Chapter 2
Balanced Growth in Decentralized Economies

Abstract In this chapter, we consider decision making algorithms that ensure
balanced growth in decentralized economic systems. We assume that the economic
system under consideration consists of a finite number monoproduct sectors whose
outputs in any time period are defined by Leontief production functions. We
show that there exists a dynamic system of prices where all the sectors ensure
balanced growth for the whole economic system by aiming to maximize their profit.
Prices have the following characteristic property: They depend on the volume of
production so that the price of a product goes down as its output grows. The
dependencies under consideration ensure that profit is a unimodal function of the
volume of production in the next technological cycle. This ensures that each of the
sectors selects its production plans in a unique way. We also consider the case where
prices are set individually for each buyer depending on the order size. This is usual
for wholesale trade, where the price of a product goes down as the order size grows.

For the purpose of studying management mechanisms that ensure balanced growth
in economic systems that do not have a control center, we consider a mathematical
model of an economic system that uses Leontief technologies. The main difference
between this model and the simple dynamic Leontief model is that the latter,
classical, model implicitly assumes the existence of a control center endowed with
the rights of a dictator. In our case, the system’s sectors are assumed to be completely
independent economic agents that make management decisions based on their own
interests. We assume that the model under consideration is closed in terms of
production and finances. Since the sectors are autonomous economic agents, we
potentially have a balance-of-payments problem. For this reason, we must identify
conditions that ensure that payments between all the sectors are balanced.

We devote a separate section to a financial mechanism that helps counteract
decreases in profit. (Such decreases can be seen in the case of the basic dynamics of
prices.) We also consider a modification of this dynamics such that the profit of all
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8 2 Balanced Growth in Decentralized Economies

the industries and the gross product of the system expressed in current prices grow
as output grows.

Note that the mathematical model considered in this chapter is intended solely
to demonstrate that multisector economic systems that use Leontief technologies
and that do not use centralized management can theoretically function in balanced
growth mode. This model is in no way intended to be applied in practice to
real-world economic systems, because such economic systems would have to satisfy
a great number of severe constraints.

2.1 Model Description

Let us consider a closed, dynamic model of production and exchange that has n
sectors. Each of the sectors produces only one product and each of the products is
produced by one sector only. The states of the economic system are observed at
discrete points in time, denoted by 7, = 0, 1,2, .... We will use the same notation
for the model’s time periods (i.e., the periods of time between two consecutive
points in time); the index of each time period corresponds to the right endpoint.
Each time period has the same duration, equal to one production cycle (in each of
the sectors). The time needed for exchanging products among the sectors is assumed
to be negligibly short.

The commodities produced in a given time period must be used by the end
of the next one: unused remains are considered not fit for consumption in later
time periods. The closed model considered here does not take into account final
consumption and the dynamics of production assets. For this reason, all the
commodities produced in a given time period serve as resources for the next
production cycle.

Let us introduce the following notation:

i =thesectorindex (i = 1,...,n),

N i+ = the subset of the sectors whose products are needed for sector i to produce
its commodity,

N~ = the subset of the sectors that consume (use as a resource) the commodity
produced by sector 7,

x; (t) = the output of sector i in time period ¢,

;i(t) = the amount of resource j, j € Ni+, that sector i has at the beginning of
time period 7.

We assume that Ni+ FO#N",i=1,...,n
Suppose that the production function of sector i is defined as follows:

x(6) = min { yfi(’)} , @1

jent U dji



2.1 Model Description 9

where a;; > 0 is the minimum amount of resource j needed for producing one
unit of commodity i. This type of function is referred to as the Leontief production
function, or the zero-elasticity-of-substitution (ZES) production function, or the
fixed-proportion production function (Nadiri 1982).

Remark 2.1. In economics, some types of resources can, to a certain degree,
substitute for other types (for example, labor and capital in the constant-elasticity-
of-substitution (CES) production function (Nadiri 1982; Solow 1956). However, the
higher the level of detail used to describe production processes, the less flexible you
are. The Leontief production function represents a limiting case where no product
can be substituted for any other product.

Remark 2.2. Some authors distinguish between production resources and factors of
production. In that case, the latter include labor and production assets. In this book,
we do not make such a distinction: We refer to the inputs of a technological process
as resources or factors of production and we refer to its output as its product.

Function (2.1) has a special property: Among its arguments, there is at least one
limiting resource (limiting factor of production) that determines the sector’s volume
of output. It is clear that in a given time period a sector uses its production resources
in the most efficient way if all of the sector’s resources are limiting. If the above
is true, we say that the corresponding production process is balanced in that time
period. This means that if in time period ¢ the operation of sector i is balanced, then
all the arguments in the right part of (2.1) are equal.

If sector i distributes all of its commodity produced in time period ¢ among its
consumers, then the following holds:

xi() = Y yt +1).

JENT

We say that an economic system is balanced in time period ¢ if it satisfies the
following conditions:

(a) all its production processes are balanced in time period ?,
(b) all the outputs in the previous time period, x; (f—1),i =1, ..., n, are completely
distributed.

Remark 2.3. In the sequel, we never consider the trivial case of a balanced
economic system where all outputs and inputs equal zero.

If the number of coefficients aj that appear in the n Leontief production
functions (2.1) is less than n?, then if j ¢ N,-+ we can define these coefficients
as follows: a; = 0. Here, the zero value of the coefficient a;; means that sector i
does not use the product of sector ;.

In any case, the set of n* nonnegative coefficients a; allows us (in an obvious
way) to form a nonnegative square matrix of order n, denoted by A. In the
literature, the matrix A has many names—consumption matrix, technology matrix,
input—output matrix, input matrix and so on. In this book, we shall call A the
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technology matrix. It completely describes all n technologies of this model in terms
of input (resources).

Note that the matrix A is constant in most of the models considered in this book.
Since, in real economies, new technologies are continually introduced and existing
ones get modernized, this assumption that all technological coefficients remain
constant limits the applicability of the models to relatively short time-frames. We
discuss issues related to the dynamics of the matrix A in Chap. 6.

Remark 2.4. 1t is easy to see that A corresponds to the direct input matrix in the
Leontief model. In the latter, the production of a unit of any product requires the
minimum possible amount of inputs and these inputs form the columns of A. This
means that in the Leontief model the vector of outputs uniquely determines the
vector of inputs. On the other hand, if we use function (2.1) as a basis, the vector of
inputs uniquely determines the volume of output; here, resources are allowed to be
used inefficiently.

Note that we can use the matrix A to see the technological relationships between
the sectors. If a;; > 0, then sector j uses the product of sector i directly. Evidently,
if aj = O, then there is no such direct relationship. However, if A is irre-
ducible (Gantmacher 1959; Horn and Johnson 1985) (indecomposable) (Ashmanov
1984; Lancaster 1968), then each sector directly or indirectly consumes the products
of all the sectors. An irreducible matrix has no zero rows or columns. In terms of
technology, no zero columns means that the production of any product requires at
least one type of resource and no zero rows means that the product of any sector is
used by at least one sector.

For a system that is balanced in time period 7, the following is obviously true:

x(t—=1) = Ax(1), (2.2)

where x (¢ — 1) and x(¢) are n-dimensional column vectors of outputs.

Remark 2.5. In the general case, instead of (2.2), the following inequality is true
for the vectors of outputs in any two consecutive time periods:

x(t—1) = Ax(0). 2.3)

This corresponds to the dynamic variant of the Leontief input—output model. This
model is a special case of the von Neumann growth model such that product i is
produced by sector i and no other sector (see Ashmanov 1984). Inequality (2.3) has
an obvious economic interpretation: The inputs in the current time period cannot
exceed the volume of output of the previous production cycle.

If the economic system is balanced in every time period, then by applying
induction to (2.2), we get

x(0) = A'x (1), t=1,

where x (0) is the initial level of stocks.
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As the following proposition shows, the requirement of being balanced places
tight constraints on the system’s parameters.

Proposition 2.1. Let the matrix A be primitive; then the economic system can be
balanced for all t = 1 if and only if x(0) is the (right) Frobenius vector of A.

