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Abstract This chapter will introduce multi-user computer-aided engineering
applications as a new paradigm for product development, considering past collab-
orative research and the emerging wave of cloud-based social and gaming tools. In a
historical context, computer-aided design and engineering models have become
much more complex since their inception in the middle of the twentieth century.
However, the way design teams approach these models has, at least in one sense, not
changed much; a given model can still only be accessed by one user at a time,
despite the fact that the entire design team needs to evolve the model. Single user
applications have become a productivity bottleneck and do not provide interfaces or
architectures for simultaneous editing of models by a collaborative team. Single
user applications convert any hope for process concurrency into a serial sequence of
design activities. When the single user designer experiences difficulties, the process
halts until the designer can reach out to other experts to resolve the problems, which
usually requires some form of external collaboration. Unfortunately, single user
applications are deficient when it comes to complex and globalized product
development. The chapter herein will consider how multi-user architectures will
change the single user paradigm from serial to simultaneously collaborative, pro-
mote new on-demand access methods like cloud serving, and bring long hoped for
efficiencies to product development. We will investigate three research areas of
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importance to this emerging paradigm: (1) multi-user CAx architectures, including
cloud serving; (2) multi-user CAx requirements; and (3) multi-user CAx standards.
Of these three, architectures are most investigated, with numerous proof-of-concept
prototypes, while requirements and standards, the least investigated, partially
explain the reason for non-adoption and non-commercialization of this powerful
new paradigm.

Keywords Computer-aided design � Multi-user � Cloud serving � Organizational
management � Collaborative design � Concurrent engineering

1 Introduction

Decades ago, engineers and other technical personnel gathered around large
drafting tables to review and blend their design contributions, and consider tech-
nical requirements and pressing schedules, Fig. 1. Collaboration was natural and
transparent in this hands-on environment, at least until the ensuing digital age of
desktop workstations and computer-aided applications (CAx) encouraged new
methods of decomposing product design among technical individuals, where one
person is assigned a part model design. Today, file-based control systems like
product lifecycle management (PLM) track and maintain model file version
changes, using secured check-in and check-out procedures.

Collaboration has become increasingly difficult as multiple designers are unable
to simultaneously enter an editing session, although they can screen share the
model. As products become increasingly complex, profit incentives have decom-
posed the various system (airplane, ship, tank, etc.) components among globally
distributed suppliers. These suppliers often use different vendor supplied CAx
applications to produce their contracted component, resulting in model variations
and inconsistent file formats, referred to as noninteroperable data. Distribution and
integration of these models among the supplier chain usually results in many
model file conversions because of installed CAx heterogeneity. Because of cas-
caded file conversion errors, suppliers may find it necessary to replicate the model
in their native CAx application. The annual cost associated with interoperability is
on the order of hundreds of millions of dollars (USD) (Brunnermeier et al. 1999).

Computer-aided engineering applications like CAD/CAE/CAM (CAx) have
continued to grow in complexity and capability, but have remained single user
while the concurrent demands of building a new class of technically evolved
products like modern transportation systems have escalated. Concurrency is fur-
ther complicated by business practices where large product companies now depend
on distributed global supplier chains to build their system components. Each
supplier’s CAx tools may vary and secondary CAx model file translations intro-
duce errors and extend the development cycle (Contero et al. 2002).
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Client-server gaming and related cloud serving architectures have demonstrated
that teams can closely and simultaneously collaborate in complex, dynamically
changing landscapes, using distributed cloud servers that manage changes to
model data (Kim 2002; Fig. 2).

While cloud-based applications centralize data and make it accessible over
great distances, even across continents, CAx applications isolate and protect data
for a single user. A single designer creates and details a component model using
modern computer-aided design (CAD) applications. A single analyst applies
computer-aided engineering (CAE) tools to determine whether a component can
withstand the structural loading, or elevated temperatures, or whether the com-
ponent is aerodynamically stable. Finally, single users apply computer-aided
manufacturing (CAM) and computer-aided process planning (CAPP) to determine
and program the manufacturing processes and machines to make the component.

Surveys (Red et al. 2013a, b) have shown that technical personnel engage in
some form of collaboration at least 50 % of each day (Fig. 3), either in formal or
ad hoc meetings or by applying a number of social media tools like conference

Fig. 1 Collaboration in 1979

Fig. 2 Gaming session
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calls (Fig. 4), email, texting, instant messaging, and mobile phones. These social
tools necessarily compensate for the collaborative deficiencies in modern CAx
applications.

Multi-user CAx applications provide real-time collaboration and thus enable
Cloud-Based Design and Manufacturing (CBDM), although expanding the con-
cepts described by Wu et al. Wu defines CBDM as follows (Wu 2012):

Cloud-Based Design and Manufacturing refers to a product realization model that enables
collective open innovation and rapid product development with minimum costs through a
social networking and negotiation platform between service providers and consumers. It is
a type of parallel and distributed system consisting of a collection of inter-connected
physical and virtualized service pools of design and manufacturing resources (e.g., parts,
assemblies, CAD/CAM tools) as well as intelligent search capabilities for design and
manufacturing solutions.

Fig. 3 Daily % collaboration

Fig. 4 Conference call
design meeting
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Although Wu’s pooling of CBDM resources refers primarily to cloud com-
puting, we generalize CBDM to include human resources and data consistency
resources, in addition to computer hardware and software. Multi-user CAx directly
supports this generalized vision by distributing and parallelizing human resources
to increase design process efficiency. We suggest that the CDBM vision will not be
realized until the product model data becomes interoperable (CAX agnostic),
regardless of consumer resource application of choice. Otherwise, the model’s data
format and integrity will be compromised by conformal translations to each user’s
application environment.

To understand the power of multi-user CAx applications, this chapter will
consider three research areas: (1) multi-user CAx architectures; (2) multi-user CAx
requirements; and (3) multi-user CAx standards. The last two have not been well
researched, but will be important to consider nevertheless.

2 Multi-user CAx Architectures

We will consider three architectural areas: (1) collaborative networks; (2) col-
laborative interfaces; and (3) model sharing and conflict resolution.

2.1 Collaborative Networks

Today, network concerns in single user CAx relate to how fast a design model file
can be exchanged between a local workstation and PDM server. The PDM server
secures and manages the model file revisions, and other product-related data,
Fig. 5. Speed is less of a problem when the network is behind company firewalls
where high speed LAN’s can distribute complex model files in less than an hour.
But when companies engage in around the clock, 24 h global design, FTP file
delivery may take hours to transfer encrypted models of large size (100’s of MB)
over the Internet.

