
Orchestration

Jayadev Misra(B)

The University of Texas at Austin, Austin, USA
misra@cs.utexas.edu

Abstract. In this position paper we argue that: (1) large programs
should be composed out of components, which are possibly heteroge-
neous (i.e., written in a variety of languages and implemented on a vari-
ety of platforms), (2) the system merely orchestrates the executions of
its components in some fashion but does not analyze or exploit their
internal structures, and (3) the theory of orchestration constitutes the
essential ingredient in a study of programming.

Keywords: Program composition · Component-based software construc-
tion · Orchestration · Concurrency

1 On Building Large Software Systems

This paper is about a theory of programming, called Orc1, developed by me and
my collaborators [1,7–9,12]. The philosophy underlying Orc is that: (1) large
programs should be composed out of components, which are possibly heteroge-
neous (i.e., written in a variety of languages and implemented on a variety of
platforms), (2) the system merely orchestrates the executions of its components
in some fashion but does not analyze or exploit their internal structures, and
(3) the theory of orchestration constitutes the essential ingredient in a study of
programming.

I am sorry if I have already disappointed the reader. None of the points made
above is startling. Building large systems out of components is as old as computer
science; it was most forcefully promulgated by Dijkstra in his classic paper on
Structured Programming [2] nearly a half century ago. It is the cornerstone of
what is known as object-oriented programming [6,10]. In fact, it is safe to assert
that every programming language includes some abstraction mechanism that
allows design and composition of components.

It is also well-understood that the internal structure of the components is of
no concern to its user. Dijkstra [2] puts it succinctly: “we do not wish to know
them, it is not our business to know them, it is our business not to know them!”.
Lack of this knowledge is essential in order that a component may be replaced
by another at a later date, perhaps a more efficient one, without affecting the
rest of the program.
1 See http://orc.csres.utexas.edu/ for a description of Orc and its related documenta-

tion. A book on Orc is under preparation.

J.L. Fiadeiro et al. (Eds.): FACS 2013, LNCS 8348, pp. 5–12, 2014.
DOI: 10.1007/978-3-319-07602-7 2, c© Springer International Publishing Switzerland 2014

http://orc.csres.utexas.edu/


6 J. Misra

Component-based design makes hierarchical program construction possible.
Each component itself may be regarded as a program in its own right, and designed
to orchestrate its subcomponents, unless the component is small enough to be
implemented directly using the available primitive operations of a programming
language. Hierarchical designs have been the accepted norm for a very long time.

Where Orc differs from the earlier works is in insisting that programming be
a study of composition mechanisms, and just that. In this view, system building
consists of assembling components, available elsewhere, using a limited set of
combinators. The resulting system could itself be used as a component at a
higher level of assembly.

There are few restrictions on components. A component need not be coded in
a specific programming language; in fact, a component could be a cyber-physical
device or a human being that can receive and respond to the commands sent
by the orchestration mechanism. Components may span the spectrum in size
from a few lines of code, such as to add two numbers, to giant ones that may
do an internet search or manage a database. Time scales for their executions
may be very short (microseconds) to very long (years). The components may be
real-time dependant. A further key aspect of Orc is that the orchestrations of
components may be performed concurrently rather than sequentially.

We advocate an open design in which only the composition mechanisms are
fixed and specified, but the components are not specified. Consequently, even
primitive data types and operations on them are not part of the Orc calculus.
Any such operation has to be programmed elsewhere to be used as a compo-
nent. By contrast, most traditional designs restrict the smallest components to
the primitives of a fixed language, which we call a closed design. Closed designs
have several advantages, the most important being that a program’s code is in a
fixed language (or combinations of languages) and can be analyzed at any level
of detail. The semantics of the program is completely defined by the semantics of
the underlying programming language. It can be run on any platform that sup-
ports the necessary compiler. Perhaps the most important advantage is that the
entire development process could be within the control of a team of individuals
or an organization; then there are fewer surprises. In spite of these advantages for
a closed system design, we do not believe that this is the appropriate model for
large-scale programming in the future; we do not believe that a single program-
ming language or a set of conventions will encompass the entirety of a major
application; we do not believe that a single organization will have the expertise
or resources to build very large systems from scratch, or that a large program
will run on a single platform.

The second major aspect of Orc is on its insistence on concurrency in orches-
tration. Dijkstra [2] found it adequate to program with three simple sequen-
tial constructs, sequential composition, a conditional and a looping construct2.
2 Dijkstra did not explicitly include function or procedure definition. This was

not essential for his illustrative examples. In his later work, he proposed non-
deterministic selection using guarded commands [3,4] as a construct, though con-
currency was not an explicit concern.