Proof. The properties of dynamic equations in reverse time in the form of (2.2) are
studied in details in Nikaido (1968). See the same work for a proof of the necessity
of the stated condition. Next, let us distribute the resources that the economic system
has at the end of time period ¢ — 1 as follows:

1
y,:,'(l‘) = A—a,;ixj (l — 1), Jj € Ni_’ t=>1, 2.4
A

where A4 is the Frobenius eigenvalue of A. Elementary reasoning shows that
the outputs are completely distributed and there are no surplus resources in any
production in any time period. Moreover, the vectors of outputs in any two
consecutive time periods are related as follows: x(¢) = (1/A)x( —1),¢t = 1.
This means that the condition is sufficient. O

Let us recall the main definitions related to the dynamics of outputs. The ratio
x;(t)/x;(t — 1) is usually called the growth factor (Nikaido 1968) or expansion
rate (Gale 1960) of output for product i in time period ¢. The sequence of
outputs {x(#)}, t = 0,1,2,... is called an admissible trajectory of outputs or
a feasible path (Nikaido 1968) if the members of the sequence satisfy system of
inequalities (2.3).

Further, let us consider an admissible trajectory such that it is not identically
equal to zero over an infinite time period. This trajectory is called a steady states
trajectory (path) (Ashmanov 1984) or a balanced growth trajectory (path), if there
exists a scalar v such that v > 0 and x(¢) = vx (¢ — 1) forany ¢ = 1. It is clear that
in this case we have x(z) = v'x(0).

Example 2.1. Consider a two-sector economic system that has the following tech-
nology matrix:
A= 0404 '
0404

It can easily be checked that A4 = 0.8. Obviously, here the following is a steady
states trajectory: the sequence of outputs x(¢) = v'[1, 1]7 where the value of v
belongs to the right-closed interval (0, 1.25]. If v < 1.25, then, for any of the
products, its loss in any time period equals (1 — 0.8v). In the general case where
the initial vector is [x{, x3]” and x{ < xJ, a steady states trajectory exists only if
we draw the values of v from the right-closed interval (0, 2.5x)/(x? 4 x)]. O
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Remark 2.6. In the above example and all the examples that follow, the expansion
rates does not necessarily correspond to those in the real economic world. This is
done to make it easier for the reader to perceive the numeric data.

Out of all steady states trajectories, those where v is maximum are of the greatest
interest. This maximum value is called the von Neumann expansion rate (Ashmanov
1984). A sequence of outputs that corresponds to it is called the maximum balanced
growth trajectory (path) or the von Neumann path (Lancaster 1968). In Example 2.1,
the von Neumann expansion rate equals 1.25 = 1/ 4.

Proposition 2.2. [f the technology matrix A is irreducible, then the von Neumann

expansion rate v of the economic system is related to the Frobenius eigenvalue M\ 4
of A as follows:

v =27 (2.5)

Moreover, any von Neumann path of the system belongs to the ray that corresponds
to the Frobenius vector of A.

Proof. 1f A is irreducible, then the system has a steady states trajectory only if the
vector x (0) is positive. For this reason, we can rewrite the inequality vAx(0) < x(0)
as follows:

) x; (0)
= (Ax(0);

This yields that,

v < min —Xi (0) = (max —(Ax(o))i )_1 < L
= i (AX(O)), i Xi (0) h /\A’

where we used the right inequality from double-sided bound (A.2).

On the other hand, if x(0) is the Frobenius vector of A and the resources are
distributed according to (2.4), the system has a steady states trajectory with an
expansion rate of 1/A 4. It is obvious that this trajectory, which we denote by {x ()},
belongs to the ray that corresponds to x(0).

Suppose there exists a von Neumann path {X(¢#)} whose points belong to
a different ray. Then, we can find a scalar p such that the sequence {x(¢) + ux(z)}
consists of nonnegative vectors, all of them having the same zero component. It
is easy to check that this sequence of vectors satisfies the definition of a von
Neumann path. On the other hand, this trajectory cannot be constructed, because A
is irreducible. Indeed, since all the sectors of the economic system need (directly or
indirectly) a product that is never produced, each of the sectors must stop production
within a finite number of time periods. This contradiction proves the uniqueness of
the ray to which all the von Neumann paths belong. O

The ray to which all the von Neumann paths belong is called the von Neumann
ray (Ashmanov 1984; Lancaster 1968).
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We shall show that if the technology matrix of an economic system is reducible,
then this economic system can have more than one von Neumann ray.

Example 2.2. Consider a two-sector economic system that has the following tech-
nology matrix:
0.8 0
A= .
|: 0 0.8:|

It is easy to see that here the von Neumann expansion rate equals 1.25 (as in
Example 2.1) and that the maximum balanced growth trajectory is the sequence
of outputs x(7) = (1.25)" [x?, x9]7, where x{ and xJ are any nonnegative numbers
that satisfy the condition x{ + x9 > 0. Hence, here every point of the nonnegative
quadrant (zero excluded) belongs to a von Neumann ray. O

On the other hand, its is obvious that even if the technology matrix of an
economic system is reducible, this system has a unique von Neumann ray if this
system has a unique isolated subset that corresponds to an irreducible submatrix.
The simple example illustrates this statement.

Example 2.3. Consider a three-sector economic system that has the following
technology matrix:

0.40.40.1
A=104040.1
0 0 04

Here, the isolated subset is formed by the first two sectors. The Frobenius eigenvalue
of the corresponding submatrix equals 0.8. It is equal to the Frobenius eigenvalue
of A. The von Neumann expansion rate of the model is equal to 1.25. We can
construct a von Neumann path as follows: x(¢) = (1.25)'[1, 1,0]”. This trajectory
belong to the unique von Neumann ray that corresponds to the vector [1,1,0]7. O

Let us show that the expansion rate for a product can sometimes exceed the von
Neumann expansion rate.

Example 2.4. Consider the economic system from Example 2.1. Suppose sector 1
receives 0.8 units of each of the resources from the output x(1) = [1,1]7. Hence,
x1(2) = 2, which means that the expansion rate for product 1 in time period 2 equals
two. This exceeds the model’s von Neumann expansion rate v = 1.25. O

However, as the following statement shows, this can be reached only at the
expense of other sectors, where the expansion rate goes down.

Proposition 2.3. Let the matrix A be irreducible. If there exists a time period t such
that here the expansion rate in one of the system’s sectors exceeds the von Neumann
expansion rate v, it follows that one can find another sector whose expansion rate
in this period is lower than v.
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Proof. Suppose the contrary, i.e., that the following holds for time period #:
xi(t) = vx;(t —1), i=1,...,n.

Moreover, suppose that for some i its corresponding inequality is strict. In this case,
using (2.3), we get x(z) = vAx(z) and x(¢) # vAx(¢). Multiplying the first of the
inequalities by the left Frobenius vector p4 of A, we obtain

(p.x(1)) > vAa(p.x(1)).

Since (p,x(t)) >0, we have vA, < 1. This means that v <AA71, which contra-
dicts (2.5). O

Thus, in any Leontief-type model whose technology matrix A is irreducible (the
subject of this book), the von Neumann paths belong to a unique half-line that
corresponds to the right Frobenius vector x4 of A. This half-line (the von Neumann
ray), is also called the furnpike (Nikaido 1968). Accordingly, the maximum
balanced growth mode can also be referred to as the turnpike mode. Even though
the latter term was used for the first time in economic dynamics, in its field of
optimization modeling, we may use it here, because in optimization problems a
maximum balanced growth mode that has been observed for a certain period of
time is usually referred to as a turnpike mode.

Finally, since this book does not consider steady states trajectories that have
expansion rates not equal to the von Neumann expansion rate, we will use the term
balanced growth to mean maximum balanced growth.

Taking into consideration the terminology introduced above, we can infer the
following statement from Proposition 2.1:

Corollary 2.1. Let the technology matrix A of an economic system be primitive. If
this economic system is balanced in every time period, then all its sectors have the
same constant growth factor equal to v = 1/A 4. The corresponding trajectory of
outputs is a von Neumann path. If v > 1, then the volume of output increases in
every time period (expanded reproduction); if v < 1, then the volume of output
decreases; and if v = 1, then the volume of output remains constant (simple
reproduction).

