
Chapter 2
Superfluid Helium

Helium was first liquefied in 1908 by H. Kamerlingh Onnes who cooled it below
the liquid/gas transition temperature of 4.2 K.1 Later, in 1927, M. Wolfke and W.H.
Keesom realized that there is another phase transition at lower temperatures, around
2.17 K. This phase transition had manifested itself in a discontinuity of the specific
heat, whose curve as a function of temperature resembles the Greek letter �, and thus
the transition point was called � point. The two phases of liquid helium were termed
“helium I” and “helium II”. The remarkable superfluid properties of liquid helium
below the � point, helium II, were experimentally established by P. Kapitza in 1938
[10], and independently by J.F. Allen and A.D. Misener in the same year [3]. Kapitza
had set up an experiment with two cylinders that were connected by a thin tube with
a thickness of 0:5 �m. Only below the � point, helium was flowing easily through
the tube, suggesting a strikingly low viscosity. Kapitza received the Nobel prize for
this discovery in 1978 (interestingly, together with Penzias and Wilson who received
it for the completely unrelated discovery of the cosmic microwave background
radiation). Kapitza coined the term “superfluidity” in his paper of 1938, having some
intuition about a deep connection to superconductivity. This is remarkable because,
although superconductivity had been observed much earlier in 1911, a microscopic
understanding was only achieved much later in 1957. Only then, with the help of the
microscopic theory of Bardeen, Cooper, and Schrieffer it was possible to appreciate
the deep connection between electronic superconductivity and superfluidity in 4He.
For the case of a bosonic superfluid such as 4He, the theoretical background of Bose-
Einstein condensation was already known since 1924 [5,7], and F. London proposed
shortly after the discovery that helium undergoes a Bose-Einstein condensation
[14]. Other early theoretical developments, such as the phenomenological two-fluid
model, were put forward by L. Landau [11] and L. Tisza [19]. More details about
the interesting history of the discovery of superfluidity can be found in [4, 8].

1In this chapter, helium is always synonymous to 4He, which is bosonic. I will write 4He only
when I want to emphasize the bosonic nature. The fermionic counterpart 3He can also become
superfluid, see Sect. 5.4.
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Fig. 2.1 Schematic phase diagram of 4He in the plane of pressure P and temperature T . Below a
certain pressure, helium remains liquid for arbitrarily small temperatures, allowing for a superfluid
phase below a critical temperature, sometimes called �-temperature. Superfluid and normal fluid
phases are denoted by helium II and helium I, respectively. This terminology has historical origin
and was given to the two phases after the discovery of the phase transition, but before the discovery
of superfluidity of helium II

What is special about helium, i.e., why can it become superfluid at low tem-
peratures? Superfluidity is a quantum effect, so if we were to invent a liquid that
becomes superfluid, one thing we would have to make sure is that it remains a liquid
for very small temperatures, because only there quantum effects become important.
Helium is special in this sense. All other elements solidify at some point when they
are cooled down. The reason is that the kinetic energy of their atoms becomes
sufficiently small at small temperatures to confine the atoms within their lattice
sites. For very small temperatures, the kinetic energy is solely given by the zero-
point motion. It turns out that the zero-point motion for helium atoms is sufficiently
large to prevent them from forming a solid. Only under strong pressure does
helium solidify. Although hydrogen atoms are lighter, their inter-atomic attractive
interactions are much stronger, so hydrogen does solidify. The phase diagram of
helium is shown in Fig. 2.1.

2.1 Landau’s Critical Velocity

To explain why helium can be superfluid, we need to explain why it transports
charge (here: mass, or helium atoms) without friction. The most important ingre-
dient is the Bose-Einstein condensate. It carries charge and can flow without losing
energy. The excitations on top of the condensate potentially lead to dissipation.
Landau came up with a very general argument that results in a condition for these
excitations in order to allow for superfluidity: let us consider a superfluid moving
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through a capillary with velocity vs . In the rest frame of the fluid (where the capillary
moves with velocity �vs), let the energy of such an excitation and its corresponding
momentum be �p > 0 and p. Now, in the rest frame of the capillary, the energy
of the fluid is given by the kinetic energy Ekin plus the energy of the elementary
excitations, transformed into the new frame,2

E D Ekin C �p C p � vs : (2.1)

The fluid loses energy through dissipation if

�p C p � vs < 0 : (2.2)

The left-hand side can only be negative if its minimum is negative, �p � pvs < 0.
Consequently, the system transports charge without dissipation for velocities
smaller than the critical velocity

vc D min
p

�p

p
: (2.3)

This simple argument by Landau is of fundamental importance for the understand-
ing of a superfluid. A direct consequence is that systems where minp

�p

p
D 0 cannot

be superfluid since then vc D 0 and an arbitrarily small velocity would result in
dissipation. We can write the minimum of �p=p as the solution of

0 D @

@p

�p

p
) @�p

@p
D �p

p
: (2.4)

For a given point on the curve �p we are thus asking whether the slope of the curve
is identical to the slope of a straight line from the origin through the given point. Or,
in other words, to check the superfluidity of a system, take a horizontal line through
the origin in the �p-p plane and rotate it upwards. If you can do so by a finite
amount before touching the dispersion curve, the system supports superfluidity. The
slope of the line at the touching point is the critical velocity according to Landau
above which superfluidity is destroyed. In particular, any gapless dispersion with
slope zero in the origin must lead to dissipation for any nonzero velocity. It is
important to remember that the criterion for superfluidity is not only a requirement
for the excitations of the system. Otherwise one might incorrectly conclude that a
free gas of relativistic particles with dispersion �p D p

p2 C m2 is a superfluid.
The criterion rather requires a nonzero critical velocity vc and the existence of a

2Here, in the context of superfluid helium, we change frames by a Galilei transformation, and do
not use the more general Lorentz transformation. Later we shall discuss relativistic excitations
whose transformation reduces in the low-velocity limit to Eq. (2.1), see Eq. (4.33) and discussion
below that equation.
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condensate. Without a condensate, there is nothing to transport the charge without
friction.

