
Chapter 2
Basic Kinematics

In applied dynamics, we draw a distinction between free systems with elements that
can move without restrictions and constrained systems, the elements of which are
bound to each other or their surroundings by means of bearings. While, for example,
satellite dynamics is largely concerned with free systems, machine dynamics deals
almost solely with constrained systems. This chapter will provide a summary of the
kinematic principles behind mass point systems, multibody systems, and continuous
systems. From a kinematic standpoint, finite element systems are considered as
continuous systems and will therefore not be treated separately. The kinematics of
free and constrained systems will be presented both in a spatially fixed inertial frame
as well as in a frame in relative motion.

2.1 Free Systems

Free mechanical systems have especially simple kinematics since their motion is not
subject to constraints from any kind of bearings. Their mathematical description is
first undertaken with reference to a spatially fixed frame, though often generalized
coordinates are used in addition to Cartesian coordinates.

2.1.1 Kinematics of a Mass Point

The mass point is the simplest model in mechanics. However, a single free point
has little engineering importance. Free mass point systems on the other hand can
be encountered in flying elastic structures (e.g. in aerospace engineering) or in
systems containing only coupling elements instead of bearings. Moreover, any
elastic continuum can be seen as a free system of infinitely many mass points. In free
systems, all points are kinematically equal. For this reason, we will first examine the
single free point in some detail.
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of a mass point

The current position of a point in motion P(t) at time t in space is clearly
described with respect to the origin O of the fixed frame by means of the location
vector rrr(t), see Fig. 2.1. In the course of time, the point in motion P changes its
location, following the path marked by the position vector rrr(t). This motion is called
displacement or translation.

Every location vector can be clearly resolved into its components in a Cartesian
frame {O;eeeα}, α = 1(1)3, with the origin O and the basis vectors eeeα . The current
position is then defined for the location vector as

rrr(t) = r1(t)eee1 + r2(t)eee2 + r3(t)eee3. (2.1)

In a given frame, the location vector rrr(t) can thus be clearly represented, using (2.1),
by the 3×1 vector of its coordinates

rrr(t) =
[

r1 r2 r3
]
. (2.2)

The coordinates are generally written without an argument, and no distinction is
made between row and column vectors, see Sect. A.2 and (A.34).

A free point in space has three degrees of freedom. Three coordinates are required
to describe these. In addition to the Cartesian coordinates rα ,α = 1(1)3, from (2.2),
we can also make use of generalized coordinates xγ ,γ = 1(1)3, which are as a rule
curvilinear. These generalized coordinates can then be merged into a 3×1 position
vector

xxx(t) =
[

x1 x2 x3
]
. (2.3)

In general, there is a nonlinear correlation between the location vector rrr(t) and the
position vector xxx(t),

rrr(t) = rrr(xxx(t)) = rrr(xxx), (2.4)

which in some cases simplifies the description of a point motion considerably.
For example, circular motions can be represented more clearly by cylindrical
coordinates than with Cartesian coordinates. Another example worth mentioning
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are the spatial central forces, which in spherical coordinates have only one nonzero
coordinate. Some information on the notation used in this book can be found in
Sect. A.1.

The velocity vvv(t) of point P is obtained by differentiation of (2.2) according to
time, while its direction is determined by the tangent to the path, see Fig. 2.1. In a
fixed frame (inertial frame), the 3×1 vector of the absolute velocity is thus written

vvv(t) = ṙrr(t) =
[

ṙ1 ṙ2 ṙ3
]
, (2.5)

where ṙrr is the derivative of rrr with respect to time t. The velocity can also be
expressed in generalized coordinates. From (2.4) and (2.5), we obtain according
to the chain rule

vvv(t) = vvv(xxx, ẋxx) =
∂rrr
∂xxx

· dxxx
dt

=HHHT (xxx) · ẋxx(t), (2.6)

whereby we obtain the 3×3 Jacobian matrix of translation

HHHT (xxx) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ r1

∂x1

∂ r1

∂x2

∂ r1

∂x3

∂ r2

∂x1

∂ r2

∂x2

∂ r2

∂x3

∂ r3

∂x1

∂ r3

∂x2

∂ r3

∂x3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.7)

which establishes a relation between the location vector and the generalized
coordinates. The velocity is therefore a linear function of the first time derivative
ẋxx(t) of the selected position vector.