Note that an economic system such that v < 1 is of no interest for obvious
reasons. In the sequel, we assume that v > 1.

In Proposition 2.1 let us substitute the condition that the matrix A must be
primitive with the condition that A must be irreducible, i.e., we shall consider the
more general case. Then, as the following example shows, the economic system can
be completely balanced even if the initial vector is not equal to the Frobenius vector
of A (i.e., this requirement imposed on the vector x (0) is no longer necessary).
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Table 2.1 The dynamics of outputs and expansion rates

t 0 1 2 3 4
x1(t) 4 20 25 125 156.25
x(t) 4 5 25 31.25 156.25
Vi (t) - 5 1.25 5 1.25
Vy(t) - 1.25 5 1.25 5

Example 2.5. Consider a two-sector economic system that has the following
imprimitive technology matrix:
0 0.8
A= ,
|:O.2 O:|

where A4 = 0.4 and the Frobenius vector x4 = [2,1]7. Suppose that the initial
vector x (0) does not equal the Frobenius vector: x (0) = [4, 4]”. Then, the economic
system is completely balanced if the outputs x; (#) are equal to the values shown in
Table 2.1.

It is obvious that this trajectory is not a steady states trajectory. Note that here
we can introduce the notion of a cycle-long expansion rate: In this example, the
cycle is two time periods long, because each sector’s volume of output grows by a
factor of 5 x 1.25 = 6.25 every two time periods. This notion can be applied to any
Leontief-type economy whose technology matrix is imprimitive. On the other hand,
if x(0) is the Frobenius vector, then the condition of being completely balanced
generates a steady states trajectory that has the following expansion rate: 1/A4 =
2.5. Note that the expansion rate per two time periods equals 6.25 in this case as
well. O

2.2 Planning Based on Profit Maximization

When some of the sectors of an economic system are technologically interrelated,
the interaction among these sectors requires organization. For example, at the end
of every production cycle, its outputs must be distributed among the consumers.

Traditionally, Gale-type models, which are a generalization of models that use
Leontief technologies, implicitly assume the existence of a control center endowed
with the rights of a dictator. This center controls production and product distribution,
and all its orders are executed with perfect accuracy. However, as the cases of the
former USSR, Cuba, North Korea and other countries show, it is impossible in
practice to plan the operation of thousands of enterprises—producing millions of
different product—from a single control center. Totally centralized planning and
management lead to imbalances in the economy, which in turn lead to the inefficient
use of physical, financial, and labor resources.
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Moreover, the entire history of the world demonstrates the ineffectiveness of
economic systems where economic agents are not provided with incentives to
produce cheap and quality products (because, for example, there systems lack
market mechanisms that would allow consumers to “grade” the commodities). For
these reasons, it is important to study dynamic economic models that do not assume
centralized management.

Naturally, we will start with the most simple models, namely from Leontief-type
dynamic models. We will consider sectors as autonomous economic agents that plan
and organize their operation themselves. The purpose of the model presented in this
section is to demonstrate that economic systems that do not have a control center
can function in balanced growth mode.

Thus, we assume that sectors sell products and procure resources themselves
(i.e., they are completely autonomous economic agents). We will refer to such an
economic system as a decentralized economic system.

The economic autonomy of a sector means that the sector has certain targets on
which it bases its management decisions. Consider a case where each of the sectors
aims to maximize its profit at the next production cycle (Abramov 2006).

In order to formally define the target functions of the sectors, we now introduce
appropriate financial indicators. Let p;(¢) denote the price that sector i sets for its
commodity produced in time period #. We assume that this price is the same for
all the consumers of sector i and does not depend on the order size. If we further
assume that sector i sells all of its commodity produced in time period ¢, then the
sector’s profit in time period ¢, I1;(¢), equals the volume of sales at ¢, expressed
in value terms, minus the production costs. In the model under consideration, the
latter equal the resource procurement costs, which includes product i if this product
appears in the production function. Hence the profit of sector i in time period ¢ is
given by

(1) = pi()xi (1) = Y py(t — Dyu(). (2.6)

jent

We assume that the volume of sales, which is here considered equal to the volume
of production x; (¢), and the price p;(¢) are linearly related as follows:

pi(t) = bi(t) + d;i ()x; (1), t=1, (2.7)

where the values of b; () > 0 and d;(¢) < 0 are fixed for given i and z. The above
inequality, combined with (2.7), means that the price decreases as the volume of
sales grows. Hence, the model explicitly takes into consideration the price elasticity
of demand (For an introduction to the price elasticity of demand and the price
elasticity of supply, see Heyne 1997).

It is clear that the coefficient b; () equals the limit value of the price, where the
volume of sales (production) for product i tends to zero. The coefficient d; (¢) shows
by how much the price decreases as the volume of sales (production) grows by one
unit. We will refer to b;(¢) and d;(¢) individually as the base price and the unit
discount coefficient, and collectively as the price coefficients.
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Remark 2.7. In practice, the dependencies of the form (2.7) are established statisti-
cally by analyzing time series. A range is selected where the obtained approximation
of the demand function is considered satisfactory. It is clear that this range cannot
contain volumes of sales that lead to negative prices.

We will use (2.7) for determining the prices p;(0) as well. However, here the
parameter x; (0) must be interpreted as the volume of sales of part of the initial
resource stock x?; here x;(0) < x?, i = 1,...,n. Since negative prices do not
have any meaningful interpretation and zero prices are not allowed in this model,

the price coefficients must satisfy the following constraints:
bi(t) + di(t)x;(¢) > 0, t=0.

If follows from (2.6) and (2.7) that the profit of sector i in time period = 1 can
be calculated as

I (1) = (bi (1) + di ()xi (1)) xi (1) — Z (bjt=1)+d;(t —1Dx; (= 1))y;(0).
jenT
' (2.8)

If a sector decides to buy its resources in amounts that exceed the minimum amount
needed for producing a certain amount of product, the sector’s profit decreases. This
yields that,

yji(t) = ajix;i (1), i=1,...,n; jeNT, t=1. (2.9)

If we take these relationships into account, we can rewrite (2.8) as follows:

(1) = (bi(1) + di (Dxi (0)xi (1) = Y (bt = 1) +d;(t = 1)x; (1 = 1)ax; (1)
jenT
' (2.10)

Before we find the maximum of this function by differentiating with respect
to x; (¢), we must justify that this operation is well defined in the present case. The
point is that the variables x;(t — 1), j € Nl-+, and x; (¢) that appear in (2.10) are,
generally speaking, related with a functional relationship. For example, in balanced
growth mode we have

Xj(l — 1) = Z aﬁxi(t).

zeNj

Formally, this means that if x;(#) grows, then the suppliers of sector i see their
volumes of sales grow in the previous time period. This in turn leads to a decrease in
the prices of the resources being bought by sector i. We can eliminate this “impact”
of x;(¢) on the prices p;(t — 1), j € Nl-+, by using either of the two methods
presented below.
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First, we can limit ourselves to considering such economic systems where for
each consumer the total amount of its orders for any product is negligibly small
compared with the product’s volume of production. As a result, the price of any
product will not depend on one single consumer.

Second, the economic system under consideration works as follows: By the time
when the output plan for x;(¢) is being determined, the variables of the previous
time period have already assumed their values. For this reason, the choice of a value
for x;(¢) does not affect those variables. Consequently, the prices for the previous
time period are uniquely determined by the actual volumes of production. Hence,
the choice of a value for x; (t) does not affect the valuesof p;(t — 1), j € N,-+.

We will adopt the second approach: We will find the unconditional maximum of
function (2.10) without taking any resource constraints into account. As we intend
to show, these constraints will not be violated in the case under consideration.

