
Chapter 2
Theoretical Background

A high intensity laser pulse (>1018 W/cm2) incident on a nanometer thin foil rapidly
ionizes the atoms of the irradiated material and thus interacts with a solid density
plasma. The ionization process sets in at comparably low intensities (∼1013 W/cm2)
at the foot of the pulse, and in strong fields, is well described through tunnel or barrier
suppression ionization, covered by many textbooks [1]. This chapter introduces the
theoretical framework needed to understand the electron dynamics in laser plasma
interactions, reviews the concept of electron mirror generation from nanoscale foils
and discusses the reflection properties of relativistic electron mirror structures.

2.1 Fundamentals of Light

Electromagnetic radiation is described by Maxwell’s equations [2]. The electric and
magnetic fields E, B can be directly found from them. Introducing the potentials A,
φ such that

E = −∇φ − ∂
∂t A

B = ∇ × A
(2.1)

and using the Lorenz Gauge ∇ A + c−2∂φ/∂t = 0, Maxwell’s equations reduce to
the symmetric wave equations

�φ − 1
c2

∂2

∂t2
φ = −ρ/ε0

�A − 1
c2

∂2

∂t2
A = −μ0 j

(2.2)

where c denotes the speed of light, ε0 the electric permittivity and μ0 magnetic
permeability. In vacuum, the electric charge and current density vanish ( j = ρ = 0)
and hence, a laser pulse is simply described by

A(r, t) = AA(r, t) sin(kL · r − ωL t + φ) (2.3)
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with the dispersion relation ωL = ckL and phase φ. Thus, the electric and magnetic
fields are given by

E(r, t) = EA(r, t) cos(kL · r − ωL t + φ)

B(r, t) = BA(r, t) cos(kL · r − ωL t + φ)
(2.4)

with envelope functions EA = cBA = ωL AA and EA ⊥ BA, EA ⊥ kL , BA ⊥ kL .
For a plane wave, E A(r, t) = E0, whereas for a gaussian pulse shape, the field
distribution in the focal point is E A(r, t) = E0 e−t2/τ 2L e−(x2+y2)/w2

0 . Assuming a
gaussian profile (in space and time), the peak intensity of the pulse can be determined
from the laser pulse energy E , the FWHM pulse duration tFWHM and the FWHM
focal spot size dFWHM using1

I0 = 0.82 · E

tFWHM d2
FWHM

(2.5)

Theoretically, the intensity of the pulse can be derived from the cycle-averaged
Poynting vector, thus I0 = 〈S〉T = ε0c2〈|E × B|〉T = cε0E2

0/2. Now, if we use the
normalized vector potential a = e A/mec to express the electric field of the laser
E0 = mecωL/e · a0 we find for the intensity

I0 = 1.37 · 1018 W/cm2

λ2[µm] a2
0 (2.6)

Using that expression in combination with Eq.2.5, we can deduce the a0 parameter
frequently used in theory and simulation. It is worth noting that the fields achieved
with the laser pulse are simply

EL = 3.2 · a0
λL [µm] × 1012 V/m

BL = 1.07 · a0
λL [µm] × 104 T

(2.7)

Thus, the laser pulses used in this thesis reach electric fields in the range of tens of
TV/m and magnetic fields on the order of 104–105 T.

2.2 Single Electron Motion in a Relativistic Laser Field

The interaction of an intense laser pulsewith a solid density plasma is a very complex,
many body system, which in general cannot be described analytically. Nonetheless,
to get a better insight into the interaction dynamics, it is instructive to study the single
electron motion in an electromagnetic wave, as these dynamics very often can still
be recovered even in the large scale systems.

1 tFWHM = √
2 ln 2τL , dFWHM = √

2 ln 2w0.



2.2 Single Electron Motion in a Relativistic Laser Field 9

The equation of motion of an electron in an electromagnetic field is given by the
Newton-Lorentz equation

d

dt
p = −e (E + v × B) (2.8)

This set of coupled partial differential equations can by solved analytically following
[3, 4]. However, a deeper understanding of the system can be gained using the
Lagrangian formalism and considering fundamental symmetries [5].

2.2.1 Symmetries and Invariants

In the following, we will work in relativistic units. The normalized variables are
derived from their counterparts in SI-units:

E → E ′ = E

mec2

 → φ′ = e 


mec2
z → z′ = kL z

p → p′ = p

mec
A → a′ = e A

mec
t → t ′ = ωL t

Note that the energy of the particle is just E = γ with γ = (1 − β2)−1/2 =√
1 + p′

x
2 + p′

z
2. For the sake of simplicity we shall neglect the ′ in the following

discussion. The relativistic Lagrangian function of an electron moving in an electro-
magnetic field with vector potential A and electrostatic potential φ reads [2, 6]

L = −
√
1 − β2 − βa + φ (2.9)

from which we can derive the canonical momentum pcan = ∂L
∂β

= γβ − a = p − a.
If we now consider potentials that are dependent on the z coordinate only, i.e. a =
a(z, t) ex and φ = φ(z), the planar symmetry of the system ∂L/∂x = 0 implies that
the canonical momentum in the transverse direction is conserved, that is

d

dt
pcan

x = d

dt

∂L

∂βx
= ∂L

∂x
= 0 ⇒ px − a = const (2.10)

