
Chapter 2
Methods

We here review in more detail the mathematical formalism underlying the modelling
of stochasticity in population systems, which will be used throughout the rest of the
thesis. We begin with revisiting the basic mathematical definitions which lead to
the concept of homogeneous stochastic process. Those describe the dynamics of the
chemical concentrations in a stochastic formalism. Homogeneous processes satisfy
the master equation; the fundamental equation for the stochastic dynamics.

An analytic procedure that can always be carried out on the master equation is
the deterministic limit, which describes the time evolution of the averages of the
state variables. This limit is tantamount to apply the mass action law to the reaction
scheme. The deterministic equations give a macroscopic description of the dynamics
of the system and are one of the major methodologies for the theoretical study of
biological and chemical systems. Their use is exemplified by the book byMurray [1].
This older tradition involved both the study of simple, analytically tractable, models
and dynamical systems theory. The former was concerned with the mathematical
investigation of specific differential equations of few variables and the latter with
general results on stability of attractors, topological notions, bifurcation theory, and
so on [2].

In this thesis, we are interested in a parallel methodology for the mathematical
analysis of the full stochastic model [3, 4]. This is much less widely appreciated than
that for the corresponding deterministic analysis. Using a variant of the Kramers-
Moyal expansion [3], discussed in this chapter, stochastic differential equations can
be derived from the master equation when the number of molecules is large. As
explained in the introduction, the stochasticity originates from the discreteness of
the molecules. Techniques from the theory of stochastic processes can be used to
attack these equations analytically, just as in the deterministic case.
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2.1 Stochastic Formulation of Chemical Systems

The dynamics of a chemical system is mathematically described by a homogeneous
process, which is defined in the following. In doing this, we start from the concept
of a stochastic variable which is assumed to be known. We then proceed to define
the master equation, starting from associating to every chemical reaction a transition
rate. The reference for the whole section is the book of van Kampen [4].

2.1.1 Stochastic Processes

A stochastic process is a stochastic variable, N , which depends on time t . In the
following, we assume that N takes discrete values and that the time t is a con-
tinuous variable. Each stochastic process can be represented by giving the explicit
expression of the functionN (t) or, as done frequently, by means of the Kolmogorov
hierarchy. This is the set of all the Pr (n1, t1; n2, t2; . . . , nr , tr ), indexed by r ∈ N,
which indicate the probability of measuring the values n1, n2, . . . , nr ofN (t) at the
times t1, t2, . . . , tr . In the following, we call them probability density functions. The
statistical properties of a stochastic process are given by the following averages:

〈N (t1) . . .N (tr )〉 =
∑

n1,n2,...,nr

Pr (n1, t1; . . . ; nr , tr ) n1 · · · nr . (2.1.1)

The sum
∑

n1,n2,...,nr
is over all possible n1, . . . , nr , which are the values assumed

byN . IfN takes continuous values, an analogous definition to Eq. (2.1.1) holds, but
with the sum replaced by an integral.

Note the difference between the stochastic variable N and the value that it
assumes, n. As customarily done in textbooks for physicists, both shall be indi-
cated with n to lighten the notation. The meaning shall be given by the sense of the
discussion.

2.1.2 Markovian Processes

For a given stochastic process, we may define the conditional probabilities:

Pr |s(n1, t1; . . . ; nr , tr |m1, τ1; . . . ; ms , τs) = Pr+s(n1, t1; . . . ; nr , tr ; m1, τ1; . . . ; ms , τs)

Ps(m1, τ1, . . . , ms , τs)
.