Thus, now that we assume that profit depends solely on the volume of production,
we can easily obtain the optimal production plan, which maximizes function (2.10):

xi(t) = — bi(t) — Z(bj(l—1)+dj(l—1))€j(l—1))aﬁ . (2.11)

jent

2d; (1)

Note that the maximum does indeed exist, because the coefficient d; (¢) at the square
term of parabola (2.10) has a negative value.

Remark 2.8. Using (2.7), we can rewrite (2.11) such that

xi(t) =

- bi(t) — i(t —Daj
2@ |0 2 pit=Da
jent
This means that in order to calculate the optimal plan of sector i for time period ¢ one
must know

(a) the values of the financial coefficients b; (¢) and d; (¢),

(b) the prices p; (¢t — 1) of the resources j € Nl-+ being bought. This formula also
shows that the base price b;(¢) of commodity i must exceed its unit cost of
production.

If a system operates in balanced growth mode and its expansion rate is v, then
we have in (2.11):

xi () =v'x:(0), x;(t—1)=1v""x;(0), jenNt. (2.12)

Using (2.11) and (2.12), we obtain that under the condition of balanced growth mode
the coefficients b; (¢) and d; (t) must, for all i and ¢, satisfy the following system of
equations:
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bi(t) + 2vtd;(t)xi 0) — Z (bj(t -+ Ut_ldj @ —1x;(0))a; =0. (2.13)
jent

For this, it suffices if the variables b; (¢) satisfy the following system of equations:
bi(ty= Y bjt—Da;. 121 (2.14)
jent
and in addition, if variables d; (¢) satisfy the following system of equations:

di (1) Y dit—=Dx;0a; |, =1 (2.15)

1
- 2\))(?,‘ 0
© jent

Note that we can rewrite the latter system as

\V

1
di(t) = Ton—1) Z+ dj(t —Dx;(t = Dai |, ¢
JEN,

Now let us consider the economic interpretation of systems (2.14) and (2.15). As
noted above, the coefficient b; (¢) equals the limit of the price as the volume of sales
for product i tends to zero. Conditions (2.14) can then be interpreted as follows:
The revenues that sector i receives in time period # by selling one unit of its product
for b; () must equal the cost of procuring, at the base prices of the previous time
period, the minimum amount of resources needed to produce this unit of commodity.

In order to be able to interpret system (2.15), we must multiply the equation that
corresponds to sector i by v?~!x;(0). The result is

@O0 =3 Y (@4 -Dge-D)u0. @16

jent

where the variables x; (), x; (t — 1), and y;;(¢) correspond to the balanced growth
mode with the initial vector x (0) such that x (0) = x°.

The left side of this equation represents the financial losses that are suffered by
sector i in time period 7. These losses and caused by a decrease in price as compared
with the original value b; (¢). In the equation’s right side, the absolute value of the
productd;(t — )x;(t = 1), j € N,-+ equals the amount of discount on b; (t — 1),
i.e., on the base price of product j produced in time period # — 1. Then, the absolute
value of the sum that appears in the equation’s right side equals the amount of money
that sector i “save” when buying the resources need for the output x; (¢). Hence,
Eq. (2.16) means that the absolute value of the “losses” sustained by sector i in time
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period ¢ equals half of what i saves when buying its resources. It is the difference
of these values that make up the profit of sector i in time period ¢. In order to make
sure that this is the case, let us calculate I7; (¢) using (2.10), (2.14), and (2.16):

I (t) = —d; (1)x*(1). (2.17)

Since the value of d; (¢) is negative, the profit is positive.

Note that the fact that each of the sectors make a positive profit in each time
period does not contradict the condition that the model is closed: the resources
needed to produce a commodity sold in a given time period are bought at the
previous one. At the same time, all sectors of the economy as a whole spend as
much on buying the resources needed for a given production cycle as they receive
as profit from selling the commodities produced during the previous cycle:

b)) + di@Oxi @) xi (1) =Y Y (b)) +dj(0)x; (1)) yi(t + 1).

i=1 i=1jen+t

Thus, the considered algorithm for determining the output plan for sector i
requires that at the end of a given time period ¢+ — 1 sector i determine the
price coefficients of the next time period, b;(¢) and d;(¢). For calculating these
coefficients (and for determining the output plan), sector i must receive from its
suppliers the current values of the base prices and discount coefficients. Besides
that, when determining its discount coefficient according to (2.15), sector i must
know the von Neumann expansion rate v and the vector of initial stocks x (0).

Since the system operates in balanced growth mode, all the output plans for
time period ¢ are provided with all the resources necessary. Then the consumers
receive the resources from their suppliers; the time needed for this is assumed to
be negligibly short. After that, the production cycles of time period ¢ start in all
the sectors. After the cycles finish, the sectors determine their output plans for time
period ¢ + 1, etc.

Note that this planning algorithm works in balanced growth mode only. For this
reason, it also makes perfect sense for sector i to set the value for its production plan
for time period ¢ as vx; (# —1). Both planning methods produce the same production
plans, with the required amount of resources guaranteed.

Hence, the model under consideration serves a single purpose: to demonstrate
that decentralized economic systems where each sector plans its work based on its
own interests can function in balanced growth mode.

2.3 Payment Balances of Sectors

Let us now assume that the economic system under consideration is closed in terms
of finances (as well as in terms of production). In addition, we will assume that the
economic system uses a clearing system for payments and that its sectors do not
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provide commodity credits to each other, even for a single production cycle. Under
such conditions, a sector’s revenues received from selling its product in a given time
period must equal the sector’s expenses for buying the resources needed for the next
production cycle.

We will refer to the difference between the revenues and the expenses of sector
i after the set-offs have been performed at the end of time period ¢ as the payment
balance in time period ¢, denoted by B;(¢). By definition,

Bi(t) = (i(1) + di()xi () xi (1) = Y (b (1) + d;(0)x; (1)) yut + 1.
jenT
' (2.18)

If we assume that the base prices and discount parameters of sector i must alone
ensure that B;(t) equals zero, then the coefficients b;(¢) and d;(¢),i = 1,...,n,
must satisfy the following equations for all 7:

bi()xi(6) = D byt + 1),

jent

d;i()x}(t) = Z d;(t)x; @)yt +1).

jent

(2.19)

For the balanced growth mode, assuming that the dynamics of the price coefficients
is as given by (2.14) and (2.15), we can rewrite (2.18) such that

Bi(t) = v' (bi(t) — vbi(t + 1) x;(0) + v (d;(¢) — 2v2d; (t + 1)) x7(0).

(2.20)

Similarly, (2.19) can be rewritten as follows:
bit) =v Y b;(0)a;, .21

jent
di(1)x;(0) =v Y d;(t)x;(0)aj. (2.22)

jent

If we compare this system of equations with system (2.14) and (2.15), we can
see that in balanced growth mode the price coefficients must satisfy the following
dynamic equations:

bit) = Syt — 1),
”1 (2.23)
di(l) = ﬁdi(t — 1)

In this case, as can be seen from (2.20), B; (t) = 0 for all i and z.
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Proposition 2.4. Suppose the initial values of the base prices and discount param-
eters for sector i, i = 1,...,n, satisfy the following system of equations:

bi(0)=v > bi(0)a.
jent

d;(0)x;(0) = v Y x;(0)d;(0)a;,

jent

(2.24)

where A4 and x(0) are the Frobenius eigenvalue and the Frobenius vector of the
matrix A, respectively, and v = 1/Ay4,

Then, the price coefficients b; (t) and d;(t), as given by (2.23), satisfy dynamic
equations (2.14), (2.21) and (2.15), (2.22), respectively.

The proof is by induction.

It is obvious that in our case we have the balanced growth mode and, at the same
time, the zero payment balances for all sectors if and only if there exists a strictly
positive solution to system of equations (2.24).

Proposition 2.5. If the technology matrix A is irreducible, then system of equa-
tions (2.24) has a strictly positive solution.

Proof. Let us introduce the following n-dimensional row vectors:
b(0) = [61(0),....b,(0)],  d(0) = [di(0).....dn(0)].

