Chapter 2
Frequent Pattern Mining Algorithms: A Survey

Charu C. Aggarwal, Mansurul A. Bhuiyan and Mohammad Al Hasan

Abstract This chapter will provide a detailed survey of frequent pattern mining
algorithms. A wide variety of algorithms will be covered starting from Apriori.
Many algorithms such as Eclat, TreeProjection, and FP-growth will be discussed.
In addition a discussion of several maximal and closed frequent pattern mining
algorithms will be provided. Thus, this chapter will provide one of most detailed
surveys of frequent pattern mining algorithms available in the literature.

Keywords Frequent pattern mining algorithms - Apriori - TreeProjection -
FP-growth

1 Introduction

In data mining, frequent pattern mining (FPM) is one of the most intensively inves-
tigated problems in terms of computational and algorithmic development. Over the
last two decades, numerous algorithms have been proposed to solve frequent pattern
mining or some of its variants, and the interest in this problem still persists [45, 75].
Different frameworks have been defined for frequent pattern mining. The most com-
mon one is the support-based framework, in which itemsets with frequency above
a given threshold are found. However, such itemsets may sometimes not represent
interesting positive correlations between items because they do not normalize for
the absolute frequencies of the items. Consequently, alternative measures for inter-
estingness have been defined in the literature [7, 11, 16, 63]. This chapter will focus
on the support-based framework because the algorithms based on the interestingness

C. C. Aggarwal (D<)
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA
e-mail: charu@us.ibm.com

M. A. Bhuiyan - M. A. Hasan
Indiana University—Purdue University, Indianapolis, IN, USA
e-mail: mbhuiyan@cs.iupui.edu

M. A. Hasan
e-mail: alhasan@cs.iupui.edu

C. C. Aggarwal, J. Han (eds.), Frequent Pattern Mining, 19
DOI 10.1007/978-3-319-07821-2_2, © Springer International Publishing Switzerland 2014

20 C. C. Aggarwal et al.

Algorithm Baseline Mining(Database: T, Minimum Support: s)
begin
FP={}
Insert length-one frequent pattern in FP
until all frequent patterns in FP are explored do
begin
Generate a candidate pattern P from one (or more) frequent
pattern(s) in FP
if support(P,7) > s
Add P to frequent pattern set FP;
end
end

Fig. 2.1 A generic frequent pattern mining algorithm

framework are provided in a different chapter. Surveys on frequent pattern mining
may be found in [26, 33].

One of the main reasons for the high level of interest in frequent pattern mining
algorithms is due to the computational challenge of the task. Even for a moderate
sized dataset, the search space of FPM is enormous, which is exponential to the
length of the transactions in the dataset. This naturally creates challenges for itemset
generation, when the support levels are low. In fact, in most practical scenarios, the
support levels at which one can mine the corresponding itemsets are limited (bounded
below) by the memory and computational constraints. Therefore, it is critical to be
able to perform the analysis in a space- and time-efficient way. During the first few
years of research in this area, the primary focus of work was to find FPM algorithms
with better computational efficiency.

Several classes of algorithms have been developed for frequent pattern mining,
many of which are closely related to one another. In fact, the execution tree of all the
algorithms is mostly different in terms of the order in which the patterns are explored,
and whether the counting work done for different candidates is independent of one
another. To explain this point, we introduce a primitive “baseline” algorithm that
forms the heart of most frequent pattern mining algorithms.

Figure 2.1 presents the pseudocode for a very simple “baseline” frequent pattern
mining algorithm. The algorithm takes the transaction database 7 and a user-defined
support value s as input. It first populates all length-one frequent patterns in a frequent
pattern data-store, 7P. Then it generates a candidate pattern and computes its support
in the database. If the support of the candidate pattern is equal or higher than the
minimum support threshold the pattern is stored in FP. The process continues until
all the frequent patterns from the database are found.