They express the probability of measuring the values n1, . . . , nr at the times
t1, · · · , tr ; given that we previously measured the values m1, · · · , ms , at the times
τ1, · · · , τs . Clearly, the times are ordered such that τ1 ≤ τ2 ≤ · · · ≤ t1 ≤ · · · tr .
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A stochastic process is calledMarkovian if the outcomeof any futuremeasurement
is determined only by the most recent measurement. In other words, the following
condition must hold:

Pr |s(n1, t1; . . . ; nr , tr |m1, τ1; . . . ; ms, τs) = Pr |1(n1, t1; . . . ; nr , tr |m1, τ1).
(2.1.2)

This is called the Markov property. The meaning of the Markov property is that the
system is memoryless, in the sense that the history of the dynamics does not affect
its future. For systems of chemical reactions this is not strictly true, as we know that
the laws of physics conserve memory of the past. However, if we suppose that the
system is sufficiently mixed, the effects of the memory are relevant on very short
timescales, so that the Markov property is reasonably satisfied on the timescales of
interest.

Markov processes are fully described by just two elements of the Kolmogorov
hierarchy: P1(n, t) ≡ P(n, t) and P1|1(n, t |n′, t ′) ≡ P(n, t |n′, t ′). In fact, any other
probability density function can be expressed using these two, by making use of the
Markov property and the definition of the conditional probabilities. Let us consider,
for example, P3. We have that:

P3(n1, t1; n2, t2; n3, t3) = P(n3, t3|n2, t2; n1, t1) P2(n2, t2; n1, t1)

= P(n3, t3|n2, t2) P2(n2, t2; n1, t1)

= P(n3, t3|n2, t2) P(n2, t2|n1, t1) P1(n1, t1). (2.1.3)

This argument generalises straightforwardly to any Pn .
The statistical properties of a Markov process are thus given by the mean, 〈n(t)〉,

and the temporal autocorrelation, 〈n(t)n(t0)〉.

2.1.3 Homogeneous Processes

A stochastic process, Markovian or not, is called stationary if every average (2.1.1)
is invariant under time translation. In formulae:

〈n(t1 + t̄) . . . n(tr + t̄)〉 = 〈n(t1) . . . n(tr )〉, ∀t̄, ∀r. (2.1.4)

As a consequence, the mean of a stationary process, 〈n(t)〉 = 〈n〉, does not depend
on time.

Note that if the stochastic process is Markovian and stationary, the conditional
probability P(n, t |n′, t ′) ≡ W�t (n|n′) depends only on the time difference, �t =
t − t ′. Moreover, P(n, t) ≡ Ps(n) is time-independent and it is called the stationary
distribution.

In this thesis, we are interested in a class ofMarkovian stochastic processes with a
further condition slightly weaker than stationarity. Specifically, we wish to describe



22 2 Methods

stationary systems initialised at non-stationary conditions. These processes are called
homogeneous. They are characterised by having each average (2.1.1), except the
first one, invariant under time translation. In such case, the conditional probability
P(n, t |n′, t ′) ≡ W�t (n|n′) still depends on the time difference �t , but P(n, t) now
retains a dependence on time t .

2.1.4 The Master Equation

The dynamics of an homogeneous process is specified once the transition probabili-
ties per unit of time, or transition rates, are given. These indicate the probability per
unit time that the system goes from state n′ to the state n 	= n′.

Suppose n(t) is a homogeneous process, described by the functions P(n, t) and
W�t (n|n′). Then, the transition rate, T, is defined as:

T(n|n′) = lim
�t→0

1

�t
W�t (n|n′), n 	= n′. (2.1.5)

For chemical systems, the explicit expressions for the transition rates can be
obtained directly from the chemical reactions. The problem becomes to calculate the
probability density function of the number ofmolecules, P(n, t), given the knowledge
of the system at the initial time, P(n, 0) = δn,n0 . The P(n, t) satisfies an equation
which governs the dynamics of homogeneous processes, and is called the master
equation:

∂tP(n, t) ≡ ∂

∂t
P(n, t) =

∑

n′ 	=n

T(n|n′)P(n′, t) − T(n′|n)P(n, t). (2.1.6)

Solving the master equation by setting ∂tP = 0, leads to the stationary solution,
Ps(n). It has been shown that for a general initial condition: P(n, t) → Ps(n), as
t → ∞. In other words, homogeneous processes become stationary at long times.

