
Chapter 2
Unravelling the iSW Effect Through
the Matter Distribution

2.1 CMB Cross-Correlation with Tracers of Matter

The end of the last chapter painted the iSW effect of CMB photons as a clever probe
that has the potential to independently prove the existence of Dark Energy in the
Universe. However, the faintness of this signal makes it almost impossible to detect,
at least using only the CMB as such. The story does not end here though, thanks to the
resourcefulness of cosmologists at finding ways to detect and exploit the iSW effect
more efficiently. Among the methods devised, one of them stands as the leading
technique in the literature: the cross-correlation of the CMB with the distribution of
matter in the Universe.

2.1.1 The Principle

Before going into the details of this approach, let us recall the main ideas it is based
on. As discussed in Chap. 1, the iSW effect felt by the CMB photons in a �CDM
universe is a result of the stretching of the large scale potentials in the Universe,
caused by the acceleration of the expansion which is itself due to the presence of
Dark Energy. Of course, one has to remember that these gravitational potentials
originate from the presence of matter in the form of large DarkMatter halos in which
sit clusters of galaxies. Following this, it is reasonable to think that there exists
a certain degree of correlation between the distribution of matter and the resulting
pattern of the iSWeffect that it generates in theCMBacross the sky. The link between
these two elements is of course not trivial since, as its name emphasizes, the iSW
effect is an integrated effect: CMB photons that come from a particular direction
in sky have been affected by the matter distribution along the whole line of sight.
This is then further complicated by two competing phenomena: on the one hand the
iSW effect is expected in the �CDM paradigm to be redshift-dependent with the
most recent structures in the Universe yielding a more pronounced effect as they are
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16 2 Unravelling the iSW Effect Through the Matter Distribution

locallymoreDE-dominated. However, these very structures are also closer and closer
to us so that their number becomes limited by the available volume around us. At
some point, the stronger iSW effect of the closest large structures becomes balanced
by their increasing scarcity and therefore gets progressively harder to detect. We
therefore intuit already that there will be an optimal redshift for the detection of the
iSW effect, at some point between z = 0 and the start of the era in which Dark
Energy became cosmologically important.

Now that we have a grasp of the motivations behind the use of cross-correlation
and its associated features, we will have in the next subsection a closer look at the
theoretical tools used to describe this correlation.

2.1.2 Theoretical Framework

As seen in Sects. 1.2 and 1.4, the anisotropies that are generated by the iSW effect
are directly correlated to the distribution of matter through the evolution of the
gravitational potential �̇. Exploiting this correlation and detecting the iSW effect can
be done via several approaches; I will focus here on the most widely used method
which is done in spherical harmonic space.

All cross-correlations methods suppose that we have first a map of the tempera-
ture of the CMB T (n̂) at hand, or rather, a map of the relative fluctuations of this
background:

δT (n̂) = T (n̂) − T̄

T̄
(2.1)

with T̄ the mean temperature of the CMB (with the latest studies indicating
T̄ = 2.7260 ± 0.0013, cf. [15]). On the other hand, we need a survey that traces
the distribution of galaxies, from which we derive a map of the projected galaxy
overdensity field:

δg(n̂) = N (n̂) − N̄

N̄
(2.2)

where N (n̂) is the number of galaxies in the pixel corresponding to the direction n̂ and
N̄ is themean number of galaxies per pixel. Bothmaps are therefore in dimensionless
units—which is always welcomed to simplify calculations. Then, for the approach
that I consider here, we use the fact that any field can be decomposed into a series
of functions which form an orthonormal set, as do the spherical harmonic functions
Y�m(θ, φ). It follows that both the CMB temperature map (δT ) and the overdensity
map (δg) can be decomposed into

δX (θ, φ) =
∑

�,m

aX
�mY�m(θ, φ), (2.3)
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where aX
�m (X = g, T ) are the spherical harmonic coefficients of the field resulting

from its decomposition. The main quantity of interest for us is the 2-point galaxy-
temperature cross-correlation as a function of the multipole �, whose estimator is:

ĈT g(�) = 1

(2� + 1)

∑

m

Re
[
ag
�m(aT

�m)∗
]

= 1

(2� + 1)

∑

m

Re
[
aT
�m(ag

�m)∗
]
, (2.4)

It traces the degree of correlation between the two maps in harmonic space. We can
intuit that in the absence of Dark Energy and hence of the iSW effect, the correlation
between these two will be reduced to only fortuitous coincidences. But now that
we have defined its computation, let us take a more precise look at the expected
cross-correlation signal CT g(�).

Firstly, the fluctuations of the CMB temperature δT (n̂) are known to be com-
posed of several contributions, often categorised into primordial and secondary
anisotropies. However, for the large scales that we consider the only ones that are
correlated to the distribution of matter in the Universe are the secondary anisotropies
generated through the late iSW effect. In the remainder of this section, I will asso-
ciate the notation δT (n̂) to these iSW fluctuations only. One way of expressing these
temperature fluctuations on a particular line of sight is written as the following
redshift-integral from the surface of last scattering (SLS) to us:

δT (n̂) =
0∫

zSLS

e−τ(z)(�̇ − 	̇)[n̂, z] dz. (2.5)

where the dot denotes here differentiationwith respect to z (details about the equation
and its terms can be found in Sect. 1.4). Since the matter density is related to the
gravitational potentials � and 	 by the Poisson equation, these iSW temperature
fluctuations will be related to the observed galaxy density contrast, given by:

δg(n̂) =
0∫

zSLS

bg(z)
dN

dz
(z)δm(n̂, z) dz. (2.6)

In this expression, dN/dz is called the selection function of the survey (from which
the density map is derived) and represents simply the redshift distribution of galaxies
in the survey. More accurately, this function gives the number of galaxies contained
in a shell of width dz at redshift z; it is often normalised and then describes the
fraction of objects per redshift (an example of such selection function is shown in
Fig. 2.1). The term δm corresponds to the matter density perturbations, which are
related to the galaxy overdensities by a factor bg: indeed, although we correlate in
practice the CMBmapwith a galaxymap, we aim at probing in reality the correlation
with the underlying distribution of Dark Matter. This “galaxy bias” can theoretically
evolve in time and be a function of scale. However, it is generally assumed to be
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Fig. 2.1 Redshift distributions of the two fictitious surveys considered (see text for details). These
selection functions follow a widely-used analytical expression that describes well such quantities:
d N/dz(z) = Azm exp−(z/z0)β , where A is chosen so that the integral of the function is normalized
to unity. The parameters m and β control the slope of the rise and fall respectively, while z0 fixes
the median redshift of the distribution zmed (= z0

√
2). Here I chose z0 = 0.48287, m = 1.51964

and β = 2.34207 for the SDSS-like distribution (red solid curve), and increased z0 to 0.7 for the
second one (blue dashed curve)

time and scale independent for simplicity. For our purposes, a time dependent bias
would be equivalent to changing the selection function of the survey. A possible scale
dependence of the bias is more problematic, but on the very large scales (>10Mpc)
we are considering, the scale dependence is expected to be weak (see e.g. [8, 33]).

We are here interested in the correlation between δT and δg: their angular cross-
correlation function in real space is defined as:

CT g(ϑ) ≡ 〈δT (n̂1)δg(n̂2)〉 (2.7)

with the average carried over all the pairs at the same angular distance ϑ = |n̂1− n̂2|.
As mentioned before, it is often preferred to work in the harmonic space and study
the cross-correlation spectrum CT g(�) instead of the function CT g(ϑ). Those two
quantities are related through the Legendre polynomials P�:

CT g(ϑ) =
∞∑

l=2

2� + 1

4π
CT g

� P�[cos(ϑ)]. (2.8)

After some calculations (for detailed steps, see e.g. [16]), it follows that the cross-
correlation power spectrum is given by:

CT g
� = 4π

∫
dk

k

2(k)I iSW� (k)I g� (k), (2.9)
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where 
(k) is the almost scale invariant initial matter power spectrum 
2(k) ≡
4πk3P(k)/(2π)3 and the two integrands are respectively:

I iSW� (k) = −2
∫

e−τ(z)(�̇k − 	̇k) j�[kχ(z)]dz (2.10)

I g� (k) =
∫

bg(z)
d N

dz
(z)δm(k, z) j�[kχ(z)]dz, (2.11)

where �k, 	k and δm(k, z) are the Fourier components of the gravitational poten-
tials and matter perturbations for the wavenumber k, j�(x) are the spherical Bessel
functions and χ is the comoving distance. The two integrands I iSW� and I g� can then
be calculated for a given cosmological model using numerical codes that compute
all the relevant quantities needed (the details of the corresponding equations can be
found in [16]).

Of interesting note is that in the linear theory of perturbations (an approximation
which should be more than valid here considering the large scales involved) the
growth of the gravitational potentials is directly proportional to the ratio D(a)/a
(cf. Sect. 1.4). As a result, in a flat, matter-dominated universe the terms �̇k and
	̇k in Eq. (2.10) would be equal to 0 and so would the integral—and the cross-
correlation spectrum CT g

� itself. Therefore, we confirm here that in the absence of
Dark Energy (or more accurately, if the dominant component of the Universe were
pressureless matter) there would be no iSW effect and no correlation between the
CMB temperature and the distribution of matter.

2.1.3 Application to Detectability and Test Case

Wereviewed in the previous section the analytic expression of the correlation between
the CMB anisotropies and the distribution of matter through their cross-correlation
power spectrum. The question now arises of the use of these theoretical predictions
for the study of the Dark Energy.

The first application of these theoretical tools is to give the possibility to predict
the detectability of the aforementioned correlation. Assuming a given cosmological
model and that both the CMB temperature and the galaxy maps behave as Gaussian
random fields, the covariance of the iSW cross-correlation signal (in the absence of
noise) can be calculated by:

σ 2[CT g
� ] = (CT g

� )2 + Cgg
� CT T

�

2� + 1
, (2.12)

where CT T
� is the full CMB temperature-temperature power spectrum (and not only

the secondary anisotropies generated by the iSW effect) and Cgg
� is the galaxy auto-

correlation function that can be calculated theoretically:

http://dx.doi.org/10.1007/978-3-319-07746-8_1
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Cgg
� = 4π

∫
dk

k

2(k)I g� (k)I g� (k) (2.13)

(see Eq. (2.9) for a description of the terms). We can identify two sources of variance
in Eq. (2.12): the cosmic variance of the correlation itself (the (CT g

� )2 term), and
the fortuitous coincidences that arise between the CMB temperature and the galaxy
distribution (the Cgg

� CT T
� term).