We shall see later that Bose-Einstein condensation is always accompanied by a
gapless mode �pD0 D 0 due to the Goldstone theorem, and this gapless mode is
called Goldstone mode. One might think that the Goldstone mode can very easily
be excited. And this is true in some sense. For instance, due to the gaplessness, such
a mode becomes populated for arbitrarily small temperatures. Landau’s argument,
however, shows that even a gapless mode is sufficiently difficult to excite by forcing
the fluid to move through a capillary: if for instance the dispersion of the Goldstone
mode is linear, �p / p, the mode is gapless but Landau’s critical velocity is nonzero,
and in fact identical to the slope of the Goldstone mode. Typically, the slope of a
Goldstone mode is indeed linear for small momenta. This is true for instance in
superfluid helium. On the other hand, if we had �p / p2 for small momenta, the
slope of the dispersion at the origin would be zero and as a consequence vc D 0.

2.2 Thermodynamics of Superfluid Helium

While the existence of a Goldstone mode and the linearity at small p are very
general features, the details of the complete dispersion of this mode depend on
the details of the interactions in a given system. In superfluid helium, it turns out
that the mode has a dispersion of the form shown in Fig. 2.2. For low energies, it
can effectively be described by two different excitations, one accounting for the
linear low-momentum part—this is called the “phonon”—and one accounting for
the vicinity of the local minimum at a finite value of p—this is called the “roton”.
We can write these two dispersions as

�p D cp (“phonon”) ; (2.5a)

�p D � C .p � p0/2

2m
(“roton”) : (2.5b)

with parameters c, �, p0, m, whose values are specified in Fig. 2.3.
Let us first compute some of the thermodynamic properties given by the

Goldstone mode. We start from the general expression for the pressure,

P D �T

Z
d 3p

.2�/3
ln

�
1 � e��p=T

� D 1

3

Z
d 3p

.2�/3
p

@�p

@p
f .�p/ ; (2.6)

where, in the second step, we have used partial integration, where T is the
temperature, and where

f .�p/ D 1

e�p=T � 1
(2.7)

is the Bose distribution function.



2.2 Thermodynamics of Superfluid Helium 11

εp

p

phonon
roton

Fig. 2.2 Schematic plot of the Goldstone dispersion for superfluid helium. This mode is often
modelled in terms of two different modes, the phonon and the roton, see Fig. 2.3

Fig. 2.3 Dispersions for phonons and rotons from Eq. (2.5) with parameters m D 1:72 � 10�24 g,
p0 D 2:1 � 10�19 g cm s�1, � D 8:9 K, c D 238 m s�1

Consequently, the phonon contribution to the pressure is

Pph D c

6�2

Z 1

0

dp
p3

ecp=T � 1
D T 4

6�2c3

Z 1

0

dy
y3

ey � 1„ ƒ‚ …
�4=15

D �2T 4

90c3
: (2.8)

If the dispersion were linear for all p, this result would be valid for any T . However,
the dispersion is linear only for small p. Since the corrections to the linear behavior
become important at larger temperatures, this result cannot be trusted for all T .
(Obviously, the critical temperature for superfluidity is another, absolute, limit
above which this result is inapplicable). The result for the pressure is similar to
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the Stefan-Boltzmann pressure of blackbody radiation. The reason is that a photon
has the same linear dispersion as the superfluid phonon, but moves with the speed of
light. Thus, we recover the Stefan-Boltzmann pressure if we set c equal to the speed
of light and multiply the result by 2 because a photon has two degrees of freedom.

We can now compute the entropy and the specific heat per unit volume from the
usual thermodynamic definitions,

sph D @Pph

@T
D 2�2T 3

45c3
; (2.9)

and

cV;ph D T
@sph

@T
D 2�2T 3

15c3
D 3sph ; (2.10)

where the subscript V indicates that the specific heat is computed at fixed volume
(as opposed to fixed pressure).

The calculation of the roton contribution is a bit more complicated,

Prot D 1

6�2m

Z 1

0

dp p3 p � p0

e�p=T � 1
: (2.11)

In general, this integral has to be solved numerically. Here we proceed by making
the assumption T � �, such that we can approximate

1

e
�
T C .p�p0/2

2mT � 1

' e��=T e� .p�p0/2

2mT ; (2.12)

and thus

Prot ' e��=T

6�2m

Z 1

0

dp p3.p � p0/e� .p�p0/2

2mT : (2.13)

This expression shows that the contribution of the rotons is exponentially suppressed
for temperatures much smaller than �. To obtain the subleading temperature
dependence, we introduce the new integration variable y D .p � p0/=

p
2mT ,

Prot D e��=T T .2mT/3=2

3�2

Z 1

� p0
p

2mT

dy y

�
y C p0p

2mT

�3

e�y2

' e��=T Tp2
0.2mT/1=2

�2

Z 1

�1
dy y2e�y2

„ ƒ‚ …p
�=2

D
r

m

2�3
p2

0 T 3=2e��=T ; (2.14)
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where we have assumed T � p2
0=.2m/. With the parameters given in Fig. 2.3 we

have p2
0=.2m/ ' 93 K, i.e., since we already have assumed that T is much smaller

than � ' 8:9 K, T is also much smaller than p2
0=.2m/. Again we may compute

entropy and specific heat,

srot '
r

m

2�3

p2
0�

T 1=2
e��=T ; (2.15)

and

cV;rot '
r

m

2�3

p2
0�2

T 3=2
e��=T ; (2.16)

where we have neglected terms of higher order in T=�.

