
Chapter 2
Mathematical and Statistical Properties
of Decomposition Techniques. The Splines
Method

2.1 Introduction

As discussed in Chap. 1, the theoretical Divisia index is calculated upon the basis
of the continuous time paths of the observed variables. However, only a finite
number of discrete observations is available in practice. As seen in the above
chapter, two basic strategies may be applied in order to alleviate that discrepancy
between continuous theory and discrete data. Most authors have opted for dis-
cretizing theory. This is the spirit of methods such as general PDM1 and PDM2
discussed in Chap. 1. Alternatively, a few contributions in the literature have taken
the opposite direction, i.e., generating approximate continuous time paths that
more properly adapt to the theory. This is the basic idea of some techniques as the
path-based method (Fernández Vázquez and Fernández González 2008).

In this chapter we propose a new continuous time decomposition method that is
based on spline interpolation. Our analysis relies on classical results of the
mathematical theories of spline interpolation and approximation of functions (e.g.,
Powell 1981, Chap. 23), as well as on certain stochastic analogues of these results.
We begin by studying some mathematical properties of additive and multiplicative
decompositions. For the sake of brevity we shall focus on the specific problem of
decomposing the variation of a ratio (namely, the energy intensity ratio) in two
factors (respectively, structural and intensity effects), although our theoretical
results are valid in more general cases, as to be detailed below.

Our proposal may be regarded as nonparametric, since no functional form is
assumed for the (deterministic or stochastic) paths to be reconstructed. We shall
only impose the requirement of convergence of the approximate, spline-interpo-
lation-based decompositions to their theoretical, continuous time analogues.

Our analysis will follow this sequence: first, upon the basis of a finite set of
discrete observations of the relevant variables (namely, production levels and
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energy consumptions), a reconstruction of their continuous time trajectories is
generated.1

Secondly, approximations to the quantities of interest (namely, the intensity
change for the period under study and its components) in Divisia-based decom-
position analysis are constructed by plugging the interpolated trajectories into the
relevant path integrals. Then, convergence—as the sampling is performed on an
increasingly finer time mesh—towards the exact (continuous time) decomposition
of energy intensity is derived. Finally, the analysis is extended to the stochastic
field, by the expedient of assuming that the time paths are generated by continuous
time stochastic processes having appropriate regularity properties.

2.2 Path Reconstruction Through Interpolation.
The Splines Method

We shall consider classical polynomial splines, with a single variable t (the time
index), where �1� a� t� b�1 for arbitrary values a and b. Following the
usual definition (e.g., Powell 1981, Chap. 3, page 29), a piecewise polynomial
function QðtÞ is called a spline of degree K in ½a; b� if QðtÞ is a polynomial of
degree K in each section and has continuous derivatives up to order K � 1 in ½a; b�.
Formally we will say that QðtÞ belongs to the function space CK�1½a; b� of all
functions with continuous derivatives up to order K � 1 in ½a; b�. In particular,
we are interested in the approximation capabilities of splines on interval [0,1].
In that specific case, every spline QðtÞ of degree K is characterized by a set
Nn ¼ t1; . . .; tnf g of points called knots, such that �1� a\0 ¼ t1\t2\ � � �
\tn ¼ 1\b�1 and the spline may be expressed in the following form:

Q tð Þ ¼
XK

j¼0

cjt
jþ
Xn�1

i¼2

diðt � tiÞKþ ð2:1Þ

where cj and dj are constants and ðÞKþ denotes the truncated power of degree K, i.e.,

ðzÞKþ ¼ maxð0; zÞ½ �K .
Splines are very flexible structures that allow function interpolation in a way

that preserves a number of interesting features, such as monotonicity and con-
vexity of the interpolated functions (e.g., DeVore and Lorentz 1993, Chap. 13).

1 Path reconstruction can be accomplished through a number of interpolation techniques. Two
basic requirements are derived from the characteristics of the above theoretical decomposition:
(a) the interpolants must be able to approximate the relevant time paths and their derivatives up to
first order, and (b) the proposed methods should lead to exact decompositions of the variation in
energy intensity. These two requirements, as well as computational simplicity, are fulfilled by the
splines method.
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Within the many spline-based approximation and interpolation techniques,
those based on so-called natural splines have particularly interesting capabilities.
Let Wm[a; b] be the Sobolev space consisting of all functions having continuous
derivatives in [a; b] up to order m� 1 (i.e., the set functions belonging to the
function space Cm�1 a; b½ � and having square integrable mth order derivatives in
[a; b], with m ¼ 1; 2; . . .; e.g., Adams 1975, Chap. 3). Natural splines were pro-
posed by Schoenberg (1964) as a solution to the following variational problem (we

slightly adapt Schoenberg’s general formulation to our problem): find a function f̂
belonging to Wm[a; b] which solves the following minimization problem

min
f̂2Wm a;b½ �

Zb

a

Dmf̂ tð Þ
� �2

dt ð2:2Þ

subject to the set of conditions f̂ (ti) ¼ f (ti), where i ¼ 1; . . .; n and
�1� a\0 ¼ t1\t2\ � � �\tn ¼ 1\b�1. Classical results (e.g., Powell 1981,
Chap. 23, Theorems 23.1–23.2) show that, provided that the number of observa-
tions is n�m, the above variational problem has a unique solution which is a
natural spline of order m, i.e., a spline of degree 2m � 1 and continuous deriva-
tives up to order 2m � 2.

An especially interesting feature of natural splines of order m is that they are
able to uniformly approximate arbitrary smooth functions and their derivatives up
to order m� 1 on compact sets. Proposition 1 below formally states this property
(again this is a particularization, adapted to our setting, of a general property of
natural splines; e.g., Wahba 1990; also see Schultz 1973): we shall focus on the
problem of approximating in interval 0� t� 1 an arbitrary function f belonging to
Sobolev space Wm½a; b�, with �1� a\0� t� 1\b�1, upon the basis of a
sample of n observations (i.e., n points in the graph of the function).2 In the
remainder of the chapter we will denote by Daf the ath order derivative of f , with
D0f ¼ f .