It follows then that the theoretical signal-to-noise ratio (S/N) of this iSWdetection
for a given multipole range [�min, �max] is:

(
S

N

)2

=
�max∑

�=�min

(CT g
� )2

σ 2[CT g
� ]

=
�max∑

�=�min

(2� + 1)
(CT g

� )2

(CT g
� )2 + Cgg

� CT T
�

. (2.14)

The cumulative character of the S/N is due to the fact that, in the ideal case we
consider here (Gaussian fields, full-sky maps), the power spectrum estimates at dif-
ferent multipoles are independent from one another (no off-diagonal terms in the
covariance matrix).1 For illustration purposes, I will consider two fictitious full-sky
surveys, one with a selection function (see Eq. 2.6) similar to the eighth data release
(DR8) of the Sloan Digital Sky Survey (SDSS, [4]) and one with a higher median
redshift (both are shown in Fig. 2.1). Assuming the best-fit �CDM cosmology from
Planck [38], I calculate the theoretical auto-correlation (Cgg

� ) and cross-correlation

(CT g
� ) spectra for such surveys. To do so, I use a modified version of the cosmolog-

ical code CMBFAST [42] named CROSS_CMBFAST [12]. This code computes the
iSW-correlation power spectrum and the 2-point angular iSW-correlation function
for a given galaxy window function, and is limited to flat geometry. It includes dark
energy models specified by a constant equation of state or a linear parametrisation
in the scale factor and a constant sound speed. In addition to the auto- and cross-
correlation spectra, the computation also includes the usual CMBFAST outputs, i.e.
the CMB temperature and polarisation spectra.

I illustrate in Fig. 2.2 the resulting cross-correlation spectra and the ideal S/N
estimation defined in Eq. (2.14): as we can see, the signal peaks in the � = 10–20
multipole range and quickly falls off at smaller scales. Similarly, the largest contri-
butions to the signal-to-noise ratio come mainly from the lowest multipoles, with the
total S/N quickly reaching a plateau: this shows that most of the significant signal
is below � = 100, at that is it pointless to consider higher multipoles in cross-
correlation studies. It is important to notice here the crucial influence of the redshift
range (through the selection function) covered by the surveys considered, as already
intuited at the end of Sect. 2.1.1. Here, we can witness that the S/N is substantially
higher for the survey with the higher median redshift compared to the SDSS-like one
(4.5 vs. 3.3 for the cumulative S/N).

1 This is often not exactly true when working with real datasets (due to partial sky coverage,
non-Gaussian contamination, etc.) and has to be accounted for properly, e.g. using Monte-Carlo
simulations (see later in this chapter).
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Fig. 2.2 Theoretical cross-correlation results for the SDSS-like survey (red solid curves) and a
second one with higher median redshift (blue dashed curves). Left panel theoretical angular cross
power spectra of the CMB-galaxy correlation. Middle panel contribution to the total squared S/N of
the signal as a function of the multipole �. Right panel total cumulative S/N of the cross-correlation
signal for the multipole range � = [2, �max] as a function of �max

The above test cases give us an idea about the expected characteristics of the
cross-correlation in terms of the signal itself and its detectability; however, the pre-
dictive tools used here can be extended to any given survey (through the selection
function) and to a large variety of cosmologies (included in the CROSS_CMBFAST
code). We can now wonder: how can we use these tools to constrain cosmological
models and learn more about the Dark Energy? There are several tests that we can
think of and that are used in the literature; I will briefly present the most widely used
without diving too deep into calculations (a review of these methods can be found in
[14]). The first one is actually independent of the cosmology and does not assume
any kind of DE model (besides its existence itself): it consists in measuring the
cross-correlation on the data and checking how much it departs from a scenario with
no correlations at all, i.e. without Dark Energy. This is the so-called “null hypothe-
sis”, and basically consists in performing a χ2 test on the measured correlation with
respect to a “null model”, i.e. a model with zero correlation. If the test shows a signif-
icant deviation from the null model, then it constitutes a proof of the existence of the
Dark Energy (assuming a flat Universe) but does not give any additional information
beyond that. In a second time, we can go further and try to check how the data fares
against the prediction from a given cosmological model: using a similar χ2 test, we
can compare the measured correlation with the theoretical (non-zero) one predicted
beforehand using the framework that I described above. Although this test cannot
give a definitive answer on whether a given model is “the right one”, inversely it can
invalidate the model if the computed χ2 is too high. A third and last approach, called
“amplitude fitting” (or “template matching”), combines both previous ideas: con-
sidering a cosmological model (often the fiducial one that we try to (in)validate),
we construct a “template” by multiplying its associated theoretical correlation
by an “amplitude factor”. The method consists then in computing the amplitude
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(and associated error) that fits the best the measured correlation: a value close to 1
then indicates an agreement with the underlying model. If this amplitude simulta-
neously shows a sufficiently large S/N (i.e. a small associated error), it intrinsically
disproves the null hypothesis and strongly hints at the presence of Dark Energy.

We can already intuit here that the presence of sources of noise and partial sky
coverage will complicate the extraction of the iSW signal. The next paragraph will
be an overview of the current state of the detection of the iSW effect through cross-
correlation techniques.

2.1.4 State-of-the-Art of the iSW Detection

In the literature, many attempts have been made to detect an iSW signal through the
cross-correlation of the CMBwith galaxy surveys, with varying degrees of success. I
do not intend to summarize here all the results so far, since such a type of compilation
has already been made in the past: for reference, in Table 1 of [14] the authors
present a “meta-analysis” of iSW detections (up to the publication of their work)
and their reported statistical significance. Over the last decade a large variety of
surveys has been explored, exploiting the whole spectrum of light: X-ray [9, XRB
survey]; optical [1, 3, SDSS], near infrared [23, 2MASS]; radio [10, NVSS]. The
cross-correlation studies also followed the evolution of CMB observations, from
the first detected anisotropies of the Cosmic Microwave Background Explorer [5,
COBE] to the succession of releases by the Wilkinson Microwave Anisotropy Probe
[43, WMAP] and the latest publication of the Planck satellite [37].

What strikes the most when reviewing the current results of the literature are their
wide diversity, as the reported significances range from negligible [40] to 4.4 σ [18].
Although these differences can be partly attributed to the specific features2 of each
survey (and CMB maps) and to the methods3 used by the authors of each work,
some puzzling discrepancies are still present. Indeed, a couple of analyses based of
very similar (if not identical) datasets have yielded contradictory conclusions on the
level of detection of an iSW signal (see [14], again for reference), while other works
reported a signal at odds with �CDM expectations (1 σ excess in [18], 2 σ in [21]).

This intriguing situation may find its source in the characteristics of the current
(and past) generation of surveys, or rather, their shortcomings. Indeed, for each
of them, a trade-off has often been made between the deepness of the survey and
its coverage, resulting in the end in the observation of a small total volume of the
Universe. Unfortunately, this is a crucial point for the iSW studies and has a dramatic
impact on the potential S/N of the detection: considering a smaller volume results

2 In terms of the redshift range of the surveyed objects and the fraction of the sky covered by the
survey.
3 Not all of the cross-correlationworks base their analysis in harmonic space, as some preferworking
in real space or using wavelets; although the tools and estimators are different, the different tests
(χ2, null hypothesis,…) remain however the same and similar to those described in Sect. 2.1.3.
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simultaneously in a decrease of the theoretical signal and an increase of its variance.
Coupled to this is the intrinsic weakness of the signal, and the presence of galactic
foregrounds in both the CMB and the LSS maps that also mask crucial large scale
data and can introduce spurious correlations. Therefore, any method claiming to
detect the iSW effect may not be as thorough as required in accounting for missing
data. Ideally, any reported detection level should be independent of any assumption
or particular cosmology. Very recent works aimed at a better control of systematics
(see e.g. [20], for a thorough review of potential contaminants in SDSS), while others
made use of the latest releases of both CMB and LSS data [36]. In both cases, the
correlations were found to have much less discrepancies with �CDM and a good
agreement with their expected amplitude (cf. “amplitude fitting” tests in Sect. 2.1.3),
but with relatively low significances (1.5 − 3 σ range).

It is quite established that current surveys are far from ideal: to further the point, [2]
showed that obtaining a near optimal iSW detection (at a ∼ 5 σ level) would require
an all-sky survey with about 10 million galaxies almost uniformly distributed within
0 < z < 1,with systematics below∼0.1%and systematic errors in redshift estimates
<0.05—again, far from the characteristics of currently available datasets. However,
the next generation of probes will address many of the current shortcomings: surveys
such as Euclid, Pan-STARRS or LSST will get much closer to the ideal requirements
for the detection of the iSW effect (see [13, 14] for forecasts) andwill also—needless
to say—improve our knowledge of a vast range of cosmological topics. For the time
being, considering the landscape depicted above, there are a few possible orientations
that can be taken regarding iSW studies: the first is to make the most of the current
available data and has already been explored quite extensively, notably through the
combination of surveys in the context of LSS/CMB cross-correlation (see e.g. [18,
21]). However, some innovative ways of using the LSS and CMB are also explored,
such as the study of the impact of individual structures in the CMB that I will develop
inChap. 3. A second possible line of researchwould be to anticipate the future release
of data from the next generation of surveys and develop optimised tools in advance,
in order to make the most of the improved accuracy and avoid potential biases and
caveats: this will be the topic of the next section of this chapter (Sect. 2.2). Finally,
considering the great time scales involved in the schedule of the aforementioned
surveys, an interesting approach would also be to look for alternative, promising, and
already available tracers of matter (and gravitational potentials) to cross-correlate to
the CMB: this will be the central point of the Sect. 2.3, through the use of the Cosmic
Infrared Background.