2.3 Two-Fluid Model

The hydrodynamics of a superfluid is often described within a so-called two-fluid
model, suggested by Tisza [19] and Landau [11] shortly after the discovery of
superfluidity. A priori, this was a purely phenomenological description. We shall
discuss later how it emerges as a kind of effective theory from a microscopic
description. In the two-fluid picture, the system is formally divided into two fluids,
the superfluid and normal fluid, which interpenetrate each other. The superfluid
component consists of the condensate, while the normal component contains
the elementary excitations, i.e., the phonon and roton excitations in the case of
superfluid helium. This picture suggests that at zero temperature there is only a
superfluid. Then, upon heating up the system, the normal fluid will start to appear
and become more and more dominant until the superfluid completely vanishes
at and above the critical temperature. Originally, the model served to explain
the “viscosity paradox” which had appeared from two apparently contradicting
behaviors of superfluid helium: damping times of the oscillations of a torsion
pendulum in liquid helium suggested a viscosity [20], in apparent contrast to the
dissipationless flow through a thin capillary [10]. In the two-fluid picture it is only
the superfluid component that can flow through the thin tube while the pendulum
sees both fluid components, i.e., the excitations of the normal fluid were responsible
for the damping of the pendulum. The model predicts the existence of a second
sound mode, see Sect. 2.4, which was indeed observed after the two-fluid picture
was suggested.

The flow of the system is described by two fluids with independent velocity fields.
The momentum density g receives contribution from both fluids,

g D �svs C �nvn ; (2.17)
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where vs and vn are the velocities of the superfluid and the normal fluid, respectively,
and �s and �n are the superfluid and normal-fluid mass densities, such that the total
mass density is

� D �n C �s : (2.18)

To compute the normal-fluid density, we consider the rest frame of the superfluid,
in which the normal fluid is moving with velocity w � vn � vs . In this frame, the
momentum density only receives a contribution from the normal fluid and is given
by �nw. We can also express the momentum density of the normal fluid as

�nw D
Z

d 3p
.2�/3

p f .�p � p � w/ ; (2.19)

where we have taken into account that the distribution function of the elementary
excitations depends on the relative velocity between the two fluids. As in the
previous subsections, �p is the dispersion of the elementary excitations measured
in the superfluid rest frame. In particular, we recover the Galilei transformed
excitations from Eq. (2.1) for vn D 0. Multiplying both sides of Eq. (2.19) with
w, we obtain an expression for the normal-fluid density,

�n D 1

w

Z
d 3p

.2�/3
Ow � p f .�p � p � w/ ; (2.20)

where Ow � w=w. It is important to realize that the concept of normal-fluid and
superfluid densities only makes sense in the presence of a (at least infinitesimal)
relative velocity. In general, �s and �n are functions of this relative velocity. For
many applications one is interested in the limit of small relative velocities. To
compute �n in the limit w ! 0, we insert the Taylor expansion

f .�p � p � w/ D f .�p/ � p � w
@f

@�p

ˇ̌
ˇ̌
wD0

C O.w2/ (2.21)

into Eq. (2.20). The integral over the first term of this expansion vanishes, and we
obtain

�n.w ! 0/ D �
Z

d 3p
.2�/3

.p � Ow/2 @f

@�p

D �1

3

Z
d 3p

.2�/3
p2 @f

@�p

D 1

3T

Z
d 3p

.2�/3

p2e�p=T

.e�p=T � 1/2
: (2.22)
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Since we have modelled the dispersion of the Goldstone mode by two separate exci-
tations, we can compute their contribution to the normal-fluid density separately. Let
us start with the phonon contribution.

With the z-axis of our coordinate system pointing in the direction of w and
x D cos � with � being the angle between w and the momentum p, the phonon
contribution from Eq. (2.20) is

�n;ph D 1

4�2w

Z 1

�1

dx x

Z 1

0

dp
p3

ep.c�wx/=T � 1

D T 4

4w�2

Z 1

�1

dx
x

.c � wx/4

„ ƒ‚ …
8cw

3.c2 � w2/3
for w < c

Z 1

0

dy
y3

ey � 1

D 2�2T 4

45c5

�
1 � w2

c2

��3

: (2.23)

The condition w < c is necessary to ensure superfluidity: we can repeat the
argument for Landau’s critical velocity from Sect. 2.1, replacing the rest frame of
the capillary with the rest frame of the normal fluid. This shows that the relative
velocity w has an upper limit given by Eq. (2.3) above which dissipation sets in. In
the absence of rotons, this limit would be given by c. As Fig. 2.3 shows, the presence
of the rotons only decreases the limit.