Orchestration 7

However, most modern programming systems, starting from simple desktop
applications to mobile computing, are explicitly or implicitly concurrent. It is
difficult to imagine any substantive system of the future in purely sequential
terms.

We advocate concurrency not as a means to improving the performance of
execution by using multiple computers, but for ease in expressing interactions
among components. Concurrent interactions merely specify a large number of
alternatives in executing a program; the actual implementation may indeed
be sequential. Expressing the interactions in sequential terms often limits the
options for execution as well as making a program description cumbersome.
Components may also be specified for real time execution, say in controlling
cyber-physical devices.

Almost all programming is sequential. Concurrency is essential but rarely a
substantial part of programming. There will be a very small part of a large
program that manages concurrency, such as arbitrating contentions for shared
resource access or controlling the proliferation (and interruption) of concurrent
threads. Yet, concurrency contributes mightily to complexity in programming.
Sprinkling a program with concurrency constructs has proven unmanageable;
the scope of concurrency is often poorly delineated, thus resulting in disaster in
one part of a program when a different part is modified. Concurrent program
testing can sometimes show the presence of bugs and sometimes their absence.
It is essential to use concurrency in a disciplined manner. Our prescription is to
use sequential components at the lowest-level, and orchestrate them, possibly,
concurrently.

In the rest of this paper, we argue the case for the orchestration model of pro-
gramming, and enumerate a specific set of combinators for orchestration. These
combinators constitute the Orc calculus. Orc calculus, analogous to the λ-calculus,
is not a suitable programming language. A small programming language has been
built upon the calculus. We have been quite successful in using this notation to
code a variety of common programming idioms and some applications.

2 Structure of Orc

2.1 Components, Also Known as Sites

Henceforth, we use the term site for a component3.
The notion of a (mathematical) function is fundamental to computing. Func-

tional programming, as in ML [11] or Haskell [5], is not only concise and elegant
from a scientist’s perspective, but also economical in terms of programming cost.
Imperative programming languages often use the term “function” with a broader
meaning; a function may have side-effects. A site is an even more general notion.
It includes any program component that can be embedded in a larger program,
as described below.
3 This terminology is a relic of our earlier work in which web services were the only

components. We use “site” more generally today for any component.



8 J. Misra

The starting point for any programming language is a set of primitive built-in
operations or services. Primitive operations in typical programming languages
are arithmetic and boolean operations, such as “add”, “logical or” and “greater
than”. These primitive operations are the givens; new operations are built from
the primitive ones using the constructs of the language. A typical language has
a fixed set of primitive operations. By contrast, Orc calculus has no built-in
primitive operation. Any program whose execution can be initiated, and that
responds with some number of results, may be regarded as a primitive operation,
i.e. a site, in Orc.

The definition of site is broad. Sites could be primitive operations of common
programming languages, such as the arithmetic and boolean operations. A site
may be an elaborate function, say, to compress a jpeg file for transmission over
a network, or to search the web. It may return many results one by one, as in a
video-streaming service or a stock quote service that delivers the latest quotes
on selected stocks every day. It may manage a mutable store, such as a database,
and provide methods to read from or write into the database. A site may interact
with its caller during its execution, such as an internet auction service. A site’s
execution may proceed concurrently with its caller’s execution. A site’s behavior
may depend on the passage of real time.

We regard humans as sites for a program that can send requests and receive
responses from them. For example, a program that coordinates the rescue efforts
after an earthquake will have to accept inputs from the medical staff, firemen
and the police, and direct them by sending commands and information to their
hand-held devices. Cyber-physical devices, such as sensors, actuators and robots,
are also sites.

Sites may be higher-order in that they accept sites as parameters of calls and
produce sites as their results. We make use of many factory sites that create
and return sites, such as communication channels. Orc includes mechanisms for
defining new sites by making use of already-defined sites.

2.2 Combinators

The most elementary Orc expression is simply a site call. A combinator combines
two expressions to form an expression. The results published by expressions may
be bound to immutable variables. There are no mutable variables in Orc; any
form of mutable storage has to be programmed as a site.

Orc calculus has four combinators: “parallel” combinator, as in f |g, executes
expressions f and g concurrently and publishes whatever either expression pub-
lishes; “sequential” combinator, as in f >x> g, starts the execution of f, binds
x to any value that is published by f and immediately starts execution of an
instance of g with this variable binding, so that multiple instances of g along
with f may be executing concurrently; “pruning” combinator, as in f <x< g,
executes f and g concurrently, binds the first value published by g to variable
x and then terminates g, here x may appear in f; and “otherwise” combinator,
as in f ;g, introduces a form of priority-based execution by first executing f, and
then g only if f halts without publishing any result.



