
Chapter 2
Notation and Norms

2.1 Introduction

This chapter recalls the usual convention for distinguishing scalars, vectors, and
matrices. Vetter’s notation for matrix derivatives is then explained, as well as the
meaning of the expressions little o and big O employed for comparing the local
or asymptotic behaviors of functions. The most important vector and matrix norms
are finally described. Norms find a first application in the definition of types of
convergence speeds for iterative algorithms.

2.2 Scalars, Vectors, and Matrices

Unless stated otherwise, scalar variables are real valued, as are the entries of vectors
and matrices.

Italics are for scalar variables (v or V ), bold lower-case letters for column vectors
(v), and bold upper-case letters for matrices (M). Transposition, the transformation
of columns into rows in a vector or matrix, is denoted by the superscript T. It applies
to what is to its left, so vT is a row vector and, in ATB, A is transposed, not B.

The identity matrix is I, with In the (n ×n) identity matrix. The i th column vector
of I is the canonical vector ei .

The entry at the intersection of the i th row and j th column of M is mi, j . The
product of matrices

C = AB (2.1)

thus implies that
ci, j =

∑

k

ai,kbk, j , (2.2)
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8 2 Notation and Norms

and the number of columns in A must be equal to the number of rows in B. Recall
that the product of matrices (or vectors) is not commutative, in general. Thus, for
instance, when v andw are columns vectors with the same dimension, vTw is a scalar
whereas wvT is a (rank-one) square matrix.

Useful relations are
(AB)T = BTAT, (2.3)

and, provided that A and B are invertible,

(AB)−1 = B−1A−1. (2.4)

If M is square and symmetric, then all of its eigenvalues are real. M � 0 then means
that each of these eigenvalues is strictly positive (M is positive definite), whileM � 0
allows some of them to be zero (M is non-negative definite).

2.3 Derivatives

Provided that f (·) is a sufficiently differentiable function from R to R,

ḟ (x) = d f

dx
(x), (2.5)

f̈ (x) = d2 f

dx2
(x), (2.6)

f (k)(x) = dk f

dxk
(x). (2.7)

Vetter’s notation [1] will be used for derivatives of matrices with respect to matri-
ces. (A word of caution is in order: there are other, incompatible notations, and one
should be cautious about mixing formulas from different sources.)

If A is (nA × mA) and B (nB × mB), then

M = ∂A
∂B

(2.8)

is an (nAnB × mAmB)matrix, such that the (nA × mA) submatrix in position (i, j) is

Mi, j = ∂A
∂bi, j

. (2.9)

Remark 2.1 A and B in (2.8) may be row or column vectors. �
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Example 2.1 If v is a generic column vector of Rn , then

∂v
∂vT

= ∂vT

∂v
= In . (2.10)

�

Example 2.2 If J (·) is a differentiable function from R
n to R, and x a vector of Rn ,

then

∂ J

∂x
(x) =

⎡

⎢⎢⎢⎢⎣

∂ J
∂x1
∂ J
∂x2
...

∂ J
∂xn

⎤

⎥⎥⎥⎥⎦
(x) (2.11)

is a column vector, called the gradient of J (·) at x. �

Example 2.3 If J (·) is a twice differentiable function from R
n to R, and x a vector

of Rn , then

∂2 J

∂x∂xT
(x) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂2 J
∂x21

∂2 J
∂x1∂x2

· · · ∂2 J
∂x1∂xn

∂2 J
∂x2∂x1

∂2 J
∂x22

...

...
. . .

...

∂2 J
∂xn∂x1

· · · · · · ∂2 J
∂x2n

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(x) (2.12)

is an (n × n) matrix, called the Hessian of J (·) at x. Schwarz’s theorem ensures that

∂2 J

∂xi∂x j
(x) = ∂2 J

∂x j∂xi
(x) , (2.13)

provided that both are continuous at x and x belongs to an open set in which both are
defined. Hessians are thus symmetric, except in pathological cases not considered
here. �

Example 2.4 If f(·) is a differentiable function fromR
n toRp, and x a vector ofRn ,

then

J(x) = ∂f
∂xT

(x) =

⎡

⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

...

...
. . .

...