For small relative velocities w we find

�n;ph D 2�2T 4

45c5

�
1 C O

�
w2

c2

��
' sphT

c2
; (2.24)

where the result for the entropy density (2.9) has been used. One can check that the
same w ! 0 result is obtained by directly using Eq. (2.22).

For the roton contribution we find for small temperatures

�n;rot ' e��=T

4�2w

Z 1

0

dp p3e� .p�p0/2

2mT

Z 1

�1

dx xe
pwx

T

D Te��=T

2�2w2

Z 1

0

dp p2e� .p�p0/2

2mT

�
cosh

pw

T
� T

wp
sinh

pw

T

�

' Te��=T p2
0

2�2w2

�
cosh

p0w

T
� T

wp0

sinh
p0w

T

� Z 1

�p0

dq e� q2

2mT
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Fig. 2.4 Contributions of phonons and rotons to the normal-fluid density for all temperatures up
to the critical temperature in the absence of a relative flow, w D 0, with the parameters of Fig. 2.3

'
r

m

2�3

T 3=2e��=T p2
0

w2

�
cosh

p0w

T
� T

wp0

sinh
p0w

T

�
: (2.25)

In the limit w ! 0 this becomes

�n;rot D
r

m

2�3

e��=T p4
0

3T 1=2

�
1 C O

�
p2

0w2

T 2

��
' p2

0

3T 2
Prot : (2.26)

Again, we can check that this result is obtained from the general expression (2.22).
This is left as a small exercise to the reader.

We can now compute the total normal-fluid density from the two separate
contributions. Together with a given total density �, this allows us to compute the
density fractions for superfluid and normal-fluid components for all temperatures
up to the critical temperature. Since at the critical temperature Tc all mass sits
in the normal fluid, we can compute Tc by solving � D �n;ph.Tc/ C �n;rot.Tc/

numerically for Tc . For the limit w ! 0 and with � D 0:147 g cm�3 one obtains
Tc ' 2:47 K. This number is obtained by using the full temperature dependence
of �n: the phonon contribution (2.24) is exact for all temperatures (under the
assumption that the phonon dispersion continues linearly for all momenta), while
for the roton contribution the full expression (2.22) has been used, including a
numerical momentum integral. (Using the low-temperature approximation (2.26)
gives a slightly larger critical temperature.) The discrepancy to the actual value of
the critical temperature of Tc ' 2:17 K is due to the model assumption of separate
phonon and roton excitations, which differs from the correct quasiparticle spectrum,
see Fig. 2.3. This difference is important for large temperatures. Within the given
model, we show the phonon and roton contributions to the normal-fluid density in
Fig. 2.4, and the superfluid and normal-fluid density fractions in Fig. 2.5.
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Fig. 2.5 Normal-fluid and superfluid density fractions in the absence of a relative flow, w D 0,
with the parameters of Fig. 2.3 and the total mass density � D 0:147 g cm�3. For all temperatures
above Tc , we have �n D �, �s D 0

2.4 First and Second Sound

One interesting consequence of the two-fluid model is the existence of two sound
modes. The second sound mode was first observed in superfluid helium [13,15], for
a nice popular article about second sound and its significance for developments in
the theory of superfluid helium see [6]. Much more recently, second sound was
also measured in an ultra-cold Fermi gas [17]. Before we can discuss first and
second sound, we need to discuss some hydrodynamics. We shall give a very brief
introduction to single-fluid hydrodynamics before we add a second fluid in order
to describe the superfluid. Here we shall only discuss ideal, i.e., dissipationless,
hydrodynamics. This is sufficient for the discussion of first and second sound,
which can propagate non-dissipatively. If you are interested in a much more detailed
account of hydrodynamics, see for instance [12].

2.4.1 Single-Fluid Hydrodynamics

We shall start from the relativistic form of hydrodynamics and then take the non-
relativistic limit. The conservation equations for charge and (four-)momentum are

@	T 	
 D 0 ; @	j 	 D 0 ; (2.27)

where

j 	 D nv	 (2.28)
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is the current associated with the conserved charge, and

T 	
 D .� C P /v	v
 � g	
P (2.29)

is the stress-energy tensor for an ideal fluid. Here, n, �, and P are number density,
energy density, and pressure, measured in the rest frame of the fluid, and g	
 D
diag.1; �1; �1; �1/ is the metric tensor. Moreover,

v	 D �.1; v/ (2.30)

is the four-velocity of the fluid, expressed in terms of the three-velocity v and the
Lorentz factor � D .1 � v2/�1=2. Here, v2 denotes the square of the modulus of the
three-velocity. This form of the four-velocity ensures

v	v	 D 1: (2.31)

Even though we have omitted the arguments, in general all quantities of course
depend on space-time, i.e., v D v.x; t / etc.

The various components of the stress-energy tensor are

T 00 D � C Pv2

1 � v2
; (2.32a)

T 0i D T i0 D � C P

1 � v2
vi ; (2.32b)

T ij D � C P

1 � v2
vi vj C ıijP ; (2.32c)

where vi are the components of the three-velocity v, not of the four-velocity. In
particular, the stress-energy tensor is symmetric. We define the rest frame of the
fluid by v D 0, i.e., v	 D .1; 0; 0; 0/. In this particular frame, the stress-energy
tensor assumes the simple form

T 	
 D

0

BB
@

� 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

1

CC
A : (2.33)

As a simple exercise, one can check that the general stress-energy tensor (2.29) can
be obtained via a Lorentz transformation from the stress-energy tensor (2.33). In a
single-fluid system with uniform fluid velocity, it is obviously always possible to
choose a global frame in which the three-velocity vanishes. This is the rest frame
of the fluid. This is not possible in a two-fluid system, even if the two velocities of
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the two fluids are uniform. In that case, one may choose to work in the rest frame of
one of the fluids, and the direction of the velocity of the other fluid will necessarily
break rotational invariance.