CAx Application

Model file directory Model

CAD

CAM

CAE

PDM System

Password secured interfaceFig. 5 PDM to CAx file
exchange
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Contrast single user file exchange with a multi-user network where several (or
many) users, referred to as clients, simultaneously edit the model. Rather than files
being passed over the network, model changes are passed between clients as small
data packets, easily accommodated by even the slowest networks. With this per-
spective we note that two multi-user architectures dominate the collaborative
networks: (1) client-server (CS, Fig. 6) and peer-to-peer (P2P, Fig. 7).

2.1.1 Client-Server

Most collaborative multi-user prototypes use client-server networks. The client-
server variations configure the client workstations as thick clients or thin clients.
Li’s et al. review paper notes client-server dominance, lack of data security, and
the difficulty of real-time interaction over networks (Li et al. 2005). Li distin-
guishes thick clients having a full model from thin clients where a partial model is
mainly used for visualization.

Server

Clients

Fig. 6 Client-server
architecture

Fig. 7 Peer-to-peer
architecture
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Thick clients will run the CAx application on the each client’s workstation and
integrate software plug-ins to detect and transmit client model edits to the server
where they are then reflected to other collaborating clients. These methods are
referred to as ‘‘transparent adaptation’’ by Sun et al. (2006, only applied to MS
Word and PPT) and Zheng et al. (2009, Co-AutoCAD) because the CAx appli-
cation source is not modified.

BYU’s client-server multi-user prototypes—Several multi-user CAx prototypes
have been developed at Brigham Young University’s NSF Center for e-Design
site. These prototypes were built on native application API’s (using C++, C#,
Visual Basic) as software plugins to verify that mainstream CAx applications
could function in multi-user mode, and to discover architectural limitations that
might impede multi-user functionality. These prototypes allow for modeling in
both single and multi-user modes. In multi-user mode, users visualize contribu-
tions from collaborators in real-time. This allows users to simultaneously con-
tribute to a model and respond in real-time to input from others. Table 1 presents
their functionality and limitations, while Figs. 6 and 7 show their architectures,
although CS was most dominant. The CUBIT CAE prototype has access to the
source code for CUBIT Core and thus does not entirely depend on API’s for the
implementation. The limitations of Table 1 will be considered later in Sect. 3 on
Multi-User CAx Requirements.

We have implemented the Fig. 8 architecture on a laboratory LAN, on a college
cloud server, and across an Internet WAN, all with similar effectiveness because
small data packets easily transmit across networks. When using a cloud server, we
applied Hewlett-Packard’s Remote Graphics Software (RGS) to effectively turn
the local workstation into a terminal screen, with the CAx application instances
and multi-user application server running on remote server blades. We will discuss
the security implications of these architectures later.

The architecture in Fig. 9 differs somewhat in implementation because we had
access to the CUBIT Core source code. This allowed us to thread client interac-
tions with the server using Windows Named Pipes (NP) (Microsoft Developer
Network 2012) for inter-process communication (IPC) and TCP/IP sockets for
network communications. Two networking clients (External and Internal Clients)
reside on each local computer, with the Internal Client embedded into the source
code.

The External Client (EC) organizes the different type of messages through a
serialization process. The multi-user actions require that client ID’s be appended to
any GUI instruction as a message structure. Examples of message structures
established in the EC are command message, master trigger, and database reset.
Commands messages are generated from the CUBIT GUI, Fig. 9b, and delivered
to the CUBIT core to process (e.g., ‘‘create sphere’’ or ‘‘mesh volume 1’’).

Master trigger messages are messages initiated by the user to resynchronize
their model with the server database for unusual situations such as network down,
or when clients engage the design process asynchronously and thus join the work
environment at different times. Message structures help the server distinguish
between different CUBIT Connect operations so it can respond accordingly.
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Data Capture
Module

Data Sync
Module

CAx Controller

CAx Application

Server

Client

Information Storage 

Client-server module functions:

• Information Storage Module – uses a re- 
lational database for data storage and a hie-
rarchical structure to sync the part features 
and data changes.

• Data Capture Module - monitors the CAx 
session for changes to the part file and then 
passes the change information to other us-
ers through the server. 

• Data Sync Module - monitors the informa-
tion storage module for changes uploaded 
by another user, using these changes to alert 
the CAx Controller. 

• CAx Controller - converts all model edit 
information into primitive values for data-
base storage, translating the primitive data 
and parameters back into the API constructs 
required on each user’s computer.

Fig. 8 Client-server architecture for BYU’s CAx (CAD) multi-user prototypes

Command
Strings

Read incoming com-
mand from Server

Pass command
to Server

Graphics facets 
back to GUI

Peer Relevant 
Commands

User-Specific 
Commands

From Network

All
Commands

Database

Establish 
thread for 
each client

Server

Client 
message 
listener 
thread

Message 
stream 

to clients

(a) (b)

(c)

Fig. 9 CUBIT Connect: a client architecture; b CUBIT interfaces; c server functionality
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It should be mentioned that meshing algorithms, unlike CAD algorithms, can
take minutes or even hours to complete. Since CUBIT Connect uses a thick client
architecture, each client has to perform those same mesh operations to stay con-
sistent with each other, and users must wait while those operations are performed.
CUBIT, like most single user applications, runs on a single thread; thus, the
CUBIT GUI freezes while a complex and time-consuming algorithm runs in the
core. These actions are untenable in a multi-user environment and required
changes to our server/client methods to permit multi-users to control when to
update from clients, along with passing CPU meshing times for each meshing
command among the clients for informed decision making.

In contrast, Fig. 10 shows an instance in a NX Connect modeling session where
four multi-users simultaneously design a wing structure. Because the team leader
was able to decompose tasks based on expertise, actual time reduction (85 %) was
better than T/N (80 %), where T is the single user time and N is the number of
multi-users; see the inset table.

Figure 11 shows a CUBIT Connect design session where three users simulta-
neously mesh three components of a race car developed in collaboration with 26
universities over 4 years as part of the PACE Global Vehicle Project. The question
of how to filter and/or stack update commands from other multi-user clients is still
being investigated. Algorithmic delays, not a substantial problem in CAD appli-
cations, and a minor problem in CAM applications, can be significant in CAE
applications. Current research is considering operational vectors that are tagged to
each multi-user and that can be applied at optimal times.