In the aforementioned algorithm, candidate patterns are generated from the previ-
ously generated frequent patterns. Then, the transaction database is used to determine
which of the candidates are truly frequent patterns. The key issues of computa-
tional efficiency arise in terms of generating the candidate patterns in an orderly and
carefully designed fashion, pruning irrelevant and duplicate candidates, and using
well chosen tricks to minimize the work in counting the candidates. Clearly, the

2 Frequent Pattern Mining Algorithms: A Survey 21

effectiveness of these different strategies depend on each other. For example, the
effectiveness of a pruning strategy may be dependent on the order of exploration of
the candidates (level-wise vs. depth first), and the effectiveness of counting is also
dependent on the order of exploration because the work done for counting at the
higher levels (shorter itemsets) can be reused at the lower levels (longer itemsets)
with certain strategies, such as those explored in TreeProjection and FP-growth.
Surprising as it might seem, virtually all frequent pattern mining algorithms can be
considered complex variations of this simple baseline pseudocode. The major chal-
lenge of all of these methods is that the number of frequent patterns and candidate
patterns can sometimes be large. This is a fundamental problem of frequent pattern
mining although it is possible to speed up the counting of the different candidate
patterns with the use of various tricks such as database projections. An analysis on
the number of candidate patterns may be found in [25].

The candidate generation process of the earliest algorithms used joins. The original
Apriori algorithm belongs to this category [1]. Although Aprioriis presented as a join-
based algorithm, it can be shown that the algorithm is a breadth first exploration of a
structured arrangement of the itemsets, known as a lexicographic tree or enumeration
tree. Therefore, later classes of algorithms explicitly discuss tree-based enumeration
[4, 5]. The algorithms assume a lexicographic tree (or enumeration tree) of candidate
patterns and explore the tree using breadth-first or depth-first strategies. The use of
the enumeration tree forms the basis for understanding search space decomposition,
as in the case of the TreeProjection algorithm [5]. The enumeration tree concept is
very useful because it provides an understanding of how the search space of candidate
patterns may be explored in a systematic and non-redundant way. Frequent pattern
mining algorithms typically need to evaluate the support of frequent portions of
the enumeration tree, and also rule out an additional layer of infrequent extensions
of the frequent nodes in the enumeration tree. This makes the candidate space of
all frequent pattern mining algorithms virtually invariant unless one is interested in
particular types of patterns such as maximal patterns.

The enumeration tree is defined on the prefixes of frequent itemsets, and will
be introduced later in this chapter. Later algorithms such as FP-growth perform
suffix-based recursive exploration of the search space. In other words, the frequent
patterns with a particular pattern as a suffix are explored at one time. This is because
FP-growth uses the opposite item ordering convention as most enumeration tree
algorithms though the recursive exploration order of FP-growth is similar to an
enumeration tree.

Note that all classes of algorithms, implicitly or explicitly, explore the search
space of patterns defined by an enumeration tree of frequent patterns with different
strategies such as joins, prefix-based depth-first exploration, or suffix-based depth-
first exploration. However, there are significant differences in terms of the order in
which the search space is explored, the pruning methods used, and how the counting
is performed. In particular, certain projection-based methods help in reusing the
counting work for k-itemsets for (k + 1)-itemsets with the use of the notion of
projected databases. Many algorithms such as TreeProjection and FP-growth are
able to achieve this goal.

22 C. C. Aggarwal et al.

Table 2.1 Toy transaction tid Items Sorted frequent items
database and frequent items

of each transaction for a 2 abcedfh abedf
minimum support of 3 3 a,f,g a,f

4 b.e,f,g b,f.e

5

ab,c,deh ab,c,de

This chapteris organized as follows. The remainder of this chapter discusses notations
and definitions relevant to frequent pattern mining. Section 2 discusses join-based
algorithms. Section 3 discusses tree-based algorithms. All the algorithms discussed
in Sects. 2 and 3 extend prefixes of itemsets to generated frequent patterns. A number
of methods that extend suffixes of frequent patterns are discussed in Sect. 4. Variants
of frequent pattern mining, such as closed and maximal frequent pattern mining, are
discussed in Sect. 5. Other optimized variations of frequent pattern mining algorithms
are discussed in Sect. 6. Methods for reducing the number of passes, with the use of
sampling and aggregation are proposed in Sect. 7. Finally, Sect. 8 concludes chapter
with an overall summary.

1.1 Definitions

In this section, we define several key concepts of frequent pattern mining (FPM) that
we will use in the remaining part of the chapter.