Now we can rewrite (2.24) as two matrix equations:
1 1 ~
— b(0) =b(0)A, —d(0) =d(0)A4,
v v

where the elements &; of the matrix A are related to the elements a; of the
matrix A such that
x; (0)

d,--:—a,--, l,j = 1,...,)’1. (225)
2 x](o) 2

If we consider the basic properties of determinants, we can see that the matrices
A and A have the same eigenvalues. Therefore, 1/v is the Frobenius eigenvalue of
the irreducible matrix A. At this point, the statement that we need to prove directly
follows from the Frobenius theorem.

Finally, the obtained left Frobenius vector d(0) is strictly positive. Since the price
parameters d;(0), i = 1,...,n, must be negative, we must change the sign of this
vector. O

By assumption, we consider an economic system whose expansion rate in
balanced growth mode is greater than 1 (i.e., v > 1). For this reason, it follows
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from (2.23) that the parameters b;(¢) and d; (¢) tend to zero as t — oo. It is easy
to see that the price of any product decreases monotonically and tends to zero as ¢
grows. Note that, at the same time, the prices in two consecutive time periods are
related such that

pi(l) = % (p,'(l — 1) — %d,‘(l — l)xi(t — 1)) s t=1. (2.26)

It is readily seen that the prices are positive in all time periods if p; (0) > 0.

Remark 2.9. Consider the dynamic variant of the Leontief model. In this case, the
analog of (2.26) for dual variables is

1
Pi(l):;Pi(l_l), t=1.

Given that in the case under consideration we have d; (t) = (1/ (2v2))t d; (0), the
profit trend (2.17) is determined as follows:

IT;(t) = —%di (0)x7(0). (2.27)

This means that in balanced growth mode this indicator decreases in a geometric
progression.

2.4 Counteracting Decreases in Profit

The continuous decrease in profit mentioned in the previous section may cause
considerable “psychological discomfort” to the sectors’ top managers. Moreover,
if we calculate the gross product of the system in current prices, i.e., the indicator

G(t) = > pi(t)x;(t), then it follows from (2.23) that in balanced growth mode we
i=1
have

n

G =Y (b,- (O + 5 O <0)) % (0).

i=1

Since d; (0) < 0, we see that the indicator increases monotonically and, as ¢ grows,
n

tends to Y b; (0)x;(0) (i.e., the value of all the initial resource stocks expressed in
i=1

the base prices for # = 0). Hence, in balanced growth mode, the unlimited growth in

production is not accompanied by the same growth in the gross product (in nominal

prices).
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We will now consider one way to counteract this decrease in profit. For this, we
modify systems of equations (2.14) and (2.15) such that

bi(t) =Y apb;(t = 1) + i (1), (2.28)
jent
vi(7)
di(t) = X0t -1 | — ————, 2.29
O =57w | 2 @xOde-D] -5 29)
jent
where ¥; (), i = 1,...,n, are some positive parameters. It is easy to check that the

original system of equations (2.13) is invariant under this modification. Note it is up
to sector i to select a value for v; (¢).

Now let us relate the price of product i in time period ¢ with the prices for the
previous period in balanced growth mode:

p)y= > (pj(t —1) - %dj(t —Dx;(t — 1)) aji + %1//,-0).

jent

Since p;(0) > 0,i = 1,...,n, by assumption, we can see that the prices are positive
for all time periods.

Elementary reasoning shows that this modification to the dynamics of the price
parameters in balanced growth mode does not affect the profit I7;(¢) of sector i and
this indicator can also be calculated by (2.17). However, now the sector can actively
influence the value of this indicator. For example, let sector i define the dynamics
of ¥;(¢) such that ¥;(t) = v'¥;(0), 7 = 1,2,..., where 1;(0) is some positive
constant. If we combine this with (2.29), we get |d;(t)| > v, (0)/(2x;(0)). Hence
the profit of sector i can be estimated as follows: IT; (1) > (¥;(0) /2x;(0)) x7?(¢).

Consider another example: Sector i fixes the value of v;(¢) at 1//19 (i.e., now
Vi (t) = ). It is readily seen that |d;(t)| > ¥ /(2v'x;(0)). In this case we have
() > (V0 /2 (0).

Let us now consider the dynamics price parameters such that, in balanced growth
mode, the gross product of the system (in current prices) grows at a rate equal to the
one of the volume of production. In order to obtain this, it suffices if each sector’s
volume of sales has an expansion rate of v in each time period #:

pi()x;i(t) = vp;(t — Dx; (t — 1).

This yields that in balanced growth mode the prices of all the products must be
constant:

pi(t) = p? = const.
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In our case, the price coefficients must determine plans that correspond to the
balanced growth mode such that all sectors have zero payment balances for all time
periods. Therefor the system’s parameters must satisfy the following conditions:

(a) the vectors x(0) and h(0) are the right and the left Frobenius vectors, respec-
tively, of the matrix 4,

(b) the vector —d(0) is the left Frobenius vector of the matrix A (2.25),

(c) the dynamics of the price parameters for all # > 1 is

O =b0), A0 = dile 1), (2.30)

(d) fort = 0, the coefficients b; (0) and d; (0) and the component x; (0) satisfy the
following equation:

(v =1 bi(0) = (1 —2v) di(0)x;(0), (2.31)

(e) the parameters v; (¢) are calculated as follows:
1 1
vi(t) = (1 - —) bi(t—1)=— (2— —) di(t — Dx; (t — 1).
v v

Using (2.10), we get in this case that [7;(t) = —v'd; (0)x?(0), i.e., the profit of
each sector grows with an expansion rate of v as well.

We can now use (2.28) and (2.29) to express the payment balance of sector i for
time period ¢ in balanced growth mode:

Bi(t) =v' | bi(t) —v Y bj(0)aj | x;(0)

jent

2 | - 2 400y | 0)

JEN,
It is clear that if the row vectors b(¢) and —d (¢), where

b(t) = [bi(t),....ba(1)] d(t) = [di(t),....d,(1)]

are the left Frobenius vectors of the matrices 4 and A (2.25), respectively, then we
have B;(¢t) = 0. Hence, (2.28) and (2.29) ensure zero payment balances for all the
sectors in all time periods if the row vectors b(0), ¥ (¢) = [V (), ..., ¥n ()], t = 1,
are the left Frobenius vectors of the matrix A, and —d (0) is the left Frobenius vector
of the matrix A. Indeed, let ¥ (¢) be the left Frobenius vector of A. It can easily be
checked that the row vector whose components are ¥; (¢)/x;(0) is the Frobenius
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vector of A. This means that the sums in the right-hand sides of (2.28) and (2.29)
are the components of the left Frobenius vectors of their corresponding matrices.
Note that in this case the values of v;(#) must be agreed on by all the sectors for
each time period.

Relations (2.30) and (2.31) hold for the case where the system’s gross product
(expressed in current prices) grows at a constant expansion rate of v in balanced
growth mode. This case is undoubtedly important, but we should also consider the
general case such that

pi)xi(t) = opi(t — Dx;(t — 1),

where ¢ > 0 is some constant. Note that the case where ¢ > v can be interpreted as
an inflation with a constant inflation index of ¢ /v; similarly, the case where ¢ < v
can be interpreted as deflation with a constant deflation index of v/¢.

For the dynamics of the price coefficients (2.30), the corresponding generaliza-
tion is

bi(t) = %bi(z —. din) = %d,-(r —1).

Here, the components of the initial Frobenius vectors must satisfy the following
equations:

(¢ — 1) bi(0) = (1 —2¢) di(0)xi (0).
It is easy to obtain the formula for calculating the profit of sector i per time period ¢:
I (1) = —¢'d; (0)x7(0).

This means that the profit grows at an expansion rate of ¢.

2.5 Personalized Prices for Consumers

In the previous sections, we assumed that the price of a product in a given time
period was the same for all the consumers of the product. However, in real-world
wholesale trade, product prices usually depend on the order size: the larger the order,
the cheaper each unit of the product. For this reason, different order sizes for the
same commodity produced during a given time period correspond to different prices,
which means that the price is personalized for each consumer.