2.2 Optimising the Cross-Correlation for iSW Detection

The work that I will present in this section originates from a pre-thesis internship:
it aims at exploring, optimising and proof-testing a protocol that I devised for the
exploitation of the iSWeffect, throughCMB/LSS cross-correlation and in the context
of next-generation surveys.With this prospective work I have no pretension of giving

http://dx.doi.org/10.1007/978-3-319-07746-8_3
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here a complete and exhaustive method for the analysis of these datasets, but I will
focus on a few crucial points that allowed me to point out some interesting features
and potential problems of this kind of analysis.

2.2.1 Context and Tools

Being entirely theoretical in nature, this study required me to simulate realistic
datasets and analyse them thoroughly—a task that required the use of accurate
numerical code and tools. The first requirement was to be able to predict, for a given
“next-gen-like” survey and a cosmology, the theoretical cross-correlation between
the CMB and these LSS, as well as their auto-correlation. If we assume that these
two fields are Gaussian in nature (which I will do), the only quantities that we need
to compute are their angular cross- and (respective) auto-correlation power spectra
in harmonic space. To do so I used the numerical code CROSS_CMBFAST that I
already mentioned in Sect. 2.1.3.

To develop a little further on this particular code, its specificities, and qualities, it
has the particular feature of adopting a top-down approach, starting from the primor-
dial spectrumoffluctuations. This differs fromother similar studieswhere the starting
point is the present matter power spectrum (which is evolved backward in order to
find its correlation with the CMB). The approach of CROSS_CMBFAST unifies the
treatment of CMB and matter power spectra, and is more convenient for taking full
account of possible fluctuations in theDark Energy.Moreover, since all perturbations
are evolved numerically with the CMBFAST code, it does not resort to the frequently
used approximate analytical expressions for the growth function (mentioned at the
end of Sect. 2.1.2), nor to the also commonly used “Limber approximation” for small
angles [28].

In order to thoroughly testmyprotocol (described in the next section) against “real-
life” situations, I also needed to work with realistic simulations of CMB and LSS
maps. For the creation and efficient exploitation of such maps I used the HEALPix
(Hierarchical Equal Area isoLatitude Pixelization) package [19]: this suite of codes
is based on a specific pixelization scheme of a spherical surface that is particularly
suited for fast and accurate statistical and astrophysical analysis of massive full-
sky data sets. It contains all the required tools to produce maps based on Gaussian
realisations of a given power spectrum, as well as perform a decomposition of a
map into its spherical harmonic coefficients (and consequently its angular power
spectrum).

2.2.2 Simulations, Covariance Estimation and Parameter
Recovery

The main idea that motivated my work presented here was to investigate a way to
recover as much information as possible on the Dark Energy from a single survey
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Fig. 2.3 Left panel normalised redshift distribution of my fiducial survey, following a similar
analytical form as the one mentioned in Fig. 2.1. The parameters chosen here are z0 = 0.95,
m = 1.9 and β = 1.5. Right panel total cumulative S/N of the theoretical cross-correlation signal
for this survey as a function of �max

with ideal characteristics (full-sky coverage, large redshift range, noiseless) and its
cross-correlation with the CMB. I started by fixing a reference cosmological model,
that I chose to be at that time the best-fit �CDM model derived from the WMAP
7-year data [27]. In the meantime, I also fixed the characteristics of the mock survey
that I considered, through the choice of its selection function—the only quantity
needed to model a survey (in the linear regime) beside the cosmology; I illustrate
this survey in Fig. 2.3.

In this particular context, the information that we are trying to obtain from
CMB/LSS correlation becomes simply the density parameter�� of theDark Energy.
From there, the protocol that I devised for the �� reconstruction is the following:

• I consider a CMB map and a galaxy overdensity map;
• I assume that the selection function of the galaxy survey has already been estimated
beforehand by other means;

• I use the tools of the HEALPix package to extract the cross-correlation power
spectrum CT g

� (data) from the two “data” maps;
• I use the CROSS_CMBFAST code to compute the expected theoretical cross power
spectra CT g

� (��) for a large range of �� values (between 0.3 and 0.9);
• Using a χ2 test, I look for the model that fits best the measured spectrum and keep
the corresponding �� as the reconstructed DE density parameter.

Although this protocol is fairly straightforward, there is a specific point that requires a
particular attention: the computation of the χ2, or more specifically the computation
of the covariance matrix involved in the calculation. Indeed, for a given measured
spectrum Cdata

� , the χ2 of a given model C theo
� is given by:

χ2 = T
(

Cdata
� − C theo

�

)
M−1

(
Cdata

� − C theo
�

)
, (2.15)
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M being the covariance matrix, each of its elements containing the covariance of
the cross-correlation power spectrum Cdata

� between two multipoles, i.e.:

Mi j = Covar
(

Cdata
�i

, Cdata
� j

)
. (2.16)

The tricky part here is that there are several methods for computing this matrix, that
differ quite substantially from each other. For the simplest approach, we suppose that
the survey considered is quite ideal and that there is no correlation between multi-
poles, which is generally true only for full-sky surveys. It follows that the covariance
matrix is diagonal and that an analytical approach is sufficient to compute its elements
using the theoretical covariance already shown in Eq. (2.12) of Sect. 2.1.3. However,
this approach is inadequate for more realistic scenarii, since galaxy surveys are often
plagued with partial sky coverage, and contaminants that may further complicate
the analysis. Although I do consider an ideal survey here, it is still necessary to go
beyond this simple case, especially from the perspective of the potential application
of the protocol to real datasets.

For these reasons, two alternativemethods have been devised, often called “MC1”
and “MC2” in the literature (see e.g. [17] for an application of these approaches).
They are both based on Monte-Carlo techniques (hence the “MC”) and consist in
generating a very large number of as-accurate-as-possible maps (CMB and/or LSS)
ofwhichwe derive the covariancematrix of the cross-correlation. To bemore precise,
let us start with the MC2 method: assuming a fiducial model, the principle of the
method is to generate N pairs4 of galaxy andCMBmapswith the same characteristics
as the original ones and their expected cross-correlation. In practice, these maps are
obtained by generating Gaussian realisations of the theoretical power spectra derived
from the fiducial cosmology and the knowledge of the considered survey (for the
details of the calculations, see e.g. [17]). We then reproduce in these maps the known
features of the original maps, whether it is a partial sky coverage (with a mask) or
a known contaminant. From there, we compute the cross power spectrum for each
of these N pairs of maps, and then derive each element of the covariance matrix
according to:

Mi j = Covar
(
C�i , C� j

) = 1

N

N∑

k=1

[Ck
�i

− C�i ][Ck
� j

− C� j ] (2.17)

where the Ck
� are the cross power spectra of each simulated pair, and C� is the

average of these power spectra over the N pairs. Now the only difference between
the two Monte-Carlo approaches is that in the MC1 method, only maps of the CMB
are generated. They are then correlated to the true galaxy map, and from these
correlations are computed the elements of the covariance matrix.

4 With N typically of the order of ten thousands.
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Fig. 2.4 Normalised his-
tograms of the reconstructed
values of �� by the protocol
described in the text, using
either the MC1 (blue) or the
MC2 (green) method for the
computation of the covariance
matrix involved in the χ2 test.
The true input value of �� is
indicated by the red vertical
line and is equal to the best-fit
value of the parameter from
WMAP7, �� = 0.734

The MC1 is the most widely used estimator in the literature: reasonably fast
to implement, it accounts for the cosmic variance and the accidental CMB/LSS
correlations, supposedly the primary source of error. However it does not account
for the variance in the density maps since only CMB maps are randomly generated.
The MC2 method alleviates these problems by also generating random density maps
(based on a fiducial cosmology and the selection function). However, this method is
more time demanding (moremaps to generate) and requires a robust knowledge of the
features of the considered survey (including its selection function and systematics)
to accurately simulate realisations of it. Finally, a shortcoming common to both
approaches is that they are model dependent and could fail if the data model is
poorly understood (e.g. non-Gaussianity of the maps).

In the remainder of this section, I will focus on how these two MC methods fare
in the context of the objective of my protocol, i.e. the reconstruction of the ��

parameter. After fixing the input cosmology, I thoroughly tested each method by
repeating the following steps thousands of times:

• Simulation of pair of CMB/density maps with the correlation expected from the
chosen cosmology;

• Application of my protocol described earlier to search for the best-fitting ��;
• Storage of the reconstructed �� value in a histogram.

A comparison of the recovered �� values for the two MC methods, along with the
input value (here �

input
� = 0.734, WMAP7 best-fit), is shown in Fig. 2.4. The most

striking feature here is the bias of the MC1 method towards smaller �� values:
although the width of both distributions is quite large (with a noticeably larger trend
for MC1), the peak for the MC1method is still clearly shifted (to�� ∼ 0.69), while
theMC2method shows a much better agreement (peak at�� ∼ 0.74) with the input
value.

We can intuit an explanation for the observed difference between the twomethods,
which revolves around the asymmetrical nature of the MC1 approach. In the ideal
case considered here (no noise, full-sky maps), there are but very little correlations
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between multipoles: the covariance matrix is nearly diagonal, and the values of its
elements tend to the analytical expressions given by Eq. (2.12). Due to the intrinsic
weakness of the iSWsignal (i.e.CT g

� is relatively small),we can simplify this equation
even further and write:

σ 2[CT g
� ] ∼ Cgg

� CT T
�

2� + 1
. (2.18)

In the MC2 method, the matrix is computed once and for all using thousands of
simulated maps, and is completely independent of the data considered. However,
in the MC1 approach, only one density map (the data) is used in the computation
of the covariance matrix. As a consequence, the resulting variance will be directly
proportional to the spectrum of this particular map, according to Eq. (2.18). Over
the thousands of repeated tests that we performed, the Gaussian realisations of this
spectrumwill be sometimes lower, sometimes higher than the fiducialmodel, in equal
proportions. Then, as said above the “low” realisations will give a smaller covariance
matrix (i.e. smaller errors bars), pulling down the �� value preferred by the χ2 test.
On the other hand, the “high” realisations will have larger error bars, and therefore
will not have the same “pull” towards high �� values. This asymmetry in the MC1
method is the most likely explanation for the over-abundance of smaller recovered
�� values when we repeat the test many times.