The functional or Jacobian matrices are very important in applied dynamics.
Their underlying mathematical principles are found in the differential and integral
calculus of functions of several variables, see e.g. Bronstein and Semendjajew [12].
Since defining the Jacobian matrices element by element via scalar differential
quotients is time-consuming, we shall resort to matrix notation. The 3×3 Jacobian
matrix (2.7) in the form

HHHT (xxx) =
∂rrr(xxx)

∂xxx
(2.8)

thus follows from the 3× 1 vector rrr(xxx) of the dependent variables and the 3× 1
vector xxx of the independent variables, see (A.36). In this notation, the following
relation is generally true for an e×1 vector xxx

∂xxx
∂xxx

=EEE, (2.9)
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where EEE is the e× e unit matrix. Also, for the e× 1 vectors rrr and xxx, we obtain a
result corresponding to (2.9)

∂rrr(xxx(rrr))
∂rrr

=
∂rrr
∂xxx

· ∂xxx
∂rrr

=EEE. (2.10)

In addition, the chain rule is written with an additional f ×1 vector yyy as follows,

∂rrr(xxx(yyy))
∂yyy

=
∂rrr
∂xxx

· ∂xxx
∂yyy

, (2.11)

yielding an e× f matrix. The computer-friendly notation introduced here will be
used continually in the following. It also contains, for e = 3, the relations of the
vector analysis.

The acceleration aaa(t) of point P is a measure of the change in time of its velocity
and is determined by differentiation of (2.5) with respect to time. In a spatially fixed
frame, the 3×1 vector of the absolute acceleration coordinates is thus defined by

aaa(t) = v̇vv(t) = r̈rr(t) =
[

r̈1 r̈2 r̈3
]
. (2.12)

Acceleration can be expressed not only with Cartesian coordinates using (2.12), but
also with generalized coordinates. With the product rule, (2.6) yields the relation

aaa(t) = aaa(xxx, ẋxx, ẍxx) =HHHT (xxx) · ẍxx(t)+ dHHHT (xxx)
dt

· ẋxx(t)

=HHHT (xxx) · ẍxx(t)+
(

∂HHHT (xxx)
∂xxx

· ẋxx(t)
)
· ẋxx(t). (2.13)

The acceleration is thus a linear function of the second derivative ẍxx(t) of the position
vector. Moreover, it is also quadratically dependent on the first derivative ẋxx(t) of the
position vector.

All equations essential for the kinematics of a point have thereby been estab-
lished.

Example 2.1 (Point Movement in Spherical Coordinates). For problems with
centrally symmetric forces, the spherical coordinates ψ , ϑ ,R, as shown in Fig. 2.2,
are often to be recommended. The 3×1 position vector is then

xxx(t) =
[

ψ ϑ R
]
. (2.14)

The 3×1 location vector then acquires the form

rrr(t) =

⎡

⎣
cosψ sinϑ
sinψ sinϑ

cosϑ

⎤

⎦R (2.15)
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and the 3 × 3 Jacobian matrix of translation is written in accordance with (2.7)
or (2.8)

HHHT (xxx) =

⎡

⎣
−Rsinψ sinϑ Rcosψ cosϑ cosψ sinϑ
Rcosψ sinϑ Rsinψ cosϑ sinψ sinϑ

0 −Rsinϑ cosϑ

⎤

⎦ . (2.16)