Fig. 10 NX Connect with 4 clients developing a wing structure simultaneously
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Fig. 11 CUBIT Connect session with 3 clients simultaneously meshing a race car
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2.1.2 Peer-to-peer

An alternative architecture connects clients directly as peers, with each worksta-
tion replicating the software used to manage the change control for the model (Jing
et al. 2009; Fan et al. 2008). In the gaming community, peer-to-peer (P2P) has
many adherents, partially because the model data (game space) can accept some
weak inconsistencies (Bharambe et al. 2006, http://www.cs.cmu.edu/*ashu/
gamearch.html; GauthierDickey et al. 2004; Wang et al. 2004; Douglas et al. 2005;
Endo et al. 2007). The common arguments are that client-server suffers from
robustness and single point of failure (Bharambe et al.), lack of scalability
(GauthierDickey et al.), and lack of dynamic reconfigurability (Ramakrishna et al.
2006).

P2P architectures also have weaknesses: (1) data inconsistency; (2) variable
network latencies; (3) weak security; (4) additional client software; (5) network
congestion; and (6) requires Internet service provider (ISP) cooperation. Thus, P2P
solutions are often cast as hybrid solutions using traffic density allocated servers to
maintain the gaming data. The solutions are often clustered as hybrid P2P/client-
server architectures, with additional network activity software to monitor traffic,
and measure client responsiveness among the players.

CAx applications cannot tolerate any ambiguity in the form of data inconsis-
tency. Any entity data error will propagate disastrously through a model’s feature
tree. Data centralization and protection has long been a stable feature of PDM/
PLM file management systems. Client-server architectures offer improved data
security while mirrored servers can offer redundancy. In addition, design models
can be stored and protected within the server database. Client-server architectures
can be deployed behind company firewalls as a server-centered LAN or as a local
cloud server, depending on the client to server network configuration.

2.2 Collaborative Interfaces

Real world CAx applications and their respective interfaces are single user, with
few exceptions like GoogleDocs: one cursor, one active application window, and
one mouse or mouse-like input device. The application expects a serial stream of
user actions, and the application GUI’s are generally configured as a single thread
to react to mouse (or touch) events and to data entered into text fields.

The collaborative environment changes drastically when several users can
simultaneously edit a common model, each user carrying a different set of expe-
riences, capabilities, and cultural attitudes. Researchers echo the need for user
awareness. Liu et al. (2008) propose that intelligent agent software be deployed at
each client workstation to support awareness interactions among multi-users, such
as capturing and transmitting audio and video streams for each user. Another agent
might capture design changes, and update these changes among users, according to
user privileges.
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The BYU NXConnect prototype allows users to share their view perspective
with other users who are in the same model (Nysetvold and Teng 2013). This
improves the quality of their collaboration while keeping bandwidth usage low
compared to existing screen share technologies. Since each NXConnect client has
an up-to-date model, the only additional data that needs to be sent to facilitate view
sharing is the view translation, rotation, and scale information, which can be
described with as few as twelve double-precision floating point numbers. In addi-
tion, not only can users choose to follow another user’s viewing perspective, they
can also see cones that represent the view perspectives of other users (Fig. 12).

This capability enhances each user’s awareness of the viewing perspective of
other users within the same model. Knowledge of what another user is looking at
may even allow a user to infer what the other user is currently working on.

Xu (2011) proposes a flexible context interface between users working on the
same part at distributed locations, and defines the context as options in a multi-user
GUI (MUG), Table 2. MUG uses agent software filters to render the user prototype
outside of NX and NX Connect. The interface can then be used with other engi-
neering applications where several users wish to collaborate. NX MUG, as con-
figured for Siemens NX, enables users to view a collaborating user’s workspace,
send/receive messages between multi-users, and is capable of translating text
interactions into different languages. Although Xu did not implement all the filters
shown in Table 2, multiple icon selection sequences could be used to vary context
preferences for each user in a collaborative session.

Other researchers have experimented with multiple cursors or touch control, but
default to time slicing a single cursor event (see http://sourceforge.net/projects/
multicursor-wm/#; http://lifehacker.com/5080196/teamplayer-enables-multiple-input-

Fig. 12 Three client perspective visualization demonstration

Table 2 Flexible context filters
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device). Focusing on the importance of GUI collaboration, Baomin Xu et al. (2009)
proposed sending Windows GUI events to multi-users rather than model changes
made through the CAx API, but this seems difficult in the face of so many GUI
versions. Although GUI’s change constantly, they are built on a fairly stable API
library.

2.3 Model Sharing and Conflict Resolution

Having multiple users concurrently contribute to the same model introduces data
consistency challenges that are not present in the single user scenario. Syntactic and
semantic conflicts can occur, and the order in which features are created can vary
between clients. Approaches for preventing data inconsistency include, spatial
decomposition (Red et al. 2010, 2011, 2012, 2013b), collaborative constraints
(Panchal et al. 2007; Lai 2009; Chen et al. 2004; Marshall et al. 2011; Ram et al.
1997), locking and blocking of model features (Bu et al. 2006; Moncur et al. 2012;
Hepworth et al. 2013a), user negotiated feature access control (Zheng et al. 2009),
and role-based and lean model editing access (Cera et al. 2003; Wang et al. 2006).

Figure 13 shows how simple planar constraints can be used to confine multi-
users to a certain space, so that mouse events are only effective for the user’s
assigned space (Marshall 2011). Once fully implemented, these methods will work
for even the most complex models. Objects that cross boundaries will require
negotiation among adjoining users for editing rights. Extending these concepts to
other constraint surfaces simply require that the entity boundaries be compared
against the equations in Table 3, or for other possible constraint surface types.