It stems from the previous analysis that the MC2 method should be the preferable
choice in order to avoid a possible bias on the covariance matrix. However the MC1
approach remains more time-efficient and does not require a deep knowledge of the
considered survey and its systematics, a point which is often not properly controlled.
In any case, whether we want to generate CMB or density maps, some form of model
dependence is always present and has to be accounted for in the interpretation of any
result. In the rest of Sect. 2.2, I will use the MC2 method for the covariance matrix,
bearing in mind its advantages (no bias in the recovered parameters) and limitations
(additional computation time andgoodknowledgeof the considered survey required).

2.2.3 Tomography for iSW Studies

By design, the classic approach to the cross-correlation intrinsically misses part of
the information about the iSW effect itself, as it looks for an integrated signal along
the whole line of sight with no regard for its redshift dependence. Such loss of
information could prove critical, especially in the context of time-varying models
of Dark Energy (e.g. quintessence). But even for a cosmological constant, the iSW
signal recovered by CMB/LSS cross-correlation will have a redshift dependence due
to sheer volume effects (already discussed at the end of Sect. 2.1.1). In the case
of the mock survey that I used in the previous section, the large redshift coverage
and potential iSW S/N (illustrated in Fig. 2.3) might also be squandered by the
classic approach described previously. Now the question that I will develop in the
present section is the following: Could it be possible to modify my protocol of
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Fig. 2.5 Illustration of the
redshift slicing of the ideal
survey (blue solid line) con-
sidered in Fig. 2.3. The selec-
tion function is divided using
“top-hat” functions, into five
redshift intervals (red dashed
lines): z ∈ [0, 0.5], [0.5, 1],
[1, 1.5], [1.5, 2] and [2,∞]
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cross-correlation analysis in order to exploit as much as possible the full potential of
such surveys?

The main idea here is to take advantage of the deepness in redshift of the survey:
oneof theways thatwe can thinkof in order to do so is to “slice” the considered survey.
More precisely, instead of integrating the whole distribution of matter contained
within it to get one densitymap, I divided the survey into redshift bins and constructed
a density map for each. We intuit here already that some care has to be taken when
choosing the shape and the number of bins. The simplest way to slice a survey
would be to simply divide its selection function into redshift intervals (“top-hat”
cuts), as shown in Fig. 2.5. However, one has to remember that the redshift of survey
objects often have errors in their determination. Hu and Scranton [22] supposed that
photometric redshift estimates are Gaussian distributed with an RMS fluctuation
σ(z) that increases with redshift as σ(z) = σmax(1+ z)/(1+ zmax), i.e. the bin sizes
are chosen to increase proportionally to the error. The two free parameters zmax and
σmax roughly correspond to the end of the redshift range of the survey and the redshift
estimate errors around zmax, respectively. Then, a top-hat cut in the [z1, z2] interval
in estimated redshift becomes a smooth overlapping distribution in actual redshift:

nz1→z2(z) = 1

2

d N

dz
(z)

[
erfc

(
z1 − z

σ(z)
√
2

)
− erfc

(
z2 − z

σ(z)
√
2

)]
, (2.19)

where d N/dz is the original, full selection function of the survey. An illustration of
this redshift slicing is shown in Fig. 2.6, which used the same redshift intervals as
the slicing shown in Fig. 2.5. Given this formalism, one could a priori divide a given
survey in as many slices as wanted.

Let us now refocus on our objective: the exploitation of a survey for CMB/LSS
correlations.We have now a different starting point than in the previous section, aswe
have now as many density maps as there are redshift slices. From there, the general
progression of the protocol remains the same: if we suppose that we divided the
considered survey in N redshift bins, we first extract the N angular cross-correlation
power spectra of each density map with the CMB. In parallel to this, we compute
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Fig. 2.6 Redshift slicing of
the same survey of Fig. 2.3
(blue solid line), using the
expression in Eq. (2.19)
for the redshift bins. The
five divisions (red dashed
lines) have the same bounds
(the z1 and z2 in Eq. (2.19)
expression) as the slices in
Fig. 2.5
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the expected theoretical cross-correlation of each slice using the knowledge on the
survey selection function coupled to the expression in Eq. (2.19). And finally, we
perform a χ2 test on all the spectra simultaneously to determine the �� that best
fits all the data. However, one has to be careful once again in the calculation of the
covariance matrix: indeed, as it can be seen clearly in Fig. 2.6, there exists a non-
negligible overlap between the different redshift slices. This overlap is practically
unavoidable as it originates from the (always present) errors in redshift estimations.
It creates therefore correlations between the resulting slices of density maps, which
in turns induces a form of redundancy when cross-correlating all these partial maps
with the CMB. One can then end up with unrealistic results with underestimated
errors bars on the recovered parameters. To account for this “leakage” of the redshift
bins into one another, I proceeded with some additional steps in the computation
of the covariance matrix: when applying the MC2 method, after generating the N
partial density maps (and the CMB map), not only did I correlate each map with
the CMB, but I also correlated each possible pair of density maps. The end result
of this is a non-trivial covariance matrix, that is no longer diagonal even in the case
of an ideal survey, as the non-diagonal terms contain the correlations between the
overlapping redshift slices of the matter distribution.

Now in order to assess the impact of the redshift slicing on the efficiency of
the �� reconstruction, I subjected my revised protocol to the same repeated test
that I performed in the previous section. A particular point that I did not mention
in the previous paragraph is that the simulation of accurate data maps for this test
also has to nclude all the correlations between redshift slices: I therefore had to
extensively modify the CROSS_CMBFAST code so that it would compute not only
the theoretical cross-correlation between the CMB and density slices, but also the
one between each pair of slices. After that was taken care of, I tested my protocol and
explored several slicing strategies, focusing especially on the choice of the number
of slices: I compared five numbers of slices ranging from 0 to 10, and present the
results of the �� reconstruction in Fig. 2.7.

As we can see there, even a simple division of the survey into two redshift slices
yields an appreciable improvement of the �� reconstruction, with a significant
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Fig. 2.7 Normalised histograms of the reconstructed values of �� by the protocol described in
the text, in the context of several slicing choices of the original survey. The number of slices are 0
(meaning the whole redshift range, blue histogram), 2 (purple), 3 (red), 5 (orange) and 10 (yellow),
with the histograms becoming thinner as the number of slices increases. The true input value of ��

is again the WMAP7 best-fit value �� = 0.734

tightening of the distribution: the standard deviation decreases from 
�� ∼ 0.120
to 
�� ∼ 0.093 (drop of ∼25%). The width of the distribution gets even smaller
when I further increase the number of slices, although the improvement becomes
less and less noticeable, reaching a plateau at some point (particularly visible also in
Fig. 2.8). This shows that there is no need to divide the original survey into too many
redshift bins, as the information that we can recover on the �� parameter seems to
reach a limit.

One could possibly ignore this fact (as it has no harmful effect on the reconstruc-
tion) and still carelessly consider as many slices as possible, but another important
parameter has to be taken into account. As the number of redshift bins increases, so
does the number of “density”maps thatwe have to consider, especiallywhen comput-
ing the covariance matrix. In more practical terms, the more maps we have, the more
auto- and cross-correlations we have to perform: one CMBmaps and N redshift bins
yield N (auto) and N (N +1)/2 (cross) spectra. This has two different effects, one of
them being the increase in computation time for the matrix, roughly proportional to
N 2 (times the number of simulations). The less obvious effect is that each underlying
auto- and cross-spectrum gets weaker as we further divide the survey: this has the
impeding consequence of requiring a higher number of simulated maps in order for
the computed covariance matrix to converge. This particular effect is illustrated in
Fig. 2.8, where I show how the width of the distribution of reconstructed�� evolves
with the number of simulated maps used for the covariance matrix computation. We
witness there that the number of simulations required for reaching a plateau does
indeed increase for larger numbers of slices, from only 2,000 for the original survey
to 2–3 times as much for five redshift slices. Combined to the observed convergence
of the recovered �� distribution, we understand that some form of balance has to be
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Fig. 2.8 Standard deviation
of the distribution of recon-
structed �� as a function
of the number of sets of
simulated maps used in the
computation of the covari-
ance matrix. The same slicing
choices as in Fig. 2.7 (with
their corresponding colours)
are explored. The curves get
lower as the number of slices
increases

found between the choice of the number of slices (i.e. the precision of the constraints
on ��) and the number of required simulations (i.e. the computation time needed).

In the end, in this section I only scratched the surface of the topic, as there are
many improvements to my protocol that I could consider for a future work. First, in
the context of real maps and real surveys, a lot of importance has to be given to the
often partial coverage of the sky that has some drastic and intricate effects that affect
the cross-correlation, as well as the presence of foregrounds and contaminants that
further complicates the interpretation of the signal. On the other hand one could be
interested in assessing the full constraining power of the iSW effect on cosmology,
without using any underlying model, using the potential of the future generation of
surveys. Also in the context of an optimal exploitation of future datasets, the exact
choice of redshift slices (shapes) would need a particular tailoring to be as adapted as
possible to each surveys (this kind of work has been explored recently by [24]). As
a final note, although single surveys are not appropriate for it as of now, the slicing
study that I performed may already be applicable to current data in the context of
the combination of surveys for iSW detection: indeed, considering several surveys
together with their own selection functions is quite similar to considering several
slices in redshift (sometimes overlapping) of the same underlying distribution of
matter, although some additional care is required to account for the calibration and
systematics of each survey.

2.3 The Cosmic Infrared Background and the iSW Effect

In Sect. 2.2, I briefly explored some methods of exploiting the potential of the next
generation of surveys, optimising the amount of information extracted while taking
care of the possible complications that may appear along the way.