We can derive a second invariant if we neglect the electrostatic potential φ = 0 and
consider a wave form a = a(t − z). As a result, the system is anti-symmetric in
the coordinates z, t , which implies ∂L/∂t = −∂L/∂z. Making use of the relation
dH/dt = −∂L/∂t for the Hamiltonian function, we can write

dH

dt
= − ∂

∂t
L = ∂L

∂z
= d

dt

∂L

∂βz
= d

dt
pcan

z (2.11)
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and we find the second integral of motion (H = γ )

d

dt

(
γ − pcan

z

) = 0 ⇒ γ − pcan
z = const. (2.12)

We can now immediately solve the equations of motion making use of the integrals
derived in the previous section. Conservation of the transverse canonical momentum
(Eq.2.10) yields pcan

x (t) = pcan
x (t0) = α0, hence

px (t) = α0 + a(t) (2.13)

As for a plane wave az = 0, thus pcan
z = pz , we define the constant of motion

κ0 = (γ − pz) |t=t0 and obtain from the second invariant (Eq. 2.12)

γ (t) = κ0 + pz(t) (2.14)

which in combination with γ =
√
1 + p2x + p2z gives

pz(t) = 1

2κ0

(
1 − κ2

0 + p2x (t)
)

(2.15)

Now, if we consider a plane wave with electric field eL = −a0 cos (τ + φ0) and
vector potential a = a0 sin (τ + φ0), where τ = t − z, we immediately find for the
momenta

px (τ ) = γβ⊥ = a0 sin (τ + φ0) + α0

pz(τ ) = γβz = 1
2κ0

(
1 − κ2

0 + [a0 sin (τ + φ0) + α0]2
)

γ (τ) = κ0 + 1
2κ0

(
1 − κ2

0 + [a0 sin (τ + φ0) + α0]2
) (2.16)

where the constants of motion α0, κ0 can be determined from the initial conditions
pz,0, px,0, φ0

α0 = px,0 − a0 sin φ0 κ0 = γ0 − pz,0 γ0 =
√
1 + p2⊥,0 + p2z,0 (2.17)

To obtain the electron trajectory, we make use of a change in variables which
considerably simplifies the integration of Eq.2.16. Using τ = t − z as inde-
pendent variable implies dτ = (1 − βz) dt = κ0/γ dt ,2 thus substitution gives
dz/dτ = γ /κ0 dz/dt = pz/κ0 and dx/dτ = γ /κ0 dx/dt = px/κ0, which can be
integrated

2 (1 − βz) = (γ − pz)/γ = κ0/γ , using Eq. (2.14).
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t = z + τ

x(τ ) = 1

κ0
[α0τ − a0 (cos (τ + φ0) − cosφ0)] (2.18)

z(τ ) = 1

κ2
0

[(
1 + α2

0 − κ2
0 + a2

0

2

)
τ

2
− a0

(
α0 cos (τ + φ0) + a0

8
sin (2 (τ + φ0))

)

+ a0
(
α0 cosφ0 + a0

8
sin 2φ0

)]

It is worth noting that for an electron initially at rest (pz,0 = px,0 = 0),
Eqs. 2.13–2.15 simplify considerably, as in this case

px (t) = a(t) − a(t0)
pz(t) = 1

2 p2x (t)
γ (t) = 1 + pz(t)

(2.19)

Hence, the kinetic energy is just Ekin = (γ − 1) = p2x/2, which reveals that the
energy gain of the particle stems from the transverse electric field, whereas the v× B
term turns the particle quivermotion into the forward directionwithout adding energy
to it.

Figure2.1 depicts the electron dynamics of an electron initially at rest. The particle
motion is strongly dependent on the initial phase, which crucially governs the maxi-

mal energy achieved in the field γ max = 1+ a20
2 (1 + sin φ0)

2. Moreover, depending
on the initial phase, the electron oscillates in transverse dimension with amplitude
xmax = a0 or gradually drifts in either one direction (Fig. 2.1d).

2.2.2 Single Electron Motion in a Finite Pulse

The solution derived so far is strictly speaking only valid for infinite plane waves.
Imposing a more realistic temporally finite, gaussian shaped pulse the equations of
motion cannot be solved analytically anymore and numerical methods (here: Fourth
Order Runge-Kutta) need to be used. Figure2.2 shows the numerical integration of
an electron propagating in a gaussian shaped, finite pulse. The kinetic energy of the
electron is directly coupled to the light field and returns back to zero as soon as the
(slightly slower propagating) electron is overtaken by the laser pulse. This is a direct
consequence of the conservation of the transverse canonical momentum (Eq.2.10).
Since initially px (t = −∞) = a(t = −∞) = 0 the final transverse momentum is
px (t = ∞) = a(t = ∞) = 0 and likewise pz = p2x/2 = 0, which means that a
charged particle cannot gain energy from a plane wave in vacuum. It needs the break
up of symmetry for effective energy gain.
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Fig. 2.1 Single electron motion in a plane wave. Depending on the injection phase φ0, the electron
is accelerated (decelerated) within one quarter (φ0 = 0) to one half cycle (φ0 = π/2) of the driving
field (a0 = 5). Note the different scales of the abscissa and ordinate axis. a–c depict the electron
slippage over 2 laser cycles, d shows the corresponding electron motion in space

Fig. 2.2 Single electron in a
finite pulse. Gaussian pulse
shape (a0 = 5, τFWHM =
10 fs)
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2.2.3 The Lawson Woodward Principle and Its Limitations

The fundamental question under what conditions a free electron can extract energy
from an electromagnetic laser field has been a controversial debate over many years.
General starting point is the so called Lawson-Woodward Theorem [7, 8], which
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states that the net energy gain of an isolated relativistic electron interacting with
an electromagnetic field is zero. However, the proof of this theorem is bound to a
number of assumptions [1, 9, 10]

• the laser field is in vacuum with no walls or boundaries present,
• the electron is ultra-relativistic along the acceleration path,
• no static electric or magnetic fields are present,
• the interaction region is infinite,
• nonlinear effects can be neglected.