Orchestration 9

There is one aspect worth noting even in this very informal description. An
expression may publish multiple values just as a site does. For example, each of
f and g may publish some number of values, and then f |g publishes all of those
values; and (f |g) >x> h executes multiple instances of expression h, an instance
for each publication of f |g. The formal meanings of the given combinators have
been developed using operational semantics.

2.3 Consequences of Pure Composition

The combinators for composition are agnostic about the components they com-
bine. So, we may combine very small components, such as for basic arithmetic
and boolean operations drawn from a library, to simulate the essential data struc-
tures for programming. This, in turn, allows creations of yet larger components,
say for sorting and searching. Operations to implement mutable data structures,
such as for reading or writing to a memory location, can also be included in
a program library. A timer that operates in real time can provide the basics
for real time programming. Effectively, a general purpose concurrent program-
ming language can be built starting with a small number of essential primitive
components in a library. This is the approach taken in the Orc language design.

Even though it is possible to design any kind of component starting with a
small library of components, we do not advocate doing so in all cases. The point
of orchestration is to reuse components wherever possible rather than building
them from scratch, and components built using Orc may not have the required
efficiency for specific applications.

3 Concluding Remarks

There is a popular saying that the internet is the computer. That is no less or
no more true than saying that a program library is a computer. This computer
remains inactive in the absence of a driving program. Orc provides the rudiments
of a driving program. It is simultaneously the most powerful language that can
exploit available programs as sites, and the least powerful programming language
in the absence of sites.

A case against a grand unification theory of programming. It is the dream of
every scientific discipline to have a grand unification theory that explains all
observations and predicts all experimental outcomes with accuracy. The dream
in an engineering discipline is to have a single method of constructing its arti-
facts, cheaply and reliably. For designs of large software systems, we dream of
a single, preferably small, programming language with an attendant theory and
methodology that suffices for the constructions of concise, efficient and verifiable
programs. As educators we would love to teach such a theory.

Even though we have not realized this dream for all domains of programming,
there are several effective theories for limited domains. Early examples include
boolean algebra for designs of combinational circuits and BNF notation for syn-
tax specification of programming languages. Powerful optimization techniques



10 J. Misra

have been developed for relational database queries. Our goal is to exploit the
powers of many limited-domain theories by combining them to solve larger prob-
lems. A lowest-level component should be designed very carefully for efficiency,
employing the theory most appropriate for that domain, and using the most
suitable language for its construction. Our philosophy in Orc is to recognize and
admit these differences, and combine efficient low-level components to solve a
larger problem. Orc is solely concerned with how to combine the components,
not how a primitive component should be constructed.

Bulk vs. Complexity. It is common to count the number of lines of code in a
system as a measure of its complexity. Even though this is a crude measure,
we expect a system with ten times as many lines of code to be an order of
magnitude more complex. Here we are confusing bulk with complexity ; that
bulkier a program, the more complex it is. There are very short concurrent
programs, say with about 20 lines, that are far more complex than a thousand
line sequential program. Concurrency adds an extra dimension to complexity. In
a vague sense, the complexity in a sequential program is additive, whereas in a
concurrent program it is multiplicative.

The philosophy of Orc is to delegate the bulkier, but less complex parts
to components and reserve the complexity for the Orc combinators. Though
solvers of partial differential equations can be coded entirely in Orc using the
arithmetic and boolean operations as sites, this is not the recommended option.
It should be coded in a more suitable language, but concurrent executions of
multiple instances of the solvers, with different parameters, for instance, should
be delegated to Orc.

Some sweeping remarks about programming. Consider the following scenario.
A patient receives an electronic prescription for a drug from a doctor. The patient
compares prices at several near-by pharmacies, and chooses the cheapest one to
fill the prescription. He pays the pharmacy and receives an electronic invoice
which he sends to the insurance company for reimbursement with instructions
to deposit the amount in his bank account. Eventually, he receives a confirmation
from his bank. The entire computation is mediated at each step by the patient
who acquires data from one source, does some minor computations and sends
data to other sources.

This computing scenario is repeated millions of times a day in diverse areas
such as business computing, e-commerce, health care and logistics. In spite of the
extraordinary advances in mobile computing, human participation is currently
required in every major step in most applications. This is not because security
is the over-riding concern, but that the infrastructure for efficient mediation is
largely absent, thus contributing to cost and delay in these applications. We
believe that humans can largely be eliminated, or assigned a supporting role, in
many applications. Doing so is not only beneficial in terms of efficiency, but also
essential if we are to realize the full potential of the interconnectivity among
machines, using the services and data available in the internet, for instance.
We would prefer that humans advise and report to the machines, rather than
that humans direct the machines in each step.