Proposition 1 (Wahba 1990, pp. viii–ix) Let f be a function belonging to

Wm[a; b]. Then, for some constant L\1, the natural spline of interpolation f̂
(with order m and degree 2m� 1) that interpolates f at
Nn ¼ ti ¼ i� 1ð Þ= n� 1ð Þ; i ¼ 1; . . .; nf g, satisfies

max
0� a�m�1

sup
0� t� 1

Da f̂ tð Þ � Daf tð Þ
�� ��� L n� 1ð Þ� m�að Þ ð2:3Þ

2 For notational simplicity we will consider data evenly spaced in time, although the results of
this chapter are valid for unevenly spaced observations, under the condition that the maximum
distance between any two consecutive observations converges to zero as n goes to infinity.
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Proposition 1 ensures that, under very general conditions, if the function to be
reconstructed is smooth enough, the natural spline interpolant and its derivatives
up to order m� 1 converge uniformly to f and its respective derivatives, as the
graph of the function is more densely sampled. Our derivations in this chapter rely
heavily on this property.

As a simple illustration, Fig. 2.1 displays a reconstruction of f (t) ¼
(t þ 0:02)1=2, 0� t� 1, on the basis of Dn ¼ ti; f tið Þð Þ; ti ¼ i� 1ð Þ= n� 1ð Þ;f
i ¼ 1; 2; . . .; ng, using only n ¼ 4 observations.

As shown in Fig. 2.1, the deviation between the function and its natural (cubic)
spline interpolant is barely noticeable.

2.3 Mathematical Properties. Convergence

The above smooth approximation properties of splines can be applied to path
approximation in the general Divisia problem. As to be shown below, decompo-
sitions based on spline interpolation converge to the theoretical (continuous time)
solution of the Divisia problem. We shall focus on the representative case of the
decomposition of the variation of energy intensity in a given period. For simplicity
we consider the unit interval, 0� t� 1, with t being the time index (any other finite
interval may be chosen instead).

We shall assume that the economy is composed of r sectors (j ¼ 1; . . .; r), and
the following notation will be used:

ej tð Þ: Instantaneous energy consumption in sector j evaluated at time t,
yj tð Þ: Instantaneous production of sector j at time t,
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1.1Fig. 2.1 Function
f (t) ¼ (t þ 0:02)1=2 (dotted
line) and spline interpolant
(solid line) with n ¼ 4
observations (represented as
asterisks)
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e tð Þ ¼
Pr

j¼1
ej(t): Total energy consumption at t,

y tð Þ ¼
Pr

j¼1
yj(t): Total production at t.

2.3.1 Additive Decomposition

Aggregate energy intensity at time t is defined as usual:

I(t) ¼ e tð Þ
y tð Þ ð2:4Þ

As e tð Þ ¼
Pr

j¼1
ejðtÞ, the following decomposition is readily obtained:

I tð Þ ¼
Xr

j¼1

ejðtÞ
yðtÞ ¼

Xr

j¼1

ejðtÞ
yjðtÞ

yjðtÞ
yðtÞ ¼

Xr

j¼1

IjðtÞ � SjðtÞ ð2:5Þ

where Ij tð Þ ¼ ej tð Þ=yj tð Þ is the energy intensity in sector j and Sj tð Þ ¼ yj tð Þ=y tð Þ is
the share of sector j in the total production at time t.

Under Assumptions 1 and 2 below, the intensity function IðtÞ has a continuous
first order derivative in ½0; 1� admitting the following decomposition:

D1I(t) ¼
Xr

j¼1

D1Ij(t) � Sj(t)þ
Xr

j¼1

Ij(t) � D1Sj(t) ð2:6Þ

The above expression directly results in the following additive decomposition
of the intensity variation:

I1 � I0 ¼ TE ¼ IE þ SE ð2:7Þ

where I0 ¼ I 0ð Þ, I1 ¼ I 1ð Þ, TE is the total effect (or intensity change), IE ¼
R1

0

Pr

j¼1
D1Ij(t) Sj(t)

 !
dt is the intensity effect, and SE ¼

R1

0

Pr

j¼1
Ij(t)D1Sj(t)

 !
dt is

the structural effect, all of them referred to the accumulation period between t ¼ 0
and t ¼ 1.

More generally, the variation of total intensity between 0 and t, denoted by
TE tð Þ, with 0� t� 1, may be decomposed as TE tð Þ ¼ IE tð Þ þ SE tð Þ, with

IE tð Þ ¼
Rt

0

Pr

j¼1
D1Ij uð ÞSjðuÞ du being the intensity effect accumulated up to t and
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SE tð Þ ¼
Rt

0

Pr

j¼1
D1Sj uð ÞIj uð Þ du being the structural effect accumulated along the

same period, so that evidently TE 1ð Þ ¼ I1 � I0.
We shall consider natural cubic spline interpolants, denoted by êj tð Þ and ŷj tð Þ,

respectively, for the time paths ej tð Þ and yj tð Þ, j ¼ 1; . . .; r, 0� t� 1. Spline in-
terpolants for total energy consumption eðtÞ and total production yðtÞ are readily

obtained upon the basis of ej tð Þ and yj tð Þ, respectively, as ê tð Þ ¼
Pr

j¼1
êj(t) and

ŷ tð Þ ¼
Pr

j¼1
ŷj(t), which evidently coincide with the natural spline interpolants for

eðtÞ and yðtÞ, and under the conditions of Proposition 1 below will converge
uniformly to eðtÞ and yðtÞ, respectively, and their derivatives up to order 1. Plug-in
interpolants for the intensities and production shares are defined directly on the
basis of êj tð Þ and ŷj tð Þ. In particular:

Îj tð Þ ¼ êj tð Þ=ŷj tð Þ: interpolant for energy intensity in sector j,

Î tð Þ ¼ ê tð Þ=ŷ tð Þ: interpolant for aggregate energy intensity,
Ŝj tð Þ ¼ ŷj tð Þ=ŷ tð Þ: interpolant for the production share of sector j.
Evidently, the above three interpolants are no longer splines, although they

inherit most approximation capabilities of splines êj tð Þ and ŷj tð Þ, which suffices for
our purposes.

The above structures interpolate the discrete set of observations of the relevant
variables (consumptions, productions, intensities, shares) and, as to be shown
below, they also provide suitable approximations to the continuous time paths of
these variables and their first derivatives.