2.1.5 Choosing the Transition Rates

Chemical systems are specified bymeans of their chemical reactions, which describe
the possible interactions among the molecules. For example, let us suppose that
molecules of two chemical species, called respectively X and Y , interact in a cell of
volume V . For illustrative purposes we may assume that the chemical reactions are
given by the following scheme, called the Brusselator [5]:
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∅
a→ X,

X
b→ Y,

2X + Y
c→ 3X,

X
d→ ∅. (2.1.7)

In order, these reactions describe: (1) the creation of a new X molecule, (2) an
X molecule spontaneously transforming into a Y molecule, (3) two X molecules
reacting with a Y , changing it to an X , and (4) X molecules being removed from the
system. The rates at which the reactions occur are denoted by a, b, c and d. Each
of these reactions are assumed to occur independently, and without memory of the
previous states of the system.

Once the reaction scheme has been picked and laid out, the transition rates, Ts,
can be chosen. They effectively specify the model. When writing the transition rates,
we shall only list the variables that are involved in the reaction.

For the Brusselator, the number of X and Y will be denoted by n1 and n2, respec-
tively. The rate of the transition for a given reaction is proportional to the product
of the densities of the reactants that trigger the reaction. For the scheme (2.1.7) they
read:

T1(n1 + 1, n2|n1, n2) = a,

T2(n1 − 1, n2 + 1|n1, n2) = b
n1

V
,

T3(n1 + 1, n2 − 1|n1, n2) = c
n1

2n2

V 3 ,

T4(n1 − 1, n2|n1, n2) = d
n1

V
,

(2.1.8)

where the subscripts on the rates refer to the four reactions (2.1.7).
In some studies, the state of the system is specified using the concentrations instead

of the number of molecules. Referring to our example, we denote the concentration
for the species X and Y respectively by x and y. They indicate the number of mole-
cules of each species divided by the volume V . In this latter case the transition rates
read:

T1(x + 1

V
, y|x, y) = a,

T2(x − 1

V
, y + 1

V
|x, y) = bx,

T3(x + 1

V
, y − 1

V
|x, y) = cx2y,

T4(x − 1

V
, y|x, y) = dx .

(2.1.9)

In the following chapters we will make use of both conventions.
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The transition rates for the Brusselator can be substituted into the master equation
which can then, together with suitable initial and boundary conditions, be used to
solve for the probability density function, P(n1, n2, t). They can also be used as the
basis for setting up a simulation using theGillespie algorithm [6, 7], which provides a
way to generate random numbers distributed as P(n1, n2, t) at time t . This is an exact
method for simulating the stochastic process defined by the transition rates (2.1.9).
Moreover, the Gillespie algorithm is efficient compared to numerical methods in
which the time is sampled. Instead, in the Gillespie algorithm the time at which the
next reaction occurs is generated stochastically, thus avoiding simulating the system
when no reactions are occurring.

2.1.6 Formalism for a General Network

We now generalise the above formulation so that it applies to a general biochemical
network. To do this, suppose that there are L different chemical species in the system.
We will denote them by Zi , i = 1, . . . , L and at a given time there will be ni

molecules of the i-th species, so that the state of the system can be specified by
n = (n1, . . . , nL).We suppose that there are M reactions which interconvert species:

L∑

i=1

riμZi −→
L∑

i=1

piμZi , μ = 1, 2, ...M. (2.1.10)

Here the numbers riμ and piμ (i = 1, . . . , L;μ = 1, . . . , M) describe respectively
the population of the reactants and the products involved in the reaction. The reactions
of the Brusselator, Eqs. (2.1.7), are a simple example of this general set of reactions.