Here, it should be noted that the Lorentz force v × B is linear in the ultra-relativistic
case (v → c) and does not violate the Lawson-Woodward Principle. Despite the vast
number of underlying assumptions, this theorem has proven its relevance over the
years and was recently confirmed in a test experiment [11].

Nonetheless, numerous acceleration schemes have been developed in theory vio-
lating one or many of the underlying conditions in order to accelerate electrons in
vacuum effectively. In the following, we will highlight only a few aspects of those
schemes relevant for this work.

2.2.4 Acceleration in an Asymmetric Pulse

Breaking up symmetry in time and assuming that we could find a mechanism that
could inject electrons right into the middle of a pulse at time t0, the situation com-
pletely changes and a non-zero energy gain can be extracted from the electromagnetic
field [4, 12]. Using Eq.2.19, we find for the final energy of the electron

γ final = 1 + 1

2
(a(∞) − a(t0))

2 = 1 + 1

2
a(t0)

2 (2.20)

Thus, the energy gain strongly depends on the phase of the field at the injec-
tion time t0. Approximating the vector potential of a gaussian pulse with a ≈
a0 exp(−t2/τ 2L) sin φ(t, x) (adiabatic approximation) and taking into account that
the electric field is eL = −∂a/∂t , we find maximum energy gain for φ(t, x) = π/2
corresponding to eL ∝ cos(π/2) = 0. Hence, electrons injected into the field at the
zero points close to the peak of the pulse experience substantial energy gain from
the electromagnetic field as can be seen in Fig. 2.3.

A scheme that could potentially seed electrons right into the peak of the pulse is
to exploit the ionization dynamics of highly charged ions [13, 14]. As it was shown
in simulation, inner shell electrons of high Z atoms remain during the rise time of
the laser pulse and are released from the ionic core (and thus injected right into the
maximal intensity region) when the pulse reaches its peak intensity. Recently, it was
pointed out that the laser nanofoil interaction might exhibit similar dynamics, which
could provide effective means of accelerating electrons from semi-transparent solid
plasmas and which will be discussed in great detail in Chap. 4.

http://dx.doi.org/10.1007/978-3-319-07752-9_4
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Fig. 2.3 Single electron in
an asymmetric pulse. The
electron is injected into
the laser field at the peak of the
pulse with px,0 = pz,0 = 0
and φ0 = π/2. Same pulse as
in Fig. 2.2
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2.2.5 Ponderomotive Scattering

To reach high intensities, laser pulses are focused tightly to within a few µm only
and thus the field distribution interacting with the electron in experiment is strongly
dependent on its radial position. While for a plane wave, the cycle-averaged Lorentz
force acting on the particle turns out to be zero,3 inhomogeneous fields exhibit a
nonzero component, which causes the particle to drift from high intensity to low
intensity regions. The origin of the ponderomotive force can be easily understood if
we consider a particle initially located at the center of the focal spot. Owing to the
transverse electric field, the electron is displaced from its central position to regions
of lowered intensities. Thus, as the oscillating field changes sign the force driving
the electron back to the center is smaller and therefore, the electron does not return
to its initial position. As a result, the oscillation center gradually drifts from regions
of high intensity to those of lower intensity while the mean kinetic energy of the
particle successively increases with every cycle.

This phenomenon is well known at sub-relativistic intensities and can be derived
from first order perturbation analysis of the Lorentz force around the oscillation
center [1].4 In the relativistic regime, the longitudinal motion has to be taken into
account. Assuming that the particle motion can be separated into p = p̄ + p̃ where
p̄ and p̃ denote the slowly varying and the rapidly varying part with respect to the
laser frequency, the generalized, relativistic ponderomotive force reads [15, 16]

Fp = −mec2

4γ̄
∇aA

2 γ̄ =
√
1 + p̄2z + p̄2⊥ + a2

A/2 (2.21)

3 F ∝ p/γ · B ∝ sin τ cos τ ∝ sin 2τ , thus 〈F〉τ = 0.
4 At sub-relativistic intensities, the ponderomotive potential of the laser field is 
p = e2E2

A
4meω

2
L

=
mec2

4 a2
A and the ponderomotive force is just simply Fp = −∇
p = − mec2

4 ∇a2
A.
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The main feature still applies: The electron drifts away from the high intensity region
owing to the gradient of the intensity distribution and eventually scatters out of
the focused beam—thus, overall gaining energy from the electromagnetic field of
the laser (Fig. 2.4). While this process was observed in experiment at rather low
intensities, accelerating electrons up to few hundred keVs and scattering angles
in excellent agreement with those expected from single electron dynamics [17,
18], the ponderomotive scattering in the high intensity regime [19, 20], which is
expect to occur when the electron quiver amplitude (x = a0) reaches the length
scale of the beam waist at the focus has been discussed quite controversial [16, 21].
In particular, it was shown that a rather simple treatment of the electromagnetic
field distribution in the focal plane using the paraxial Gaussian beam approximation
[19] fails considerably in predicting the final energy gain and angular distribution
[16, 22]. Including higher order corrections, especially longitudinal fields, the final
energy gain is found to be significantly reduced, the scattering angle turns out to be
highly dependent on the initial position and is no longer limited to the polarization
plane only. Taking into account that the actual focal distribution of test particle studies
is rather difficult.