Let, 7 = {T\,T»,...,T,} be a transaction database, where each T; € T,Vi =
{1...n} consists of a set of items, say T; = {x, x3,x3,...x7}. Aset P C T; is called
an itemset. The size of an itemset is defined by the number of items it contains.
We will refer an itemset as [-itemset (or [-pattern), if its size is [. The number of
transactions containing P is referred to as the support of P. A pattern P is defined
to be frequent if its support is at least equal to the the minimum threshold.

Table 2.1 depicts a toy database with 5 transactions (T, T T3, T4 and Ts). The
second column shows the items in each transaction. In the third column, we show
the set of items that are frequent in the corresponding transaction for a minimum
support value of 3. For example, the item % in transaction with #id value of 2 is
an infrequent item with a support value of 2. Therefore, it is not listed in the third
column of the corresponding row. Similarly, the pattern {a, b} (or, ab in abbreviated
form) is frequent because it has a support value of 3.

The frequent patterns are often used to generate association rules. Consider the
rule X = Y, where X and Y are sets of items. The confidence of the rule X = Y
is the equal to the ratio of the support of X U Y to that of the support of X. In other
words, it can be viewed as the conditional probability that ¥ occurs, given that X
has occurred. The support of the rule is equal to the support of X U Y. Association
rule-generation is a two-phase process. The first phase determines all the frequent
patterns at a given minimum support level. The second phase extracts all the rules
from these patterns. The second phase is fairly trivial and with limited sophistication.
Therefore, most of the algorithmic work in frequent pattern mining focusses on the

2 Frequent Pattern Mining Algorithms: A Survey 23

Fig. 2.2 The lattice of
itemsets

FREQUENT ITEMSETS

|abc | ’abd | |acd \\\ bed |
\
\
INFREQUENT ITEMSETS ‘\l
BORDER BETWEEN
FREQUENT AND

INFREQUENT ITEMSETS

first phase. This chapter will also focus on the first phase of frequent pattern mining,
which is generally considered more important and non-trivial.

Frequent patterns satisfy a downward closure property, according to which every
subset of a frequent pattern is also frequent. This is because if a pattern P is a
subset of a transaction, then every pattern P’ C P will also be a subset of T.
Therefore, the support of P’ can be no less than that of P. The space of exploration
of frequent patterns can be arranged as a lattice, in which every node is one of the 2¢
possible itemsets, and an edge represents an immediate subset relationship between
these itemsets. An example of a lattice of possible itemsets for a universe of items
corresponding to {a, b, ¢, d} is illustrated in Fig. 2.2. The lattice represents the search
of frequent patterns, and all frequent pattern mining algorithms must, in one way or
another, traverse this lattice to identify the frequent nodes of this lattice. The lattice is
separated into a frequent and an infrequent part with the use of a border. An example
of a border is illustrated in Fig. 2.2. This border must satisfy the downward closure
property.

The lattice can be traversed with a variety of strategies such as breadth-first or
depth-first methods. Furthermore, candidate nodes of the lattice may be generated
in many ways, such as using joins, or using lexicographic tree-based extensions.
Many of these methods are conceptually equivalent to one another. The following
discussion will provide an overview of the different strategies that are commonly
used.

2 Join-Based Algorithms

Join-based algorithms generate (k + 1)-candidates from frequent k-patterns with the
use of joins. These candidates are then validated against the transaction database.
The Apriori method uses joins to create candidates from frequent patterns, and is
one of the earliest algorithms for frequent pattern mining.