We shall consider the following plug-in approximants to functions IEðtÞ, SEðtÞ

and TEðtÞ, respectively, ÎE tð Þ ¼
Rt

0

Pr

j¼1
D1Îj uð ÞŜjðuÞdu, ŜE tð Þ ¼

Rt

0

Pr

j¼1
Îj uð ÞD1Ŝj uð Þdu

and T̂E tð Þ ¼ ÎE tð Þ þ ŜE tð Þ, with 0� t� 1. Evidently, ÎE ¼ÎE 1ð Þ, ŜE ¼ŜE 1ð Þ and
T̂E ¼ T̂E 1ð Þ will be, respectively, plug-in approximants for IE, SE and TE, cor-
responding to the whole accumulation period.

To ensure that the above interpolants satisfy Proposition 1 we will impose the
following regularity conditions on the paths we want to reconstruct:

Assumption 1 For each j ¼ 1; . . .; r: (i) sector consumption ej tð Þ has continuous

derivatives up to order 1 in [0,1], with
R1

0
D2ej(t)
� �2

dt� c\1, and (ii)

ej tð Þ�m [ 0.

Assumption 2 For each j ¼ 1; . . .; r: (i) sector production yj tð Þ has continuous

derivatives up to order 1 in [0,1], with
R1

0
D2yj tð Þ
� �2

dt� c\1, and (ii)

yj tð Þ�m [ 0.
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The following proposition shows that the above approximations converge to the
theoretical, continuous time effects as the number of observations (n) and its
denseness in ½0; 1� increase.

Proposition 2 (Convergence of the additive decomposition) Let

T̂En ¼
R1

0

Pr

j¼1
D1 Îj tð ÞŜj(t)þ Îj tð ÞD1Ŝj(t)
� �

dt be the plug-in approximant to TE

generated through natural spline interpolation (of order 1 and degree 3) of the
time paths, applied to the set of observations Dn ¼ ti; e1 tið Þ; . . .; er tið Þ;ðf
y1 tið Þ; . . .; yr tið ÞÞ; ti ¼ i� 1ð Þ= n� 1ð Þ; i ¼ 1; . . .; ng. Then the following holds
under Assumptions 1 and 2:

(a) T̂En ! TE as n!1, and in particular

(b) T̂En � TE
�� ��� L1 n� 1ð Þ�1 for some L1\1 and all n large enough. h

An analogue result holds for the plug-in approximations for IE and SE, and for
those of functions ÎE tð Þ, ŜE tð Þ and T̂E tð Þ themselves (see the proof of Proposition
2 in Appendix I below).

2.3.2 Multiplicative Decomposition

The above ideas are readily extended to the multiplicative case, where the loga-
rithmic total effect is defined as follows:

LTE ¼ LTE(1) ¼ ln I1=I0ð Þ ¼
Z1

0

D1 ln I(t) dt ¼

Z1

0

Xr

j¼1

D1Ij tð ÞSj tð Þ
I(t)

dt þ
Z1

0

Xr

j¼1

Ij tð ÞD1Sj tð Þ
I tð Þ dt

ð2:8Þ

The intensity effect accumulated until t is Rint tð Þ ¼ exp LIE tð Þð Þ, with

LIE tð Þ ¼
R t

0

Pr
j¼1

D1Ij uð ÞSj uð Þ
I uð Þ du being the logarithmic intensity effect for the ½0; t�

period. Similarly the structural effect accumulated up to t is Rstr tð Þ ¼ exp LSE tð Þð Þ,
where LSE tð Þ ¼

R t
0

Pr
j¼1

Ij tð Þ D1Sj tð Þ
I tð Þ dt is the logarithmic structural effect.

The magnitude to decompose is the total effect accumulated at t, which is
simply R tð Þ ¼ Rint tð Þ Rstr tð Þ, with R 1ð Þ ¼ I1=I0 being the ratio of intensities at
t ¼ 1 and t ¼ 0.

We will approximate LTE by its spline-based analogue, namely,
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L̂TEn ¼
Z1

0

Xr

j¼1

D1Îj tð Þ Ŝj tð Þ
Î(t)

dt þ
Z1

0

Xr

j¼1

Îj tð Þ D1Ŝj tð Þ
Î tð Þ

dt ð2:9Þ

Analogously to the additive case, the following convergence result holds for
(2.9):

Proposition 3 (Convergence of the multiplicative decomposition) Let L̂TEn be
the plug-in approximant to LTE generated through natural interpolation splines
(of order 1 and degree 3) by using the observation set Dn ¼ ti; e1 tið Þ; . . .; er tið Þ;ðf
y1 tið Þ; . . .; yr tið ÞÞ; ti ¼ i� 1ð Þ= n� 1ð Þ; i ¼ 1; . . .; ng. Then the following holds
under Assumptions 1 and 2:

(a) L̂TEn ! LTE as n!1, and in particular

(b) L̂TEn � LTE
�� ��� L1 n� 1ð Þ�1 for some L1\1 and all n large enough.

Therefore, the logarithmic total effect (and also the intensity and structural
ones) are uniformly approximated by their natural spline analogues.

2.4 Stochastic Analysis

In this section we will analyze the behaviour of T̂En and L̂TEn in a probabilistic
setting where the data used for path reconstruction are generated by a sufficiently
regular stochastic process. We will show that, under general conditions, these two
approximants are random variables and converge with probability 1 (and therefore
in distribution) to TE and LTE (which are also random variables), respectively, as
n!1.

Let X;A;Pð Þ be a complete probability space. The set of time paths in ½0; 1� will
be given by vector function Z ¼ z1; . . .; z2rð Þ, where zj ¼ ej; zrþj ¼ yj; j ¼ 1; . . .; r
are the trajectories of energy consumption and production for each of the r sectors.
Thus, for each t;xð Þ with t 2 0; 1½ � and x 2 X, we will have Z t;xð Þ ¼
e1 t;xð Þ; . . .; er t;xð Þ; y1 t;xð Þ; . . .; yr t;xð Þð Þ, which is a vector of observations at

time t. By allowing t to range between 0 and 1, a path vector is obtained.
Regarding the set of trajectories, we assume as in the previous section that, for all
fixed x 2 X, each component of Z ¼ Z t;xð Þ has continuous derivatives up to
order 1 in ½0; 1�. Thus, we will say that Z is defined on function space
S ¼

