
Chapter 2
Monolayer Graphene on a hBN Underlay

2.1 Introduction

It has been demonstrated that the electronic quality of graphene-based devices can
be dramatically improved by placing graphene on an atomically flat crystal sur-
face, such as hexagonal boron nitride (hBN) [1–7]. At the same time, graphene’s
electronic spectrum also becomes modified, acquiring a complex, energy-dependent
form caused by incommensurability between the graphene and substrate crystal lat-
tices [8–11]. For graphene placed on hBN, the moire pattern [2, 4, 8–11] creates a
periodic perturbation, usually referred to as a superlattice, which acts on graphene’s
charge carriers and leads to multiple minibands [12] and the generation of secondary
Dirac-like spectra. The resulting new Dirac fermions present yet another case where
graphene allows mimicking of QED phenomena under conditions that cannot be
achieved in particle physics experiments. In contrast to relativistic particles in free
space, the properties of secondary Dirac fermions in graphene can be affected by
a periodic sublattice symmetry breaking and modulation of carbon-carbon hopping
amplitudes, in addition to a simple potential modulation. The combination of differ-
ent features in the modulation results in a multiplicity of possible outcomes for the
moiré miniband spectrum in graphene which we systematically investigate in this
chapter.

2.2 Superlattice Hamiltonian

To describe the effect of a substrate on electrons in graphene at a distance, d,
much larger than graphene’s lattice constant, a, we use the earlier observation
[8–10, 13–16] that, at d � a, the lateral variation of the wavefunctions of the
2pz carbon orbitals is smooth on the scale of a. This is manifested in the com-
parable sizes of the skew and vertical hopping in graphite and permits an elegant
continuum-model description [13–16] of the interlayer coupling in twisted bilayers
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and the resulting band structure. A similar idea applied to graphene on a hBN sub-
strate [8–10] suggests that a substrate perturbation for Dirac electrons in graphene
can be described in terms of simple harmonic functions corresponding to the six
smallest reciprocal lattice vectors of the moiré superlattice.

Below, we shall use a similar approach to analyse the generic properties of moiré
minibands for electrons in graphene subjected to a substrate with a hexagonal Bravais
lattice with a slightly different lattice constant of (1 + δ)a, |δ| � 1, compared to
that of a for graphene, and a small misalignment angle, θ � 1. The moiré pattern
harmonics are described by vectors

bm=0,...5= R̂ 2πm
6

b0, b0=
[
1−(1+δ)−1 R̂θ

](
0,

4π√
3a

)
, (2.1)

with length |b0|≡b≈ 4π√
3a

√
δ2 + θ2, which can be obtained from each other by the

anticlockwise rotation, R̂2πm/6. For a substrate with a simple hexagonal lattice or a
honeycomb lattice with two identical atoms, the perturbation created for graphene
electrons is inversion-symmetric. For a honeycomb substrate where one of the atoms
would affect graphene electrons stronger than the other (e.g. such as hBN, for which
the occupancy and size of the 2pz orbitals are different) the moiré potential can be
modelled as a combination of a dominant inversion-symmetric part with the addition
of a small inversion-asymmetric perturbation,

Ĥ = v p · σ + u0vb f1(r) + u3vb f2(r)σ3τ3 + u1v
[
lz ×∇ f2(r)

]·στ3 + u2v∇ f2(r)·στ3

+ ũ0vb f2(r) + ũ3vb f1(r)σ3τ3 + ũ1v
[
lz ×∇ f1(r)

]·στ3 + ũ2v∇ f1(r)·στ3.