24 C. C. Aggarwal et al.

2.1 Apriori Method

The most basic join-based algorithm is the Apriori method [1]. The Apriori approach
uses a level-wise approach in which all frequent itemsets of length k are generated
before those of length (k 4 1). The main observation which is used for the Apriori
algorithm is that every subset of a frequent pattern is also frequent. Therefore, can-
didates for frequent patterns of length (k 4+ 1) can be generated from known frequent
patterns of length k with the use of joins. A join is defined by pairs of frequent k-
patterns that have at least (k — 1) items in common. Specifically, consider a frequent
pattern {iy, i»,i3,i4} that is frequent, but has not yet been discovered because only
itemsets of length 3 have been discovered so far. In this case, because the patterns
{i1,i2,0i3} and {i, i, i4} are frequent, they will be present in the set F3 of all frequent
patterns with length £k = 3. Note that this particular pair also has k — 1 = 2 items in
common. By performing a join on this pair, it is possible to create the candidate pat-
tern {i1, i», i3, i4}. This pattern is referred to as a candidate because it might possibly
be frequent, and one most either rule it in or rule it out by support counting. There-
fore, this candidate is then validated against the transaction database by counting its
support. Clearly, the design of an efficient support counting method plays a critical
role in the overall efficiency of the process. Furthermore, it is important to note that
the same candidate can be produced by joining multiple frequent patterns. For ex-
ample, one might join {i\, i, i3} and {i», i3, i4} to achieve the same result. Therefore,
in order to avoid duplication in candidate generation, two itemsets are joined only
whether first (k — 1) items are the same, based on a lexicographic ordering imposed
on the items. This provides all the (k + 1)-candidates in a non-redundant way.

It should be pointed out that some candidates can be pruned out in an efficient way,
without validating them against the transaction database. For any (k 4 1)-candidates,
it is checked whether all its k subsets are frequent. Although it is already known that
two of its subsets contributing to the join are frequent, it is not known whether its
remaining subsets are frequent. If all its subsets are not frequent, then the candidate
can be pruned from consideration because of the downward closure property. This is
known as the Apriori pruning trick. For example, in the previous case, if the itemset
{i1, 13,14} does not exist in the set of frequent 3-itemsets which have already been
found, then the candidate itemset {i|, i», i3, i1} can be pruned from consideration with
no further computational effort. This greatly speeds up the overall algorithm. The
generation of 1-itemsets and 2-itemsets is usually performed in a specialized way
with more efficient techniques.

Therefore, the basic Apriori algorithm can be described recursively in level-wise
fashion. the overall algorithm comprises of three steps that are repeated over and
over again, for different values of k, where k is the length of the pattern generated in
the current iteration. The four steps are those of (i) generation of candidate patterns
Cr+1 by using joins on the patterns in F, (ii) the pruning of candidates from Cy 1,
for which all subsets to not lie in F, and (iii) the validation of the patterns in Cy
against the transaction database 7, to determine the subset of C;y; which is truly
frequent. The algorithm is terminated, when the set of frequent k-patterns F; in a
given iteration is empty. The pseudo-code of the overall procedure is presented in
Fig. 2.3.

2 Frequent Pattern Mining Algorithms: A Survey 25

Fig. 2.3 The Apriori Algorithm Apriori(Database: T, Support: s)
algorithm begin
Generate frequent 1-patterns and 2-patterns
using specialized counting methods and
denote by F; and Fo;
k:=2;
while F. is not empty do
begin
Generate Ci1 by using joins on Fy;
Prune Cj1 with Apriori subset pruning trick;
Generate Fj41 by counting candidates in
Cr4+1 with respect to T at support s;

k=k+1;
end
return UY_| F;;
end

The computationally intensive procedure in this case is the counting of the candi-
dates in Ci,; with respect to the transaction database 7. Therefore, a number of
optimizations and data structures have been proposed in [1] (and also the subsequent
literature) to speed up the counting process. The data structure proposed in [1] is
that of constructing a hash-tree to maintain the candidate patterns. A leaf node of the
hash-tree contains a list of itemsets, whereas an interior node contains a hash-table.
An itemset is mapped to a leaf node of the tree by defining a path from the root to the
leaf node with the use of the hash function. At a node of level i, a hash function is
applied to the ith item to decide which branch to follow. The itemsets in the leaf node
are stored in sorted order. The tree is constructed recursively in top—down fashion,
and a minimum threshold is imposed on the number of candidates in the leaf node.
To perform the counting, all possible k-itemsets which are subsets of a transaction
are discovered in a single exploration of the hash-tree. To achieve this goal all possible
paths in the hash tree that could correspond to subsets of the transaction, are followed
in recursive fashion, to determine which leaf nodes are relevant to that transaction.
After the leaf nodes have been discovered, the itemsets at these leaf nodes that are
subsets of that transaction are isolated and their count is incremented. The actual
selection of the relevant leaf nodes is performed by recursive traversal as follows. At
the root node, all branches are followed such that any of the items in the transaction
hash to one of branches.At a given interior node, if the ith item of the transaction was
last hashed, then all items following it in the transaction are hashed to determine the
possible children to follow. Thus, by following all these paths, the relevant leaf nodes
in the tree are determined. The candidates in the leaf node are stored in sorted order,
and can be compared efficiently to the hashed sequence of items in the transaction to
determine whether they are relevant. This provides a count of the itemsets relevant
to the transaction. This process is repeated for each transaction to determine the final
support count for each itemset. It should be pointed out that the reason for using
a hash function at the intermediate nodes is to reduce the branching factor of the
hash tree. However, if desired, a trie can be used explicitly, in which the degree of a