Q
2r
i¼1C1 0, 1½ �, endowed with the metric induced by the norm

Zj jj j ¼ maxj¼1;...;2r max0� a� 1 max0� t� 1 Dazj tð Þ
�� ��. Equipped with this norm, S is a

complete separable metric space.3

3 See Dudley (1973) for sets of conditions ensuring differentiability, continuity and Lipschitz
properties for stochastic processes, both Gaussian and non-Gaussian.
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We shall denote by B Sð Þ the class of Borel sets in S, i.e., the smallest r-algebra
containing all open subsets (in the sense of the metric induced by the norm :j jj j) of
S. The ordered pair S;B Sð Þð Þ is a probabilizable space. We assume that the sto-
chastic process Z is a random element of S, that is, a measurable mapping of X into
S. Therefore, for each event B in B Sð Þ, an event A in A exists such that Z(A) ¼ B.
Note that the norm :j jj j is a B Sð Þ-measurable function. The mapping
P0ðBÞ ¼ P(Z�1(B)), B 2 B Sð Þ, defines a probability measure P0 induced by Z, and
a final probability space S;BðSÞ;P0ð Þ. (For simplicity we will also use the same
symbol P to denote P0, with the proper interpretation to be deduced from the
context in each case.)

For each m [ 0 we will denote by Am the set of paths Z ¼ z1;. . .; z2r

� �
2 S such

that minj¼1;...;2r min0� t� 1 D1zj tð Þ�m. We will impose the following condition,
which is a stochastic analogue of Assumptions 1 and 2 above:

Assumption 10 For every x 2 X: (i) each component of Z :;xð Þ belongs to
W2½a; b�, and (ii) for some m [ 0 not depending on x 2 X, it holds Z :;xð Þ 2 Am.4

Under Assumption 10, the total effects TE and LTE, can be expressed as
TE ¼ g Zð Þ and LTE ¼ h Zð Þ, respectively, where g :ð Þ and h :ð Þ are functionals of
Z with expressions given by Propositions 2 and 3, respectively. It is readily verified
that both g and h are continuous in Am, that is, for every Z; Z 0 2 Am, Z 0 � Zj jj j ! 0
implies g Z 0ð Þ � g Zð Þj j ! 0 and h Z 0ð Þ � h Zð Þj j ! 0. (This may be readily deduced
by the same procedure used in the proof of Propositions 2 and 3 and Lemmas A.1–
A.3 in Appendix I). As Z is B Sð Þ-measurable, continuity of g :ð Þ and h :ð Þ implies
that both TE ¼ g Zð Þ and LTE ¼ h Zð Þ are random variables (e.g., Billingsley,
1968, Appendix II, p. 222), i.e. measurable functions with respect to the r-algebra
B <ð Þ, defined on the real line <.

We now consider the probabilistic behaviour of T̂En and L̂TEn, constructed as
described in the previous section. It is easily derived that both T̂En and L̂TEn are
random variables under Assumption 10. For each x 2 X the sample realizations
T̂En xð Þ and L̂TEn xð Þ of T̂En and L̂TEn are standard Riemann integrals so
extension to the stochastic field is straightforward.5

Proposition 4 Under Assumption 10:

(a) For all n large enough T̂En and L̂TEn are B <ð Þ-measurable.
(b) As n!1; T̂En ! TE and L̂TEn ! LTE with probability 1 (and therefore in
distribution).

4 The results in these section are also obtained if Assumption 10 holds almost surely, i.e., for each
x 2 X excepting a set N 2 A with P(N) ¼ 0.
5 The proof of Proposition 4 in Appendix I relies on a version of the Continuous Mapping
Theorem that requires all integrals to be defined pointwise, i.e., as standard Riemann integrals for
almost each x 2 X. Therefore, use of more general (mean square) stochastic integrals is not
sufficient for our purposes. In addition, mean square integration requires more restrictive
conditions, such as finite variances (e.g., Tanaka 1996, Chap. 3, page 71), not imposed in
Assumption 1’ above.
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2.5 Concluding Remarks

In this chapter we have established—using as an illustration the problem of
decomposing the change in energy intensity—that the exact decompositions based
on spline interpolation of the time paths converge to the values derived from the
theory of continuous time Divisia indices. These theoretical quantities may be seen
as (deterministic and stochastic, respectively) limits of sequences of spline-based
approximations. To obtain these results we have relied on some mathematical
properties of classical cubic spline interpolation.

The splines method provides a workable alternative to mainstream techniques
developed so far in the IDA literature. It incorporates a number of advantages,
including (i) its being nonparametric in nature, and (ii) its objective (or fully
automatic) character, as it does not depend on any parameters to be subjectively
chosen by the researcher. In addition, (iii) it is an exhaustive method (in the sense
of having zero residual) that naturally verifies the circular property of index
numbers, thus allowing so-called time series decompositions. Finally, (iv) the
splines method may be applied in multilevel decompositions, provided that time
series of sufficient length are available for all the quantities involved in the
decomposition analysis.

The results of this chapter can be readily extended to a number of closely
related problems. For instance, in Chap. 3 below the splines method is applied to a
decomposition of energy intensity under a different number of factors than con-
sidered in this chapter, and in Chap. 4 it is used to decompose the variation of an
absolute magnitude (namely, greenhouse gas emissions). More generally, the
splines method may be applied to the (respectively, additive or multiplicative)
decomposition of the variation of the product of any finite number of components
or time paths (e.g., Fernández Vázquez and Fernández González 2008), and more
generally to decomposing the variation of a differentiable functional of a vector of
smooth time paths. The arguments developed in this chapter for the case of energy
intensity directly extend to those more general settings.

Appendix I: Mathematical Proofs of Chapter 2

The following two lemmas are required for the proof of Proposition 2.

Lemma A.1 Under Assumptions 1 and 2, there exists a constant B\1 such that
the following holds for j ¼ 1; . . .; r and 0� a� 1:

(a) maxt2½0;1� Daêj tð Þ � Daej tð Þ
�� ���B n� 1ð Þ� 2�að Þ, and

(b) maxt2½0;1� Daŷj tð Þ � Dayj tð Þ
�� ���B n� 1ð Þ� 2�að Þ.

Proof The Lemma is a direct consequence of Proposition 1.
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Lemma A.2 Under Assumptions 1 and 2, there exist constants Bk\1; k ¼
1; . . .; 4 such that, for each j ¼ 1; . . .; r, the following holds for 0� t� 1 and

n [ 1þ 2B=mð Þ1=2, where B is as in Lemma A.1 above and does not depend on t:
(a) Îj(t)� Ij(t)
�� ���B1(n� 1)�2;

(b) Ŝj tð Þ � Sj tð Þ
�� ���B2 n� 1ð Þ�2;

(c) D1 Îj(t)� D1Ij(t)
�� ���B3 n� 1ð Þ�1;

(d) D1Ŝj(t)� D1Sj(t)
�� ���B4 n� 1ð Þ�1.