Figure2.4 illustrates the ponderomotive scattering of an electron in a Gaussian
mode (lowest order approximation) clearly showing the effective energy gain of an
electron fromafinitefield distribution in space.Longitudinal field components appear
in the next order [16] which may play an important role. A correct field distribution
up to all orders is given in [16, 22], nonetheless, this may still be different from the
actual experimental conditions.

In conclusion, we find that the dynamics of a single electron injected into a rel-
ativistic, tightly focused laser pulse is very complex with strong dependence on the
exact field distribution in the focal region and the initial position of the electron.

Fig. 2.4 Ponderomotive scattering. Single electron in a finite, Gaussian shaped pulse with beam
waist w0 = 2µm and pulse duration τFWHM = 10 fs. a Electron trajectory (white line) and instan-
taneous position (red dot) at t/τL = −1.1 superimposed with a snapshot of the cycle-averaged
intensity distribution at that moment in time. b Temporal evolution of the electron energy and
momentum
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2.2.6 Vacuum Acceleration Schemes

While in the case of ponderomotive scattering, electrons are quickly expelled from
the focused laser beam, certain regions surrounding the laser axis have been identified
where high energetic electrons can be trapped and accelerated for a long time [23–25].
Detailed analysis of the diffracting laser beam reveals that in these sectors the effec-
tive phase velocity of the laser field is slightly smaller than the speed of light. Hence,
relativistic electrons injected into these regions are quasi-phase-matched with the
accelerating field and thus experience a drastic energy gain. Although it was argued
that the so-called electron capture and acceleration scenario (CAS) even works for
electrons initially at rest when accounting for the longitudinal field components of the
focal spot [22], the mechanism requires rather high intensities a0 ∼10–100, is criti-
cally dependent on the exact field distribution and thus still remains experimentally
unexplored.

While in the high intensity regime, electrons initially at rest interacting with a
tightly focused beam tend to be scattered transversally long before the peak of the
pulse has reached, it was argued that a ring-like intensity profile would focus the
accelerating particles towards the beam axis, owing to the off-axis potential well
originating from the intensity distribution [26, 27].

2.3 Laser Propagation in a Plasma

We now turn our discussion from single particle interactions to a dense plasma. Here,
we shall briefly introduce the fundamental properties of a cold plasma, meaning
that we essentially neglect forces arising from the thermal pressure of the plasma.
Derivations are given in many textbooks [1, 5, 28].

In a neutral plasma, electrons displaced from their equilibrium position feel a
restoring force caused by the positive ion background and thus oscillate with the
plasma frequency

ωp =
√

nee2

ε0meγ̄
(2.22)

where γ̄ is the cycle-averaged Lorentz factor in the plasma, often set to γ̄ =√
1 + a2

0/2. It is worth noting that due to their much higher mass, ions stay quasi
immobile on the time scale of the plasma frequency and thus can be viewed as a uni-
form background in this context. From the dispersion relation of an electromagnetic
wave propagating in a plasma,

ω2
L = ω2

p + c2k2L (2.23)

we can derive the refractive index nR = c/vph



2.3 Laser Propagation in a Plasma 17

nR =
√
1 − ω2

p

ω2
L

(2.24)

Thus, in the case of a rather low density plasma (ωp < ωL ), light propagates with
phase velocity vph = c/nR and group velocity vg = cnR . However, if ωp > ωL ,
the refractive index becomes imaginary. In this case, the response of the plasma
electrons is much faster than the frequency of the electromagnetic wave and therefore
the incident wave is effectively shielded at every moment in time in the plasma.
Depending on the electron density, the plasma can either be overdense (opaque) or
underdense (transparent) to the incident light field. The interaction dynamics are
fundamentally different in these two scenarios and we define the critical density at
which ωp = ωL , to distinguish those two regimes. Using Eq.2.22, we find for the
critical density

nc = ε0me

e2
γ̄ ω2

L = γ̄ · 1.1 · 1021
λ[µm]2 cm−3 (2.25)

Hence, an electromagnetic wave incident on an overdense plasma reflects from the
plasma surface where it interacts as an evanescent wave within the skin layer of the
plasma. For a step-like boundary, we can define the characteristic length scale over
which the electric field drops to 1/e, i.e. the plasma skin depth as

ls = c√
ω2

p − ω2
L

≈ c

ωp
(2.26)

2.3.1 Laser Interaction with an Overdense Plasma

A laser pulse normally incident on an overdense plasma is reflected and thus interacts
as a standing wave with the critical surface of the plasma. At relativistic intensities,
the v × B component of the resultant electromagnetic field drives the plasma surface
in longitudinal direction with

Fz = F0 (1 − cos 2ωL t) (2.27)

which oscillates at twice the frequency of the incident laser field.5 Note, that the
driving force does not change sign and thus on time average pushes the critical surface
into the plasma, whereas the oscillating high frequency component eventually leads