However, nomatter howpromising these futuremissionsmay look, the time scales
involved in their schedules does not allow much work other than in the realm of
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simulations and predictions. As an example, one of the most exciting future satellite,
Euclid, has its most optimistic launch date scheduled for 2020! The ground-based
LSST also has a similar schedule. Other experiments may have a closer “due date”
(e.g. in the course of 2015 for DES) but still measured in terms of years. On the other
end of the spectrum, recent works have been aimed at exploiting as much as possible
the current generation of surveys, including attempts at combining several datasets
and revising their work at each new data release. In this context, I chose to sit in the
middle ground: I searched for an alternative tracer of matter that could be correlated
to the CMB and that would be both already available in some form, but also with a
better potential that the currently used datasets. Such alternatives have already been
explored in the literature, for example through the correlation between the iSW effect
and the thermal Sunyaev-Zel’dovich effect [44], the latter being the result of a boost
received by CMB photons from high energy cluster electrons by inverse Compton
scattering: a non-zero correlation is indeed expected between the two effects as
these electrons sit in the gravitational potentials that produce the iSW effect. An
interesting aspect of this approach is that it constitutes a “CMB-only” detection of
the iSW effect (although with some underlying assumptions). In a similar fashion,
the [36] explored for the first time the correlation of the CMB with the reconstructed
gravitational lensing potential extracted from the CMB data itself.

As for myself, using some of the assets and expertise available at the IAS, I set my
eyes on an original tracer of matter, which is one of the other few backgrounds of the
Universe: the Cosmic Infrared Background, whose characteristics and exploitation
for iSW studies I will describe in the next sections.

2.3.1 The Blurry Red Light

First discovered by [39], the Cosmic Infrared Background (CIB hereafter) is visible
roughly from 10 to 1,000µm in wavelength and is one of the backgrounds present in
the Universe (see Fig. 2.9). This particular background, present in every survey that
covers infrared wavelengths, arises from the accumulated electromagnetic emissions
from star-forming galaxies distributed across a large redshift range. It finds its origin
in the smallest and farthest galaxies (which cannot be resolved by telescopes and
their finite resolution) and in the densest population of galaxies (whose observation
is confusion-limited), which thus appear as a blurry background. The earliest epoch
for the production of the CIB is thought to be when star formation first began at
the end of the Dark Ages (and the onset of the reionisation epoch); contributions
continued through the present epoch, including our current Dark Energy dominated
era. Similarly to the CMB, the CIB also features anisotropies (first detected and
discussed in [26, 29]) that are shaped by the distribution and clustering of these
infrared galaxies in the Universe.

Ever since its discovery, many efforts have been deployed to detect the CIB
and its anisotropies with increasing precision, as they contain a lot of information
about the star and galaxy formation histories, including their clustering processes.
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Fig. 2.9 Schematic spectral energy distributions (SED) of the most important (by intensity) back-
grounds in the Universe, and their approximate brightness in nW·m−2· sr−1 written in their respec-
tive zones. From right to left the radio background, theCMB, theCIB, the cosmic optical background
(COB), the UV background, the X-ray background (XRB) and the gamma-ray background (GRB).
Image courtesy of H. Dole

Themost recent papers on the CIB anisotropies use sophisticatedmodels which com-
pute the halo occupation distribution (HOD, see e.g. [11, 31]) and the Dark Matter
halos properties, in order to predict the power spectrum of these anisotropies (see
e.g. [32]).

2.3.2 The CIB as an Alternative Tracer of Matter

Wecan easily understand that the anisotropies of theCIB are underlined by the galaxy
density field and thus the matter density fluctuations: it is therefore reasonable to
expect that the CIB has a positive correlation with the CMB through the iSW effect.
We should also bear in mind that it contains contributions from galaxies over a very
large range of redshift (up to z ∼ 7, with a peak of emission around z ∼ 2), and that
it is contained in many past and current surveys (such as IRAS or the newly released
Planck, both covering IR frequencies) that have often a large coverage of the sky.
These two points are the reasons that motivated my choice of the CIB as a tracer of
matter, as they make the CIB a particularly suitable and promising candidate for the
iSW detection by cross-correlation with the CMB. However, the extraction of the
CIB from a survey remains a challenging and delicate task that is still ongoing to this
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day: this ledme to focus first on a theoretical study of the CIB-CMBcross-correlation
through the iSW effect, and an assessment of its detectability.

As mentioned before, the most recent works focused on the studies of CIB
anisotropies used sophisticated HOD to predict and describe them. Such models
are particularly useful when describing the small, non-linear scales of the CIB. In
the context of the iSW effect, we focus on much larger scales which is why I used
a simpler model for the CIB, similar to the description made by [25]. The general
definition of the CIB anisotropies at a given frequency ν and in a given direction n̂
can be then written as the following line-of-sight integral:

δTCIB(n̂, ν) =
0∫

zfar

dz a(z) δ j (n̂, ν, z) (2.20)

with δ j being the emissivity anisotropies of the CIB. The integration is made from
some initial time zfar before star formation began to our location at z = 0. In their
work, Knox et al. hypothesized that the CIB anisotropies are direct tracers of the
matter density fluctuations δ = δρm/ρ̄m , up to a bias factor. Therefore, the previous
expression becomes an integral of the product between a mean far infrared (FIR)
emissivity and the matter density fluctuation field:

δTCIB(n̂, ν) =
0∫

zfar

dz a(z) b j (ν, z) j̄(ν, z) δ(n̂, z). (2.21)

Here the quantity b j (ν, z) is some form of bias that links the matter distribution and
the emissivity. It is frequency- and redshift-dependent and is here defined by:

δ j (n̂, ν, z)

j̄(ν, z)
= b j (ν, z) δ(n̂, z) (2.22)

with j̄(ν, z) being the mean emissivity per comoving unit volume at frequency ν as
a function of redshift z. We can observe here some similarities between Eq. (2.21)
and the expression in Eq. (2.6) of the galaxy density contrast for the usual surveys.
However the selection function has been replaced by the emissivity function, with an
additional scale factor as we no longer consider individual objects that we count on
the sky, but rather the light that the objects emit (which of course gets redshifted in the
time it takes to reach us). There is also here an added dependence on the frequency
through the emissivity: although overlapping, it is different populations of objects
that we observe when surveying different wavelengths. This emissivity function is
derived using an empirical, parametric model based on number counts of galaxies:
at the time of this study I used the work of [6], although a recent update has been
published since (see [7]).
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Fig. 2.10 Left panel emissivities as functions of redshift for six experiment/frequency pairs, com-
puted using the model of [7]. Notice the very slight difference between instruments at 350µm
due to a difference in bandpass. Right panel same functions multiplied by the scale factor a(z), or
equivalently 1/(1 + z), for comparison purposes with selection functions of galaxy surveys

Examples of such emissivities are shown inFig. 2.10 (left panel): it should be noted
that they not only depend on the frequency but also on the experiment considered,
because each instrument possesses a unique bandpass for each frequency and has its
own resolution. This results in the observation of a “unique” CIB map by every pair
of frequency and instrument, corresponding to a population of objects just as unique.
The depth in redshift of the CIB is also illustrated in this figure, with emissivity
functions that theoretically reach much higher redshifts that any current (and even
some future) surveys. We should however keep in mind that, according to Eq. (2.21),
these functions have to be multiplied by the scale factor (right panel of Fig. 2.10)
in order to be compared to the selection function of classic galaxy surveys. This
causes a decrease at high z but even then, they still cover a larger range of redshift
than typical galaxy surveys (see e.g. Figs. 2.1 and 2.3 for comparison). We also note
that Fig. 2.10 shows significant overlaps in redshift between the emissivity functions
at different frequencies which will consequently induce correlations between CIB
observations, similarly to those between redshift slices of a same survey (discussed
in Sect. 2.2.3). At this point, this overlap already indicates that a combined use of
CIB observations at several frequencies may not yield improvements in the detection
of the iSW effect.

A last element that needs to be pointed out is the previouslymentioned linear bias5

b j (ν, z) present in Eq. (2.21) that I chose constant in redshift here: b j (ν, z)=b lin(ν).
To obtain it for each frequency that I considered, I computed the value of b lin that
gives the best agreement between my calculation of the linear CIB power spectrum
and those obtained from the Planck data [34]. This point will be discussed in more
detail in the next subsection.

5 This bias here represents our matter-emissivity bias in Eqs. (2.21) and (2.22) and should not be
confusedwith thewidely used galaxy-DarkMatter bias, though ours does contain information about
how the emitting objects populate Dark Matter halos.
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Now, starting from Eq. (2.21) we can use the same formalism as for the CMB-
galaxy correlation in order to derive the theoretical CMB-CIB cross-correlation at
any given frequency. Following the same steps from Eqs. (2.7) to (2.11), we end
up with similar expressions for both the cross- and auto-correlation spectrum of the
CIB, except that the galaxy bias is replaced by the emissivity one, and the mean
emissivity (times the scale factor) plays the rôle of the selection function. The next
section will be dedicated to the computation of the expected value of these modified
equations in several contexts.

2.3.3 Predictions on the CIB-CMB Cross-Correlation

2.3.3.1 Computing the Expected Correlations

To compute the expressions mentioned at the end of the previous section, I once
again adapted the CROSS_CMBFAST code to use it for this CIB study, performing
a number of modifications to suit this new context. In my customised version, for a
given cosmology and emissivity function j̄(ν, z) my code calculates the CIB-CMB
angular cross-correlation power spectrum, as well as the predicted auto-correlation
power spectrum of the CIB fluctuations.

In Fig. 2.11, I present predictions for the CIB-CMB cross-correlation, at several
FIR wavelengths and for different instruments, namely: IRAS at 100 µm, Herschel
SPIRE at 250, 350 and 500µmandPlanck HFI at 350, 550, 850, 1380, and 2097µm.
We note that at 350µm the SPIRE- and Planck-predicted spectra differ slightly from
each other, once again due to slight differences in wavelength bandwidth of the two
instruments (hence a difference in the emissivities used, see Fig. 2.10).

In a fashion similar to previous galaxy-iSW cross-correlations (see e.g. Fig. 2.2),
we note that the cross-correlation peaks around � � 10–30, and quickly vanishes at
higher multipoles. Comparing the signal at the different wavelengths shows that the
amplitude of the cross-correlation signal is maximum at a wavelength � 250 µm.
This is not entirely surprising, since this wavelength roughly corresponds to the
maximum of the observed CIB spectral energy distribution (cf. Fig. 2.9).