(2.2)

The Hamiltonian, Ĥ , is written in terms of direct products σiτ j , of the Pauli
matrices described in Sect. 1.5.2. The first term in Ĥ is the Dirac part, with
p = −i∇ +e A describing the momentum relative to the centre of the correspond-
ing valley, with ∇ × A = B. The rest of the first line in Eq. (2.2) describes the
inversion-symmetric part of the moiré perturbation, whereas the second line takes
into account its inversion-asymmetric part. In the first line, the first term, with
f1(r) = ∑

m=0...5 ei bm ·r , describes a simple potential modulation. The second term,
with f2(r) = i

∑
m=0...5(−1)mei bm ·r , accounts for the A–B sublattice asymmetry,

locally imposed by the substrate. The third term, with unit vector l z , describes the
influence of the substrate on the A–B hopping: consequently [17–19], this term can
be associatedwith a pseudo-magnetic field, eBeff = ±u1b2 f2(r), which has opposite
signs in valleys K±. Each of the coefficients |ui | � 1 in Eq. (2.2) is a dimension-
less phenomenological parameter with the energy scale set by vb ≈ 2π

√
δ2 + θ2γ0,

where γ0 ≈ 3 eV is the nearest neighbour hopping integral in the Slonczewski-Weiss
tight binding model [20]. Concerning the inversion-asymmetric part, the second line
in Eq. (2.2), we assume that |ũi | � |ui |. Note that the last term in each line can be
gauged away using ψ → e−iτ3(u2 f2+ũ2 f1)ψ.

http://dx.doi.org/10.1007/978-3-319-07722-2_1
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Table 2.1 The inversion-symmetric parameters, vbui , for various models of the moiré superlattice

Model vbu0 vbu1 vbu2 vbu3

[meV] [meV] [meV] [meV]

Potential modulation [8] 60 0 0 0

2D charge modulation [9] − V0
2 0 0

√
3V0
2

One-site version of G-hBN hopping [10] (Sect. 2.6.2) 1.6 −3.2δ√
δ2+θ2

3.2θ√
δ2+θ2

−2.8

Point charge lattice (Sect. 2.6.1), 0.6≤ ṽ≤3.4 ṽ
2

−ṽδ√
δ2+θ2

ṽθ√
δ2+θ2

−
√
3ṽ
2

In the 2D charge modulation model [9], V0 is a phenomenological parameter. The G-hBN hop-
ping model in Ref. [10] used the hopping parameter from twisted bilayer graphene. Estimates in
Sects. 2.6.1 and 2.6.2 show that the sets of parameters using a model of point charges attributed to
nitrogen sites and for the G-hBN hopping model are very similar

Fig. 2.1 a The hexagonal Brillouin zone for the moiré superlattice. b Three volumes in the space
of the moiré superlattice parameters where the edge of the first miniband, in graphene’s valence
band, contains an isolated sDP at the κ-point (red) or the −κ-point (blue) or three isolated sDPs
at the sBZ edge (green). Parameters for which the ±κ-point is triple degenerate are shown by the
red and blue surfaces. The black dots represent sets of perturbation parameters for which miniband
spectra are shown in Fig. 2.2. c The same for the conduction band in graphene

Hamiltonian, Ĥ , may be used to parametrise any microscopic model compatible
with the symmetries of the system (see Sect. 2.5) and the dominance of the simplest
moiré harmonics, ei bm ·r , in the superlattice perturbation. The values that parameters
ui take are listed in Table2.1 for several models of graphene on an hBN substrate,
both taken from the recent literature [8–10] and analysed in Sects. 2.6.1 and 2.6.2,
including a simple model in which the hBN substrate is treated as a lattice of pos-
itively charged nitrogen nuclei with a compensating homogeneous background of
electron 2pz orbitals. The examples of model-dependent values of parameters ui ,
listed in Table2.1, indicate that the combination of several factors can strongly shift
the resulting moiré perturbation across the parameter space in Fig. 2.1. That is why,
in this chapter, we analyse the generic features of the miniband spectra generated by
the moiré superlattice, rather than attempt to make a brave prediction about its exact
form for a particular substrate.
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Fig. 2.2 Numerically calculatedmoiréminiband (left), the corresponding density of states (centre),
and Landau level spectrum (right) for electrons in the vicinity of graphene’s K point. Here we use
the rhombic sBZ, so that the c3v symmetry of the moiré superlattice spectrum is not obviously seen
in the images