Proof In the proof of this Lemma (and throughout the rest of the Appendix) we
will rely on the fact that any continuous function in ½0; 1� is bounded in that
interval. This implies that, under Assumptions 1(i) and 2(i), there exists a constant
M\1 such that max0� a� 1 max0� t� 1 Daej tð Þ

�� ���M and max0� a� 1 max0� t� 1

Dayj tð Þ
�� ���M for each j ¼ 1; . . .; r. The same is true for the aggregate consumption
and production functions (respectively, eðtÞ and yðtÞ).

Let us select an arbitrary point t 2 0; 1½ �. Regarding statement (a), we have:

Îj tð Þ � Ij tð Þ
�� �� ¼ êj tð Þ

ŷj tð Þ �
ej tð Þ
yj tð Þ

���
����AI þ AII , where AI ¼ êj tð Þ

ŷj tð Þ �
ej tð Þ
ŷj tð Þ

���
��� and AII ¼

ej tð Þ
ŷj tð Þ �

ej tð Þ
yj tð Þ

���
���. Let AIII ¼ ŷj tð Þ � yj tð Þ. Lemma A.1 ensures both êj tð Þ � ej tð Þ

�� ���

B n� 1ð Þ�2 and ŷj tð Þ � yj tð Þ
�� ���B n� 1ð Þ�2. Thus, arbitrarily small êj tð Þ � ej tð Þ

�� ��

and AIIIj j can be obtained for large n. In particular, if n [ 1þ 2B=mð Þ1=2 we have

AIII\m=2. Therefore, Assumption 2(ii) implies that, for any n [ 1þ 2B=mð Þ1=2, it

holds ŷj tð Þ ¼ yj tð Þ þ AIII �m� m=2 ¼ m=2 [ 0, so AI ¼ ŷj tð Þ
�� ���1

êj tð Þ � ej tð Þ
�� ��

� B
m=2 n� 1ð Þ�2.

As for AII we have:

AII ¼ ej tð Þ
�� �� � yj tð Þ � ŷj tð Þ

yj tð Þŷj tð Þ

����

����

As ej tð Þ
�� ���M\1 by continuity in ½0; 1�, Lemma A.1(b) ensures that, for

n [ 1þ 2B=mð Þ1=2, it holds AII � M
m2=2 B n� 1ð Þ�2.

Therefore, AI þ AII �B1 n� 1ð Þ�2 for all n large enough and some finite B1. As
t was arbitrary, uniform convergence is obtained, which completes the proof of
statement (a).

Regarding (b) we have, for any t 2 0; 1½ �, Ŝj(t)� Sj(t)
�� �� ¼ ŷj tð Þ

ŷ tð Þ �
yj tð Þ
y tð Þ

���
����AI þ AII ,

where AI ¼
ŷj tð Þ�yj tð Þj j

ŷ tð Þ and AII ¼ yj tð Þ y tð Þ�ŷ tð Þ
y tð Þŷ tð Þ

���
���.

For n [ 1þ 2B=mð Þ1=2 it holds ŷ tð Þ ¼
P

r
j¼1ŷj tð Þ ¼

P
r
j¼1yj tð Þþ

P
r
j¼1 ŷj tð Þ � yj tð Þ
� �

� rm� rm=2 ¼ rm=2.
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Thus AI � 2
rm B n� 1ð Þ�2 and AII � 2M

r2m2 B n� 1ð Þ�2, so for n [ 1þ 2B=mð Þ1=2

we have Ŝj(t)� Sj(t)
�� ���B2 n� 1ð Þ�2. Again, as t is arbitrary, convergence is

uniform.
Regarding (c), select an arbitrary t in ½0; 1� and apply the quotient rule for

derivatives. We have D1Îj tð Þ � D1Ij tð Þ
�� �� ¼ AI � AIIj j, where

AI ¼
D1êj tð Þŷj tð Þ�êj tð ÞD1ŷj tð Þ

ŷj tð Þ
� �2

and

AII ¼ D1ej tð Þyj tð Þ�ej tð ÞD1yj tð Þ
yj tð Þð Þ2 .

By the triangle inequality

AI � AIIj j � AI � AIIIj j þ AIII � AIIj j, where AIII ¼ D1ej tð Þyj tð Þ�ej tð ÞD1yj tð Þ
ŷj tð Þð Þ2 .

It is directly obtained that, for n [ 1þ 2B=mð Þ1=2, there exists B5\1 (not

depending on n) such that AI � AIIj j �B5 n� 1ð Þ�1.
Analogously, continuity (and so boundedness in ½0; 1�) of the first derivatives of

yj and ej implies that, for some M\1, D1ej tð Þyj tð Þ�ej tð ÞD1yj tð Þ
�� ��

� D1ej tð Þ
�� �� � yj tð Þ

�� ��þ ej tð Þ
�� �� � D1yj tð Þ

�� ��� 2M2.

So it follows, for n [ 1þ 2B=mð Þ1=2 and some B6\1 (not depending on n),

AII � AIIIj j � 4M2

m2 B6 n� 1ð Þ�2:

Therefore, AI � AIIj j � AI � AIIIj j þ AIII � AIIj j �B3 n� 1ð Þ�1 for

n [ 1þ 2B=mð Þ1=2 and some B3 finite, with convergence being uniform.
As for (d), a similar procedure is applied. We have D1Ŝj tð Þ � D1Sj tð Þ

�� ��� j
AI � AIII j þ AIII � AIIj j, where AI ¼ D1ŷj tð Þŷ tð Þ�ŷj tð ÞD1 ŷ tð Þ

ŷ tð Þð Þ2 , AII ¼ D1yj tð Þy tð Þ�yj tð ÞD1y tð Þ
y tð Þð Þ2 and

AIII ¼ D1yj tð Þy tð Þ�yj tð ÞD1y tð Þ
ŷ tð Þð Þ2 .