To get some form of validation for my computed spectra, I compared my predic-
tions for CIB autocorrelation to the measurements of [34], taking the opportunity to
address a concern mentioned in the previous section—namely, the determination of
the linear emissivity bias. To obtain it at each frequency, we compute the value of
this bias that gives the best agreement between my linear CIB power spectrum and
the corresponding one obtained from the Planck data. I chose to fit the two spectra
in the range of multipoles � ∈ [10, 50], where most of the iSW signal resides. This
is illustrated in Fig. 2.12 where I plotted the biased and non-biased CIB linear spec-
tra and compared them to the ones from [34] at their four frequencies. Overall, the
two sets of spectra show good agreement over the multipoles of interest; the spectra
deviate at higher �s (starting from �100) due to the rise of non-linearities that I did
not account for in my linear model—namely the small-scale correlations between
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Fig. 2.11 Theoretical angular cross power spectrum of the CIB-CMB correlation calculated for
IRAS at 100 µm (left-hand panel), for Herschel SPIRE between 250 and 500 µm (central panel)
and Planck HFI between 350 and 2,097 µm (right panel). The linear bias, blin, is fixed here to 1 at
all frequencies in order to compare the non-biased CIB power spectra. The vertical dashed line on
each panel marks the upper limit of the multipoles used in our analysis: this choice comes from the
vanishing of the iSW signal (see Fig. 2.13) and the rise of non-linearities at higher �

galaxies inside the same halos. The linear bias we obtain this way increases with
the wavelength: this is coherent with the fact that as we go deeper into the infrared,
the galaxies probed are more luminous at higher z. They reside in more massive and
rarer halos, and are therefore more biased.

It should be also noted that the results on the cross-correlation are also not exact at
the highest �s, as hinted at by the deviation observed in the auto-correlation spectrum.
Indeed, the non-linear counterpart to the iSW effect, called the Rees-Sciama effect,
contributes at those scales (see [41] for a discussion). However, in our case the linear
part of the iSW largely dominates at the peak observed in Fig. 2.11.

2.3.3.2 Detectability Assessment

Following the same progression as for the CMB-galaxy case, I then investigated the
detection level of the iSW effect using CMB-CIB cross-correlation by performing a
signal-to-noise ratio analysis. Using the power spectra that I computed in the previous
section, I can express for each given frequency ν the total signal-to-noise ratio of the
iSW detection as follows:

[
S

N

]2
(ν) =

�max∑

�=2

(2� + 1)
[Ccr

� (ν)]2
[Ccr

� (ν)]2 + CCIB
� (ν) × CCMB

�

(2.23)

where Ccr
� (ν) is the CMB-CIB cross-correlation spectrum, and CCIB

� (ν) the CIB
auto-correlation spectra, both at a given frequency ν, while CCMB

� is the CMB
auto-correlation spectrum. The total (cumulative) signal-to-noise is summed over
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Fig. 2.12 Angular power spectra of the CIB fluctuations at four frequencies of the Planck-HFI
instrument, as fitted by the Planck team (blue uppermost continuous line) and by our non-biased
models (dashed yellow line). For each frequency, we provide in red the linear bias which gives the
best agreement between the two models, and plot our models taking into account this bias (solid
yellow line). The data points correspond to measurements obtained by the Planck team [34]

multipoles between � = 2 and �max � 100 where the signal has its major contribu-
tion (see Fig. 2.11).

In my analysis I considered first the ideal situation where the CIB and CMB
maps used for cross-correlation are noiseless and cover the whole sky. With these
assumptions we obtain the highest possible signal-to-noise ratio, the only limitation
being the cosmic variance. In Fig. 2.13 I present the predictions for the CIB-CMB
cross-correlation in the case of a full-sky CIB map, provided by the previously
mentioned instruments and frequencies.

With these optimistic assumptions, I obtained high levels of detection for the
CIB-CMB correlation which reach �7σ , on par with (if not better than) the most
promising surveys of the generation to come (for detailed S/N results, see Table 2.1
in Sect. 2.3.4). Interestingly, it should be mentioned that these results in the ideal
case are independent of the previously discussed linear bias, even if it boosts the
correlation signal. This can be understood from Eq. (2.23) where the linear bias can
be factorized from each term (one for Ccr

� and a squared one for CCIB
� ) and therefore

cancels out.
As evoked before, we see that the largest contribution to the S/N comes from

multipoles smaller than�50. On the other hand, the most interesting feature of these
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Fig. 2.13 Left-hand panel cumulated S/N as a function of �max (defined in Eq. 2.23) for the CMB-
CIB cross-correlation, at our chosen frequencies and instruments. Right-hand panel total S/N with
�max = 100 as a function of frequency/wavelength. Dotted line is for IRAS, the dashed ones are
for SPIRE, and the dot-dashed ones for Planck

Table 2.1 Total signal-to-noise ratio of the CIB-CMB cross-correlation for four of the CIB fre-
quencies of Planck-HFI

CIB frequency (GHz) 857 545 353 217
CIB wavelength (µm) 350 550 850 1380
Ideal case, single correlation S/N 6.26 6.83 6.98 6.95
Joint S/N 7.12
Realistic case n◦1, single correlation S/N
( fsky = 0.75, fCMB = 0.01, 5.36 5.73 5.39 3.56
Afore. = 0.01)
Joint S/N 5.88
Realistic case n◦2, single correlation S/N
( fsky = 0.15, fCMB = 0.01, 2.40 2.56 2.41 1.59
Afore. = 0.01)

Joint S/N 2.63

The results are given for each frequency and for the joint cross-correlation, first for the ideal case
discussed in Sect. 2.3.3.2 and then for two more realistic cases

results is that contrary to what could be intuited from Fig. 2.11, the total S/N peaks
around 850µm instead of 250µm for the cross-correlation signal itself. The reason
for this is actually quite subtle: it comes from the shape of the “noise” term in the
S/N expression in Eq. (2.23), as a function of �, namely:

[N�]2(ν) ≡ ([Ccr
� (ν)]2 + CCIB

� (ν)CCMB
� )/(2� + 1). (2.24)



2.3 The Cosmic Infrared Background and the iSW Effect 41

Fig. 2.14 “Signal” terms (left-hand panel, rescaled to unity) and “noise” terms (middle panel, same
rescaling factor as the “signal”) of the S/N as functions of � (see text for details) for our chosen
frequencies and instruments. The quotient of the two terms, used in the calculation of the S/N itself,
is shown in the right-hand panel the main difference throughout the frequencies comes from the
shape of the “noise” term

For all the frequencies studied here, this “noise” has roughly the same amplitude
relatively to its corresponding “signal”:

[S�]2(ν) ≡ [Ccr
� (ν)]2. (2.25)

This is illustrated in Fig. 2.14, where I plotted in the left panel all the [S�(ν)]2 terms
with their respective maximum rescaled to unity. In the middle panel, I applied the
same rescaling factor of each [S�(ν)]2 term to the corresponding [N�(ν)]2 term.
By doing this, it is possible to compare the results from all frequencies without
changing their associated signal-to-noise ratios. On the resulting graph, we see that
at � = 100 the rescaled noise amplitude is roughly the same, while the signal has
the same shape at all frequencies, except for a small shift in �. However there is
a major difference in the shape of the noise power spectrum from one frequency
to another: its slope changes depending on the frequency, with the steepest one for
Planck 850µm. Therefore its amplitude goes down more quickly than the others as
� approaches zero where coincidently the signal is strong, which then boosts the S/N
at the low multipoles, and the total S/N.

In light of these results, the optimal frequency for iSW detection appears to be
around 353 GHz/850 µm with a maximum S/N reaching 7σ . However in practice,
the CIB extraction at this frequencymight prove challenging since the CMBbecomes
dominant here, and increasingly so as we go down in frequency. Therefore the pos-
sible residuals in our extracted CIB map have to be accounted for, and other sources
of noise as well, which is the purpose of the next subsection.
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2.3.4 Accounting for Realistic Conditions

The contaminants of theCIB and obstacles to its extraction aremany: first the signal is
completely dominated on a large part of the sky by emissions from our own galaxy.
The contamination from this foreground in the galactic plane is several orders of
magnitude above the CIB level and prevents us from extracting the CIB, therefore
reducing the “usable” fraction of the sky by at least ∼25%. Furthermore, the rest
of the sky is also quite polluted—from a CIB point-of-view—by these foregrounds
full of galactic dust. These will have to be removed from our maps although some
residuals might remain in the final CIB map used for the cross-correlation. There
may even be a significant CMB residual (especially at Planck frequencies) in this
map due to an imperfect separation of components, which could have a dramatic
impact on the cross-correlation and easily induce false detections.

In the light of these elements, it appeared clearly to me that I needed to carry a
more realistic study by including these possible sources of contamination and assess
their impact on the iSW detection. To account for these effects on the detectability of
the CIB-CMB cross-correlation, I used a more complete formulation of the signal-
to-noise ratio, by adding new elements to the noise term. The expression of the S/N
therefore becomes at a given frequency ν:

[
S

N

]2
(ν) = fsky

�max∑

�=2

(2� + 1)

× [Ccr
� (ν)]2

[Ccr
� (ν)+N cr

� (ν)]2 + [CCIB
� (ν)+NCIB

� (ν)][CCMB
� +NCMB

� ] (2.26)

where fsky is the fraction of the sky common to the CMB and the CIBmaps, and N cr
� ,

NCIB
� and NCMB

� are the noise contributions respectively in the cross, CIB and CMB
signal. Since the CMB is expected to be only variance-limited at the multipoles of
interest, I fixed here NCMB

� = 0. However we still have to take into account the CIB
contamination.

To do so, I first break the CIB noise power spectrum into several independent
parts:

NCIB
� (ν) = RCMB

� (ν) + Rfore.
� (ν) + N instr.

� (ν) + N correl.
� (ν) (2.27)

where these four different terms represent, from left to right, the power spectra of the
CMB residual, the galactic foreground residuals, the instrumental noise and finally
the noise due to a correlation between residuals and the CIB (which appears when
autocorrelating the final CIB map).