In the absence of a magnetic field, the Hamiltonian Eq. (2.2) obeys time-reversal
symmetry, which follows from both σi and τi changing sign upon the transformation
t → −t (Sect. 1.5.4). As a result, εK++ p = εK−− p and we limit the discussion
of minibands to the K+ valley. Subject to this limitation, the bandstructure for the
inversion-symmetric superlattice perturbation obeys the c3v symmetry. Moreover,
using the commutation properties of σi one can establish that

εu0,u1,u3
K++ p = −ε−u0,−u1,u3

K+− p = −ε−u0,u1,−u3
K++ p = εu0,−u1,−u3

K+− p . (2.3)

http://dx.doi.org/10.1007/978-3-319-07722-2_1
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2.3 Generic Miniband Spectra of Graphene-hBN
Heterostructures

To calculate theminiband spectrum for Ĥ in Eq. (2.2)we perform zone folding (in the
graphene K+ valley) bringing states with momenta related by the reciprocal lattice
vectorsn1b1 + n2b2 of themoiré pattern to the samepoint of the superlatticeBrillouin
zone (sBZ) in Fig. 2.1a. Then, we calculate the matrix elements of Ĥ between those
states and diagonalise the corresponding Heisenberg matrix numerically exploring
the parametric space (u0, u1, u3) of the dominant inversion-symmetric part of the
moiré perturbation shown in Fig. 2.1b, c. The size of thematrix is chosen to guarantee
the convergence of the calculated energies for the three lowest minibands in both
the conduction band (s = +1) and the valence band (s = −1). Below, we discuss the
generic features of the moiré miniband spectra for the characteristic points in the
parametric space (u0, u1, u3), marked using black dots in Fig. 2.1b, c, using both
the numerically calculated dispersion surfaces in Fig. 2.2 and analytical perturbation
theory analysis.

For the zero-energy Dirac point in graphene, there are only the original p = 0
states in each valley that appear at ε = 0 upon zone folding. For all three characteristic
spectra shown in Fig. 2.2, for the inversion-symmetricmoiré perturbation, the gapless
Dirac spectrum persists at low energies near the conduction-valence band edge with
almost unchanged Dirac velocity,

[
1 + O(u2)

]
v. The inversion-asymmetric terms

ũi are able [10] to open a minigap at the Dirac point,

�0 = 24vb|u1ũ0 + u0ũ1|. (2.4)

For the point μ = b0/2 on the edge of the first sBZ, zone folding brings together
two degenerate plane wave states, |μ + q〉 and |μ + b3 + q〉. The splitting of these
degenerate states by the moiré potential in Eq. (2.2) can be studied using degenerate
perturbation theory. The corresponding 2× 2 matrix, expanded in small deviation q
of the electron momentum from each of the three sBZ μ-points1 has the form

Ĥμ+q = vb

(
Eμ + s

qy
b H12

H∗
12 Eμ − s

qy
b

)
,

Eμ ≈ s

2
+ sq2

x

b2
,

H12 ≈ (su1 − u3) − i(sũ1 − ũ3) + 2
qx

b
(u0 + i ũ0). (2.5)

For the inversion-symmetric perturbation, the dispersion relation resulting from
Eq. (2.5) contains an anisotropic secondary Dirac point (sDP) [8, 21, 22] with Dirac

1 The Hamiltonian in the vicinity of other two inequivalent points on the sBZ edge, μ′ = R̂2π/3μ,
μ′′ = R̂4π/3μ, can be obtained using Hμ+q = Hμ′+R̂2π/3q = Hμ′′+R̂4π/3q .
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velocity component≈2u0v in the direction of the sBZ edge and≈v in the perpendic-
ular direction. This feature is clearly seen at the μ-point of the first moiré miniband
in the valence band, in the top row of Fig. 2.2. Note that the electron spectrum is
not symmetric between the valence and conduction bands and that the sDPs at the
μ-point in the conduction band are obscured by an overlapping spectral branch.