5 this rather general expression is readily derived from the ponderomotive force when including the
fast oscillating component [29], or alternatively from a perturbative model [30]. A more detailed
theoretical treatment is given in [31] using a one particle plasma model, which has proven good
agreement with PIC simulations.
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Fig. 2.5 Electron bunch
generation at the laser-plasma
boundary. At every laser
(half-)cycle, a group of
electrons is accelerated to
MeV energies and injected as
a dense bunch into the plasma
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to strong electron heating. At oblique incidence, the situation is quite similar. Here,
the leading term driving the critical surface is the electric field component pointing
normal to the plasma boundary, which however oscillates at a frequency of ωL , only,
and acts in both directions. In both cases, the interplay between the driving force and
the restoring charge separation field leads to the oscillation of the plasma surface
at the frequency of the driving force. This collective motion of the electrons at the
plasma boundary can be modeled analytically [31] and is the key component for the
generation of high harmonics from solids in the relativistic regime.

Along with the oscillatory surface motion, at every half (full) cycle, a group of
electrons acquires high energies at the laser plasma boundary and is injected as a
dense bunch into the overdense region (Fig. 2.5). As the laser field does not penetrate
into the plasma interior, these electrons immediately escape from the driving laser
field with energies on the order of several MeVs well above the bulk electron plasma
temperature.

The periodic formation of these high energetic electron bunches at a sharp laser
plasma boundary is evident in simulations and has been confirmed experimentally
probing the optical transition radiation emitted from the generated hot electron cur-
rent crossing the rear surface of the target. Here, the optical emission spectra were
found to be spiked at ωL and 2ωL , which hints that these bunches preserve their
temporal periodicity to some extend as they propagate through the plasma [32, 33].
In the vacuum region behind the target, the expelled electron bunches quickly dis-
perse in the electrostatic sheath field built up during the interaction and eventually
form a hot electron cloud surrounding the target rear side, which in turn causes the
acceleration of ions.

Although initially highly confined in space, the generated electron bunches are
spectrally very broadband. Moreover, the energy distribution of subsequent bunches
fluctuates from cycle to cycle and the overall, time-integrated electron spectra
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observed in experiment and simulation resemble exponentially decaying distribu-
tion functions, with characteristic slope commonly referred to as the hot electron
temperature. As it was pointed out by Bezzerides et al. [34], the spectral shape
is a direct consequence of the stochastic nature of the bunch formation process, as
theoretically, the integration overmany buncheswith randomvariations in the energy
spectrum eventually leads to a Maxwellian distribution.

While exponential, hot electron distributions have been measured over decades
in laser plasma experiments [1, 35–39], the physical mechanism of the electron
bunch formation at the vacuum plasma interface is still not understood. Recently,
a deeper insight into the process was given by Mulser et al. [40] who showed that
this phenomenon may be explained by an anharmonic resonance in the attractive
charge separation potential at the plasma vacuum boundary. Here, electrons with
large oscillation amplitude may be driven into resonance thereby break up with the
collective plasma motion and rapidly gain energy from the laser. Yet, owing to the
stochastic nature of this process, no theory exists to date, which could for a given set
of parameters make a prediction on the electron number within a bunch or anticipate
its energy distribution.

Instead, numerous scalings have been developed predicting the slope of the time-
integrated hot electron distribution [41–44]. In the case of a normal incident laser
pulse, [41] showed that the hot electron temperature can be related to the pondero-
motive energy of the laser pulse

kB T Wilks
hot = mec2

(√
1 + a2

0/2 − 1

)
(2.28)

This scaling is intriguingly simple and experimental configurations showing fairly
good agreementwith the ponderomotive scalingwere reported [45]. However, amore
recent theoretical study [44] showed that the ponderomotive scaling is actually only
valid at sub-relativistic intensities, whereas the scaling increasingly overestimates
the hot electron temperatures at intensities clearly beyond the relativistic threshold
(a0 � 1).Using that the average kinetic energy of an electron ensemble can be
obtained by averaging the single electron energy with respect to the phase, they find

kB T Kluge
hot = mec2

(
πa0

2 log 16 + 2 log a0
− 1

)
(2.29)

Yet, this scaling does not account for plasma properties and is only valid for step-like
density profiles. On the contrary, numerical studies indicate that the plasma density
and gradient do play an important role [46, 47]. In particular, it was found that
shallow plasma gradients can result in increased electron temperatures.

Closely related to the hot electron generation is the vigorously discussed question
of laser energy absorption in overdense plasmas. The generation of hot electrons is a
prominent example of coupling laser energy into a plasma, and very often is thought
to be the dominant absorption channel. Many different mechanisms eventually lead
to the generation of high energetic electrons [1, 28]. At relativistic intensities and
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steep plasmas gradients, the most dominant absorption processes are j × B heating
[29] and Brunel or vacuum heating [48]. Both processes are physically very similar.
In the case of oblique incidence, electrons are driven in the electric field of the laser
giving rise to the generation ofMeV electron bunches at a frequency ofωL whereas in
the case of normal incidence the magnetic term of the Lorentz force dominates and
repetitively generates hot electrons at a frequency of 2ωL (see discussion above).
In experiment, both mechanisms most likely contribute to the measured electron
distributions, as even under normal incidence the critical surface deforms during the
interaction and eventually results in oblique incidence angle at the side wings of the
interaction volume. Owing to the vast variety of competing absorption mechanisms,
it is difficult to isolate and study a particular process in experiment. Instead, many
processes very often contribute to the recorded electron data making the correct
interpretation very complex. As of to date, no comprehensive theory exists and thus
the physical understanding of laser absorption still remains somewhat unclear.