∂ f p
∂x1

· · · · · · ∂ f p
∂xn

⎤

⎥⎥⎥⎥⎥⎥⎦
(2.14)

is the (p × n) Jacobian matrix of f(·) at x. When p = n, the Jacobian matrix is
square and its determinant is the Jacobian. �
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Remark 2.2 The last three examples show that theHessian of J (·) at x is the Jacobian
matrix of its gradient function evaluated at x. �

Remark 2.3 Gradients and Hessians are frequently used in the context of optimiza-
tion, and Jacobian matrices when solving systems of nonlinear equations. �

Remark 2.4 The Nabla operator ∇, a vector of partial derivatives with respect to all
the variables of the function on which it operates

∇ =
(

∂

∂x1
, . . . ,

∂

∂xn

)T

, (2.15)

is often used to make notation more concise, especially for partial differential equa-
tions. Applying ∇ to a scalar function J and evaluating the result at x, one gets the
gradient vector

∇ J (x) = ∂ J

∂x
(x). (2.16)

If the scalar function is replaced by a vector function f , one gets the Jacobian matrix

∇f(x) = ∂f
∂xT

(x), (2.17)

where ∇f is interpreted as
(∇fT

)T
.

By applying ∇ twice to a scalar function J and evaluating the result at x, one gets
the Hessian matrix

∇2 J (x) = ∂2 J

∂x∂xT
(x). (2.18)

(∇2 is sometimes taken to mean the Laplacian operator �, such that

� f (x) =
n∑

i=1

∂2 f

∂x2i
(x) (2.19)

is a scalar. The context and dimensional considerations should make what is meant
clear.) �

Example 2.5 If v, M, and Q do not depend on x and Q is symmetric, then

∂

∂x
(vTx) = v, (2.20)

∂

∂xT
(Mx) = M, (2.21)

∂

∂x
(xTMx) = (M + MT)x (2.22)
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and
∂

∂x
(xTQx) = 2Qx. (2.23)

These formulas will be used quite frequently. �

2.4 Little o and Big O

The function f (x) is o(g(x)) as x tends to x0 if

lim
x→x0

f (x)

g(x)
= 0, (2.24)

so f (x) gets negligible compared to g(x) for x sufficiently close to x0. In what
follows, x0 is always taken equal to zero, so this need not be specified, and we just
write f (x) = o(g(x)).

The function f (x) is O(g(x)) as x tends to infinity if there exists real numbers x0
and M such that

x > x0 ⇒ | f (x)| � M |g(x)|. (2.25)

The function f (x) is O(g(x)) as x tends to zero if there exists real numbers δ and M
such that

|x | < δ ⇒ | f (x)| � M |g(x)|. (2.26)

The notation O(x) or O(n) will be used in two contexts:

• when dealing with Taylor expansions, x is a real number tending to zero,
• when analyzing algorithmic complexity, n is a positive integer tending to infinity.

Example 2.6 The function

f (x) =
m∑

i=2

ai xi ,

with m � 2, is such that

lim
x→0

f (x)

x
= lim

x→0

(
m∑

i=2

ai xi−1

)
= 0,

so f (x) = o(x) when x tends to zero. Now, if |x | < 1, then

| f (x)|
x2

<

m∑

i=2

|ai |,
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so f (x) = O(x2) when x tends to zero. If, on the other hand, x is taken equal to the
(large) positive integer n, then

f (n) =
m∑

i=2

ai n
i �

m∑

i=2

|ai n
i |

�
(

m∑

i=2

|ai |
)

· nm,

so f (n) = O(nm) when n tends to infinity. �

2.5 Norms

A function f (·) from a vector space V to R is a norm if it satisfies the following
three properties:

1. f (v) � 0 for all v ∈ V (positivity),
2. f (αv) = |α| · f (v) for all α ∈ R and v ∈ V (positive scalability),
3. f (v1 ± v2) � f (v1) + f (v2) for all v1 ∈ V and v2 ∈ V (triangle inequality).

These properties imply that f (v) = 0 ⇒ v = 0 (non-degeneracy). Another useful
relation is

| f (v1) − f (v2)| � f (v1 ± v2). (2.27)

Norms are used to quantify distances between vectors. They play an essential role,
for instance, in the characterization of the intrinsic difficulty of numerical problems
via the notion of condition number (see Sect. 3.3) or in the definition of cost functions
for optimization.

2.5.1 Vector Norms

The most commonly used norms in R
n are the l p norms

‖v‖p =
(

n∑

i=1

|vi |p

) 1
p

, (2.28)

with p � 1. They include

http://dx.doi.org/10.1007/978-3-319-07671-3_3
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• the Euclidean norm (or l2 norm)

||v||2 =
√√√√

n∑

i=1

v2i =
√

vTv, (2.29)

• the taxicab norm (or Manhattan norm, or grid norm, or l1 norm)

||v||1 =
n∑

i=1

|vi |, (2.30)

• the maximum norm (or l∞ norm, or Chebyshev norm, or uniform norm)

||v||∞ = max
1�i�n

|vi |. (2.31)

They are such that
||v||2 � ||v||1 � n||v||∞, (2.32)

and
vTw � ‖v‖2 · ‖w‖2. (2.33)

The latter result is known as the Cauchy-Schwarz inequality.