Orchestration 11

The initial impetus for Orc came from attempting to solve such problems by
orchestrating the available web services. Ultimately, languages outgrow the ini-
tial motivations of their design and become applicable in a broader domain. Orc
is currently designed for component integration and concurrency management
in general.

The programming community has had astonishing success in building large
software systems in the last 30 years. We routinely solve problems today that
were unimaginable even a decade ago. Our undergraduates are expected to code
systems that would have been fit for a whole team of professional program-
mers twenty years ago. What would programs look like in the future? We can
try to interpolate. The kinds of problems the programmers will be called upon
to solve in the next two decades will include: health care systems automating
most of their routine tasks and sharing information across hospitals and doctors
(for example, about adverse reaction to drugs); communities and organizations
sharing and analyzing data and responding appropriately, all without human
intervention; disaster recovery efforts, including responding to anticipated dis-
asters (such as, shutting down nuclear reactors well before there is a need to)
being guided by a computer; the list goes on. These projects will be several
orders of magnitude larger than what we build today. We anticipate that most
large systems will be built around orchestrations of components. For example,
a system to run the essential services of a city will not be built from scratch
for every city, but will combine the pre-existing components such as for traffic
control, sanitation and medical services. Software to manage an Olympic game
will contain layer upon layers of interoperating components.

A Critique of Pure Composition. A theory such as Orc, based as it is on a single
precept, may be entirely wrong. It may be too general or too specific, it may prove
to be too cumbersome to orchestrate components, say in a mobile application, or
it may be suitable only for building rapid prototypes but may be too inefficient
for implementations of actual systems. These are serious concerns that can not
be argued away. We are working to address these issues in two ways: (1) prove
results about the calculus, independent of the components, that will establish
certain desirable theoretical properties, and (2) supply enough empirical evidence
that justifies claims about system building. While goal (1) is largely achievable,
goal (2) is a never-ending task. We have gained enough empirical evidence by
programming a large number of commonly occurring programming patterns.

References

1. Cook, W., Misra, J.: Computation orchestration: a basis for wide-area computing.
J. Softw. Syst. Model. 6(1), 83–110 (2007)

2. Dahl, O.J., Dijkstra, E.W., Hoare, C.A.R.: Structured Programming. Academic
Press, London (1972)

3. Dijkstra, E.W.: Guarded commands, nondeterminacy, and the formal derivation
of programs. Commun. ACM 8, 453–457 (1975)

4. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)



12 J. Misra

5. Marlow, S. (ed.): Haskell 2010, Language Report (2010). http://www.haskell.org/
onlinereport/haskell2010/haskell.html

6. Goldberg, A., Robson, D.: Smalltalk-80: The Language and its Implementation.
Addison-Wesley Longman Publishing Co. Inc., Boston (1983)

7. Hoare, T., Menzel, G., Misra, J.: A tree semantics of an orchestration language.
In: Broy, M. (ed.) Proceedings of the NATO Advanced Study Institute, Engineer-
ing Theories of Software Intensive Systems. NATO ASI Series, Marktoberdorf,
Germany (2004). http://www.cs.utexas.edu/users/psp/Semantics.Orc.pdf

8. Kitchin, D., Quark, A., Cook, W., Misra, J.: The Orc programming language. In:
Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS/FORTE 2009. LNCS,
vol. 5522, pp. 1–25. Springer, Heidelberg (2009)

9. Kitchin, D., Quark, A., Misra, J.: Quicksort: combining concurrency, recursion, and
mutable data structures. In: Roscoe, A.W., Jones, C.B., Wood, K. (eds.) Reflections
on the Work of C.A.R. Hoare, History of Computing. Springer (2010) (Written in
honor of Sir Tony Hoare’s 75th birthday)

10. Meyer, B.: Object-oriented software construction, 2nd edn. Prentice Hall, Upper
Saddle River (1997)

11. Milner, R., Tofte, M., Harper, R.: The Definition of ML. The MIT Press, Cambridge
(1990)

12. Wehrman, I., Kitchin, D., Cook, W., Misra, J.: A timed semantics of Orc. Theoret.
Comput. Sci. 402(2–3), 234–248 (2008)

http://www.haskell.org/onlinereport/haskell2010/haskell.html
http://www.haskell.org/onlinereport/haskell2010/haskell.html
http://www.cs.utexas.edu/users/psp/Semantics.Orc.pdf


http://www.springer.com/978-3-319-07601-0


	Orchestration
	1 On Building Large Software Systems
	2 Structure of Orc
	2.1 Components, Also Known as Sites
	2.2 Combinators
	2.3 Consequences of Pure Composition

	3 Concluding Remarks
	References