In this section, we will see whether and how a decentralized economic system can
function in balanced growth mode if for any time period the price of each product is
set individually for each consumer of the product. In the case under consideration,
we will again assume that prices depend linearly on a certain parameter. However,
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this time the price will depend linearly not on the volume of production [as in (2.7)],
but on the order size. This means that instead of the variables p; (¢), we now consider
the personalized prices p;;(¢) defined such that

pii(t) = bi(t) +d;i () y;(t + 1), Jj €N, (2.32)

where the values of b;(¢) > 0 and d;(¢) < O are fixed for given i and ¢. It is clear
that the amount of discount is directly proportional to the order size.

We can now use (2.32) to express the revenue of sector i that i receives by selling
its commodity produced in time period :

S (Bi0) + di@)yye + 1) vyt + D).

JENT

Similarly, we can express costs of producing in time period #:

Db = 1) +d;i(t = Dyi(0)yu().

jent

As before, I1;(t) denotes the profit of sector i in time period ¢. Now we have
[compare with (2.8)]

i)y = ) (bi(0) + di ()t + 1)yt + 1)
&
! (2.33)
— D (b =)+ d; (e = Dyi())y(0).

jent

Formally, this function’s arguments are ‘Ni_| variables of the form y;(¢ + 1) and
\Nﬁ'\ variables of the form y;;(¢). Since surplus resources reduce profit, we can
assume that the order sizes are uniquely determined by the planned output such that
we have (2.9).

We consider the variables y;(t + 1), j € N, to be functions of x; (¢). For this,
we must assume that sector i knows both the Frobenius vector x4 of the technology
matrix A and the elements a; of A, where j € N, . Besides that, all the sectors
must know the expansion rate in balanced growth mode.

Remark 2.10. The above assumptions are essential for the planning algorithm under
consideration. This means that in order to use this algorithm the sectors must have
more information in this case than in the case where the prices are the same for all
the consumers of a sector.

It is readily seen that, when the above assumptions hold, the sizes of the orders
yii(t + 1), j € N, for commodity i are uniquely determined by the volume of
production x; (¢):
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(x4);

(xa)i

it +1) = ayx;(t + 1) = a; vx;(t) = Byxi(1),

where B;; = va;; ((x4);/(x4)i), j € N;, are constants. Hence, we can rewrite (2.33)
(the planned profit of sector i in time period ¢) such that

M (0) = Y (bi () + di () Byxi () Byxi (1)
&
' (2.34)
— Y (bt = 1)+ d; (¢ = Dapxi (1)aix; (1)

jent

Let us assume again that for any time period each sector chooses such volume of
output that maximizes its planned profit. If the coefficient at the square term in (2.34)
is negative, i.e., if

di(t) Y Bi— Y di(t —1a; <0, (2.35)

JEN jen T
then it is easy to see that the profit is maximum when x; (¢) is as follows:

bi(t) > Bij— X bt —1Daj
NS jent 2.36
= S a4 X B (2:30)
jENT

jent

It is obvious that a plan defined like this has a meaningful interpretation only when
the numerator of the above fraction is positive, i.e., when we have

bi(t) D By— Y bt —1a; >0.

JENT jen T

Since the parameters f;; satisfy the evident condition ) B; = 1, we can simplify
JENT
the above inequality:

bi(t) = > bj(t — Daj > 0. (2.37)

jen

Let us now show that the system of inequalities (2.35), (2.37) is, generally speak-
ing, incompatible with the dynamics of the price coefficients as given by (2.23).
Recall that the latter was determined for the case where the price of a given product
is the same for all its consumers.



2.5 Personalized Prices for Consumers 29

Example 2.6. Suppose all the elements of a technology matrix A have the same
value: a; = a. In this case, we can choose the Frobenius vector of A equals the
all-one vector [1,...,1]7. It is clear that Ay = na, v = 1/(na), B; = 1/n.
Accordingly, inequalities (2.35), (2.37) are here as follows:

1 n
—d;@t) — (t — Da? ,
nd(z) §=ld,(t Ja <0

J

bi(ty— D bjt—1) |a>o.

Jj=1

The special form of A unifies the base prices and discount coefficients for any given
time period. Thus we can rewrite the above inequalities for each sector separately:

di(t) < d;i(t —1)(na)* = %di(t —1),
bi(t) > bi(t — na = %bi(t —1).

Hence the obtained constraints make it no longer possible to determine the dynamics
of the price coefficients using (2.23). O

Since in balanced growth mode equalities (2.12) hold, we have from (2.36) that
the price coefficients b; (z) and d; (¢) must satisfy the following system of equations
foranyz = 1:

bi(ty= > bi(t — Daj+ 2v' | di(t) Y Bi— Y di(t — Daj | x;(0) = 0.
jent JENT jent
(2.38)

Note that here the equations analogous to (2.14) and (2.15) that define the indepen-
dent dynamics of the base prices and discount parameters are

bi(t) = Z bj(t — Daj,

jent

1
di(t — az.
2 B jg-:* ] ]

JEN”

di(t) =

However these equations do not allows us to calculate the volume of output x; (¢),
because if we use them we obtain the indeterminate form 0/0 in the right-hand side
of (2.36). One constructive way out of this situation is to express each equation
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in (2.38) as a sum of the following two equations:

bi(t) = Y bj(t = Daj — i (t) =0,

jent

' di() Y Bi— D di(t—Daj | xi(0) + v (1) =0,

JENT jen T

where V; (¢) is some positive parameter. In this case the dynamics of the variables
bi(t) and d;(¢) fort = 11is

bi(t) = Y bt — Daji + i (1),

jent
(2.39)
1 RAVE
dit) = —=—| D d;jt—Da;— —
,»GZN; o 207x;(0)

Note that here condition (2.35) holds for all i and ¢, because the left-hand side of that
inequality equals —; (t) /(2x;(¢)) . It is also obvious that condition (2.37) holds.

In order to provide an economic interpretation for the equations in system (2.39),
we multiply them by x; (¢) and x?(t), respectively, and rewrite them such that

bi6) Yyt +1)= Y bt — Dyu(t) + ¥ ()x; (1),

JENT jent

1
di(t) Y yit+1h= ) dj(t—l)yjzi(t)—Ewi(t)x,-(t).

JENT jen T

The first equation shows that if no discounts are given the revenues that sector i
receives from selling its commodity produced in time period ¢ exceed the expenses
for buying the resources needed for that by v; (¢)x; (¢). The second equation means
that the absolute value of the loss from giving the discounts to the consumers
exceeds the total savings from the discounts given to the sector i by its suppliers
by (1/2)y;(¢)x; (¢). These two imbalances ensure the positive profit. We can check
that using (2.33) and (2.39) to calculate the profit /7; (¢) in balanced growth mode:

1
II(t) = E%(I)Xi(f)-

This means that if 1; (¢) = const, then the profit of sector i has the expansion rate
equals the production expansion rate v. On the other hand, the profit is the same in
all time periods if ¥; (1) = v, (0), where ¥; (0) is some constant.
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Let us now turn to the payment balances of the sectors in the context of the
personalized pricing algorithm under consideration. Keeping the same notation
for this indicator, we can write the following formula for calculating its value for
sector 7 in time period ¢:

Bi(t) =Y (bi(t) + di(t)ys(t + D)yt + 1)

JEN

— Z (b (1) +dj@)y;it + 1)yt + 1).

jent

Since we consider the balanced growth mode, we get

Bi(t) = bi(t) —v Y bj(a; | xi (1)

jent

clao ¥ g T a0

JENT jent

It is clear that all the sectors have zero payment balances in time period ¢ if the base
prices form the left Frobenius vector of the technology matrix A and the discount
coefficients form a nontrivial solution to the following system of linear equations:

dit)y Y Bi—v? > diay=0. i=1...n.

JENT jen;t

However, a simple analysis (omitted here) shows that in the general case these
solutions are incompatible with the dynamics of the parameters (2.39) and the
constraint that b; (r) must form the left Frobenius vector of A for all ¢.