A quantity which is central to the structure of the chemical network is the stoi-
chiometry matrix, νiμ ≡ riμ − piμ, which describes how many molecules of species
Zi are transformed due to the reaction μ. In the notation introduced above for the
master equation, n′ = n − ν, where νμ = (ν1μ, . . . , νLμ) is the stoichiometric
vector corresponding to reaction μ. Therefore the master equation (2.1.6) may be
equivalently written as

∂P(n, t)

∂t
=

M∑

μ=1

[
Tμ(n|n − νμ)P(n − νμ, t) − Tμ(n + νμ|n)P(n, t)

]
. (2.1.11)

Manymodels of interest involve only a handful of different reactions; in this situation,
it is often convenient to rewrite the master equation as a sum over reactions as in
Eq. (2.1.11), rather than over pairs of states n and n′ as in Eq. (2.1.6).
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2.2 Approximation Schemes for the Master Equation

We now approximate the master equation in two different regimes, that will be
analysed for each example studied in this thesis [8]. They are respectively the deter-
ministic limit and the Fokker-Planck approximation. The former is obtained by tak-
ing V → ∞, and leads to a corresponding system of ordinary differential equations.
This describes the system when the number of molecules is macroscopic, so that
the effects of the intrinsic noise are negligible. In the latter, the discrete nature of
the molecules is retained. The approximation yields a Fokker-Planck equation that
is more suitable to analysis than the master equation.

2.2.1 The Deterministic Limit

The deterministic limit for a chemical system can be obtained by applying the law
of mass action to the chemical reactions, as we have seen in the previous chapter.
However, it can also be systematically derived by a limiting procedure starting from
the master equation itself. This is the approach followed in this section.

We begin with multiplying Eq. (2.1.11) by n, and summing over all possible
values of n. After making the change of variable n → n + ν in the first summation,
one finds that

d〈n(t)〉
dt

=
M∑

μ=1

νμ

〈
Tμ(n + νμ|n)

〉
, (2.2.1)

where the angle brackets define the expectation value:

〈· · · 〉 =
∑

n

(· · · )P(n, t) . (2.2.2)

In the limit where both the particle numbers and the volume become large, we
will take the state variables to be the concentration of the constituents ni/V , rather
than their number ni . These will be assumed to have a finite limit as V → ∞.
Specifically, the state of the system will be determined by the new variables yi =
limV →∞ 〈ni 〉

V ,where i = 1, . . . , L . From Eq. (2.2.1) we have that

dyi

dτ
=

M∑

μ=1

νiμ fμ( y), i = 1, . . . , L , (2.2.3)

where τ = t/V and where
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fμ( y) = lim
V →∞

〈
Tμ(n + νμ|n)

〉

= lim
V →∞Tμ

(〈n〉 + νμ|〈n〉)

= lim
V →∞Tμ(V y + νμ|V y) . (2.2.4)

In the above we have used the fact that in the macroscopic limit the probability
distribution functions are Dirac delta functions and so, for instance, 〈nm〉 = 〈n〉m ,
for any integer m.

The equation
dyi

dτ
= Ai ( y), (2.2.5)

where

Ai ( y) ≡
M∑

μ=1

νiμ fμ( y), i = 1, . . . , L , (2.2.6)

is the deterministic limit corresponding to the master equation (2.1.11). It can be
calculated from a knowledge of the stoichiometric matrix νiμ and the transition rates
Tμ(n + νμ|n). For the case of the Brusselator, the transition rates had particularly
simple forms in that they were all functions of the species concentration ni/V . More
generally, theymight separately be functions of ni and V , which become functions of
the species concentration ni/V only when both the particle numbers and the volume
become large, so that in the limit V → ∞ they become functions of the macroscopic
state variable y.

2.2.2 The Kramers-Moyal Expansion

The master equation (2.1.11) can be approximated by a Fokker-Planck equation via
an expansion due to Kramers and Moyal [3]. As pointed out by van Kampen, the
expansion parameter for a chemical system is the inverse of the system size [4]. In
our case, this is represented by the inverse of the cell volume, V −1.

