have such high strength properties. On the other

hand, it has been recognized that it is possible to increase strength properties

drastically by developing processing approaches to create more nearly perfect

crystalline structure and to minimize imperfections in molecular structure. Most

of these processing improvements (directional solidification, powder metal-

lurgy, etc.) are used for metals and ceramic type materials. Indeed, it is recog-

nized that the large number of secondary bonds as opposed to primary bonds in

polymers gives rise to their relatively modest properties when compared with

most metals. Never-the-less, as will be noted in the following chapters, the

properties of polymers can also be improved greatly by increasing crystallinity,

using additives and developing improved processing techniques.

(a) Close packed crystal structure in
   a material subject to tensile stress.

(b) Elongation and contraction of
     centers due to tensile loading.
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Fig. 2.21 Atomic deformations in a material composed of perfectly packed atoms
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2.10. Review Questions

2.1. Name five assumption that are normally made to solve problems in

elementary solid mechanics.

2.2. Name two types of nonlinearities encountered in solid mechanics.

2.3. Describe a heterogeneous or an inhomogeneous material. Name several

materials that are inhomogeneous

2.4. Describe an anisotropic material. Name several materials that are

anisotropic.

2.5. Give a mathematical definition for a continuum.

2.6. Define crystallinity, amorphous, anisotropic and material symmetry.

2.7. Define true stress and true strain and write an appropriate equation

for each.

2.8. Discuss the characteristics one would seek in developing a test specimen

to determine material properties.

2.9. What is a Luder’s band? At what angle do they occur? Name two

materials in which they are known to occur.

2.10. Explain the difference between engineering shear strain and the tensorial

alternative.

(d) Interatomic attractive
     and repulsive forces.

(e) Interatomic attractive
     and repulsive energies.
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Fig. 2.22 Attractive and repulsive forces and energies between atoms
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2.11. How many material constants are needed to characterize a linear elastic

homogeneous isotropic material? How many material constants are

needed to characterize a linear elastic homogeneous anisotropic material?

2.12. Describe a plane of material symmetry. What type of symmetry does an

isotropic material possess?

2.13. Define a stress invariant and give the proper expression for the first

invariant of stress.

2.14. Define deviatoric and dilatational stresses.

2.15. Give a definition for the classical failure theories of Tresca and vonMises.

2.16. A brittle material is likely to follow which failure theory? On what plane

would a brittle material tested in uniaxial tension fail?

2.17. A ductile material is likely to follow which failure theory?

2.18. What is the octahedral shear stress.

2.19. At what angle does a slip band form for a Tresca material tested in

uniaxial tension.

2.20. At what angle does a slip band form for a von Mises material tested in

uniaxial tension.

2.21. The strength of a material for a perfect arrangement of atoms might be

expected to be on the order of what other material parameter?

2.22. Poisson’s ratio can be shown to be equal to what value for a perfect

arrangement of atoms?

2.11. Problems

2.1. If the engineering strain in a tensile bar is 0.0025 and Poisson’s ratio is

0.33, find the original length and the original diameter if the length and

diameter under load are 2.333 ft. and 1.005 in. respectively.

2.2. Find the true strain for the circumstances described in problem 2.1.

2.3. A circular tensile bar of a ductile material with an original cross-sectional

area of 0.5 in.2 is stressed beyond the yield point until a neck is formed. The

area of the neck is 0.25 in.2 Find the average engineering strain in the

necked region. Calculate also the true strain. (Hint: Assume yielding

occurs with no volume change).

2.4. The generalized Hooke’s law in tensor (matrix) notation is given as

σij¼Eijkq εkq. Expand and find the algebraic expansion for σ12.
2.5. From a thin plate of material small tensile coupons are cut at points A, B

and C as shown and the following moduli properties are determined

ExjA, ExjB, ExjC, Ey

��
A
, Ey

��
B
, Ey

��
C
, EθjA, EθjB, EθjC
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Give a correct relationship among the moduli for a homogeneous material.

Give a correct relationship among the moduli for an anisotropic material.

y

x

A

B

C

2.6. For a 2-D state of stress show that the tensorial transformation relation

given by σ0
ij ¼ aikajqσkq reduces to the form

σ
0
x ¼ σx cos 2θþ σy sin 2θþ 2τxy sin θ cos θ

2.7. Expand Eq. 2.58 and show that the matrix given below is recovered.

sij ¼
σxx � σm σxy σxz

σyx σyy � σm σyz
σzx σzy σzz � σm

0
@

1
A

2.8. Using the geometry given in Fig. 2.21 show that the ratio of lateral to

longitudinal strain is 1/3. (Hint: spheres at m and n that are initially in

contact stretch vertically when a stress is applied resulting in a separation

of the spheres at m and n. Also, spheres at p and q will move inward

to maintain contact with spheres at m and n).
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