Marshall (2011) implements the constraint equations by a selection filtering
tool. The selection filtering portion of the implementation is integrated within the
CAD system (mouse cursor combined with feature selection ray cast normal to the
viewing window) and has a single dialog window that allows for selection among
different multi-users. Depending on the user, a selection filter is applied to all
possible selections based on four constraint planes. This early prototype allows for
selection of edges and faces, which make up a model P where any spatial point p is
described by coordinates x, y, and z.

p 2 P ð1Þ

Let X, Y, and Z represent the x, y, and z ranges of points p in P such that

x 2 X; y 2 Y ; z 2 Z ð2Þ

For the model of Fig. 10, the constraints in (3)–(6) have been implemented
using inch units. ACCEPT P means a feature on the model is selectable by the
multi-user. A selectable feature can be edited by the multi-user.
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User 1. only select edges and faces for which

if any x 2 X [ 2:15; ACCEPT P ð3Þ

User 2. only select edges and faces for which

if any z 2 Z [ 1:013; ACCEPT P ð4Þ

User 3. can select edges and faces for which

if any y 2 Y\0; ACCEPT P ð5Þ

User 4. can select edges and faces for which

if any x 2 X\2:15 and y 2 Y [ 0 and z 2 Z\1:013; ACCEPT P ð6Þ

Normally, a feature would highlight as the mouse hovers over it to show what
would be selected if the user were to click the mouse. However, if a feature is not
selectable, the feature will not highlight when the mouse hovers over it. The
constraint boundaries can be toggled on/off for visibility and are colored differently
for each user.

Fig. 13 Geometric constraint limiting of user feature selection
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Spatial decomposition, a divide and conquer approach, will be useful for
complex and large models, or for models that have obvious shape independencies,
such as the jet engine front frame in Fig. 14. Three design regions (inner case,
outer case, radial vanes) can be decomposed by cylindrical and conical constraint
surfaces. But decomposition may not always involve just looking for different
model shapes, since users may be assigned based on model feature expertise as
discussed by Moncur (2013).

2.3.1 Abstract Decomposition

Figure 15 shows an abstract representation of a complex design space divided into
multi-user regions that we will refer to as design regions, di (i = 1, n), and where
design space model D is the sum of these regions. Region di is the set of features,
attributes, operations, and/or geometry associated with the design region. If only
spatial decomposition is used, then D represents the volume which bounds the
model geometry. If only feature decomposition is used, D represents all features
that can be edited in the CAx application. Thus, the design space can be repre-
sented by D = R di, assuming that the decomposition is full, i.e., the set of design
regions span the entire design space. Because of regional dependencies, the design
space representation can be more complex as will be shown later.

Fig. 14 Front frame easily decomposed
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The set of elements k that define region i is represented as ei,k. In multi-user
autonomous decomposition, it is desired that all k elements reside within region
i as depicted by ei,k \ dj = 0 for all j 6¼ i. A simpler algorithm compares ei,k

against all constraints ci,j,k bounding region i. If ei,k satisfies all constraints, then
the client can edit the element without constraint. If ei,k does not satisfy all con-
straints, then element ei,k is locked and multi-users assigned to the intersected
regions must be notified, where negotiation allows the now unlocked element to be
edited.

The boundaries between two design regions are represented by user constraints
cj,k, where j, k refers to the constraint between multi-user regions j and k and where
cj,k = ck,j. User constraints can be represented as geometric equations or feature
sets, depending on the design space. Some design regions are defined by only one
constraint equation, such as d1 (constrained only by c1,2) and dn (constrained by
ci,2,n), while others may require comparison against several constraints, such as d2

(constrained by c1,2, c2,i, c1,2,n) and di (constrained by c2,i, c1,2,n).
As a simple example consider the problem of developing a manufacturing

process plan to machine a part. The part model could be comprised of several
feature sets that encompass operations required to manufacture a part. The feature
set could be used to decompose the process plan into regions represented by
operations like these: (1) roughing tool paths; (2) semi-roughing tool paths; (3)
finishing tool paths for surface features; (4) pocketing and slotting features; (5)
drilling, tapping, and threading features; (6) profiling features; (7) fixturing
hardware and setup; and 8) tooling. Some of these operations are reasonably
independent of other operations (e.g., pocketing as compared to drilling/tapping/
threading) and could be used to decompose the process planning among several
multi-users for simultaneous process planning. When a design region is totally
independent of other regions, it will not need a constraint relationship to constrain
the assigned user actions and thus ci,.. = 0. Independent regions, or mildly inde-
pendent regions, are the best candidates for multi-user decomposition. Regions
that are strongly dependent, i.e., connected by dependent features, will require
cooperation and intense interaction between the multi-users to simultaneously edit
the design space.

d1

d2

di

dn

c1,2

c2,i

ci,2,n

Edit requires client negotiation:

eik  dj ≠ 0 

Client editing autonomy:

eik  dj =  0

∩

∩

Fig. 15 Spatial decomposition
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Some constraints may be common to more than one multi-user region, e.g.,
ci,2,n as shown in Fig. 15. For example, a multi-user assigned to region i will be
constrained by those relationships that contain i in the constraint subscripts: c2,i

and ci,2,n. Thus, user design region i is defined by the associated feature set
associated and constrained by those functions ci,j, with included i subscript.

Since modern CAx applications use feature representations, Moncur displays a
representation of a part’s feature list, Fig. 16 (Moncur et al. 2013). A user can
change a 3-state toggle to reserve, lock, or release the selected feature. When
changed, the new feature state is propagated to the other multi-users. When a
feature is reserved, it means that the user who reserved the feature is able to edit or
delete the feature. A reservation can be made by any user at any time, even if the
feature is already reserved by another user (although this does not hold true if
the feature is locked by another user). Because a reservation can only be held by a
single user at a time in a collaborative design session, it prevents two users from
editing the same feature at the same time. A reservation could be thought of as a
per-feature edit token, or a ‘‘soft’’ lock for edit permissions for a given feature.
This allows for open collaboration between users and allows them to work on a
model while preventing update and delete conflicts.

A color scheme could be applied to the rendered features inside the CAx
application to help other users see which features are available for editing, Fig. 17.
Lock symbol decals could also be applied to features to convey editing state to
other users.

Features can also be locked or reserved in groups. Thus, an entire branch of
features can be locked by locking the parent-feature in the tree. As new features
are added to a model, they can inherit any lock/reservation properties from their
parent feature. This provides a way to effectively partition a CAx model by feature
rather than shape.

Fig. 16 Collaborative
feature list
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Hepworth et al. (2013b (Automated…)) extend this approach by automatically
reserving features during a feature edit operation. This prevents multiple users from
simultaneously making conflicting edits to the same feature (feature-self conflicts).
Feature-self conflict prevention is expressed mathematically by (7)–(10), given that
F is the set of all features in part P, and in time interval Dt, and where f is a feature in
part P, Dt. U is the set of all users in part P, Dt, and u is a user in part P, Dt. A part
contains:

f 2 F P; Dtð Þ ð7Þ

u 2 UðP;DtÞ ð8Þ

To prevent feature-self-conflicts for a given edit operation in part P, there must
exist a unique set E, Dt, which contains only one feature f and one user u where

E P;Dtð Þ ¼ f ; uf g ð9Þ

for interval

tbeginEdit� t� tendEdit ð10Þ

This is enforced by allowing only a single instance of set E to exist in part P, Dt,
where Dt is the time interval from the beginning to the end of the edit operation.