I quantify the CMB residual in the CIB map as a fraction fCMB of the total CMB
map, which affects both the cross-correlation and CIB noise; this approach assumes
a “global” CMB contamination (on the whole sky) without any spatial dependence.
This consequently defines the noise in the cross signal:
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N cr
� (ν) = fCMB(ν) × CCMB

� (2.28)

and the following two contributions:

RCMB
� (ν) = f 2CMB(ν) × CCMB

� (2.29)

N correl.
� (ν) = 2 fCMB(ν) × Ccr

� (ν) (2.30)

In the literature, the power spectrum of foregrounds such as dust emissions are often
modelled as (and often found to be close to) power laws: here in my analysis I define
the spectrum of the foreground residuals with the following expression:

Rfore.
� (ν) = Afore.(ν) × CCIB

�=10(ν)

(
�

10

)α

, (2.31)

This power law has an amplitude defined relatively to the real CIB signal through a
chosen constant Afore., which defines the quantity:

Afore.(ν) = Rfore.
�=10(ν)/CCIB

�=10(ν) , (2.32)

i.e. the ratio between the foreground residuals and the CIB spectrum at the multipole
� = 10, approximatively where the cross-signal is at its maximum. The slope of
the spectrum α is fixed here for all frequencies; previous analysis of infrared maps
[30, 45] found it to be � −3 for foregrounds at high galactic latitudes. Finally, the
instrumental noise power spectra N instr.

� at each frequency are taken from the first
ten months of Planck data in [35], and extrapolated to the thirty months, i.e. the end
of the fourth Planck full-sky survey.

In this section I focused on four of the five previously described Planck HFI
frequencies, from 217 to 857 GHz. I chose to discard the fifth 143 GHz as the CMB
completely dominates the CIB signal there. I also put aside the IRAS frequency here
because of its weaker significance (even in the ideal case), and the SPIRE frequencies
since the instrument was not scheduled to ever cover very large regions of the sky
(i.e. fsky 
 1), dramatically decreasing its associated S/N—as it is proportional to
the square root of fsky in Eq. (2.26).

At this point, the framework that I devised for the S/N calculation has three input
parameters at each of the four frequencies: fsky, fCMB and Afore., whose values can
be chosen freely. The next step would have been to explore this 3D parameter space
at each frequency and compute the corresponding S/N at each point. Considering the
very large number of possible combinations of parameters, it would not have been
practical to perform and display the complete results of such exploration. Therefore
I made the decision of fixing fsky to two values of interest:

• fsky = 0.75, which corresponds to an optimistic case where the only part of the
sky discarded is the galactic plane; this is an optimistic scenario in the sense that
there are other highly contaminated regions where from the component separation
techniques might not be able to extract the CIB.
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Fig. 2.15 Total signal-to-noise ratio of the CIB-CMB cross-correlation at 353GHz, as a function of
the CMB residuals (in percentage of the total CMB signal) and the foregrounds residuals (through
the parameter Afore.). Left panel fsky = 0.75, the results go from less than 4 to more than 5, from
the brightest colored area to the darkest. Right panel fsky = 0.15, the S/N goes from slightly less
than 1.5 to more than 2, again from the brightest to the darkest area

• fsky = 0.15, which is a low estimate of the area of the sky where the current data
allow for an efficient CIB extraction. The methods currently employed are based
on the use of HI maps as a tracer of the galactic dust, though it only remains valid
for an HI column density lower than a specific threshold (see [34] for details on
these methods).

As far as the two other input parameters are concerned, I limited their ranges to
reasonable values, with fCMB ∈ [0, 0.1] and Afore. ∈ [0, 10].

Among the four Planck frequencies that I kept here, I started by studying the
effects of the noise for the frequency that gave the best S/N results in the ideal case
(850µm/353 GHz)—having in mind that a significant drop in S/N at this wavelength
would not bode well for the rest of them. The corresponding results are presented in
Fig. 2.15 which shows the contour levels of the S/N in the ( fCMB,Afore.) parameter
space. The influence of the CMB is clearly visible at this frequency, quickly reduc-
ing the S/N as its residual level increases. This effect is even more pronounced at
1,380 µm/217 GHz, where the S/N is typically twice as low as in the ideal case
(see Table 2.1), due to the fact that we get closer to the maximum of the SED of
the CMB. It makes this frequency far less significant for the iSW detection than in
the ideal case. The presence of instrumental noise—whose effect cannot be appre-
ciated with Fig. 2.15 alone—becomes significant at the two lowest frequencies (217
and 353 GHz), again reducing their value in the cross-correlation. As expected the
galactic foreground residuals also decrease the S/N, though their influence is roughly
the same at all frequencies as they are defined relatively to the CIB spectrum in this
analysis. Lastly, the biggest influence comes from the fraction of the sky through
the fsky parameter, as the total S/N scales as

√
fsky. This makes it a crucial require-

ment for future applications to have the largest possible coverage to minimize this
effect—very similarly to the requirement of galaxy surveys.



2.3 The Cosmic Infrared Background and the iSW Effect 45

Fig. 2.16 Total signal-to-noise ratio of the CIB-CMB cross-correlation at 545GHz as a function
of the CMB residuals and the foregrounds residuals. Left panel fsky = 0.75, the results go from
slightly less than 4 to more than 5, from the brightest to the darkest area. Right panel fsky = 0.15,
the S/N goes from less than 2 to slightly more than 2.5

Taking all these remarks into account and after some exploration of the parame-
ter space, the optimal frequency that stands out in these more realistic scenarii is
545 GHz/550µm. Indeed, it is weakly influenced by instrumental noise and CMB
residuals and also has a higher “original” S/N (in the ideal case) than the other
remaining frequency 857 GHz/350µm. The S/N analysis at 545 GHz is presented in
Fig. 2.16: for the case of a large but realistic coverage, the S/N still reaches high and
promising values around 4.5 σ . Even in a more pessimistic scenario, the significance
of the detection stays around a 2.5 σ level, comparable with the constraints from
current galaxy surveys.

However, one may wonder here if it is really necessary to argue and determine
which is themost suited frequency for giving the best results for the CMB-CIB cross-
correlation. Indeed, in the same manner as I combined the constraints from redshift
slices in Sect. 2.2.3, it is reasonable to consider the possibility of combining the
cross-correlation signals from the CIB at several frequencies to improve the S/N—a
approach that I will explore in the last section of this chapter.

2.3.5 Multi-frequency Joint Analysis

Until now I have only considered a detection at a single CIB frequency and its
associated significance. In practice, when handling real data, we will most likely
have several maps of the CIB at different frequencies, hence as many cross spectra.
For example, in the case of Planck we should eventually be able to extract the CIB
at four different frequencies on a large fraction of the sky. This could potentially
allow to increase the total signal-to-noise ratio of the iSW detection by combining
the constraints from all available frequencies. However, the improvement brought
by this approach will be limited by the possible intrinsic correlations (and redundant



46 2 Unravelling the iSW Effect Through the Matter Distribution

information) between the CIBmaps at different frequencies—once again in the same
manner as the correlations between redshift slices of a galaxy survey limited the
amount of information available.

I expandedmyprevious S/N formalism to express the theoretical joint significance
of a set of n cross-correlations (i.e. CIB at n frequencies, each correlated to the same
CMB): (

S

N

)2

Total
= X TM−1X (2.33)

with X (X T ) being the column (row) vector of all the cross-correlations:

X T =
(

X T (ν1) . . . X T (νn)
)

where X T (νi ) contains the cross-spectrum at the frequency νi , from � = 2 to 100:

X T (νi ) = (
Ccr

�=2(νi ) . . . Ccr
�=100(νi )

)

The block matrix M is the covariance matrix, containing n × n blocks. Each one
of them represents the covariance of two cross-spectra at different CIB frequencies,
depending on the position of the block. At the i th line and j th column, the block
Mi j is written as:

Mi j =
⎛

⎜⎝
Mi j

�=2 0
. . .

0 Mi j
�=100

⎞

⎟⎠

The diagonality of Mi j comes from the assumption that the different multipoles
are uncorrelated. This could prove no longer true for small fractions of the sky but
gives an upper bound on the S/N. In the noiseless case discussed in Sect. 2.3.3, the
elements of each block can be expressed as follows:

Mi j
� = Covar(Ccr

� (νi),C
cr
� (νj))

= Ccr
� (νi )Ccr

� (ν j ) + CCMB
� CcrCIB

� (νi , ν j )

2� + 1

We can see here the dependence on the aforementioned possible correlation between
the CIB at frequency νi and the CIB at frequency ν j , through the cross-spectrum
CcrCIB

� (νi , ν j ). To perform amore advanced analysis, it is easy to modify this expres-
sion to account for the possible sources of noise discussed in the previous section.

Once again, the large number of possible combinations of noise parameters makes
it unpractical to present a complete study of the joint correlation. Instead I focused on
a few particular cases, motivated by my previous findings. A summary of my results
on single and joint correlations is presented in Table 2.1. Going back first to the ideal
case, I quantified the impact of the joint detection. I found a relatively small gain, as
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it increases the total S/N by a mere �0.15 compared to the maximum significance
of a single detection. This can be attributed to the high correlations between the
CIB at its different observed frequencies, which limits the usefulness of the joint
cross-correlation.

Considering nowmore realistic situations,with the presence of instrumental noise,
I choose to fix some of the free parameters, with fsky = 0.75 and fsky = 0.15. A
reasonable confidence in component separation techniques allows us to hope for
small enough residuals, so that we choose fCMB = 0.01 and Afore. = 0.01. In these
cases, the joint correlation has a limited interest (respectively a � 0.15 and �0.07
gain for fsky = 0.75 and 0.15) due to the correlations in both the CIB signals but also
in the astrophysical noise contributions—CMB and dust—between frequencies.

In the end, in the context ofmymodel, the joint analysis of several CIB frequencies
does not yield a significant improvement over the use of the best single frequency.
This answers our interrogation from the end of the previous section: looking for the
optimal frequency for the iSW detection is enough and justified here in order to focus
the effort in the right direction (especially for the tricky part of the process: the CIB
extraction). Nonetheless, the use of additional frequencies—if available—could have
a non-negligible impact in the presence of a source of uncorrelated noise (between
frequencies), as it would allow to get rid of most of it.