26 C. C. Aggarwal et al.

{a,b,c}:g {ab,d}3 facdy3 {b,c,dk3 :-(l;,c,e-}:z i {bde}2

{abc,dy3

Fig. 2.4 Execution tree of Apriori algorithm

node is potentially of the order of the total number of items. An example of such an
implementation is provided in [12], and it seems to work quite well. An algorithm
that shares some similarities to the Apriori method, was independently proposed in
[44], and subsequently a combined work was published in [3].

Figure 2.4 illustrates the execution tree of the join-based Apriori algorithm over
the toy transaction database mentioned in Table 2.1 for minimum support value 3.
As mentioned in the pseudocode of Apriori, a candidate k-patterns are generated
by joining two frequent itemset of size (k — 1). For example, at level 3, the pattern
{a,b,c} is generated by joining {a,b} and {a,c}. After generating the candidate
patterns, the support of the patterns is computed by scanning every transaction in
the database and determining the frequent ones. In Fig. 2.4, a candidate patterns is
shown in a box along with its support value. A frequent candidate is shown in a solid
box, and an infrequent candidate is shown in a dotted box. An edge represents the
join relationship between a candidate pattern of size k and a frequent pattern of size
(k—1) such that the latter is used to generate the earlier. The figure also illustrates the
fact that a pair of frequent patterns are used to generate a candidate pattern, whereas
no candidates are generated from an infrequent pattern.

2.1.1 Apriori Optimizations

Numerous optimizations were proposed for the Apriori algorithm [1] that are referred
to as AprioriTid and AprioriHybrid respectively. In the AprioriTid algorithm, each
transaction is replaced by a shorter transaction or null transaction) during the kth
phase. Let the set of k + 1-candidates in C;, that are contained in transaction T be
denoted by R(T, Cy1). This set R(T',Ci+1) is added to a newly created transaction
database 7,. If the set R(T, Ci1) is null, then clearly, a number of different tradeoffs
exist with the use of such an approach.

2 Frequent Pattern Mining Algorithms: A Survey 27

* Because each newly created transaction in 77(’ is much shorter, this makes
subsequent support counting more efficient.

* Insome cases, no candidate may be a subset of the transaction. Such a transaction
can be dropped from the database because it does not contribute to the counting
of support values.

* In other cases, more than one candidate may be a subset of the transaction, which
will actually increase the overhead of the algorithm. Clearly, this is not a desirable
scenario.

Thus, the first two factors improve the efficiency of the new representation, whereas
the last factor worsens it. Typically, the impact of the last factor is greater in the early
iterations, whereas the impact of the first two factors is greater in the later iterations.
Therefore, to maximize the overall efficiency, a natural approach would be to not
use this optimization in the early iterations, and apply it only in the later iterations.
This variation is referred to as the AprioriHybrid algorithm [1]. Another optimization
proposed in [9] is that the support of many patterns can be inferred from those of
key patterns in the data. This is used to significantly enhance the efficiency of the
approach.

Numerous other techniques have been proposed that use different techniques to
optimize the original implementation of the Apriori algorithm. As an example, the
method in [1] and [44] share a number of similarities but are somewhat different at
the implementation level. A work that combines the ideas from these different pieces
of work is presented in [3].