Fig. 17 Reserving/locking
using colors/decals
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Otherwise, feature-self conflicts occur if users on separate clients simultaneously
edit the same feature.

Hepworth implements a method to prevent feature-self-conflicts by reserving a
feature on the server on a first come first serve basis. When a user begins an edit
operation, a message is automatically sent to the server requesting reservation of
that feature. If the feature is not already reserved, the user is allowed to continue
editing the feature. However, if the feature is already reserved, any other client
request will be denied. When the user completes the edit operation, another
message is automatically sent to the server removing the reservation. Figure 18 is
a diagram depicting Client 1 reserving a feature while Client 3 makes a request and
is ignored.

In addition to the reservation on the server, a client blocking mechanism is
implemented to apprise users that a feature is reserved and prevent users from
editing reserved features. When a feature is reserved by a user, all other users
receive a message, blocking the feature. A block forcibly prevents users from
editing a feature and changes the color of the feature to a predefined blocking
color. The color helps to communicate the reservation and also show where users
are currently working in the part. Figure 19 shows an example a one user editing a
feature while a second user has the feature blocked.

Users may also request that reservations be removed on blocked features; see
Fig. 19. This prevents users from having features blocked for an unnecessarily
long period of time. Reservation request removal is done by sending a message to
the reservation owner requesting reservation removal. The user has the opportunity
to accept or reject the request (Fig. 20). The user has a limited time to respond
before the request is automatically granted to the requester. This allows users to
remove reservations on blocked features even if the owing user is unavailable to
respond to the message (Hepworth et al. 2013b (Automated…)).

Fig. 18 Server reservation method prevents simultaneous, multi-user feature editing
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2.3.2 Undo/Redo in Multi-user CAD

Modern CAx applications allow the user to undo/redo their last actions (often
implemented as CTRL + Z = undo; CTRL + Y = redo). But in a multi-user
session, undo actions cascade through the feature tree which may have been
constructed by several users through dependent operations. Li et al. (2008) note
that ‘‘a feature of a product model might depend on other features and modifying
an early feature may cause later features to become invalid.’’ Gao et al. (2009)
consider multi-user undo intent and use local history buffers to record the changes
made by local clients. Because any user in a multi-user session can apply a feature
undo function, dependencies can cascade and cause chaotic collaboration.

We have successfully applied an undo command method to our NX Connect
prototype. The undo method we implemented only allows users to undo their own
recent commands—not the commands of other users. Each model-changing
command a user performs creates an undo action construct that contains both the
data required to undo the command and the data required to redo the command.

Fig. 19 User 1 edits an extrusion and it is blocked on user 2 (shown in red)

Fig. 20 User 1 requests reservation removal and user 2 receives the request
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A timestamp records the time at which the command is performed. The action
constructs are then placed on top of the local user’s undo stack (see Fig. 21). None
of the local user’s action constructs or undo/redo stacks are sent to the server or to
other clients. Each user has their own undo and redo stacks which only store that
user’s actions.

When a user performs an undo command, the action construct on the top of
their undo stack is used to perform a local undo. This action construct contains the
data to perform the undo operation. After undo is completed locally, the action
construct is transferred from the user’s undo stack to their redo stack as shown in
Fig. 21. After the undo succeeds on the local client, a message is sent to the server,
which forwards it to the other clients so they can perform the same modeling
operation.

Figure 22a, b, and c show a multi-user engine block design session with three
users. User 1 performs a Boolean operation to create the piston chambers, see
upper left of Fig. 22a. Figure 22b shows the Boolean operations reflected to users
2 and 3. Figure 22c shows an undo operation performed on the piston Boolean in
the local history tree. The undo operations have not yet been sent to the other two
users, but this happens in a succeeding step.

3 Multi-user CAx Requirements

This section considers three main areas: (1) multi-user CAx functionality
requirements, considering the deficiencies currently existing in single user CAx
applications; (2) administration and management of product requirements in multi-
user collaborative environments, and (3) human elements in multi-user team
forming. It is important to note that the multi-user functionality already demon-
strated in early prototypes like NX Connect and CATIA Connect exceeds single
user functionality when it comes to reducing design times and sharing design
rationale. Current CAx API’s can be utilized to make CAx applications behave in a
multi-user mode, but with extensive programming and API workarounds.

Local Redo Stack

Action 1

Local Undo Stack

Action 2

Action 3

Action 5

Action 4

Undo being performed 
(reverse during redo)

Fig. 21 Local Undo/Redo
stacks
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User 1 User 2

User 3

Piston
Booleans

User 1 User 2

User 3

User 1 User 2

Undo Boo-

lean User 3

(a)

(b)

(c)

Fig. 22 Create pistons undo example. a Create pistons. b Reflect edit. c Undo pistons
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Table 4 Desired multi-user features

Single user limitations Multi-user implications Importance
(1 most)

Single threaded kernels*, GUI’s,
API’s (*Parasolid, ACIS,
etc.)

The advantage of threading is that multi-users
can share a kernel, GUI, or API, based on
computational and network resources.
Threading would reduce the number of site
licenses required for multi-user sessions.
Presently, each client must have a separate
CAx license.

2

API entity memory ‘‘handles’’ Handles, i.e., memory addresses, are allocated
differently in each computer. Current multi-
user plug-ins require extensive programming
to discover the data structure format for each
entity and related operation that must be
passed between clients. API’s should provide
object/data structure copies for data
exchanged among clients in multi-user
sessions.

1

API functional errors Many of the less used API’s have functional
errors, and should be fixed.

2

Single user undo/redo Single user undo/redo operations do not work in
multi-user CAx, but we have demonstrated
that simple methods such as tracking of local
user actions can provide acceptable undo/
redo functionality. Single user CAx
applications will have to be converted to
client-server architectures because a database
must track operations performed by each user
in the session.

1

Models file-based Client-server architectures with server databases
provide more accessibility to all product
related data, and permit multiple users/clients
to access and edit models simultaneously.