With this, the 3×1 velocity vector is also determined with (2.6),

vvv(xxx, ẋxx) =

⎡

⎣
−Rψ̇ sinψ sinϑ +Rϑ̇ cosψ cosϑ + Ṙcosψ sinϑ
Rψ̇ cosψ sinϑ +Rϑ̇ sinψ cosϑ + Ṙsinψ sinϑ

−Rϑ̇ sinϑ + Ṙcosϑ

⎤

⎦ (2.17)

yielding the acceleration vector

aaa(xxx, ẋxx, ẍxx) =
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−Rψ̈ sinψ sinϑ+Rϑ̈ cosψ cosϑ+R̈cosψ sinϑ −Rψ̇2 cosψ sinϑ
−2Rψ̇ϑ̇ sinψ cosϑ−2Ṙψ̇ sinψ sinϑ−Rϑ̇ 2 cosψ sinϑ+2Ṙϑ̇ cosψ cosϑ

Rψ̈ cosψ sinϑ+Rϑ̈ sinψ cosϑ+R̈sinψ sinϑ−Rψ̇2 sinψ sinϑ
+2Rψ̇ϑ̇ cosψ cosϑ+2Ṙψ̇ cosψ sinϑ−Rϑ̇ 2 sinψ sinϑ+2Ṙϑ̇ sinψ cosϑ

−Rϑ̈ sinϑ+R̈cosϑ−Rϑ̇ 2 cosϑ−2Ṙϑ̇ sinϑ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(2.18)

The acceleration vector is linearly dependent on the second derivatives and
quadratically dependent on the first derivatives of the generalized coordinates.

End of Example 2.1.

By introducing generalized coordinates, the uniqueness of the kinematic descrip-
tion at singular points may be lost due to a loss of degrees of freedoms. Thus we
should always require the full rank of the Jacobian matrix or

detHHHT �= 0. (2.19)
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In Example 2.1, according to (2.16) there is a rank decrease of two in matrix HHHT for
R = 0, which certainly violates (2.19). The explanation for this is that the point P
for R → 0 can now only move in the direction

eeeR =
[

cosψ sinϑ sinψ sinϑ cosϑ
]
, (2.20)

so it now only has one degree of freedom. This problem can be solved by the
introducing complementary spherical coordinates ψ , ϑ , see Fig. 2.3. By extending
(2.15), we then obtain

rrr(t) =

⎡

⎣
Rcosψ sinϑ
Rsinψ sinϑ

Rcosϑ

⎤

⎦=

⎡

⎣
Rcosψ sinϑ
Rsinψ sinϑ
Rcosϑ +b

⎤

⎦ , (2.21)

i.e. two different singular points R = 0 and R = 0 appear, where b > 0 is an arbitrary
distance. If we now limit, for example, the critical generalized coordinates by the
areas shown in Fig. 2.3,

R ≥ b/4, R ≥ b/4, (2.22)

then with position vectors that are complementary to each other xxx(t) and xxx(t), a
unique description of position is always possible. If one of the limits (2.22) is
violated, transition to the complementary spherical coordinates takes place and vice
versa. Following (2.21), we have for this, for example, the following relation

R = R
sinϑ
sinϑ

, cotϑ = cotϑ − b
Rsinϑ

. (2.23)

For many motions, the singular points are not critical. For example, the planets
always move at a great distance from the singular point at the origin. Yet in the
case of rotating rigid bodies we constantly find singular points, to which numerous
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papers have been dedicated in gyroscope theory. It is therefore worthwhile to deal
with this problem already at the level of the point motion.

A free system of p mass points in space has 3p degrees of freedom. If we merge
the 3p generalized coordinates of the total system into a 3p×1 position vector xxx(t),
the ith point is defined in accordance with (2.4) as

rrri(t) = rrri(xxx), i = 1(1)p. (2.24)

The relations (2.5), (2.6) and (2.12), (2.13) are also true for mass point systems. In
particular, (2.8) turns into a 3×3p Jacobian matrix HHHTi(xxx), i = 1(1)p.