In order to take the non-relativistic limit, we introduce the rest mass density � via
the temporal component of the four-current,

� D mj0 : (2.34)

With Eq. (2.28), this means that mn D �
p

1 � v2, i.e., �
p

1 � v2 is the rest mass
density in the fluid rest frame, while � is the rest mass density in the frame where
the fluid moves with velocity v. Eventually, after having derived the non-relativistic
limit, the mass density � will be assumed to be frame independent.

The spatial components of Eq. (2.28) now give

mj D �v : (2.35)

Next, we need the non-relativistic version of the stress-energy tensor. To this end, we
introduce the non-relativistic energy density �0 in the fluid rest frame by separating
the rest energy,

� D �
p

1 � v2 C �0 : (2.36)

Neglecting terms of order v4, we can write

T 00 ' � C .� C P /v2

' � C �0 C
��

2
C �0 C P

	
v2 : (2.37)

We now remove the rest mass density � and assume that �0 C P � � in the kinetic
term to obtain the non-relativistic version

T 00
non�rel: D �0 C �v2

2
; (2.38)

which contains the energy density in the fluid rest frame plus a kinetic term
which has the usual non-relativistic form. We proceed analogously for the other
components. First, we write

T 0i ' .� C P /.1 C v2/vi

' �vi C
�

�0 C �v2

2
C P

�
vi ; (2.39)

where, in the O.v3/ terms, we have again neglected �0 C P compared to �. Then,
we define the momentum density by
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gi � T 0i
non�rel: D �vi ; (2.40)

and the energy flux by

qi � T i0
non�rel: D

�
�0 C �v2

2
C P

�
vi : (2.41)

As a consequence, in the non-relativistic version the stress-energy tensor is not
symmetric, T 0i

non�rel: ¤ T i0
non�rel:. Finally,

T ij ' .� C P /vi vj C ıijP

' .� C �0 C P /vi vj C ıijP ; (2.42)

and, again using �0 C P � �, we define the non-relativistic stress tensor

˘ij � T
ij

non�rel: D �vi vj C ıijP : (2.43)

We are now prepared to formulate the conservation equations (2.27) in the non-
relativistic limit,

@�

@t
C r � g D 0 ; (2.44a)

@�

@t
C r � q D 0 ; (2.44b)

@gi

@t
C @j ˘ji D 0 ; (2.44c)

where we have defined the energy density3

� � �0 C �v2

2
(2.45)

(remember that �0 is the energy density in the rest frame of the fluid). The first
equation is the current conservation @	j 	 D 0 multiplied by m, the second equation
is the 
 D 0 component of the four-momentum conservation @	T 	
 D 0, and the
third equation is the 
 D i component of the four-momentum conservation. In
summary, we repeat the definitions of the non-relativistic quantities that appear in
these equations,

3The � defined here is not the relativistic � used above. But since for the rest of the chapter we
shall work in the non-relativistic framework, this slight abuse of notation should not cause any
confusion.
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g D �v ; q D .� C P / v ; ˘ij D �vi vj C ıijP : (2.46)

Using these definitions, we can also bring the hydrodynamic equations in the
following form4

@�

@t
C r � .�v/ D 0 ; (2.47a)

@s

@t
C r � .sv/ D 0 ; (2.47b)

@v
@t

C .v � r/v D �rP

�
(Euler equation) : (2.47c)

The continuity equation for the mass current (2.47a) is simply copied from above;
Eq. (2.47c) is straightforwardly obtained by inserting Eq. (2.46) into Eq. (2.44c) and
using the continuity equation (2.47a). To derive Eq. (2.47b)—which is a continuity
equation for the entropy current—start from Eq. (2.44b) and write

0 D @

@t

�
�0 C �v2

2

�
C r �

�
�0 C �v2

2
C P

�
v

D @�0

@t
C v2

2

@�

@t
C �v � @v

@t

C.	� C T s/r � v C v � r�0 C r �
�

�v2

2
v
�

C v � rP ; (2.48)

where we have used the relation

4Dissipative effects are included by adding the following terms to the energy flux and the stress
tensor (the momentum density remains unchanged),

qi D .� C P /vi C vj ı˘ij C Qi ; ˘ij D �vi vj C ıijP C ı˘ij ;

where

Q � ��rT ; ı˘ij � �


�
@i vj � @j vi � 2

3
ıijr � v

�
� �ıijr � v ;

with the thermal conductivity �, the shear viscosity 
, and the bulk viscosity �. In the presence of
dissipation, the entropy current is no longer conserved, i.e., the right-hand side of Eq. (2.47b) is not
zero. With dissipative terms, the Euler equation (2.47c) is known as the Navier-Stokes equation.
Existence and smoothness of general solutions to the Navier-Stokes equation (and also to the Euler
equation) are an unsolved problem in mathematical physics and its solution is worth a million
dollars, see http://www.claymath.org/millenium-problems/navier-stokes-equation.

http://www.claymath.org/millenium-problems/navier-stokes-equation
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�0 C P D 	� C Ts ; (2.49)

where s is the entropy density and 	 the chemical potential.5 Now we remember the
thermodynamic relations

d�0 D 	 d� C Tds ; (2.50)

and

dP D � d	 C s dT : (2.51)