2.2 DHP Algorithm

The DHP algorithm, also known as the Direct Hashing and Pruning method [50],
was proposed soon after the Apriori method. It proposes two main optimizations to
speed up the algorithm. The first optimization is to prune the candidate itemsets in
each iteration, and the second optimization is to trim the transactions to make the
support-counting process more efficient.

To prune the itemsets, the algorithm tracks partial information about candidate
(k+1)-itemsets, while explicitly counting the support of candidate k-itemsets. During
the counting of candidate k-itemsets, all (k + 1) subsets of the transaction are found
and hashed into a table that maintains the counts of the number of subsets hashed
into each entry. During the phase of counting (k + 1)-itemsets, the counts in the hash
table are retrieved for each itemset. Clearly, these counts are overestimates because
of possible collisions in the hash table. Those itemsets for which the counts are below
the user-specified support level are then pruned from consideration.

A second optimization proposed in DHP is that of transaction trimming. A key
observation here is that if an item does not appear in at least k frequent itemsets in
Fk, then no frequent itemset in F4 will contain that item. This follows from the fact
that there should be at least k (immediate) subsets of each frequent pattern in Fj

28 C. C. Aggarwal et al.

containing a particular item that also occur in F; and also contain that item. This
implies that if an item does not appear in at least k frequent itemsets in JFy, then that
item is no longer relevant to further support counting for finding frequent patterns.
Therefore, that item can be trimmed from the transaction. This reduces the width of
the transaction, and increases the efficiency of processing. The overhead from the
data structures is significant, and most of the advantages are obtained for patterns of
smaller length such as 2-itemsets. It was pointed out in later work [46, 47, 60] that
the use of triangular arrays for support counting of 2-itemsets in the context of the
Apriori method is even more efficient than such an approach.

2.3 Special Tricks for 2-Itemset Counting

A number of special tricks can be used to improve the effectiveness of 2-itemset
counting. The case of 2-itemset counting is special and is often similar for the case
of join-based and tree-based algorithms. As mentioned above, one approach is to
use a triangular array that maintains the counts of the k-patterns explicitly. For each
transaction, a nested loop can be used to explore all pairs of items in the transaction
and increment the corresponding counts in the triangular array. A number of caching
tricks can be used [5] to improve data locality access during the counting process.
However, if the number of possible items are very large, this will still be a very
significant overhead because it is needed to maintain an entry for each pair of items.
This is also very wasteful, if many of the 1-items are not frequent, or some of the
2-item counts are zero. Therefore, a possible approach would be to first prune out all
the 1-items which are not frequent. It is simply not necessary to count the support
of a 2-itemset unless both of its constituent items are frequent. A hash table can
then be used to maintain the frequency counts of the corresponding 2-itemsets. As
before, the transactions are explored in a double nested loops, and all pairs of items
are hashed into the table, with the caveat, that each of the individual items must be
frequent. The set of itemsets which satisfy the support requirements are reported.

2.4 Pruning by Support Lower Bounding

Most of the pruning tricks discussed earlier prune itemsets when they are guaranteed
not meet the required support threshold. It is also possible to skip the counting process
for an itemset if the itemset is guaranteed to meet the support threshold. Of course,
the caveat here is that the exact support of that itemset will not be available, beyond
the knowledge that it meets the minimum threshold. This is sufficient in the case of
many applications.

Consider two k-itemsets A and B that have kK — 1 items A N B in common. Then,
the union of the items in A and B, denoted by A U B will have exactly k + 1 items.
Then, if sup(-) represent the support of an itemset, then the support of A U B can

2 Springer
http://www.springer.com/978-3-319-07820-5

Frequent Fattern Mining
Agogarwal, C.C.; Han,]. (Eds.)

2014, XX, 471 p. 83 illus., 19 illus. in color., Hardcowver
ISBM: 978-3-319-07820-5

	Chapter 2 Frequent Pattern Mining Algorithms: A Survey
	1 Introduction
	1.1 Definitions

	2 Join-Based Algorithms
	2.1 Apriori Method
	2.1.1 Apriori Optimizations

	2.2 DHP Algorithm
	2.3 Special Tricks for 2-Itemset Counting
	2.4 Pruning by Support Lower Bounding