1

No access to event handler Without access to a CAx event handler,
prototypes must track temporary session files
associated with undo markers, or track
Windows GUI events. A simple event
handler API to trigger alerts as users edit
model data would replace more complex
plug-in programming and replace polling
timers.

1

(continued)
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3.1 Multi-user CAx Functionality Requirements

Table 4 lists several important single user CAx architectural limitations, some of
which are inherent to a particular CAx application, like CAE/FEA preprocessing
of meshes. Table 4 recommends some changes to improve multi-user viability.
Many of these limitations are not difficult fixes and would reduce multi-user server
complexity, such as entity copies rather than memory address handles, integrated

Table 4 (continued)

Single user limitations Multi-user implications Importance
(1 most)

CAx algorithmic time variability Algorithms with significant latency can hinder
the multi-user process. Possible work-
arounds or solutions include providing time-
to-completion estimate for each operation,
requesting that software providers improve
algorithm speeds (e.g. by parallel
processing), and multi-threading the
application core/GUI/API such that the local
user could continue to work while another
user’s command is being applied to the local
user’s model. Multi-user CAx applications
faced with operational latencies will also
require asynchronous functionality so that
users can enter and leave an active session as
desired. The users must also be able to
control when they wish other client
operations to update their model. For CAx
application with severe algorithmic latencies,
autonomous decomposition approaches will
be most effective.

3

Entity numbering schemes Entity numbering schemes are not uniform
across CAx applications, with entity
numbering often order dependent. In such
cases the server must maintain each user’s
modifications as ordered and then reflect
them to the clients in the same sequence.
More uniform and predictable numbering
algorithms conforming to multi-user model
architectures would simplify server
implementations.

2

Limited social tools Social tools for collaborative awareness are
critical to effective multi-user teaming and
should be integrated into CAx applications.
Surveys have revealed that product
development personnel are using many such
tools to collaborate because these tools are
not prevalent in CAx applications.

1
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social tools, fixing API errors, predictable entity numbering schemes, and exposing
an API to the primary event handler. Multiple threading and algorithmic latencies
will prove more challenging.

3.2 Multi-user Administrations of Product Requirements

Liu et al. (2008) recognize the reluctance to use collaborative CAD, which he says
can be related to network latencies, security, and cultural issues, and because
software companies have not adopted collaborative advances. We suggest that
nonadoption is more closely related to potential disruption of normal business
processes; stable companies are very reluctant to experiment with their internal
processes.

Regardless of potential, industry will not adopt new processes unless the
administrative issues are understood and easily implementable. Refer to Hannan
and Freeman’s (1984) popular paper to review entrenched principles of industrial
inertia. We suggest that any company which has applied virtual teaming approa-
ches can be comfortable with multi-user CAx processes. And multi-user tools
simply provide an opportunity when appropriate, and do not need to be applied.
Structurally, they require reliable networks, task assignments, schedules, admin-
istration, and team leadership, not really different from localized process teams.
With predetermined workspaces and boundaries, collaboration decreases the
product development time in proportion to the number of multi-users (Jensen
2012).

A less trumpeted advantage of multi-user CAx is the knowledge transfer and
training that occurs among cross-functional virtual teams. Presently, experts train
novice engineers in a time-consuming one-on-one process. Since multi-users, even
technical personnel from different disciplines, can view and edit each other’s work
on their screen, potential problems are more easily identified early on and fixed.

Red et al. (2012) state that:

The advent of multi-user computer-aided applications (CAx)……will change personnel/
organizational assignment processes in product development…..collaborating personnel/
organizations will enter design sessions and simultaneously edit/review design spaces.
This paradigm shift will require new methods to be developed that decompose develop-
ment tasks over personnel/organizations at both local and global locations. Experiential
data will not be restricted to suppliers, organizations, or sites, or other grouping types, but
reflect a different granularity where a particular group of individuals from a variety of
organizations might be collected into design teams for optimal collaboration.

Currently, there are no process-specific or model-specific multi-user decom-
position principles generally accepted or in standard form, although a few have
been suggested in this chapter, such as decomposing a model based on geometric
or feature independencies. But spatial or feature independence recognition is of no
help if you lack multi-user expertise for the observable independencies.

Consider the following steps employed in current product development practices:
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Step 1 Product idea. A product idea is conceived; requirements are specified,
along with related specifications

Step 2 System decomposition. Product development is decomposed into ele-
mental forms, like systems, subsystems, components, parts, etc., with
more detailed requirements and specifications.

Step 3 Organizational decomposition. These elements are then assigned and
developed according to a set of decomposed tasks (and related
schedules), which recognize organizational capabilities (company,
division, contractor, supplier, group, team, etc.), resource availability
(raw materials, OTS/off-the-shelf components, tools, workstations,
facility, personnel, etc.), schedule, logistics (moving things around),
and sometime local politics (unions, laws, etc.) which may affect all the
previous. Much of the decision making involves experienced personnel,
similar or competitive products, and past development histories.

Step 4 Resource decomposition. Assignment of tasks is usually based on
experiential information and resource availability, and subject to other
constraints, such as government regulations, or competitive response
from competing companies.

Step 5 Completion. Decomposed product and related development assignments
are then completed according to assignments, resources, and schedule.
Because current CAx applications are single user, the process is serial with
corrections made as development errors are discovered in the stage gate
process, which requires time-consuming iterations to the CAx models.

Figure 23 shows the typical decomposition hierarchy used in product devel-
opment industries. Different organizational principles may be applied to manage
the product team, such as matrix, pyramid, group, or even virtual teaming where
team members are not necessarily co-located.

Now, consider the emerging paradigm of multi-user CAx. From the viewpoint
of multi-user decomposition the same five steps are amended to consider possible
multi-user administrative principles in Table 5. An associated asterisk (*) denotes
that the tool/principle needed is poorly developed or not formalized.

Facility

Division

Supplier

Dept.

Group

Team

Consultant

Etc.

Product 

Fig. 23 Product decomposition
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Figure 24 shows how multi-user virtual teams can be organized from a com-
munity of personnel, suppliers, or other organizational entities, given access to
experiential histories and capabilities. Also note that one individual could be
assigned to sit on several multi-user teams, as could personnel from different
functional areas, like designers, analysts, testers, marketers, production personnel,
etc.