We begin by substituting yi = ni/V directly into the master equation. Since, as
discussed above, our transition rates are all functions of ni/V we simply replace
Tμ(n+νμ|n) by fμ( y) in the notation of Eq. (2.1.11). In addition we will denote the
probability density function P(n, t), where n has been replaced by V y, as P( y, t).
With these changes we may write the master equation (2.1.11) as

∂P( y, t)

∂t
=

M∑

μ=1

[
fμ

(
y − νμ

V

)
P
(

y − νμ

V
, t

)
− fμ( y)P( y, t)

]
. (2.2.7)
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ForV large, the stepsνμ/V are likely to bevery small, suggesting thatwemayexpand
the functions P and f as Taylor series around y. Truncating at order O(V −2), we
arrive at

∂P( y, τ )

∂τ
= −

M∑

μ=1

∑

i

νiμ
∂

∂yi

[
fμ( y)P( y, τ )

]

+
M∑

μ=1

1

2V

∑

i, j

νiμν jμ
∂2

∂yi∂y j

[
fμ( y)P( y, τ )

]
,

where as before we have absorbed a factor of V into the rescaled time variable
τ = t/V . This is a Fokker-Planck equation which can be cast into the standard
form [3]

∂P( y, τ )

∂τ
= −

∑

i

∂

∂yi

[Ai ( y)P( y, τ )
] + 1

2V

∑

i, j

∂2

∂yi∂y j

[Bi j ( y)P( y, τ )
]
,

(2.2.8)
where Ai (y) is defined by Eq. (2.2.6) and where

Bi j ( y) =
M∑

μ=1

νiμνhμ fμ( y), i, j = 1, . . . , L . (2.2.9)

In the Fokker-Planck equation (2.2.8), the continuous nature of the state variables
indicates that the individual nature of the constituents has been lost. However, the
stochasticity due to this discreteness has not: it now manifests itself through the
function Bi j ( y). We can see this is the case through the presence of the factor 1/V .

Onemight ask if this approach is consistentwith the derivation of the deterministic
limit. As V → ∞, the Fokker-Planck equation reduces to the Liouville equation [3]

∂P( y, τ )

∂τ
= −

∑

i

∂

∂yi

[Ai ( y)P( y, τ )
]
. (2.2.10)

One can check by direct substitution that the solution to this equation is P( y, τ ) =
δ( y(τ )− y) where δ is the Dirac delta function and where y(τ ) is the solution of the
deterministic limit (2.2.5).

It is also natural to ask if it is useful to include higher order terms in V −1. There are
soundmathematical reasons for not going to higher order, for instance the probability
density function may become negative [3]. As we will see, for the problems that we
are interested in this thesis (and many others) very good agreement with simulations
can be found by working with the Fokker-Planck equation (2.2.8).
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2.2.3 The Langevin Picture

The Fokker-Planck equation (2.2.8) provides an approximate description of the sys-
tem but, like the master equation (2.1.11) from which it originated, it is an equation
for a probability density function. It is therefore quite distinct from the deterministic
limit (2.2.5), which is an equation for the state variables themselves. There does,
however, exist an equation for the state variables which is completely equivalent to
the Fokker-Planck equation (2.2.8). This is called the Langevin equation and takes
the form [3]

dyi

dτ
= Ai ( y) + 1√

V

∑

j

Gi j ( y)η j (τ ), (2.2.11)

where the η j (τ ) are Gaussian white noises with zero mean and correlator

〈ηi (τ )η j (τ
′)〉 = δi jδ(τ − τ ′), (2.2.12)

and where Gi j ( y) is related to Bi j ( y) by

Bi j ( y) =
∑

k

Gik( y)G jk( y). (2.2.13)

Equation (2.2.11) generalises the ordinary differential equation (2.2.5) with the
addition of noise terms η(τ ) and so is a stochastic differential equation. As we
will discuss below we need to specify that it is to be interpreted in the sense of
Itō [3]. Notice the direct relationship between this stochastic differential equation
and the macroscopic ordinary differential equation: sending V → ∞ in Eq. (2.2.11)
immediately yields equation (2.2.5).