2.3.2 Relativistic Electron Mirrors from Nanometer Foils

The interaction of an intense laser pulse with solid density plasma has been envi-
sioned as a way to generate relativistic attosecond electron bunches with densities
close to solid [49]. In particular, numerous theoretical work has been devoted very
recently to the laser–nanofoil interaction at intensities high enough to achieve com-
plete separation of all electrons from the ions using foil thicknesses of only a few
nm [50].

Figure2.6 illustrates the interaction dynamics in this regime, showing a step-like
laser pulse with a0 = 48 incident on an ultrathin (effectively 4nm) foil. The laser
pulse acts like a snowplow, drives out all electrons coherently as a single dense
electron layer co-moving with the laser field, whereas the ions rest at their initial
position owing to their high inertia. The created electron bunch gains energy as it
surfs on the electromagnetic wave of the laser and essentially acts as a superparticle
following single electron dynamics. Moreover, as the laser field prevails over the
electrostatic fields of the plasma, the electron bunch keeps its initial thickness and
density over several laser cycles while being accelerated.

To achieve full charge separation, the electric field of the laser has to exceed the
electrostatic field arising from the complete separation of all electrons from the ions.
Assuming a top-hat laser pulse and a step-like plasma profile with thickness d, we
can estimate when the radiation pressure exceeds the electrostatic field pressure such
that no force balance can be reached

I

c
� 1

2
ε0E2

es (2.30)

The electrostatic field simply is Ees = ened/ε0 in the case of complete charge
separation. Using Eq.2.22 and expressing the laser field in normalized units a0 =
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(a)

(b)

(c)

Fig. 2.6 Laser-driven, relativistic electron mirror from a nanometer foil. Input parameter: a0 =
48.3 (pulse shape: supergaussian), NkL d = 15.7 (N = 100nc). Here, t = 0 is defined as the
timestep when the laser pulse reaches the plasma layer. a–c depict different time steps

eE0/mcωL , we can rewrite the electron blowout condition as

a0 � ne

nc
kLd (2.31)

It is worth noting that this condition implies d/ ls � a0/
√

N with N = ne/nc � 1.
Hence, in order to drive out all electrons effectively, the plasma thickness should
not be much larger than the skin depth of the laser. Thus, in this scenario, the laser
interacts with an overcritical, yet, transparent plasma layer.

This regime was first described by Kulagin et al. [50] and has been investigated in
numerous theoretical studies since then [3, 51–53].6 However,most of this theoretical
work relies on highly idealized laser pulses with infinitely steep rise time. Using
more realistic pulses with Gaussian rise spanning over many laser cycles [54, 55],

6 Using a flattop laser pulse profile, the generation of a relativistic electron mirror was studied
in great detail in [51] and an empirical lower threshold value ath = 0.9 + 1.3 NkL d was derived
fromPIC simulations. However, this threshold amplitude is strongly dependent on the temporal laser
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the laser nanofoil interaction becomes very complex and yet is very little understood.
Advancing this knowledge is the ambition of this thesis.

2.4 Relativistic Doppler Effect

The change in frequency and amplitude of an electromagnetic wave caused by the
relative motion of the source and observer was first discussed by Einstein in his
work on special relativity [56]. In his paper, Einstein calculates the reflection of an
electromagneticwave from a relativistically fastmovingmirror as aworking example
of Lorentz transformations. The underlying idea is to transform the problem to the
rest frame of the mirror, where the reflection of a light wave is well described by
basic laws of optics. In the following, we shall briefly repeat Einstein’s discussion
here, as the result will be an integral part of this thesis.

Let the mirror propagate in +z direction with velocity β = v/c and the electro-
magnetic wave in −z direction with wavevector ki = −ωL/c, as shown in Fig. 2.7.
As a first step, we transform the incident electromagnetic wave to the rest frame of
the mirror making use of the Lorentz boost [2].

ω′
L/c = γωL/c − γβki = (1 + β)γωL/c

k′
i = −γβωL/c − γ ki = (1 + β)γ ki

Thus, the incident laser field is blue shifted in the rest frame of the mirror. For the
sake of simplicity, we assume a perfect mirror, which reflects back the incident field
with k′

r = −k′
i . Now, the lab frame moves with −β with respect to the rest frame of

the mirror. Transforming the reflected light field back to the lab frame, we find

Fig. 2.7 Relativistic Doppler effect. Illustration of theLorentz transformations applied to the system
to discuss the reflection of a laser pulse from a counter-propagating mirror, moving with relativistic
velocity β

(Footnote 6 continued)
pulse shape that is employed and might be very different for a more realistic few cycle laser pulses
with Gaussian rise.



2.4 Relativistic Doppler Effect 23

ω′′
L/c = γω′

L/c − γ (−β)k′
r = (1 + β)γω′

L/c

k′′
r = −γ (−β)ω′

L/c − γ k′
r = (1 + β)γ k′

r

Using both equations, we find the prominent result for the reflection of an electro-
magnetic wave from a moving mirror:

ω′′
L = (1 + β)2γ 2ωL ≈ 4γ 2ωL

k′′
r = (1 + β)2γ 2ki ≈ 4γ 2ki (2.32)

Apart from the relativistic frequency upshift derived here, the amplitude and the
duration of the incident wave are changed accordingly as

E ′′ = (1 + β)2γ 2E (2.33)

and

τ ′′ = τ

(1 + β)2γ 2 (2.34)

Equation2.33 is obtained from the Lorentz transformation of the electromagnetic
field tensor [2]. The pulse compression (Eq.2.34) stems from the fact that the phase
is an invariant under Lorentz transformations [2].