As a conclusion of this first ever investigation of the CIB-CMB cross-correlation,
I found very promising results on the iSW effect and its detectability under various
observational situations. Expected realistic significances range from ∼2.5 to 5.5
depending on the frequency, the levels of noise and the fraction of the sky available
for analysis: these show a great potential compared to even themost promising galaxy
surveys (cf. [2, 13]). The results of this work will be valuable in the forthcoming
years of analysis and exploitation of the Planck data. The formalism I developed
provides an accurate and flexible forecast of the expected results of the CIB-CMB
cross-correlation and allows to constrain the requirements for a significant iSW
detection.

References

1. J.K. Adelman-McCarthy et al., The sixth data release of the sloan digital sky survey. Astrophys.
J. Suppl. Ser. 175, 297–313 (2008)

2. N. Afshordi, Integrated Sachs-Wolfe effect in cross-correlation: the observer’s manual. Phys.
Rev. D 70(8), 083536 (2004)

3. M.A. Agüeros et al., Candidate isolated neutron stars and other optically blank X-ray fields
identified from the ROSAT all-sky and sloan digital sky surveys. Astron. J. 131, 1740–1749
(2006)

4. H. Aihara et al., The eighth data release of the sloan digital sky survey: first data from SDSS-III.
Astrophys. J. Suppl. Ser. 193, 29 (2011)

5. C.L. Bennett, G.F. Smoot, A. Kogut, COBE DMR maps of the microwave sky. In Bull. Am.
Astron. Soc. 22, 336 (1990)

6. M.Béthermin,H.Dole, G. Lagache,D. LeBorgne,A. Penin,Modeling the evolution of infrared
galaxies: a parametric backward evolution model. Astron. Astrophys. 529, A4 (2011)



48 2 Unravelling the iSW Effect Through the Matter Distribution

7. M. Béthermin et al., A unified empiricalmodel for infrared galaxy counts based on the observed
physical evolution of distant galaxies. Astrophys. J. 757, L23 (2012)

8. M. Blanton, R. Cen, J.P. Ostriker, M.A. Strauss, The physical origin of scale-dependent bias
in cosmological simulations. Astrophys. J. 522, 590–603 (1999)

9. E. Boldt, The cosmic X-ray background. Phys. Rep. 146, 215–257 (1987)
10. J.J. Condon et al., The NRAO VLA sky survey. Astron. J. 115, 1693–1716 (1998)
11. A. Cooray, R. Sheth, Halo models of large scale structure. Phys. Rep. 372, 1–129 (2002)
12. P.-S. Corasaniti, T. Giannantonio, A. Melchiorri, Constraining dark energy with cross-

correlated CMB and large scale structure data. Phys. Rev. D 71(12), 123521 (2005)
13. M. Douspis, P.G. Castro, C. Caprini, N. Aghanim, Optimising large galaxy surveys for ISW

detection. Astron. Astrophys. 485, 395–401 (2008)
14. F.-X. Dupé, A. Rassat, J.-L. Starck, M.J. Fadili, Measuring the integrated Sachs-Wolfe effect.

Astron. Astrophys. 534, A51 (2011)
15. D.J. Fixsen, The temperature of the cosmicmicrowave background. Astrophys. J. 707, 916–920

(2009)
16. J. Garriga, L. Pogosian, T. Vachaspati, Forecasting cosmic doomsday from CMB-LSS cross-

correlations. Phys. Rev. D 69(6), 063511 (2004)
17. T. Giannantonio et al., Combined analysis of the integrated Sachs-Wolfe effect and cosmolog-

ical implications. Phys. Rev. D 77(12), 123520 (2008)
18. T. Giannantonio, R. Crittenden, R. Nichol, A.J. Ross, The significance of the integrated Sachs-

Wolfe effect revisited. Mon. Not. R. Astron. Soc. 426, 2581–2599 (2012)
19. K.M. Górski et al., HEALPix: a framework for high-resolution discretization and fast analysis

of data distributed on the sphere. Astrophys. J. 622, 759–771 (2005)
20. C. Hernández-Monteagudo et al., The SDSS-III baryonic oscillation spectroscopic survey:

constraints on the integrated Sachs-Wolfe effect. Mon. Not. R. Astron. Soc. 438, 1724–1740
(2014)

21. S. Ho, C. Hirata, N. Padmanabhan, U. Seljak, N. Bahcall, Correlation of CMBwith large-scale
structure. I. Integrated Sachs-Wolfe tomography and cosmological implications. Phys. Rev. D
78(4), 043519 (2008)

22. W. Hu, R. Scranton, Measuring dark energy clustering with CMB-galaxy correlations. Phys.
Rev. D 70(12), 123002 (2004)

23. T.H. Jarrett et al., 2MASS extended source catalog: overview and algorithms. Astron. J. 119,
2498–2531 (2000)

24. G. Jürgens, B.M. Schäfer, Integrated Sachs-Wolfe tomography with orthogonal polynomials.
Mon. Not. R. Astron. Soc. 425, 2589–2598 (2012)

25. L. Knox, A. Cooray, D. Eisenstein, Z. Haiman, Probing early structure formation with far-
infrared background correlations. Astrophys. J. 550, 7–20 (2001)

26. G. Lagache, J.L. Puget, Detection of the extra-galactic background fluctuations at 170 mu m.
Aston. Astrophys. 355, 17–22 (2000)

27. D. Larson et al., Seven-year Wilkinson microwave anisotropy probe (WMAP) observations:
power spectra and WMAP-derived parameters. Astrophys. J. Suppl. Ser. 192, 16 (2011)

28. D.N. Limber, The analysis of counts of the extragalactic nebulae in terms of a fluctuating
density field II. Astrophys. J. 119, 655 (1954)

29. H. Matsuhara et al., ISO deep far-infrared survey in the “Lockman Hole”. II. Power spectrum
analysis: evidence of a strong evolution in number counts. Astron. Astrophys. 361, 407–414
(2000)

30. M.-A. Miville-Deschênes, G. Lagache, J.-L. Puget, Power spectrum of the cosmic infrared
background at 60 and 100 µm with IRAS. Astron. Astrophys. 393, 749–756 (2002)

31. J.A. Peacock, R.E. Smith, Halo occupation numbers and galaxy bias. Mon. Not. R. Astron.
Soc. 318, 1144–1156 (2000)

32. A. Pénin, O. Doré, G. Lagache, M. Béthermin, Modeling the evolution of infrared galaxies:
clustering of galaxies in the cosmic infrared background. Astron. Astrophys. 537, A137 (2012)

33. W.J. Percival et al., The shape of the sloan digital sky survey data release 5 galaxy power
spectrum. Astrophys. J. 657, 645–663 (2007)



References 49

34. Planck Collaboration, Planck early results. XVIII. The power spectrum of cosmic infrared
background anisotropies. Astron. Astrophys. 536, A18 (2011a)

35. Planck Collaboration, Planck early results. VI. The high frequency instrument data processing.
Astron. Astrophys. 536, A6 (2011b)

36. Planck Collaboration, Planck 2013 results. XIX. The integrated Sachs-Wolfe effect (2013a).
ArXiv:1303.5079

37. Planck Collaboration, Planck 2013 results. I. Overview of products and scientific results
(2013b). ArXiv:1303.5062

38. Planck Collaboration, Planck 2013 results. XVI. Cosmological, parameters (2013c).
ArXiv:1303.5076

39. J.-L. Puget et al., Tentative detection of a cosmic far-infrared background with COBE. Astron.
Astrophys. 308, L5 (1996)

40. U. Sawangwit et al., Cross-correlating WMAP5 with 1.5 million LRGs: a new test for the ISW
effect. Mon. Not. R. Astron. Soc. 402, 2228–2244 (2010)

41. B.M. Schäfer, A.F. Kalovidouris, L. Heisenberg, Parameter estimation biases due to contri-
butions from the Rees-Sciama effect to the integrated Sachs-Wolfe spectrum. Mon. Not. R.
Astron. Soc. 416, 1302–1310 (2011)

42. U. Seljak, M. Zaldarriaga, A line-of-sight integration approach to cosmic microwave back-
ground anisotropies. Astrophys. J. 469, 437 (1996)

43. D.N. Spergel et al., First-year Wilkinson microwave anisotropy probe (WMAP) observations:
determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148, 175–194 (2003)

44. N. Taburet, C. Hernández-Monteagudo, N. Aghanim,M. Douspis, R.A. Sunyaev, The ISW-tSZ
cross-correlation: integrated Sachs-Wolfe extraction out of pure cosmicmicrowave background
data. Mon. Not. R. Astron. Soc. 418, 2207–2218 (2011)

45. E.L. Wright, Angular power spectra of the COBE DIRBE maps. Astrophys. J. 496, 1 (1998)

http://arxiv.org/abs/+1303.5079
http://arxiv.org/abs/+1303.5079
http://arxiv.org/abs/+1303.5079
http://arxiv.org/abs/+1303.5062
http://arxiv.org/abs/+1303.5062
http://arxiv.org/abs/+1303.5062
http://arxiv.org/abs/+1303.5076
http://arxiv.org/abs/+1303.5076
http://arxiv.org/abs/+1303.5076


http://www.springer.com/978-3-319-07745-1


	2 Unravelling the iSW Effect Through  the Matter Distribution
	2.1 CMB Cross-Correlation with Tracers of Matter
	2.1.1 The Principle
	2.1.2 Theoretical Framework
	2.1.3 Application to Detectability and Test Case
	2.1.4 State-of-the-Art of the iSW Detection

	2.2 Optimising the Cross-Correlation for iSW Detection
	2.2.1 Context and Tools
	2.2.2 Simulations, Covariance Estimation and Parameter  Recovery
	2.2.3 Tomography for iSW Studies

	2.3 The Cosmic Infrared Background and the iSW Effect
	2.3.1 The Blurry Red Light
	2.3.2 The CIB as an Alternative Tracer of Matter
	2.3.3 Predictions on the CIB-CMB Cross-Correlation
	2.3.4 Accounting for Realistic Conditions
	2.3.5 Multi-frequency Joint Analysis

	References