Remark 2.5 If the entries of v were complex, norms would be defined differently.
The Euclidean norm, for instance, would become

||v||2 =
√

vHv, (2.34)

where vH is the transconjugate of v, i.e., the row vector obtained by transposing the
column vector v and replacing each of its entries by its complex conjugate. �

Example 2.7 For the complex vector

v =
[

a
ai

]
,

where a is some nonzero real number and i is the imaginary unit (such that i2 = −1),
vTv = 0. This proves that

√
vTv is not a norm. The value of the Euclidean norm of

v is
√

vHv = √
2|a|. �

Remark 2.6 The so-called l0 norm of a vector is the number of its nonzero entries.
Used in the context of sparse estimation, where one is looking for an estimated
parameter vector with as few nonzero entries as possible, it is not a norm, as it does
not satisfy the property of positive scalability. �
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2.5.2 Matrix Norms

Each vector norm induces a matrix norm, defined as

||M|| = max||v||=1
||Mv||, (2.35)

so
‖Mv‖ � ‖M‖ · ‖v‖ (2.36)

for any M and v for which the product Mv makes sense. This matrix norm is sub-
ordinate to the vector norm inducing it. The matrix and vector norms are then said
to be compatible, an important property for the study of products of matrices and
vectors.

• The matrix norm induced by the vector norm l2 is the spectral norm, or 2-norm ,

||M||2 =
√

ρ(MTM), (2.37)

whereρ(·) is the function that computes the spectral radius of its argument, i.e., the
modulus of the eigenvalue(s) with the largest modulus. Since all the eigenvalues
of MTM are real and non-negative, ρ(MTM) is the largest of these eigenvalues.
Its square root is the largest singular value of M, denoted by σmax(M). So

||M||2 = σmax(M). (2.38)

• The matrix norm induced by the vector norm l1 is the 1-norm

||M||1 = max
j

∑

i

|mi, j |, (2.39)

which amounts to summing the absolute values of the entries of each column in
turn and keeping the largest result.

• The matrix norm induced by the vector norm l∞ is the infinity norm

||M||∞ = max
i

∑

j

|mi, j |, (2.40)

which amounts to summing the absolute values of the entries of each row in turn
and keeping the largest result. Thus

||M||1 = ||MT||∞. (2.41)
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Since each subordinate matrix norm is compatible with its inducing vector norm,

||v||1 is compatible with ||M||1, (2.42)

||v||2 is compatible with ||M||2, (2.43)

||v||∞ is compatible with ||M||∞. (2.44)

The Frobenius norm

||M||F =
√∑

i, j

m2
i, j =

√
trace

(
MTM

)
(2.45)

deserves a special mention, as it is not induced by any vector norm yet

||v||2 is compatible with ||M||F. (2.46)

Remark 2.7 To evaluate a vector or matrix norm with MATLAB (or any other inter-
preted language based onmatrices), it ismuchmore efficient to use the corresponding
dedicated function than to access the entries of the vector or matrix individually to
implement the norm definition. Thus, norm(X,p) returns the p-norm of X, which
may be a vector or a matrix, while norm(M,’fro’) returns the Frobenius norm
of the matrix M. �

2.5.3 Convergence Speeds

Norms can be used to study how quickly an iterative method would converge to the
solution x� if computation were exact. Define the error at iteration k as

ek = xk − x�, (2.47)

where xk is the estimate of x� at iteration k. The asymptotic convergence speed is
linear if

lim sup
k→∞

‖ek+1‖
‖ek‖ = α < 1, (2.48)

with α the rate of convergence.
It is superlinear if

lim sup
k→∞

‖ek+1‖
‖ek‖ = 0, (2.49)

and quadratic if

lim sup
k→∞

‖ek+1‖
‖ek‖2 = α < ∞. (2.50)
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A method with quadratic convergence thus also has superlinear and linear
convergence. It is customary, however, to qualify a method with the best convergence
it achieves. Quadratic convergence is better that superlinear convergence, which is
better than linear convergence.

Remember that these convergence speeds are asymptotic, valid when the error
has become small enough, and that they do not take the effect of rounding into
account. They are meaningless if the initial vector x0 was too badly chosen for the
method to converge to x�. When the method does converge to x�, they may not
describe accurately its initial behavior and will no longer be true when rounding
errors become predominant. They are nevertheless an interesting indication of what
can be expected at best.
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