Moving in parameter space, e.g., along the line shown in Fig. 2.1b, the positions
of the three anisotropic sDPs shift along the sBZ edge towards the sBZ corners:
either κ = (b4 + b5)/3, or −κ, as shown by arrowed lines in Fig. 2.1a. In general, a
spectrum with three isolated sDPs at the sBZ edge is typical for the green volume in
the parameter space in Fig. 2.1b for the valence band, or Fig. 2.1c for the conduction
band. In contrast, for (u0, u1, u3) in the clear part of the parameter space, sDPs on
the edge of the first sBZ are overshadowed by an overlapping spectral branch, as is
the case on the conduction band side for all three cases shown in Fig. 2.2.

For the points in Fig. 2.1b, c on the red and blue surfaces, the three sDPs reach the
κ-point, forming a triple degenerate band crossing, as in the valence band spectrum
shown in the middle row of Fig. 2.2, which can be traced using the perturbation
theory analysis of the band crossing at κ discussed below.

The third line in Fig. 2.2 shows the third type of spectrum of moiré minibands,
characteristic for the red and blue volumes of the parameter space in Fig. 2.1. The
characteristic feature of such spectra consist of a single isolated sDP, at the±κ-point,
in the valence band (Fig. 2.1b) or the conduction band (Fig. 2.1c).

For the κ and −κ-points, zone folding brings together three degenerate plane
wave states, |ζ(κ+ q)〉, |ζ(κ+ b1 + q)〉, and |ζ(κ+ b2 + q)〉 (where ζ = ±), whose
splitting is determined by

Ĥζ(κ+q) = vb

⎛
⎜⎜⎝

s√
3
+ sqx

b wζ w∗
ζ

w∗
ζ

s√
3
−s

qx −√
3qy

2b −wζ

wζ −w∗
ζ

s√
3
−s

qx +√
3qy

2b

⎞
⎟⎟⎠,

wζ ≈ 1

2

[(
u0−2sζu1+

√
3ζu3

)
+iζ

(
ũ0+2sζũ1−

√
3ζũ3

)]
. (2.6)

For wζ = 0, the inversion-symmetric terms in Ĥζ(κ+q) partially lift the ζκ-
point degeneracy into a singlet with energy ( s√

3
− 2wζ)vb and a doublet with ener-

gies ( s√
3

+ wζ)vb, so that a distinctive sDP [22] characterised by Dirac velocity

vκ = [1 + O(u)] v
2 [9] is always present at ±κ somewhere in the spectrum.2 This

behaviour reflects the generic properties of the symmetry group of wave vector κ,
detailed in Sect. 2.5, which has the two-dimensional irreducible representation E
(corresponding to the sDP) and one-dimensional irreducible representations A1 and
A2. Note that each isolated sDP is surrounded by Van Hove singularities in the
density of states corresponding to saddle points in the lowest energy minibands. The
weaker inversion-asymmetric terms, |ũi | � |ui |, in the second line of Eq. (2.2), open

2 Note that the spectra derived from Ĥζ(κ+q) obey the three-fold rotational symmetry.
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a minigap in both types of sDP discussed above. The perturbation theory leading to
Eq. (2.5) and Eq. (2.6) has been performed to greater accuracy, and the sDP positions
have been tracked in greater detail, in Appendix A.