Thus, for an ideal relativistic mirror, the peak power of the reflected radiation
can substantially exceed that of the incident radiation due to the increase in photon
energy and accompanying temporal compression.

While theoretically extremely rewarding, the generation of a relativistic structure,
with properties sufficient to act as a mirror, is extremely challenging. While electron
bunches with very high γ factors can be generated with conventional accelerators,
they do not form a reflecting structure analogous to a mirror due to their low density
and long bunch duration and therefore the backscattered radiation is incoherent. On
the contrary, the interaction of a high intensity laser pulse with a few nanometer thin
free-standing foil promises the creation of a solid density, attosecond short electron
bunch, which may give access to the coherent regime. In the next sections, we shall
develop a deeper,microscopic understanding of themirror properties of such a unique
structure.

2.5 Coherent Thomson Scattering

Light, incident on a charged particle, such as an electron, causes the particle to
be accelerated, which in turn emits radiation at the same frequency as the incident
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electromagnetic wave.7 This process is referred to as Thomson scattering with cross
section σT = 6.65 × 10−25 cm2 [2].

While the reflection from amirror is usually discussed quantitatively in the frame-
work of electrodynamics, we shall briefly analyze the reflection process from the
perspective of scattering theory, as this directly highlights the main challenges to
create a mirror-like structure. In scattering theory, the reflection process is a macro-
scopic manifestation of scattering occurring on a microscopic level. In that sense,
the process is very complex as it requires the coherent behavior of a great number of
individual scatterers.

In general, a mirror structure constitutes of a large ensemble of individual scat-
terers re-emitting light at the interface of two media with a constant phase relation,
imposed via the incident light field.

Reflection, i.e. coherent scattering takes place, when many scatterers reside in a
volume λ′3, that is n′

eλ
′3 � 1 [57], where λ′ is the wavelength of the incident light

and n′
e the electron density, both values evaluated in the rest frame of the mirror.

In this scenario, the distance between adjacent scatterers is significantly shorter
than thewavelength of the emitted radiation, thus the relative phases of the interfering
wavelets of individual scatterers have to be taken into account to evaluate the resulting
field. We shall analyze this in depth in the next section, making use of the formalisms
commonly used in scattering theory.

2.5.1 Analytical Model

Westart from theThomson scattering of a single electron. The cross section is defined
in such a way that the scattered power is PT = σT Ii , where Ii is the incident energy
flux, i.e. intensity. For an electron bunch, consisting of N scattering electrons, we
can deduce the radiated power by summing over the scattering amplitudes of each
individual electronwhile taking into account the relative phase. In general, the spatial
phase factor of two scatterers separated by a distance r is φ = q · r, where q is the
momentum transfer or scattering vector [58]. Considering an electron bunch with
cross section A, the power incident on the bunch is Pi = AIi . Thus, we can write
for the backscattered power

PT = σT

A

∣∣∣∣∣∣

N∑

j=1

eiq·rj

∣∣∣∣∣∣

2

Pi (2.35)

The evaluation of this sum is well established in the theory of coherent synchrotron
or terahertz radiation [59, 60]. We adapt this method and write

7 This is true as long as �ω � mec2, i.e. as long as the photon recoil �ω/c � mec is negligible.
Otherwise, the process is described in the framework of Compton scattering.
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PT = σT

A
[N [1 − f (q)] + N 2 f (q)]Pi (2.36)

where the form factor

f (q) =
∣∣∣∣
∫

eiq·r S(r)d3r

∣∣∣∣
2

(2.37)

is the square amplitude of theFourier transformof the normalized particle distribution
function S(r), thus owing to the normalization f (q) ≤ 1.

The first term of Eq.2.36 scales with N and describes the incoherent Thomson
scattering, whereas the second term, scaling with N 2 represents the coherent contri-
bution. As N is a large number, typically denoting 106–108 electrons, the coherent
signal enhancement N f (k) can be huge,making the Thomson scattering in the coher-
ent regime highly efficient.

In the following, we are interested in the coherent signal and define a coherent,
or mirror-like reflectivity of the bunch as

Rm = σT

A
N 2 f (q) (2.38)

Suppose, the electron bunch density can be modeled as a gaussian with ne(z) =
n0e−z2/d2

. Then, the number of electrons contributing to the coherent signal is N =
A

∫
ne(z)dz = √

π An0d and we can construct

S(z) = 1

N
A ne(z) = 1√

πd
e−z2/d2

(2.39)

In the backscattering geometry q = 2kLez and we find for the form factor of an
electron bunch with gaussian bunch shape

f (q = 2kL) =
∣∣∣∣
∫

ei2kL z S(z)dz

∣∣∣∣
2

= e−2k2d2
(2.40)

Thus, we write for the reflectivity of the electron mirror at rest

Rm = σT

A
N 2e−2k2d2

(2.41)

Now, considering a mirror moving with relativistic velocity, we transform to the rest
frame of the mirror and make use of the previous discussion. In the rest frame of the
mirror, the incident light is blue-shifted k′