Again we obtain that, for n [ 1þ 2B=mð Þ1=2, there exists B6\1 (not

depending on n) so that AI � AIIj j �B6 n� 1ð Þ�1.
As D1yj tð Þy tð Þ�yj tð ÞD1y tð Þ

�� ��� D1yj tð Þ
�� �� � y tð Þj j þ yj tð Þ

�� �� � D1y tð Þ
�� ��� rM2 for

some M\1, and since y tð Þð Þ2� ŷ tð Þð Þ2
�� �� ¼ y tð Þ þ ŷ tð Þj j � y tð Þ � ŷ tð Þj j �

2M þ B n� 1ð Þ�2
� �

B n� 1ð Þ�2, we obtain for n [ 1þ 2B=mð Þ1=2:

AIII � AIIj j �
D1yj tð Þy tð Þ � yj tð ÞD1y tð Þ
�� �� � y tð Þð Þ2�ðŷ tð ÞÞ2

�� ��

y tð Þð Þ2 ŷ tð Þð Þ2

� 4rM2 2M þ 1ð Þ
r4m4

2M þ B n� 1ð Þ�2
� �

B n� 1ð Þ�2
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Therefore, for each n [ 1þ 2B=mð Þ1=2 and 0� t� 1, there exists B4\1 (not
depending on n or t), such that AI � AIIj j � AI � AIIIj j þ AIII � AIIj j �B3 n� 1ð Þ�1 .

Lemma A.3 Let D1I tð Þ ¼
P

r
j¼1 D1Ij tð ÞSj tð Þ þ Ij tð ÞD1Sj tð Þ
� �

and D1Î tð Þ ¼
P

r
j¼1

D1 Îj tð ÞŜj tð Þ þ Îj tð ÞD1Ŝj tð Þ
� �

. Under Assumptions 1 and 2, there exists a constant

B5\1 such that, for each 0� t� 1 and n [ 1þ 2B=mð Þ1=2, with B being as in

Lemma A.1, it holds D1Îj tð Þ � D1Ij tð Þ
�� ���B5 n� 1ð Þ�1.

Proof It straightforwardly derives from Lemma A.2, which establishes that each
component of D1 Î tð Þ converges uniformly to its analogue in D1I tð Þ. In order to
obtain uniform convergence we will rely on the fact that all the components
appearing in D1I tð Þ are uniformly bounded in 0� t� 1. In particular:

Ij tð Þ
�� �� ¼ ej tð Þ

yj tð Þ

���
���� M

m, Sj tð Þ
�� �� ¼ yj tð Þ

y(t)

���
���� M

rm, D1Ij tð Þ
�� �� ¼ D1ej tð Þyj tð Þ�ej tð ÞD1yj tð Þj j

yj tð Þð Þ2 � 2M2

m2 and

D1Sj tð Þ
�� �� ¼ D1yj tð Þy tð Þ�yj tð ÞD1y tð Þj j

y tð Þð Þ2 � 2M2

r2m2.

Similar uniform bounds are obtained for the components of D1 Î tð Þ, since

according to Lemma A.2, as n [ 1þ 2B=mð Þ1=2 we have, for each 0� t� 1,

Îj tð Þ
�� ��� Ij tð Þ

�� ��þ Îj tð Þ � Ij tð Þ
�� ��� M

m þ B1 n� 1ð Þ�2,

Ŝj tð Þ
�� ��� Sj tð Þ

�� ��þ Ŝj tð Þ � Sj tð Þ
�� ��� M

rmþ B2 n� 1ð Þ�2,

D1 Îj tð Þ
�� ��� D1Ij tð Þ

�� ��þ D1Îj tð Þ � D1Ij tð Þ
�� ��� 2M2

m2 þ B3 n� 1ð Þ�1

and

D1Ŝj tð Þ
�� ��� D1Sj tð Þ

�� ��þ D1Ŝj tð Þ � D1Sj tð Þ
�� ��� 2M2

r2m2 þ B4 n� 1ð Þ�1.

By using the decomposition D1Î tð Þ � D1I tð Þ ¼ AI þ AII , where

AI ¼
X

r
j¼1 D1Îj tð ÞŜj tð Þ þ Îj tð ÞD1Ŝj tð Þ
� �

�
X

r
j¼1 D1Îj tð ÞSj tð Þ þ Îj tð ÞD1Sj tð Þ
� �

and

AII ¼
X

r
j¼1 D1 Îj tð ÞSj tð Þ þ Îj tð ÞD1Sj tð Þ
� �

�
X

r
j¼1 D1Ij tð ÞSj tð Þ þ Ij tð ÞD1Sj tð Þ
� �

:

and applying the above bounds, it is readily obtained that there exists some B5\1
such that, for each t in ½0; 1� and n [ 1þ 2B=mð Þ1=2, it holds

D1 Î tð Þ � D1I tð Þ
�� ��� AIj j þ AIIj j �B5 n� 1ð Þ�1.

Proof of Proposition 2 It is a direct consequence of Lemma A.3. It is readily
checked that D1I tð Þ is continuous in ½0; 1�, so it is also bounded in that interval. In

particular, for each t in ½0; 1�, it holds D1I tð Þ
�� �� ¼ D1e tð Þy tð Þ�e tð ÞD1y tð Þj j

y tð Þð Þ2 � 2M2

m2 . An

analogous result is obtained for D1Î tð Þ when n [ 1þ 2B=mð Þ1=2, as
ŷ tð Þ� rm=2 [ 0 in that case, so D1 Î tð Þ is a ratio of continuous functions, with
strictly positive denominator (having a positive lower bound not depending on n).
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Applying Lemma 3, we obtain

T̂En�TE
�� �� ¼

Z1

0

D1Î tð Þdt �
Z1

0

D1I tð Þdt

������

������
�
Z1

0

D1 Î tð Þ � D1I tð Þ
�� ��dt�B5 n� 1ð Þ�1

Z1

0

dt ¼ B5 n� 1ð Þ�1

for n [ 1þ 2B=mð Þ1=2, which proves part (b), and therefore part (a). h

Proof of Proposition 3
It is a consequence of Lemma A.3. Let us select an arbitrary point t in ½0; 1� and

apply the decomposition D1 Î tð Þ
Î tð Þ �

D1I tð Þ
I tð Þ

���
����AI þ AII , where AI ¼

D1 Î tð Þ�D1I tð Þj j
Î tð Þ and

AII ¼ D1I tð Þ
Î tð Þ �

D1I tð Þ
I tð Þ

���
���.