The appearance of sDPs at the edge of the first miniband results in a peculiar
spectrum of electronic Landau levels, as shown on the r.h.s of Fig. 2.2. Each data
point in these spectra represents one of the Hofstadter minibands [23] (with an
indistinguishably small width) calculated for rational values of magnetic flux, p

q �0
permoiré supercell following amethod in Ref. [15]. Using these spectra one can trace
a clearly separated “zero-energy” Landau level related to the isolated κ-point sDP
in the valence band in the bottom row of Fig. 2.2, in addition to the true zero-energy
Landau level at the conduction-valence band edge. The three isolated sDPs on the
sBZ edge in the valence band (top row of Fig. 2.2) also result in a “zero-energy”
Landau level, though not as clearly separated and split by the magnetic breakdown
occurring at � ≈ 0.1�0.

2.4 Effect of the Miniband Spectra on the Hall Coefficient

The inversion-symmetric moiré perturbation will result in either the first sBZ sepa-
rated from the rest of the spectrum by one or three sDPs, or, for weak perturbations,
will result in overlapping first and higher minibands. The experimental consequences
of this consists in a non-monotonic variation of the Hall coefficient upon doping the
graphene flake with electrons or holes. For example, for those miniband spectra in
Fig. 2.2, where there are isolated sDPs in the valence band, the Hall coefficient would
pass through a zero value and change sign at two characteristic densities, n1 and n2.
At the density n1, which corresponds to the valence band filled with holes up to the
Van Hove singularity, the Hall coefficient will change sign from positive to negative.
At the higher density, n2, which corresponds to a completely filled first miniband, it
would repeat the behaviour at the neutrality point changing sign from negative to pos-
itive. Such behaviour is expected to take place for the entire regions of the parametric
space painted red, blue or green in Fig. 2.1. The relation between these two carrier
densities for various types and strengths of moiré perturbations is shown in Fig. 2.3.
This behaviour was observed in experimental results discussed in Chap. 5. For the
clear part of the parametric space for which we find substantial overlap between
many moiré minibands such alternations in the sign of the Hall coefficient would be
obscured by the competing contributions from the “electron-like” and “hole-like”
branches in the spectrum.

2.5 Symmetry of the Moiré Superlattice

Wenowdiscuss the consequences of themoiré superlattice symmetry, both forHamil-
tonian (2.2) and the sDP. The point group symmetry of graphene on an incommen-
surate substrate is given by the intersection of the point group of graphene, c6v , with

http://dx.doi.org/10.1007/978-3-319-07722-2_5
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Fig. 2.3 The relation between the two densities at which the Hall coefficient in graphene reverses
sign upon its doping with holes. The results are shown for several realisations of moiré superlattice
in the parameter range corresponding to either three isolated sDPs on the sBZ edge (squares) or
one isolated sDP at the sBZ corner (other symbols). The thresholds for isolation are indicated on
the x-axis

that of its substrate. For a perfectly aligned (θ = 0) inversion-symmetric substrate,
with either a single (dominant) atom per unit cell or two identical atoms arranged in
a honeycomb lattice, the point group symmetries of the substrate and graphene coin-
cide. The corresponding Hamiltonian, Eq. (2.2), with moiré harmonics orientated as
per Fig. 2.1a, must necessarily commute with the operators corresponding to the ele-
ments of c6v: ĉ6 , ŝx and ŝy which describe 2π/6 rotations and reflections that either
exchange or preserve the graphene sublattices. The operators for ĉ6 and ŝy involve
the valley exchanging matrices τ1,2 with the result that the symmetry of the Hamil-
tonian restricted to the K valley, as well as the K valley bandstructure, is reduced to
c3v = {id, ĉ3, ŝx }, where ĉ3 = ĉ26 has no intervalley structure. Each of the ũi terms
are odd under ĉ6, while the u2 and ũ2 terms are odd under ŝy , so that these terms
are forbidden for the perfectly aligned inversion-symmetric system described above.
The point group of substrates with the honeycomb lattice and two non-equivalent
atoms per unit cell, such as hBN, only possesses the ĉ3 and ŝy symmetries which
allow inversion-asymmetric parameters ũi=0,1,3 to take a finite value.