Let us now compare the financial indicators of a sector in this model with those
when the prices are the same for all its consumers (i.e., in the model considered
in Sect.2.2). We perform this comparison for the same trajectory of outputs that
corresponds to the balanced growth mode.

Let V() and V,"(¢) be the revenues of sector i in time period ¢ when the price
is the same for all its consumers and when the price depends on the order size,
respectively:

VE(t) = bi(t)xi (t) + di (t)x} (1),

VI (0) = bi(0)xi() + di(0) Y yit + 1),

JENT
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where the values of b; (¢) (and d; (t)) are assumed to be the same in both equations.
By definition, put AV;(t) = V<(t) — V;*(¢). It now follows that

AV = )20 = Y v +)

JENT

= a0~ (X w+ D)+ X 2y + Dyt + 1)

JEN; JkEN
j#k
=2di(1) Y yy(t + Dyt +1).
jkeNT
j#k

As we can see, when all other conditions are equal, switching to the personalized
prices leads to an increase in profit for a given sector if the sector sells its product to
at least two consumers. The reason for this is that the absolute value of the amounts
of the discounts decreases.

Let Cf(¢) and C/(t) be the expenses of sector i for buying its resources at the
end of time period 7 in the first case and the second case, respectively:

Ci)y =Y (bj(0) +d;(0)x; )yt + 1),
jen

Cr() = Y (bj()+d;(0)y;(t + 1)yt +1).

jent

Let us now calculate the difference AC;(¢) = C£(¢) — C’(¢):

ACi(1) = Y dj(0)(xj () =yt + D)yult + 1).

jent

Here, when all other conditions are equal, switching to the personalized prices leads
to an increase in expenses for a given sector unless the sector is the only consumer
of each of its suppliers. This is again explained by the fact that the absolute value of
the amounts of the discounts decreases.

Let AT, (¢) be the change in profit for sector i in time period ¢ when switching
to the personalized prices while keeping the same price coefficients. This quantity
is the difference between (2.8) and (2.33):

A1) = di0 (320 = Y yi+ 1)
JjeN”

— Y di =D = 1) = yp)yi(0).

jent
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Here, the only thing that we know for sure is that the profit of a given sector increases
if the sector is the only consumer of each of its suppliers and the sector’s product is
consumed by at least two sectors. On the other hand, the profit of a sector decreases
if the sector has only one consumer and at least one of the sector’s suppliers has
more than one consumer.

2.6 Average Prices and Personalized Discounts

In this section, we consider another modification to the model from Sect.2.2.
Here, in addition to the pricing mechanism described in the previous sections,
which is based on the “base price minus discount” principle, we introduce another
mechanism that either adds surcharges on or offers additional discounts from
product prices. This change in price is based on the order size, which again means
personalized prices.

In order to avoid any confusion, we will refer to the prices in the original model
as average prices. These prices are set as in the original model (i.e., using the base
prices and discount coefficients). The dynamics of the price coefficients is as given
by (2.23) and output plans are determined according to (2.11). This means that here,
as in the original model, the parameters that determine the average prices are used as
a basis when planning production. We will keep the notation p; (¢) for the average
price of sector 7 in time period ¢. Here, this price still depends on the volume of
production, as in (2.7). Next, the initial values of the price coefficients are selected
so that in balanced growth mode the average prices ensure that all the sectors have
zero payment balances for all time periods.

The distinctive property of the model under consideration is that here personal-
ized discounts are offered for products sold at the average prices. In concrete terms,
we assume that the actual amount paid by sector j, j € N;~, for the commodity
produced by sector i in time period 7 is determined as follows:

Pyt + 1)+ di(O)yl(t + 1), (2.40)

where the first summand equals the amount calculated using the average price and
the second summand equals the amount of the additional discount. Here, the first
amount depends on the order size linearly, whereas the second amount depends on
the same parameter exponentially. In this formula, the coefficient c?i () < Ois set
individually by each sector and, generally speaking, can be different in different
time periods. On the other hand, the constant ¢ > 0 is assumed to be the same for
all the sectors in all time periods.

Remark 2.11. Formally, the value of ¢ can be any positive number. However, when
the size of every order in the system is significantly greater than 1, it makes more
sense to assume that g belongs to the interval (0, 1) from an economic point of view.
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Let AB;(t) be the deviation (caused by the additional discounts) of the payment
balance B; (¢) from zero in time period ¢. It is easy to see that in the balanced growth
mode we have

ABi(1) =di(t) Y yie+ D= Y di(yi +1).

JEN jent
The above formula can be rewritten as

AB(t) =di() Y alxlc+1)— Y d;j@alxi( +1).

JENT jent

Obviously, if there exists a set of negative coefficients c?,- (t) such that each AB;(¢)
turns into zero, then the same set ensures that these indicators equal zero over the
entire time-frame. This is because the system functions in balanced growth mode.
For this reason, we can omit the index ¢t when referring to the parameters dAi (). For
the same reason, the problem of the existence of a dynamics of the coefficients d; (¢)
such that we have zero payment balances for each sector in all time periods can now
be reduced to the problem of the existence of a negative solution to the following
system of equations:

di Y- apxf ) — | 3 djai [ x{(0) =0, (2.41)
JEN;~ jEN,-+
where x;(0), i = 1,...,n, are the components of the Frobenius vector of the

matrix A.
Proposition 2.6. Suppose the following conditions hold:

(a) the system’s technology matrix A is irreducible,

(b) the system functions in balanced growth mode,

(c) the amounts to be paid for products are set individually for each consumer,
according to (2.40),

(d) the dynamics of the average prices ensures that the revenues of each sector
equals its expenses in all time periods.

Then there exists a set of additional discounts d;, i = 1,...,n, such that each
sector’s payment balance equals zero in all time periods.

Proof. Let w be the transpose of the row vector d. Then we can rewrite (2.41) as
the matrix equation:

Gw =w,
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where G is a square matrix of order n. The elements g; of G are defined using
the elements of the technology matrix A and the components of the Frobenius
vector x (0) such that

aix! (0)
&= -
Y aix;(0)
k=1

Since A is irreducible, it cannot have zero rows; at the same time all the components
of x(0) are positive. Therefore the denominator is positive in the above equation.
Denote by m;; the alx?(0). Then we can rewrite G as

g—J
myy my My
A F o F iy M F ey W e
nip myy ny2
G = |my F - Fmy, Mo+ Fmy, My - Fog, |- (242)
Min Map Myn
Mpp 4o+ Mpyy Myy + 2o+ My 77 My + 200+ My

It is readily seen that G is a (nonnegative) irreducible matrix. The equation Gw = w
has a nontrivial solution because the matrix (G — I,,), where I, is the identity matrix
of order n, is singular. The last statement follows from the fact that the sum of the
rows of the matrix

—Mmip-cr— My myy My

M = miy —Map =My ... My (2.43)

nmin Map cee T — Mpp—

equals the zero row vector and M has the same determinant as the matrix (G-1,).
Since the denominator of each fraction in (2.42) is strictly greater than zero, then
we see that the solution set of the system of equations Gw = w is the same as that
of the system of equations Mw = 0.

We now list the properties of M that follow from the fact that A is irreducible.
First, all the diagonal elements of M are negative. Indeed, suppose to the contrary
that there exists a zero diagonal element. Then the corresponding sector can function
independently, i.e., it does not need the product of any other sector. Second, since
for any column the sum of its elements equals zero, then we see that each column
contains at least one positive element.

Based on the properties of M, we now show that by using the elimination method
we can rewrite the system of equations Mw = 0as
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koiwy —rppwy =0

ksiwi + kaowy — 33wy =0 (2.44)

kowt + kpows + kpsws + ... — rpaw, = 0,

where all the coefficients r;;, i = 2,...,n, are positive and eachrowi,i = 2,...,n,
contains at least one positive coefficient k;;. Indeed, in the system of equations

Mw = 0 the coefficient at the variable w, in the last equation is equal to
—Mpp — My — ... — My(n—1)-

Since A is irreducible, then we get that this sum is negative. If we take into account
the form of columns of M , we see that we can eliminate the variable w,, from row
i,i =2,...,n— 1, of the system Mw = 0 as follows: Multiply row n by a scalar
i, 0 < w; < 1;then, add row i to the product.