The inequality D1Î tð Þ � D1I tð Þ
�� ���B5 n� 1ð Þ�1 was obtained in the proof of

Lemma A.3 above, for each t in ½0; 1� and n [ 1þ 2B=mð Þ1=2. In addition,
m
M � 1

I tð Þ ¼
y tð Þ
e tð Þ � M

m.

It is readily shown, by a procedure analogous to that used in Lemma A.2 (a),

that Î tð Þ � I tð Þ
�� ���B6 n� 1ð Þ�2 for each t in ½0; 1� and n [ 1þ 2B=mð Þ1=2, with

B6\1 not depending on t.

Since 1
Î tð Þ ¼

1
I tð Þ þ

I tð Þ�Î tð Þ
I tð ÞÎ tð Þ , and as Î tð Þ � I tð Þ

�� ���B6 n� 1ð Þ�2� m
2M for all large

enough n (for this, it suffices to select n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B6

2M
m � 1

q
), we arrive at

Î tð Þ ¼ I tð Þ þ Î tð Þ � I tð Þ
� �

� m
M � m

2M ¼ m
2M.

Therefore, it eventually holds:

1

Î tð Þ

����

���� ¼
1

I tð Þ þ
I tð Þ � Î tð Þ

I tð ÞÎ tð Þ

����

�����
M

m
þ 2M2

m2
B6 n� 1ð Þ�2

So, for large enough n, we obtain AI ¼
D1 Î tð Þ�D1I tð Þj j

Î tð Þ � 1þ M
m

� �
B5 n� 1ð Þ�1.

As for AII , we have AII ¼
D1I tð Þj j� I tð Þ�Î tð Þj j

I tð ÞÎ tð Þ . As shown in the proof of Proposition 2,

it holds D1I tð Þ
�� ��� 2M2

m2 for all large enough n, and by applying the bounds obtained
for AI above the following inequality is readily obtained:

AII ¼
D1I tð Þ
�� �� � I tð Þ � Î tð Þ

�� ��

I tð Þ̂I tð Þ
�

2M2

m2 �M

m
1þM

m


 �
B6 n� 1ð Þ�2

Therefore, there exists B7\1 such that, for each t in ½0; 1�,
D1 Î tð Þ

Î tð Þ �
D1I tð Þ

I tð Þ

���
����B7 n� 1ð Þ�1.

By the same procedure as in Proposition 2 it is shown that, for each t in ½0; 1�, it
holds I tð Þ[ 0, and the same is true for Î tð Þ for large enough n. This ensures that
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L̂TEn � LTE
�� �� ¼

Z1

0

D1 ln Î tð Þ � D1lnI tð Þ
� �

dt

������

������
�
Z1

0

D1 ln Î tð Þ � D1 ln I tð Þ
�� �� dt

�B7 n� 1ð Þ�1
Z1

0

dt ¼ B5 n� 1ð Þ�1

for sufficiently large n, which completes the proof of both parts of the proposition.

Proof of Proposition 4
First, we will prove (a), that for each n large enough and each (fixed) set of knots
Nn ¼ ti ¼ i� 1ð Þ= n� 1ð Þ; i ¼ 1; . . .; nf g, the vector of interpolated time paths,
Ẑn ¼ ẑ1;n; . . .; ẑ2r;n

� �
, is B Sð Þ-measurable. We shall use symbol :ð Þn to denote the

operator that associates with each path in C1 0; 1½ � its natural spline interpolant,
with n knots located at Nn. Thus, ẑj;n ¼ zj

� �
n

is the natural spline that interpolates
path zj at Nn.

It suffices to show that :ð Þn is a continuous mapping of C1 0,1½ � into C1 0,1½ �,
which implies that it is also continuous as a vector function of S into S, and
therefore Ẑn ¼ Zð Þn is B Sð Þ-measurable. Select two arbitrary functions
f ; f 0 2 C1 0,1½ �, with that function space endowed with the norm :j jj j particularized
to the case of a single trajectory. We will show that, given n fixed (and therefore, a

fixed set of n knots), f � f 0j jj j ! 0 implies f̂ � f̂ 0
�� ���� ��! 0. This stems, as we shall

see, from the fact that :ð Þn is a continuous linear operator.
Indeed it can be shown that, provided that n� 2, the set of natural splines

(having degree 3, continuous derivatives up to order 1 and knots at Nn) is a vector

space of dimension n. This implies that the natural spline interpolant f̂n tð Þ for
f 2 C1 0,1½ � is unique (Powell 1981, Chap. 23, Theorem 23.1.) and has the fol-
lowing expression:

f̂nðtÞ ¼
Xn

i¼1

b̂i;nui;nðtÞ

where u1;n; . . .;un;n

� �
is a vector of n linearly independent functions in C1 0; 1½ �.

The coefficient vector b̂n ¼ b̂1;n; . . .; b̂n;n

� �T
is obtained by imposing the n con-

ditions of interpolation at Nn, i.e., f tið Þ ¼ f̂ tið Þ; i ¼ 1; . . .; n. This is equivalent to

solving the system of linear equations fn ¼ Unb̂n, where fn ¼ f t1ð Þ; . . .; f tnð Þð ÞT
and Un ¼ ci;k

� �
, i; k ¼ 1; . . .; n, is a squared matrix whose elements are

ci;k ¼ ui;n tkð Þ. Uniqueness of the solution of this problem implies that matrix Un is

nonsingular, so b̂n ¼ U�1
n fn.
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Now consider another function f 0 2 C1 0,1½ �, and let f̂ 0nðtÞ ¼
Pn

i¼1
b̂0i;nui;nðtÞ be its

natural spline interpolant at Nn, with b̂0n ¼ b̂01;n; . . .; b̂0n;n

� �T
. For any integer

0� a� 1, select an arbitrary point 0� t� 1. We have

Daf 0nðtÞ � Dafn(t)
�� �� ¼

Xn

i¼1

Daui;n(t) b0i;n � bi;n

� ������

������
Xn

i¼1

Daui;n(t)
�� ��� b0i;n � bi;n

���
����

max
0� a� 1

max
i¼1;...;n

Daui;n(ti)
�� �� �

Xn

i¼1

b̂0i;n � b̂i;n

���
���� max

0� a� 1
max

i¼1;:::;n
max
t2½0;1�

Daui;n(t)
�� �� n n�1

Xn

i¼1

b̂0i;n � b̂i;n

���
����

max
0� a� 1

max
i¼1;:::;n

max
t2½0;1�

Daui;n(t)
�� ��n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1

Xn

i¼1

b̂0i;n � b̂i;n

� �2
s

As b̂0n � b̂n ¼ U�1
n en, with en ¼ f 0n � fn, we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b̂0n � b̂n

� �T
b̂0n � b̂n

� �r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eT

n U�1
n

� �T
U�1

n en

q
.