For a finite misalignment angle, the reflection symmetries of graphene and the
substrate do not coincide, and the moiré harmonics become misaligned, by an angle
φ, from those in Fig. 2.1a. However, the moiré harmonics may be brought back into

alignment using the transformation Ĥ(r) → eiσ3
φ
2 Ĥ(R̂φr)e−iσ3

φ
2 , and the u2 and ũ2

terms, which are no longer forbidden, may be gauged away. This procedure restores
the reflection symmetries to the Hamiltonian, despite their absence in the geometry
of the moiré pattern for finite misalignment angle.

The symmetries described above can be used to gain a deeper understanding
of the sDPs discussed in the main text. The K valley plane wave states from the
three equivalent sBZ corners, ζκn=0,1,2 = ζ R̂2πn/3κ, which form the basis for Ĥζκ,
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Eq. (2.6), transform into each other on application of symmetry operators of c3v . In
the same basis, the symmetry operators acting on Ĥζκ take the form of matrices

�ζκ(ĉ3) =
⎛
⎝

0 0 −1
−1 0 0
0 1 0

⎞
⎠, �ζκ(ŝx ) = sζ

⎛
⎝
1 0 0
0 0 1
0 1 0

⎞
⎠ . (2.7)

For the inversion-symmetric superlattice perturbation, the singlet eigenstate of Ĥζκ

is given by vs = 1√
3

(1,−1,−1). The action of matrices from Eq. (2.7) on this state
show that it transforms according to the one-dimensional irreducible representations
of c3v: either A1 for sζ = 1 or A2 for sζ = −1, indicating evenness or oddness under

ŝx respectively. Similarly, the doublet states of Ĥζκ, v+ = 1√
3

(√
2, 1√

2
, 1√

2

)
and

v− = 1√
2

(0, 1,−1) transform as the two-dimensional irreducible representation, E ,
and their degeneracy is therefore protected by the c3v symmetry.

The three anisotropic sDPs can be understood using the compatibility relations in
the group appropriate for the sBZ edge, ch = {id, ŝx }. This group only supports one-
dimensional irreducible representations A1 and A2 with the doublet states reducing
as E = A1 + A2. For a given band, s = ±1, the split bands at κ and −κ belong to
different irreducible representations of ch and therefore cannot be joined along the
sBZ edge. Instead, if both of these bands are closer to zero energy than the doublet
states, they must each be joined to one of the doublet bands at the opposite sBZ
corner. Thus, along the sBZ edge, a crossing of the split bands is required, resulting
in the sDPs illustrated in the valence band for the top row of Fig. 2.2.

2.6 Microscopic Models

2.6.1 Point Charge Model

The point charge model analysed below mimics the effect of the quadrupole electric
moment of the atoms in the top layer of the substrate. In application to the graphene-
hBN system, we neglect the potentials of the quadrupole moments of the boron atom,
which have only σ-orbitals occupied by electrons, and replace nitrogen sites by a
point core charge +2|e| compensated by the spread out cloud of the π-electrons,
which we replace by a homogeneous background charge density, giving −2|e| per
hexagonal unit cell of the substrate. This model gives an example of an inversion-
symmetric moiré superlattice. The matrix elements of the resulting perturbation,
taken between sublattice Bloch states i and j (i, j = A or B), acting on the low-
energy Dirac spinors of the graphene K+ valley, are given by the long wavelength
components of
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δHi j = −2e2

4πε0

∑
RN

∫
dz

L2�∗
K+i (r, z)�K+ j (r, z)√

(r − RN )2 + (z − d)2

= −2e2

4πε0a/
√
3

∑
g,g′,gN

I|K++g|,|K++g′|,|gN |ei(g′−g+gN )·rei(g·τ i −g′·τ j ). (2.8)