If w; < 1, then the number of positive coefficients of the remaining variables in
row i does not decrease after the above operation. It is clear that we can have the
case where w; = 1 if and only if column n contains only two nonzero elements
(corresponding to rows i and n); this means that w; = 0, j # i. If we suppose that,
after the rows are added together, the diagonal element at the position (i, 7) equals
zero, then column / must also contain only two nonzero elements, in the positions
(i,i) and (n, i). But this means that sectors i and n are technologically isolated from
the rest of the system, which contradict the condition that A is irreducible.

It is easy to see that if we eliminate w, from rows 2,...,n — 1, then the values
of all the coefficients do not decrease and the negative coefficients remain negative.
Next, we eliminate w,—; fromrows 2,...,n — 2, etc.

Finally, we arrive at system of equations (2.44). Let w; = 1, wy = ko1 /rn, etc.
As a result, we obtain a column vector all of whose components are positive.

Recall that if a matrix is irreducible, then we get that the matrix’s strictly positive
eigenvector corresponds only to its Frobenius eigenvalue. Therefore the Frobenius
eigenvalue of the matrix G equals 1. O

Hence, the introduction of two types of discount allows us:

(a) to implement a personalized approach to each consumer,
(b) to ensure that each sector has a zero payment balance for all time periods.

2.7 Generalized Price Formula

The model of an economic system functioning in balance growth mode presented
in Sect. 2.2 is based on the assumption that to determine the price of its product each
sector of the system uses the linear dependencies given by (2.7). In this section,
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we consider a generalization of this approach. Here, the price of product i in time
period ¢ is determined as

pi(t) = bi(t) + di()x{ (1), (2.45)

where b; (t) > 0 and d;(¢) < 0, and ¢ is a constant such that 0 < g < oo. Since the
case where ¢ = 1 is considered in Sect. 2.2, here we assume that ¢ # 1. Thus, here
the price of a product depends nonlinearly on the volume of production.

Using (2.45), we see that the profit of sector i in time period 7 is maximum when
the volume of output is as follows:

bit)— X (bt — 1) +dj(t — Dx( — 1)az\

jent

u=1- 0+ 9d,0)

Remark 2.12. Clearly, we assume that the value of the above root is positive. Such
aroot exists because the following holds: b; (1) > Y~ p; (t—1)aj; (see Remark 2.8).
jent

In balanced growth mode, the vector of outputs has the expansion rate equals v
[see (2.12)]. For this reason, to ensure the balanced growth mode it is sufficient that
the base prices satisfy dynamic equations (2.14) and the discount coefficients satisfy
the following equations:

_ v (O
di(t) = 59 jZ a‘"(x,-(O)) di(t—1), (=1 (2.46)

ent

i

It follows from these equations that the profit I7; () of sector i in the time period ¢
is as stated below:

;1) = —qdi (1) (x; (1))

Let us now calculate the payment balance B;(¢) (2.18) of sector i for time
period ¢ in balanced growth mode. Suppose that the initial row vector of base prices
b(0) is the left Frobenius vector of the matrix A and that the dynamics of the base
prices is as given by (2.23). As we can see from Sect. 2.3, in this case the base prices
contribute zero to the payment balance of each sector over the entire time-frame.
Therefore the values of the payment balances depend exclusively on the amounts of
the discounts. It is easy to see that the discount coefficients also contribute zero to
the payment balance of each sector for all time periods if these coefficients satisfy
the following dynamic equations:

di@x{ ) =v Y d;iOx10)a;. =1 (2.47)

jent
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Comparing (2.46) with (2.47), we see that the dynamics of the variables d; (¢) must
be as follows:

di (1) )di —1). (2.48)

1
(It

If we reuse the arguments from the proof of Proposition 2.5, we conclude that
for t = 0 system of equations (2.47) has a solution all of whose components are
negative. This means that there exists an initial row vector of discount coefficients
d(0) < 0 such that the discount coefficients (2.48) contribute zero to the payment
balance of each sector over the entire economic time-frame.

Let us now apply exponential dependencies for calculating personalized prices
from Sect. 2.5. The modified personalized price formula (2.32) is now as

pi) =bi() +d;(yi ¢+ 1), jeNT. t=1,

where b; (t) > 0 and d; (¢) < 0 are fixed for given i and ¢. In addition, the parameter
q(t) (the same for all the sectors) can be different for different time periods; we
require that g(¢t) > 0, ¢ = 0.

Accordingly, the profit I1;(¢) of sector i in time period ¢ is now calculated as
follows:

M) = > (bi(0) + di () yi” ¢ + D)yt + 1)
JjENT
(2.49)
= Y bt =D +d; (e = DyE0)yi0).
jent
Using the reasoning and notation from Sect. 2.5, we now express the profit (2.49) as
a function of one variable, namely x; (¢)) [see (2.34)]:

m@ =Y (bio) +di(0) (B 0)™”) By (1)
JEN;
- Z (bj(t - +d;(t—1) (ax; (Z))q(t)) a;ix; ().

jent

We assume that the dynamics of d; (t) and ¢ (¢) is such that the following inequalities
hold for alli and 7 > 1:

di(t) Z ,3,'(jl+q(t)) _ Z dj(t _ 1) (aji)(l+q(t)) <o.

jen jen:t

These inequalities ensure that the profit functions of all sectors have a maximum for
all time periods. Besides that, we assume that the base prices satisfy (2.37) for all i
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and ¢. In this case, the profit of sector i in time period ¢ is maximum when x; (¢) is
as follows:

bi(t)— > bt —1aj o

jent

1
YOSNTH0 Y du-0a g0 ¥ g
jEN”

jENJr

(2.50)

Here, we select a positive value of the root. It follows from (2.50) that in balanced
growth mode the price coefficients must satisfy, for > 1, the system of equations:

bi(t) = Y bj(t = Daj— (1+q(t))

jent

« Z dj(t _ 1)q;il+q(t)) —d;(t) Z ﬂ(l+q(t)) ,(0)) q@) _

jent JENT

Let us select a positive row vector b(0) equals the left Frobenius vector of the
matrix A. We assume that the vector of base prices is constant over the entire
economic time-frame: b(¢) = b(0) for all ¢ > 1. In this case, the numerator of
the second fraction in (2.50) is constant and equals (1 —v~!)b;(0), which is positive
because A4 < 1. Note that now the gross product of the system, if expressed in base
prices, grows at an expansion rate equals v.

The dynamic equations for the discount coefficients are here as

1
3 ﬁ(1+q(t))
i

jENT

Z d;(t — Dai " — (1=v7D 6i(0)

di() =
(’) (1+ (1) (20"

]EN

We can simplify the above formula significantly by selecting the dynamics of ¢()
appropriately. For example, if we assume that g(¢) = 1/¢,¢ = 1 then we have for
sufficiently large #:

ity =3 d;(t — Daj — Uv—_zlb,-(O) + o), (2.51)
jent

where O(t) — 0 as ¢t — oo. In addition, if the matrix A is primitive then
the sequence {(Agld (f)A)t}, converges for any fixed 7; in the general case, this
sequence is bounded (see Ashmanov 1984; Horn and Johnson 1985). Since we
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assume that 14 < 1, we see that the sequence {(d (f)A)t} converges to the zero
row vector. Therefore, if we apply induction to (2.51), we obtain a formula for
calculating d; (), where the initial conditions are limited to a value of the base price
only:

v—1 v—1 v—1 ~
d:(f)Z—(W'FT'F"' 2 )bz(0)+0(t),

where O(¢) — 0 ast — oo. If we sum the geometric sequence in the right-hand side
of this equality, we can see that the limit of the sequence {d;(¢)} equals —b; (0)/v.
It is obvious that, as ¢ — oo the price of product i approaches the common value,
namely (v — 1)v™!5;(0), for all the consumers of i. It is clear that in this case the
payment balance of each sector approaches zero.
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