2.1.2 Kinematics of a Rigid Body

The rigid body is a simple model of continuum mechanics. Like all continua, it
consists of a coherent, compact quantity of mass points. However, in a rigid body,
the distances between arbitrary mass points are constant. From the standpoint of
continuum mechanics, a rigid body is thus free of strain. Yet it is also statically
indeterminate, i.e. the forces and stresses arising in its interior cannot be calculated,
see Sect. 5.4.2. Nonetheless, the rigid body is eminently suitable for the investigation
of motions in many contexts within dynamics. This is especially the case for systems
of rigid bodies, called multibody systems.

In order to describe free multibody systems kinematically, such as they appear in
rotor dynamics for example, it is again sufficient to consider a single rigid body. In
a free system, all rigid bodies are kinematically equal.

An arbitrary, rigid or nonrigid body K is described mathematically by its
reference configuration, i.e. a constant and reversibly unique assignment of location
vectors ρρρ to the mass points, see Fig. 2.4. If nothing else is stipulated, we use an
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inertial Cartesian frame {O,eeeα},α = 1(1)3, and a nonpolar continuum. The current
configuration of a body K(t) in motion at time t in space,

rrr = rrr(ρρρ, t; t0), (2.25)

is referred to the reference configuration of the body K(t0) at the reference time t0,

ρρρ = rrr(ρρρ, t0; t0). (2.26)

On the other hand, the location vectors ρρρ are also determined by the inverse function
of (2.25),

ρρρ = ρρρ(rrr, t; t0), (2.27)

yielding a unique assignment to the mass points. The fixed reference time t0 is taken
as the basis for Eqs. (2.25)–(2.27). Yet it is also possible to select the running time
t0 = t as the reference time. We then obtain ρρρ(rrr, t; t) = rrr, i.e. the mass point P
designated by ρρρ coincides at the moment with the point in space described by rrr.
The running reference time t will prove useful for determining the current rotation
velocity vector.

In the following, the variables ρρρ , t and t0 will only be written if needed. This does
not affect the explicit dependence of the parameters considered in these variables.
The coordinates of the vector ρρρ are also called material coordinates, while the
coordinates of the vector rrr are designated as spatial coordinates.

The general motion of a nonrigid body K is composed of rotations and strains.
This motion is called deformation. Since deformation changes from point to point
within the body, it is properly characterized by the deformation gradient FFF(ρρρ, t; t0)=
∂rrr/∂ρρρ . The deformation gradient describes, for example, the motion of a tetrahedral
element from a reference configuration into the current configuration, as shown
in Fig. 2.5. A tetrahedral element comprises four infinitesimally neighboring mass
points P, P1, P2, P3. The line elements between point P and points P1,P2,P3 are
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thus transformed from the respective reference configuration dρρρ into the respective
current configuration drrr. This transformation is effected by the deformation gradient
FFF(ρρρ, t; t0). From (2.25) we obtain

rrr(ρρρ +dρρρ, t; t0)−rrr(ρρρ, t; t0) = drrr =
∂rrr
∂ρρρ

·dρρρ =FFF(ρρρ, t; t0) ·dρρρ. (2.28)

Conversely, we obtain with (2.27) and (2.25)

dρρρ =
∂ρρρ
∂rrr

·drrr =FFF−1(ρρρ, t; t0) ·drrr. (2.29)

In order to avoid ambiguity in (2.25) and (2.27), the deformation gradient in
(2.28) and (2.29) must be always regular, detFFF �= 0. Due to (2.26), (2.28) also results
in FFF(ρρρ, t0; t0)=EEE and thus detFFF(ρρρ, t0; t0)=+1. Here EEE is again the 3×3 unit tensor.