These two thermodynamic relations reflect the fact that �0 and P are related via
two Legendre transforms with respect to the pairs .T; s/ and .	; �/. We shall need
Eq. (2.51) later. Here we make use of Eq. (2.50) which we insert into Eq. (2.48) to
obtain

0 D 	
@�

@t
C T

@s

@t
C .	� C Ts/r � v C 	v � r� C T v � rs

C v2

2

@�

@t
C �v � @v

@t
C r �

�
�v2

2
v
�

C v � rP

„ ƒ‚ …
D0

D T

�
@s

@t
C r � .sv/

�
; (2.52)

where we have used the continuity equation (2.47a) twice and the Euler equation
(2.47c). The result is the entropy conservation (2.47b). The entropy current is only
conserved in the absence of dissipation.

2.4.2 Two-Fluid Hydrodynamics

In view of the two-fluid model discussed in Sect. 2.3, we have to modify the single-
fluid hydrodynamics because each of the fluid components of the superfluid acquires
its own, independent velocity field. Let us distinguish two (local) reference frames
in the following way. Imagine a superfluid flowing through a tube. Then, our first
reference frame is the frame where the tube is at rest and where superfluid and

5In this non-relativistic context, we work with the chemical potential per unit mass 	, which has
the same units as a velocity squared (i.e., it is dimensionless if the speed of light is set to one). In
the relativistic treatment, starting in Chap. 3, 	 will denote the chemical potential per unit charge,
which has the same units as energy.
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normal fluid have velocities vs and vn, respectively. The second reference frame is
the one where the superfluid is at rest, i.e., the tube moves with velocity �vs and the
superfluid and normal fluid move with velocities zero and vn � vs , respectively. We
denote quantities in the superfluid rest frame with a subscript 0 and quantities in the
rest frame of the tube without additional subscript.

In the rest frame of the tube, the momentum density is given by the sum of both
fluids, as already stated in Eq. (2.17). In the superfluid rest frame, the momentum
density is only given by the normal fluid which has mass density �n and which
moves with velocity vn � vs . Consequently,

g D �nvn C �svs ; g0 D �n.vn � vs/ (2.53a)

) g D g0 C �vs ; (2.53b)

where � D �n C �s is the total mass density, as above. The stress tensor in the two
frames reads

˘ij D �nvnivnj C �svsi vsj C ıijP ;

˘0ij D �n.vni � vsi /.vnj � vsj/ C ıijP (2.54a)

) ˘ij D ˘0ij C �vsi vsj C vsi g0j C vsjg0i : (2.54b)

For completeness, although we shall not need this in the following, let us also write
down the energy density and the energy density current in the two frames. We have

� D �n C �s C �nv2
n

2
C �sv2

s

2
; �0 D �n C �s C �n.vn � vs/

2

2

(2.55a)

) � D �0 C vs � g0 C �v2
s

2
; (2.55b)

where

�n D �Pn C 	�n C T s ; �s D �Ps C 	�s (2.56)

are the energy densities of normal fluid and superfluid, measured in their respective
rest frames. Analogously, Pn and Ps are the pressures of the normal fluid and
superfluid, and with P D Pn CPs the relations (2.56) imply �n C�s D P C	�CTs.
In the absence of a normal fluid, we have �s D �0, which makes the connection to
the notation of the previous subsection. In Eq. (2.56) we have used that only the
normal fluid carries entropy.
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Finally, for the energy flux we find

q D
�

�n C Pn C �nv2
n

2

�
vn C

�
�s C Ps C �sv2

s

2

�
vs ;

q0 D
�
�n C Pn C �n.vn � vs/

2

2

�
.vn � vs/ (2.57a)

) qi D q0i C
�

�0 C vs � g0 C �v2
s

2

�
vsi C v2

s

2
g0i C vsj˘0ij : (2.57b)

Equations (2.53b), (2.54b), (2.55b), and (2.57b) are the Galilei transforms of
momentum density, stress tensor, energy density, and energy flux from the superfluid
rest frame into the corresponding quantities in the rest frame of the tube. Notice that
they are expressed solely in terms of quantities measured in the superfluid rest frame
and the superfluid velocity. Since the relative velocity between the two reference
frames is given by vs , the normal-fluid velocity vn does not appear in the Galilei
transform, as it should be.

We write the hydrodynamic equations in the rest frame of the tube as

@�

@t
C r � g D 0 ; (2.58a)

@s

@t
C r � .svn/ D 0 ; (2.58b)

@g
@t

C vs.r � g/ C .g � r/vs C g0.r � vn/ C .vn � r/g0 C rP D 0 : (2.58c)

The first two equations have the same form as for the single fluid case, see
Eq. (2.47), with � and g now being the total mass and momentum densities,
receiving contributions from both fluids, and the entropy density svn solely coming
from the normal fluid. To derive Eq. (2.58c) from (2.44c) one first easily checks that
the stress tensor from Eq. (2.54a) can be written as

˘ij D vsjgi C vnig0j C ıijP : (2.59)

(Although not manifest in this form, the stress tensor is of course still symmetric.)
Inserting Eq. (2.59) into Eq. (2.44c) immediately yields Eq. (2.58c).