Not all decomposition tasks are compatible with multi-user development. Tang
et al. (2000) notes three types of relationships between design tasks: uncoupled,
coupled, and decoupled. Uncoupled tasks have low interdependency and can be
performed in parallel. These qualify for multi-user collaboration. Coupled tasks
are highly dependent and utilize iterative cycles to solve conflicts.

Table 5 Postulated multi-user administrative principles

Step Name Multi-user implementation

1 Product idea Collaborative principles* are used to review and tag the
requirements and specifications for potential multi-user teaming
opportunities, according to personnel and supplier availability
and capability.

2 System
decomposition

Conventional practice decomposes a product based on performance
histories of organizations making similar products, by group or
supplier capabilities, or by location, logistics, government
regulations, etc. Using personnel and supplier multi-user
experiential data*, and multi-user possibilities from Step 1,
decomposed elements can be directed towards multiple
organizational entities, for potential virtual teaming.

3 Organizational
decomposition

Multi-user decomposition requires comparison of available user
backgrounds against model specifications and features to
determine whether personnel are available and suitable for
multi-user mode. It would seem that new databases* would
maintain relevant experiential data about personnel based on
their educational background, technical and model space
experiences, and expertise both in technical matters and in
human-interaction and management. It is likely that department
or group level resources, i.e., experiential databases*, could be
searched to establish expertise and experience, and existing
schedules can also be used to determine personnel availability.

4 Resource
decomposition

Multi-user decomposition tools* would examine the model design
space to determine model complexity and whether there several
regions that are independent or mildly independent, based on
proposed model features, or similar products previously
developed. If personnel resources are available, and model is
sufficiently complex, multi-user decomposition of the design
model among several users may be desirable. In the case where
multi-user training* of novice users by more experienced
personnel is desired, model complexity may be relaxed.

5 Completion Multi-user sessions are scheduled and managed by a team leader*,
using integrated and networked multi-user CAx GUI’s* and
client-server architectures to store user actions and design
rationale histories in a central database*.
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Tasks that are decoupled can be performed sequentially and contain only one
way dependencies. Holyoak (2012) extended the methods of Tang to apply a
Design Structure Matrix (DSM) to correlate design tasks specifications and
determine task dependencies. From these multi-user assignments can be appro-
priately made.

3.3 Human Elements in Multi-user Team Forming

Step 3 of Table 5 presents an opportunity to more optimally allocate human
resources within product development communities. By adapting forming tech-
niques based on personnel experiences and capabilities, product organizations can
organize employees into multi-user teams that take full advantage of their expe-
riential backgrounds.

‘‘Customer Relationship Management’’ and ‘‘Data Mining’’ (Rygielski et al.
2002) are techniques that identify and extract information about individual cus-
tomers. Using this data, an organization can apply algorithms to predict future
behavior and improve customer relationships. Customer data is parsed by auto-
mated algorithms to predict customer behavior, needs, and desires. Vendors like
Amazon.com participate in a Customer Relationship Management interaction.

When an Amazon webpage suggests another purchase, it does so automatically
based on data it has gathered about that specific customer’s preferences using
‘‘collaborative filtering’’ algorithms and Search-Based Methods. Additional infor-
mation such as customer age, gender, geographic location, and more (gathered
through surveys, coupon offers, etc.) allow the vendor to compare an individual

Multi-user
database

Product 

Supervisor(s)

Multi-user
teams

Fig. 24 Product decomposition: top is conventional; bottom shows organized multi-user teams
(red squares)
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customer to other similar customers. Cluster algorithms (Linden et al. 2003) can
then be used to display advertisements and product suggestions that will attract a
specific customer.

Now consider the gathering of user experiential data for multi-user CAx
environments. Multi-user architectures require methods to organize personnel into
local (or co-located) or virtual project teams. To do this optimally, project leaders,
or supervisors, need dynamic data representing an individual’s capability and
experience in applying CAx applications, as appropriately mapped to project
requirements and specifications. We suggest that both a user’s CAx experiences
and their social/cultural markers could be mapped into experiential databases;
Fig. 25 is an interface rendition. This data could then be searched by applying
search algorithms and automated suggestions similar to the marketing algorithms
discussed earlier.

It would not be necessary for a manager to personally know or have interacted
with an employee to accurately predict personnel skills, or motivation to work on a
given project. Managers can quickly filter employees from multiple organizations
for a project group, allowing organizations to more fully utilize the abilities and
talents of their employees. Managers will access a much larger pool of candidates.
Employees will work on projects for which they are most qualified. Other potential
benefits include a decrease in need to relocate employees or travel long distances
to work as part of a project team.

4 Multi-user CAx Standards

Multi-user architectures, by providing uniform methods for interacting with dis-
tributed suppliers (or even within company divisions using different CAx vendor
applications), will spawn standards. These standards will seek to make CAx data
interoperable, regardless of vendor application.

Fig. 25 Artistic rendition of a multi-user experiential search interface

Multi-User Computer-Aided Design and Engineering Software Applications 55



Brunnermeier and Martin (1999) note interoperability deficiencies for the
automotive industry in the executive summary of a 1999 report prepared for
National Institute of Standards and Technology (NIST): ‘‘This study estimates that
imperfect interoperability imposes at least $1 billion per year on the members of
the U.S. automotive supply chain. By far, the greatest costs relate to the resources
devoted to repairing or reentering data files that are not usable for downstream
applications. This estimate is conservative because we could not quantify all
sources of interoperability costs.’’

Another interesting statement can be found in the Committee (2008) summary of
the report Pre-Milestone A and Early-Phase Systems Engineering: A Retrospective
Review and Benefits for Future Air Force Acquisition: ‘‘There has been about a
threefold increase in delivery time for most major systems…puzzling given enor-
mous productivity advantages conferred by…Internet and e-mail…advances in
knowledge-management and collaboration tools such as…(CAD)…(CAM)…’’

It is not difficult to see that ‘‘imperfect interoperability’’ is extending schedules
and costs for complex products. Simply consider the increasing supplier chains for
large product companies. For example, the Boeing 787 Dreamliner schedule
slipped several years, attributed 67 % to outsourcing to suppliers. Boeing uses
approximately 6,450 suppliers; Goodrich (now UTAS) and PPG Aerospace are
two Boeing Tier 1 suppliers each with supply chains listed in the 1,000’s. Ulti-
mately the leaves of the Boeing supply chain touch small manufacturing firms with
minimal CAx tools. Model file conversions in the millions and schedule delays are
required to get suppliers access to Boeing (or UTAS or PPG) data. File-based
uniformity translations like IGES, STEP, JT, etc., are architecturally not the
solution, because vendor model representations and their data files are not stan-
dardized (Choi et al. 2002; Li et al. 2012).