L = (1 + β)γ kL and the electron bunch
thickness becomes d ′ = γ d. Thus, the mirror reflectivity in the lab frame reads as
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Fig. 2.8 Dependence of the optimal electron bunch thickness on the upshifted radiation. Here, the
electron bunch thickness is defined by the FWHMvalue of a gaussian bunch distribution and should
not be much larger than dopt = 1/2kLγ 2 as the reflectivity rapidly decreases for larger values

Rm = σT π An2
0d2e−2ξ2

with ξ = (1 + β)γ 2kLd (2.42)

This formula describes the coherent backscattering from a N electron system. Note,
that the coherent enhancement was discussed only in the longitudinal dimension.
Thus, the cross-section A in this equation is limited to small values such that the
overall quasi-one dimensional geometry of the system is preserved. In more detail,
radiation with path length difference of � > λr/2 should not contribute to the
coherent enhancement in zeroth order. Thus, an electron located at a distance a from
the center, contributes to the signal on axis at a distance R only if � ∼ a2/R � λr .
In the following, we set a ∼ λr , thus A = πλ2r .

As an important result of the discussion, we can now define an upper limit on the
electron bunch thickness d. Obviously, in order to achieve high reflectivity of the
mirror structure ξ � 1, thus

kLdopt � 1/2γ 2. (2.43)

It is important to note that not only the length scale (Fig. 2.8), but also the exact
shape of the electron distribution is crucial for the bunch reflectivity. Figure2.9 illus-
trates that fact by showing the form factor for different bunch shapes and thicknesses.
As expected, the form factor drops off more rapidly for shorter wavelengths when
increasing thebunch thicknesswhile keeping thebunch shape as a gaussian.However,
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Fig. 2.9 Dependence of the electron bunch form factor on the electron bunch shape. The input
distribution functions are normalized such that

∫
ne(z)dz = 1

changing the bunch profile to a steeper, supergaussian profilewhile keeping the bunch
thickness the same, does significantly reduce the fast decay of the form factor for
shorter wavelengths. In essence, a mirror structure requires both high density and a
sharp mirror to vacuum interface. This implies very steep density gradients, as the
length scale of the discontinuity defining the mirror surface needs to be abrupt, well
below the wavelength of the emitted light as the backscattered amplitudes would
rather cancel out each other in a gradual changing interface [61].

2.5.2 Reflection Coefficients

We can define different reflection coefficients in the case of a moving mirror:

1. the ratio of incident and reflected power

RI = Ir

Ii
= (1 + β)4γ 4Rm (2.44)

2. the ratio of incident and reflected energy, corresponding to the mirror reflectivity
of an ordinary mirror

RE = Er

Ei
= Irτr

Iiτi
= (1 + β)2γ 2Rm (2.45)

where the underlying assumption is that the mirror lifetime is long compared to
the duration of the incident pulse.

3. The ratio of the incident and reflected photon number

RPhot = Nr

Ni
= Er/�ωr

Ei/�ωi
= RE

ωi

ωr
= Rm (2.46)
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2.6 Frequency Upshift from Laser-Driven Relativistic
Electron Mirrors

Inherent to the electron motion in a laser field, forward momentum is bound to a
transverse momentum, thus each individual electron of the bunch propagates at an
angle with respect to the laser axis of the driving laser pulse.

A counter-propagating pulse, incident on such an electron bunch causes each par-
ticle to emit dipole radiation.8 However, as the radiating electronmoves at relativistic
velocity the emission cone of the radiated field is bent towards the propagation direc-
tion of the electron. In consequence, the main contribution of the incoherent signal
points off-axis, along the velocity vector β, as shown in Fig. 2.10.

In contrast, the signal of the coherent scattering is governed by the collective
emission of all electrons, which is determined by the interference of the individ-
ual backscattered wavelets. Just as in an ordinary reflection, the angle of emission
crucially depends in that case on the exact reflection geometry, that is the surface
orientation of the scattering structure in connection with the angle of incidence of the
impinging laser field and is discussed for arbitrary configurations in [53, 57]. In the
counter-propagating geometry, the coherent backscatter signal adds up constructively
in mirror surface normal direction, that is in the specular direction, as one would
expect intuitively. In contrast, the incoherent signal, points off-axis in bunch velocity
direction (Fig. 2.10), and is suppressed by destructive interference. Thus, in the case
of coherent backscattering, the frequency upshift is

ω′′
L = (1 + βz)

2γ 2
z ωL (2.47)
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Fig. 2.10 Dipole emission from a single electron. Angular dependence of the emitted dipole radi-
ation of an electron propagating with relativistic velocities β in different directions θ , a–d

8 The electric field emitted from a moving charge is (consider field contributions scaling with R−1

only):

E = e

4πε0c

(
n × [(n − β) × β̇]

R(1 − n · β)3

)
.
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Fig. 2.11 Relativistic Doppler upshift from laser-driven electron mirrors. The incoherent signal
points close to the direction of β and is fully suppressed by destructive interference in the case
of a mirror-like reflection. In contrast, the coherent signal is emitted in the direction of specular
reflection. Thus, the corresponding velocity component βz governs the relativistic Doppler upshift
∼ 4γ 2

z

where γz is the effect γ factor of the mirror motion in mirror normal direction9

(Fig. 2.11)

γz = 1√
1 − β2

z

= γ√
1 + (p⊥/mc)2

. (2.48)

As p⊥ tends to be large due to the transverse field character of the driving laser pulse,
γz can be significantly smaller than the full γ factor.
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