Before we turn to the sound modes we derive one more useful relation. Using the
hydrodynamic equations, the thermodynamic relations (2.50) and (2.51), and the
explicit two-fluid form of � and q, a rather tedious calculation yields
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@�

@t
C r � q D ��s.vn � vs/

�
r	 C .vs � r/vs C @vs

@t

�

C .vn � vs/
2

2

�
@�s

@t
C r � .�svs/

�
: (2.60)

Now we use that the left-hand side of this equation is zero due to (the two-fluid
version of) Eq. (2.44b) and neglect the term quadratic in the relative velocity vn �vs

on the right-hand side to obtain the following relation for the superfluid velocity,

.vs � r/vs C @vs

@t
D �r	 : (2.61)

2.4.3 Sound Modes

Imagine both fluid components to be at rest and the system to be in thermodynamic
equilibrium. A sound wave is a (small) oscillation in the thermodynamic quantities
like entropy, pressure etc and in the velocities of the two fluids. We thus imagine
adding small deviations from equilibrium to the thermodynamic quantities like
s.x; t / D s0 Cıs.x; t /, P.x; t / D P0 CıP.x; t / etc and small deviations (from zero)
to the velocities, vn.x; t / D ıvn.x; t / and vs.x; t / D ıvs.x; t /. Here, the subscript 0
denotes thermodynamic equilibrium. In general, one might also compute the sound
modes in the presence of a relative velocity of the two fluids, i.e., one may choose
nonzero values of vn;0 and vs;0. Here we restrict ourselves to the isotropic situation
vn;0 D vs;0 D 0.

Since we are interested in small deviations from equilibrium, we neglect terms
quadratic in the deviations, for instance

r � g D .�n;0 C ı�n/r � ıvn C .�s;0 C ı�s/r � ıvs C ıvn � rı�n C ıvs � rı�s

' �n;0r � ıvn C �s;0r � ıvs : (2.62)

The linearized hydrodynamic equations (2.58) thus become

@�

@t
C �nr � vn C �sr � vs ' 0 ; (2.63a)

@s

@t
C sr � vn ' 0 ; (2.63b)

�n

@vn

@t
C �s

@vs

@t
C rP ' 0 ; (2.63c)
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and Eq. (2.61) simplifies to

@vs

@t
C r	 ' 0 : (2.64)

A usual sound wave is a density oscillation and is described by a wave equation
that relates a spatial second derivative to a temporal second derivative. Due to the
presence of two fluids, we will now obtain a second wave equation for the entropy.
The two wave equations are

@2�

@t2
D �P ; (2.65a)

@2S

@t2
D S2�s

�n

�T ; (2.65b)

where S is the entropy per unit mass, such that s D �S . The equations are derived as
follows. Equation (2.65a) is immediately obtained by taking the time derivative of
Eq. (2.63a) and the divergence of Eq. (2.63c). Equation (2.65b) requires some more
work. From the thermodynamic relation (2.51) we obtain rP D �r	 C srT .
Inserting rP from Eq. (2.63c) and r	 from Eq. (2.64) into this relation, taking
the divergence on both sides, and keeping only terms linear in the deviations from
equilibrium yields

�n

@

@t
r � .vn � vs/ ' �s�T : (2.66)

In order to replace the divergence on the right-hand side of this equation we observe

@S

@t
D 1

�

@s

@t
� S

�

@�

@t

D �Sr � vn C S

�
.�nr � vn C �sr � vs/

D �S�s

�
r � .vn � vs/ ; (2.67)

where, in the second step, we have used Eqs. (2.63a) and (2.63b). Inserting this
result into Eq. (2.66) and again using the linear approximation yields the second
wave equation (2.65b).

Next, we solve the wave equations. We take T and P as independent variables,
such that S and � are functions of T and P ,

ıS D @S

@T
ıT C @S

@P
ıP ; ı� D @�

@T
ıT C @�

@P
ıP ; (2.68)
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where all derivatives are evaluated in equilibrium. Inserting this into Eqs. (2.65a)
and (2.65b) yields to linear order in ıT , ıP ,

@�

@P

@2ıP

@t2
C @�

@T

@2ıT

@t2
D �.ıP / ; (2.69a)

@S

@P

@2ıP

@t2
C @S

@T

@2ıT

@t2
D S2�s

�n

�.ıT / : (2.69b)

The deviations from equilibrium are assumed to be harmonic oscillations,
ıP.x; t / D ıP0e�i.!t�kx/, ıT .x; t / D ıT0e�i.!t�kx/, where the amplitudes ıP0,
ıT0 are constant in time and space, and where ! and k are frequency and wave
number of the oscillation. Without loss of generality, we have chosen the sound
waves to propagate in the x-direction. We define the sound velocity

u D !

k
; (2.70)

such that the wave equations become

�
u2 @�

@P
� 1

�
ıP0 C u2 @�

@T
ıT0 D 0 ; (2.71a)

u2 @S

@P
ıP0 C

�
u2 @S

@T
� S2�s

�n

�
ıT0 D 0 : (2.71b)

For this system of equations to have nontrivial solutions, we must require the
determinant to vanish,

u4jJf .T; P /j � u2

�
@�

@P

S2�s

�n

C @S

@T

�
C S2�s

�n

D 0 ; (2.72)

where jJf .T; P /j is the determinant of the Jacobian matrix of the function
f .T; P / � .S.T; P /; �.T; P //. The Jacobian matrix of f is

Jf .T; P / � @.S; �/

@.T; P /
D

0

BB
@

@S

@T

@S

@P

@�

@T

@�

@P

1

CC
A : (2.73)