Furthermore, if we take the consistency of the deformation into consideration, we
obtain the condition

detFFF > 0. (2.30)

The current configuration of the tetrahedral element under consideration is deter-
mined by a total of 12 coordinates corresponding to the 12 degrees of freedom of
the 4 mass points. These 12 coordinates can also be interpreted as the 3 displacement
coordinates of the 3×1 location vector at point P and the 9 coordinates of the 3×3
tensor of the deformation gradient.

For a rigid body K, the pairwise distances of all mass points remain constant
during deformation,

drrr ·drrr =FFF ·dρρρ ·FFF ·dρρρ = dρρρ ·FFFT ·FFF ·dρρρ !
= dρρρ ·dρρρ. (2.31)

We thus find for the deformation gradient of the rigid body

FFFT ·FFF =EEE. (2.32)

Thus this deformation gradient FFF is independent of the location vector ρρρ of the
mass points of the rigid body. It can therefore only be a function of time t.
The deformation gradient thus corresponds to the 3× 3 rotation tensor SSS(t; t0) of
the rigid body,

FFF(ρρρ, t; t0) = SSS(t; t0). (2.33)

As a result of (2.30) and (2.32), the rotation tensor SSS(t; t0) is actually an orthogonal
tensor. In the following, the rotation tensor will always be applied to the reference
configuration, so we need not write the reference time t0.
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We will now introduce the properties of the rotation of a rigid body in detail.
Various possible methods of description will be used in the process, either via the
nine direction cosines, four rotation parameters or three rotation angles. In each
case, there remain three generalized coordinates corresponding to the three degrees
of freedom of the rotation of a rigid body.

Every Cartesian coordinate Sαβ (t), α ,β = 1(1)3, of the rotation tensor (2.33) can
be viewed as a direction cosine of the angle σαβ (t) between the basis vector eeeIα of
the spatially fixed inertial frame I and the basis vector eeeKβ (t) of the corresponding
body-fixed frame K, see Fig. 2.6. The Cartesian body-fixed frame {P(t);eeeKβ (t)},
β = 1(1)3 here coincides at time t = t0 with the inertial frame,

{P(t0);eeeKβ (t0)}= {0;eeeIα}. (2.34)

The nine direction cosines Sαβ ,α,β = 1(1)3, are subject to the six orthogonality
constraints (2.32), so only three generalized coordinates remain.

The rotation tensor SSS according to (2.33) can also be expressed by the four
rotation parameters, i.e. the three coordinates of the vector ddd, normalized to length
one, of the rotation axis and the scalar rotation angle ϕ(t). The representation of a
finite rotation by its rotation axis and a rotation angle is due to Euler. For this reason,
we also denote the four rotation parameters as Euler parameters.

From Fig. 2.7 we conclude on the one hand

ρρρ2(t) = SSS(t) ·ρρρ2(t0), (2.35)
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while on the other hand we obtain from the vector polygon P1MNP2 the relation

ρρρ2(t) = dddddd ·ρρρ2(t0)+(ρρρ2(t0)−dddddd ·ρρρ2(t0))cosϕ + d̃dd ·ρρρ2(t0)sinϕ. (2.36)

Comparison of (2.35) and (2.36) directly yields

SSS(t) = dddddd +(EEE −dddddd)cosϕ + d̃dd sinϕ. (2.37)

The skew-symmetric 3×3 tensor d̃dd of the 3×1 vector ddd and its dyadic product dddddd
were introduced into (2.36), see Appendix A,

ddd =

⎡

⎣
d1

d2

d3

⎤

⎦ , d̃dd =−d̃dd
T
=

⎡

⎣
0 −d3 d2

d3 0 −d1

−d2 d1 0

⎤

⎦ , dddddd =

⎡

⎣
d1d1 d1d2 d1d3

d2d1 d2d2 d2d3

d3d1 d3d2 d3d3

⎤

⎦ .