2.2.4 On the Noise Matrix B

It is important to point out that the matrices Gi j ( y), which define the behaviour of
the noise, cannot be found from the deterministic equations, and a knowledge of the
microscopic stochastic dynamics is essential if one is to understand the effects of
noise. It is not permissible in this context to simply addnoise terms to thedeterministic
equations, as some authors have done in the past. The only situation in which it is
permissible to do this is if the noise is external to the system, that is, it does not
originate from the discreteness of the individuals.

We end this sectionwith two general comments on theLangevin equation (2.2.11).
The first is that while there are no strong restrictions on the form ofAi ( y), there are
on Bi j ( y). From Eq. (2.2.9) we see that the matrix B is symmetric, but also that for
any non-zero vector w,
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∑

i, j

wiBi jw j =
M∑

μ=1

(w · ν)2 fμ( y) ≥ 0, (2.2.14)

since fμ( y) ≥ 0. Thus B is positive semi-definite. It follows that B = G GT for
some non-singular matrix G, where T denotes transpose. One way of constructing
such a matrix is to note that since B is symmetric, it can be diagonalised by an
orthogonal transformation defined through a matrixOi j [9]. Then since B is positive
semi-definite, its eigenvalues are non-negative, and so [10]

B = O�OT = G GT, where G = O�1/2, (2.2.15)

and where � and �1/2 are the diagonal matrices with respectively the eigenvalues
and square root of the eigenvalues of B as entries. We can take the positive roots
of the eigenvalues without loss of generality, since the sign can always be absorbed
in the η j factor in Eq. (2.2.11) (its distribution is Gaussian and so invariant under
sign changes). It should also be pointed out that we can go further and make an
orthogonal transformation, S, on the noise, ζ j = ∑

i Si jη j , and leave Eq. (2.2.12),
and so its distribution, unchanged. The transformation matrix S can then be used to
define a new matrix G′

i j = ∑
k GikS jk , so that the form of Eq. (2.2.11) is unchanged.

So while the procedure outlined above gives us a way of constructing Gi j ( y) from
Bi j ( y), it is not unique.

The second comment relates to the statement made earlier, that Eq. (2.2.11) is to
be interpreted in the Itō sense. The singular nature of white noise means that in some
cases stochastic differential equations are not uniquely defined by simply writing
down the equation, but have to be supplemented with the additional information on
how the singular nature of the process is to be interpreted [3]. This happens when Gi j

depends on the state of the system y; the noise is then said to be multiplicative. As we
will see in the next chapter, this subtlety can be the key to understand some interesting
behaviours. It is instead not relevant for the models investigated in Chaps. 4 and 5,
since there the Gi j is evaluated at a fixed point of the dynamics.

To conclude, we notice that there exist other techniques similar to the Kramer-
Moyal expansion which yield approximations for the master equation. A notable
example is the van Kampen expansion [4], that will be used throughout Chaps. 4 and
5 in the study of pattern formation. The vanKampen expansion operates a linear noise
approximation, so that the resulting Langevin equation has a linear deterministic part
and additive noise. This approximation can also be arrived at via the Kramer-Moyal
expansion: first, a solution of the deterministic system, Eqs. (2.2.5), is to be chosen;
Eq. (2.2.11) is then linearised around the deterministic solution leading to an linear
Langevin equation. In Chaps. 4 and 5 we have chosen to adopt the van Kampen
expansion instead of the Kramers-Moyal expansion, to standardise the exposition to
themajority of the literature about stochastic pattern formation. However, themodels
studied in these chapters can be equivalently investigated using the techniquewe have
described here.

http://dx.doi.org/10.1007/978-3-319-07728-4_4
http://dx.doi.org/10.1007/978-3-319-07728-4_5
http://dx.doi.org/10.1007/978-3-319-07728-4_4
http://dx.doi.org/10.1007/978-3-319-07728-4_5
http://dx.doi.org/10.1007/978-3-319-07728-4_4
http://dx.doi.org/10.1007/978-3-319-07728-4_5
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