Researchers have targeted solving this problem as early as the mid-1990s where
Hoffman et al. (1993) proposed Erep, an editable representation which serves as a
global schema for data exchange. Anderson (1998) proposed the Enabling Next
GENeration (ENGEN) project to develop a data model to exchange design intent
information. He later proposed Solid Model Construction History to exchange
history-based information (Anderson 2002). Several papers have discussed the
macro-parametrics approach in which a macro records the modeling commands of
the parametric feature history. Data is exchanged through a standard set of com-
mands used as a neutral format, which acts as an intermediary between the various
commercial CAD macro files (Choi 2002; Mun 2003; Yang 2004; Kim 2007;
Han 2010).

Rappoport (2003) recognized the incompatibilities between CAD systems so he
proposed Universal Product Representation (UPR) architecture as a potential
solution. This is a union of all common data and operation types between CAD
systems. Data types not compatible are rewritten as another data item. In this
manner, compatible data is transferred between CAD systems parametrically. Li
et al. (2009) use a two stage process to recover the entire modeling process of a
user and use this to simulate a real human in the target system. Although the
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parametric data exchange problem has yet to be completely solved, much progress
has been made in this area.

Translation aside, multi-user architectures (e.g., client-server) naturally provide
for standardization, because model data can be stored in a neutral, easily accessible
format on server databases. Replacing proprietary model files with database rep-
resentations provides an architectural framework that inherently supports data
interoperability. If the database representations can be normalized and standard-
ized, something like that in Fig. 26, then any compatible CAx application can edit
the model data regardless of location, assuming that security provisions only allow
authorized clients to view and edit the data. Neutral CAx databases will permit
organizations up and down the supply chain to collaboratively interact in the same
design session to avoid errors caused by passing information ‘‘over the wall’’. In
the proposed system data translation is automatic, the supply chain process
becomes more collaborative, and data integrity is maintained.

Fig. 26 Entity record
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4.1 Data Security

Model sharing security has not been a primary research area (Red et al. 2013a, CIS),
but it is a major concern to industries engaged in global product development.
Because larger product development industries use many distributed suppliers, their
intellectual property (IP) is always at risk, particularly when the model data must be
transferred and translated between CAx applications. But even client-server and
P2P architectures used in the reviewed research prototypes expose IP to multiple
collaborators.

Wang et al. (2006) propose to restrict model sharing by providing selective
information based on collaborator need-to-know. Encryption can be used to secure
the information among the networked collaborators. Role-based viewing methods,
where data is partially shared among designers, can deter reverse engineering.

Mensah and Teng (2013) performed an initial investigation into security prin-
ciples and solutions for multi-user CAx applications. They proposed solutions for
solving three of the primary security challenges, namely (1) authentication, (2)
authorization, and (3) confidentiality. Authentication involves validating the client
computer’s identity with the server using the Transport Layer Security (TLS)
protocol, and then validating the user’s login credentials. An authorization
mechanism then ensures that the user is only permitted to see or modify the
appropriate CAx data based on the user’s security clearance and other permissions.
Confidentiality is necessary to ensure that messages being passed between network
nodes (e.g., clients, servers) cannot be intercepted/deciphered or modified by
unauthorized entities. Mensah and Teng propose that the TLS security protocol
would provide confidentiality by encrypting messages that can only be deciphered
by clients who have successfully authenticated. They asserted that further research
is required to address the security challenges of nonrepudiation, auditing, and
message integrity checks.

An authorization mechanism has been implemented into the NX Connect
prototype. It consists of a dialog that allows users to manage permissions for the
active part, with client-side logic that enforces those permissions, and additional
columns in the database for storing each part’s permission settings. Upon creating
a part, the user who created it is defaulted to be the part manager. In addition to
manager level permission, there are also contributor, viewer, and no-access per-
mission levels. Registered users can be assigned to any of these levels for a given
part. Users with no access to a part cannot even see that the part exists. Users with
viewing access can only view the part; they cannot contribute to, modify, or delete
the part. Users with contributor-level access can modify and contribute to the part,
but only managers (who have full access) can delete the part, modify the part’s
permission settings, or perform other part-management types of operations. View-
only restrictions are enforced by rejecting all part modification commands from
the restricted user via the NX API.

As new multi-user collaborative methods evolve, security architectures will
also evolve (Kushwaha and Roy 2010). Cloud serving architectures offer an
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alternative to placing CAx applications and model data on local workstations. It
seems inevitable that CAx applications will be deployed on company secured
cloud servers, and thus offer some security advantages, if client access can be
managed and intrusions blocked. When models or editing deltas must be moved
between mirrored servers to promote global teaming efficiencies, security becomes
more challenging (Reddy and Reddy 2011).

5 Multi-user CAx Cloud Service

By implementing a cloud-based CAx agnostic database, CAx cloud serving
becomes perfectly compatible with the multi-user CAx architectures presented in
this chapter. Cloud computing is growing in popularity for a number of reasons:
(1) less need for local deployment of expensive computing technologies; (2)
organizational IT infrastructures can be reduced; (3) smaller businesses (e.g.,
suppliers) can access sophisticated CAx applications that were previously too
expensive to maintain; and 4) cloud servers can be scaled according to user
demand (Lynn 2012).

Of course, there are hurdles to overcome, some unique to a product develop-
ment environment where IP protection is critical and where downtime is not
tolerated. One of the advantages of widespread and local deployment of CAx
applications is redundancy. Depending on the PDM implementation and permis-
sion system, design models may be accessible locally even if PDM systems or
networks go down, so that work is not stopped. If that is not the case, a cloud
server or network outage could shut down an entire development division or
suppliers dependent on a particular set of CAx applications. Another solution to
this is to replicate (mirror) cloud servers so that if one server goes down, clients
can simply access the desired data from another server.

TeamPlatform and AutoDesk 360 are two commercial CAx applications that
have placed CAx on the cloud (Dobrzynski 2013). Both applications offer the
collaborative access and on-line advantages expected for cloud serving, but remain
file-based solutions. Thus, these early applications seem to be more compatible
with simpler models, and thus smaller files. In the near future, cloud serving of
multi-user CAx applications will provide much greater efficiency and reduce
product development costs.
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