Since matrix U�1
n

� �T
U�1

n is symmetric and positive definite, it admits the

orthogonal decomposition U�1
n

� �T
U�1

n ¼ PT
n KnPn, where PT

n Pn ¼ In, with In being
the unit matrix of order n and Kn being a diagonal matrix with the eigenvalues of

U�1
n

� �T
U�1

n on its main diagonal. It is readily obtained that

eT
n U�1

n

� �T
U�1

n en

h i1=2
¼ eT

n PT
n KnPnen

� �1=2� k1=2
1 eT

n en

� �1=2
, where k1 is the largest

eigenvalue of U�1
n

� �T
U�1

n .
Therefore, we obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂n � b̂n

� �T
b̂n � b̂n

� �r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eT

n /�1
n

� �T
/�1

n en

q
�

ffiffiffiffiffi
k1

p ffiffiffiffiffiffiffiffiffi
eT

n en

q
¼

ffiffiffiffiffi
k1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

f 0 tið Þ � f tið Þð Þ2
s

�
ffiffiffiffiffiffiffi
k1n

p
max

i¼1;...;n
jf 0 tið Þ � f tið Þj �

ffiffiffiffiffiffiffi
k1n

p
� jjf 0 � f jj

and it holds Da f̂ 0n tð Þ � Da f̂n tð Þ
�� ��� max

0� a� 1
max

i¼1;:::;n
max
t2½0;1�

Daui;nðtÞ
�� �� n

ffiffiffiffiffi
k1
p

f 0 � fk k.

Since both a and t are arbitrary the above bound is uniform, so f̂ 0n � f̂n
�� ���� ��! 0 as

f 0 � fj jj j ! 0, which ensures continuity—in terms of the distance induced by the
norm fj jj j ¼ max0� a� 1 max0� t� 1 Daf tð Þj j in C1 0,1½ �)—of the natural spline in-

terpolant f̂n. This evidently implies that the mapping from S into S defined by the
natural spline interpolation operator with knots at Nn, applied element by element
of Z ¼ z1; . . .; z2rð Þ, i.e., Ẑn ¼ Zð Þn¼ z1ð Þn; . . .; z2rð Þn

� �
, is continuous with respect

to the metric induced by the norm Zj jj j ¼ maxj¼1;...;2r max0� a� 1

max0� t� 1 Dazj tð Þ
�� ��. (For brevity we use the same symbol, :j jj j, for the norms of

32 2 Mathematical and Statistical Properties of Decomposition Techniques



C1 0; 1½ � and S; the proper interpretation will be clear in each case depending on the
context.)

Since we have assumed that Z—the vector of time paths—is B Sð Þ-measurable,
the approximant vector Ẑn, generated by natural spline interpolation, is also
B Sð Þ-measurable, as it is obtained by a continuous (and so, measurable) trans-
formation of Z.

Part (b) of the statement is obtained directly. For n� 2 the natural spline
interpolant Ẑn is unique and B Sð Þ-measurable, as established in part (a). Select an
arbitrary point x 2 X. By Assumption 10.(i) each component of the observed path
vector Z :;xð Þ belongs to W2 0,1½ �, and Lemma A.1 establishes, given x 2 X,
uniform convergence with respect to t, i.e., Ẑn :;xð Þ � Z :;xð Þ

�� ���� ��! 0 as n!1.
Since Assumption 10.(ii) imposes that, for some m [ 0 and each x 2 X, it holds
min0� t� 1 D1zj t;xð Þ�m, it is then obtained that, for each j and all large enough
n (possibly depending on x), it holds (uniformly in t) D1ẑj t;xð Þ ¼
D1zj t;xð Þ þ D1ẑj t;xð Þ � D1zj t;xð Þ

� �
�m� m=2 ¼ m0[ 0. This is a conse-

quence of minj¼1;...;2r min0� t� 1 D1zj t;xð Þ�m, which is ensured by Assumption
10.(ii) and the fact that max0� t� 1 D1ẑj t;xð Þ � D1zj(t;x)

�� ��! 0 as n!1 by
Lemma A.1. Therefore, for each x 2 X and n large enough, it holds
minj¼1;...;2r min0� t� 1 D1ẑj t;xð Þ�m0[ 0, that is, Ẑn :;xð Þ 2 Am0 .

It is easily checked that, for any m0[ 0, the mappings g Zð Þ and h Zð Þ defining,
respectively, TE and LTE, are continuous (and thus B Sð Þ-measurable) in Am0 ,
which in turn is a closed subset of S with nonempty interior, made up of all the
vector functions Z in S with coordinates belonging to W2 0, 1½ � and having
minj¼1;...;2r min0� t� 1 D1ẑj t;xð Þ�m0 for some m0[ 0 fixed a priori and not
depending on x.

So, for each x 2 X and n large enough, the sample realization of the interpolant
for Z also has first derivative that is (uniformly in [0,1]) bigger than some m0[ 0,
i.e., Ẑn xð Þ 2 Am0 . Therefore, with probability 1, it holds Ẑn 2 Am0 as n!1, and
T̂En ¼ g Ẑn

� �
and L̂TEn ¼ h Ẑn

� �
are continuous (and so B(<)-measurable) func-

tions of Ẑn for each n large enough.
Once we have established that, for large enough n, T̂En and L̂TEn are random

variables, convergence with probability 1 to TE y LTE, respectively, is derived by
the same procedure as in Propositions 2 y 3, applied to an arbitrary realization
x 2 X. For each x 2 X, the integrals appearing in the definitions of TE and LTE
are classical Riemann integrals, so the proofs of Lemmas A.1–A.3 and Proposi-
tions 2 and 3 readily extend (for each fixed x 2 X) to the random case, with the
only inconsequential issue that the Lipschitz bounds (B1; . . .;B6) will generally
range with each realization x of the random experiment.
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