In Eq. (2.8) RN are positions of nitrogen sites and L2 is the total area of the graphene
sheet; �K+,i (r, z) are Bloch wavefunctions of graphene π-electrons exactly at the
K+ point. Then the Fourier transform has been used to write δHi j in terms of a sum
over substrate reciprocal lattice vectors, gN , and graphene reciprocal lattice vectors,
g and g′. Nearest neighbour vectors, τ i=A/B = ±(0, a/

√
3) are the same as in

Fig. 1.1. The homogeneous background charge has not been included in Eq. (2.8)
since its only role is to exclude gN = 0 from the sum. The long wavelength terms in
the first exponential of the second line of Eq. (2.8) determine bm = −(g′ −g +gN ).
The dimensionless integral,

IQ,Q′,gN = 32a3
0

27(a/
√
3)3

∫
dqzdq ′

z
ψ∗(Q, qz)ei(qz−q ′

z)·dψ(Q′, q ′
z)

g2N + (qz − q ′
z)
2

,

is written in terms of the Fourier transform of the hydrogen-like graphene Pz(r, z)
orbitals with an effective Bohr radius a0,

ψ(Q, qz) = π

a3/2
0

1

2π

∫
d rdze−i( Q·r+qz z)Pz(r, z)

= −64ia0qz

(1 + 4a2
0(Q2 + q2

z ))3
.

The integral, IQ,Q′,gN , rapidly decays as a function of the magnitude of all its
arguments so that we limit the sum in Eq. (2.8) to only several terms such that
|K+ + g| = |K+ + g′| = |K+|, with I = IK+,K+,g0 where g0 = 4π√

3a(1+δ)
.

The carbon 2pz orbitals may have a different effective Bohr radius compared to
hydrogen.The range of values quoted for ṽ = 2e2

4πε0(a/
√
3)

I in Table 2.1 corresponds

to the interval 0.27Å ≤ a0 ≤ 0.53Å, indicated by the black double-arrow in Fig. 2.4,
where the interlayer separation 3.22Å ≤ d ≤ 3.5Å is taken from Ref. [24]. The
resulting superlattice perturbation and dispersion surfaces are shown graphically in
Fig. 2.5.

Both the dominance of the simplest moiré harmonics, and the finite values for
the off-diagonal terms u1 and u2, stem from the three-dimensional treatment of
the substrate potential. The potential is strongest near the substrate, and therefore a
greater proportion of the integral IQ,Q′,gN comes from the region near the substrate,
where the graphene 2pz orbitals are broad and therefore have both rapidly decaying
Fourier components and significant overlap with their neighbours. This contrasts

http://dx.doi.org/10.1007/978-3-319-07722-2_1
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Fig. 2.4 Solid lines show the dimensionless integral I , as a function of the effective Bohr radius of
the graphene 2pz orbitals, for various choices of interlayer separationd. To demonstrate convergence
of the sum in Eq. (2.8), dashed lines show I2K+,K+,g0 for the same values of d

Fig. 2.5 a The simple potential modulation, u0 f1(r), the local sublattice asymmetry, u3 f2(r), and
pseudo-magnetic field, eb−2Beff = u1 f2(r) for the choice of parameters corresponding to the point
charge model or the hopping model scaled so that |u0| + |u1| + |u3| = 0.15. b The corresponding
miniband spectra

with the model employed in Ref. [9] which is based on a two-dimensional substrate
potential resulting in u1 = u2 = 0.
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2.6.2 Graphene-hBN Hopping Model

In Ref. [10], Kindermann et al. modelled a hBN substrate as a lattice of 2pz orbitals
onto which the graphene electrons can hop. This treatment, extended from a model
of twisted bilayer graphene [25], assumed equal values for the hopping integral to the
boron and nitrogen sites, with the difference between the two sublattices arising from
their different on-site energies. Here we consider an inversion-symmetric version of
the hopping model of Ref. [10], assuming that coupling between graphene and the
hBN layer is dominated by the hopping to only one of the two sublattices (e.g. boron).
Using k · p theory (Sect. 1.4), this coupling can be written in the basis of graphene
K+ valley Bloch states, (�K+,A,�K+,B), as [10],