Now remember that the derivative of the inverse function f �1.S; �/ D
.T .S; �/; P.S; �// is given by the inverse of the Jacobian matrix of f ,
Jf �1 Œf .T; P /� D ŒJf .T; P /��1. Therefore,
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Jf �1 .S; �/ � @.T; P /

@.S; �/
D

0

BB
@

@T

@S

@T

@�

@P

@S

@P

@�

1

CC
A D 1

jJf .T; P /j

0

BB
@

@�

@P
� @S

@P

� @�

@T

@S

@T

1

CC
A :

Consequently, from the diagonal elements of this matrix equation we read off

@T

@S
D 1

jJf .T; P /j
@�

@P
;

@P

@�
D 1

jJf .T; P /j
@S

@T
: (2.74)

After dividing Eq. (2.72) by jJf .T; P /j we can use these relations to write

u4 � u2

�
@T

@S

S2�s

�n

C @P

@�

�
C 1

jJf .T; P /j
S2�s

�n

D 0 : (2.75)

Up to now we have worked with the function f .T; P / D ŒS.T; P /; �.T; P /� and its
inverse f �1.S; �/ D ŒT .S; �/; P.S; �/�. In Eq. (2.75), derivatives of f �1 appear,
and thus the derivatives of T with respect to S and of P with respect to � are
obviously taken at fixed � and S , respectively. We further simplify the polynomial
for u as follows. Take the first component of f �1, T .S; �/, and read it as a function
of S only, with a fixed �. Inversion of this function then yields a function S.T; �/.
Now do the same with the second component of f , �.P; T /, i.e., invert this function
at a fixed T . This yields

@T

@S
D

�
@S

@T

��1

D T�

cV

at fixed � ; (2.76a)

�
@�

@P

��1

D @P

@�
at fixed T ; (2.76b)

with the definition for the specific heat per unit mass

cV

�
D T

@S

@T
; (2.77)

where cV is the specific heat per unit volume, and the derivative is taken at fixed �.
With the help of Eq. (2.76) we write the first relation of Eq. (2.74) as

1

jJf .T; P /j D T�

cV

@P

@�
; (2.78)

with the derivative taken at fixed T . Now we insert Eqs. (2.76a) and (2.78) into the
polynomial (2.75) to obtain
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u4 � u2

�
�S2T�s

cV �n

C @P

@�

�
C �S2T�s

cV �n

@P

@�
D 0 : (2.79)

The two derivatives of P with respect to � appearing here were not identical
originally because the derivatives are taken at fixed S and at fixed T . However,
we approximate these derivatives to be equal, which is equivalent to approximating
the specific heat at constant pressure cP by the specific heat at constant volume cV .
This approximation turns out to be a good approximation for superfluid helium.

The resulting equation has the simple structure u4 � u2.a C b/ C ab D 0 with
solutions u2 D a; b. Consequently, the two positive solutions for u are

u1 D
s

@P

@�
; (2.80a)

u2 D
s

�S2T�s

cV �n

D
s

s2T�s

�cV �n

: (2.80b)

These are the velocities of first and second sound. Since we have not worked with a
relative velocity vn � vs between normal fluid and superfluid (except for the small
oscillations that constitute the sound waves), the sound velocities are pure numbers,
i.e., they do not depend on the direction of propagation.

At low temperatures, as we shall see in the next section in a microscopic model,

@P

@�
' c2 ; (2.81)

i.e., the speed of first sound is given by the slope of the Goldstone dispersion,
u1.T ! 0/ D c. For the speed of second sound, we may use the results from our
thermodynamic calculations in Sect. 2.2. At low temperatures, the roton contribution
is irrelevant, and we use cV;ph D 3sph and �n;ph D sphT=c2, see Eqs. (2.10) and
(2.24), respectively. We may also approximate �s ' �. Inserting all this into our
expression for u2 we find

u2.T ! 0/ D cp
3

D u1.T ! 0/p
3

: (2.82)

The full temperature dependence of u2, within the present phonon/roton model, is
shown in Fig. 2.6. Remember that second sound is only possible due to the presence
of the second fluid. Therefore, it is easy to understand that u2 goes to zero at the
critical temperature, because at that point �s ! 0 and the system becomes a single-
fluid system. Interestingly, the behavior at small temperatures is different. Had we
set T D 0 exactly, there would have been no normal fluid and thus no second sound.
However, starting with two fluids and then taking the limit T ! 0 leads to a nonzero



30 2 Superfluid Helium
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Fig. 2.6 Speed of second sound u2 as a function of temperature in superfluid helium from
Eq. (2.80) with the parameters given in Fig. 2.3. The dashed lines are obtained by only taking
into account phonon and roton contributions

speed of second sound. The figure also shows the characteristic behavior of u2 due
to the presence of the phonons and rotons. As expected from the discussion above,
see in particular Fig. 2.4, the phonons dominate at low temperatures, T . 0:25 Tc ,
while the rotons dominate for all larger temperatures below Tc . This characteristic
behavior is special for helium, and superfluids that have no rotons show a different
behavior. In contrast, the ratio of first and second sound at low temperatures given
in Eq. (2.82) is more universal because it only depends on the linear behavior of the
Goldstone mode at small momenta. If you are interested in recent theoretical studies
about sound waves in superfluids, for instance in the context of superfluid atomic
gases or relativistic superfluids, see [1, 2, 9, 16, 18].
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