δĤ = Ĥint
1

ε − V − m
Ĥ†
int,

Ĥint = γ

3

∑
n=0,1,2

e
−i

(
R̂ 2πn

3
κ

)
·r

(
ei 2πn

3

e−i 2πn
3

)
. (2.9)

Neglecting a non-oscillatory term, which corresponds to a trivial constant energy
shift, Eq. (2.9) as applied to graphene electrons in valley K+, leads to the moiré
Hamiltonian, Eq. (2.2), with

{ui=0,...3} = γ2/(vb)

9(m + V )

{
1

2
,

−δ√
δ2+θ2

,
θ√

δ2+θ2
,−

√
3

2

}
.

The parameters of the superlattice perturbation given in Table 2.1 of the main text,
correspond toγ = 0.3 eV,V = 0.8 eVandm = 2.3 eV, in accordancewithRef. [10].
For the perfectly aligned system, we always find u2 = 0, which is a consequence of
the reflection symmetries present in the perfectly aligned substrate-graphene system
(see Sect. 2.5).

2.6.3 Inversion Asymmetric Microscopic Models

To generate the inversion-asymmetric perturbation terms in the microscopic models
discussed above, we now account for both the nitrogen and the boron sublattice of
the hBN underlay. This is achieved by taking the moiré perturbation,

δĤ ′(r) = δĤ(r) + vB δĤ

(
r − 4π

3b2
b0

)
. (2.10)

http://dx.doi.org/10.1007/978-3-319-07722-2_1
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Here δĤ(r) is the Hamiltonian (2.8), and vB � 1 controls the strength of the
perturbation due to the boron sites with respect to that of the nitrogen sites. The
choice of origin used for δĤ ′ in Eq. (2.10) corresponds to the location in the moiré
unit cell with the nitrogen site directly below the centre of the graphene hexagon;
whereas the coordinate shift − 4π

3b2
b0 in the last terms of Eq. (2.10) corresponds to

the position with the boron site directly under the centre of the graphene hexagon.
This coordinate change in the last term affects a rotation in the parameter space3 for
vB H(r − 4π

3b2
b0)

(
vBui

vBũi

)
→ R̂α2π/3

(
vBui

vBũi

)
, α =

{−1 for i = 0
1 otherwise

. (2.11)

Hence the parameters are given by

{ui=0,...3} = v+
{
1

2
,

−δ√
δ2+θ2

,
θ√

δ2+θ2
,−

√
3

2

}
,

{ũi=0,...3} = v−
{

−1

2
,

−δ√
δ2+θ2

,
θ√

δ2+θ2
,−

√
3

2

}
,

(2.12)

where v+ = ṽ
(
1 − vB

2

)
and v− = ṽ

√
3vB
2 . It is interesting to note that, for this choice

of parameters, the zero-energy Dirac point remains un-gapped, due to cancellation
of the two terms in Eq. (2.4) that is peculiar to this choice of parameters. However,
gaps in the sDPs are opened as expected.

2.7 Conclusion

Using a general symmetry-based approach, we have provide a classification of
generic miniband structures for electrons in graphene placed on substrates with the
hexagonal Bravais symmetry. In particular, we identify conditions at which the first
moiré miniband is separated from the rest of the spectrum by either one, or a group
of three isolated mini Dirac points, and is not obscured by dispersion surfaces com-
ing from other minibands. In such cases the Hall coefficient exhibits two distinct
alternations of its sign as a function of charge carrier density. Other experimental
consequences of the miniband spectra will be discussed in the next three chapters.

3 In Eqs. (2.5) and (2.6) this transformation is equivalent to a gauge transform and therefore leaves
the bandstructure unaltered.
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