(2.38)

The skew-symmetric tensor of a vector is denoted by the symbol (˜). It gives the
cross or vector product

ãaa ·bbb = aaa×bbb. (2.39)

Between the dyadic product aaabbb, the scalar product aaa ·bbb = bbb ·aaa, and the expanded
vector product ãaa · b̃bb, there is also, using (A.30), the useful relation

aaabbb = (bbb ·aaa)EEE + b̃bb · ãaa. (2.40)

If we now consider that the vector ddd of the rotation axis is a unit vector,

ddd ·ddd = 1, (2.41)

which corresponds exactly to a constraint between the four rotation parameters
dα ,α = 1(1)3, and ϕ , we then obtain from (2.40) the relation

dddddd =EEE + d̃dd · d̃dd. (2.42)

Then (2.37) can be written as

SSS(t) =EEE + d̃dd sinϕ + d̃dd · d̃dd(1− cosϕ). (2.43)

We can see that for t = t0 the rotation tensor turns into the unit tensor EEE due to
ϕ(t0) = 0.

Closely related to the four rotation parameters are the four quaternions qn(t),
n = 0(1)3, which we obtain following the transition to half the rotation angle

q0 = cos
ϕ
2
, qqq =

⎡

⎣
q1

q2

q3

⎤

⎦= ddd sin
ϕ
2
. (2.44)
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Equation (2.43) thereby acquires the form

SSS(t) =EEE +2q0q̃qq+2q̃qq · q̃qq (2.45)

and the constraint (2.41) becomes

q2
0 +qqq ·qqq = 1. (2.46)

The three Rodrigues parameters pα(t),α = 1(1)3, are obtained by normalizing
the quaternions. They can be represented as a 3×1 vector ppp,

ppp = ddd tan
ϕ
2
=

1
q0

qqq. (2.47)

The rotation tensor then has the form

SSS(t) =EEE +2
p̃pp+ p̃pp · p̃pp
1+ ppp · ppp

(2.48)

which is a nice, compact expression.
The four rotation parameters can also be determined conversely from the rotation

tensor. To achieve this we can utilize, for example, the fact that a truly orthogonal
3×3 tensor has the eigenvalues λ1 = 1, λ2,3 = e±iϕ . The eigenvector belonging
to the real eigenvalue describes the rotation axis, while the argument ϕ of the
imaginary eigenvalues gives the rotation angle. However, the rotation direction
cannot be found by solving the eigenvalue problem. To do this, an additional
comparison with the rotation tensor (2.43) is required. For ϕ = 0,2π,4π, . . ., the
rotation tensor has a triple eigenvalue λ1,2,3 = 1. Then each unit vector is also an
eigenvector and consequently also a rotation axis.

Example 2.2 (Rotation Axis and Rotation Angle of a Rigid Body). Let a rotation
tensor SSS(t) be given by

SSS(t) =

⎡

⎣
cosϑ 0 −sinϑ

0 1 0
sinϑ 0 cosϑ

⎤

⎦ . (2.49)

The eigenvalue problem

(λEEE −SSS) ·ddd = 000 (2.50)

provides the characteristic equation

(λ −1)(λ 2 −2λ cosϑ +1) = 0 (2.51)
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with the eigenvalues

λ1 = 1, λ2,3 = e±iϑ . (2.52)

The first normalized eigenvector is

ddd =
[

0 −1 0
]
, (2.53)

where the sign has been determined by inserting into (2.43) and comparing with
(2.49). For the quaternions we obtain

q2
0(t) =

1
2
(1+ cosϑ) = cos2 ϑ

2
, q2

1(t) = 0,

q2
2(t) =

1
2
(1− cosϑ) = sin2 ϑ

2
, q2

3(t) = 0. (2.54)

As a result of the quadratic quantities, here also the rotation direction must be
determined by comparison with (2.49).

End of Example 2.2.

The four rotation parameters dα(t),α = 1(1)3, and ϕ(t) and the four quaternions
qn(t),n = 0(1)3, are subject to exactly one constraint, so here again only three
generalized coordinates remain. The three Rodrigues parameters pα(t) from (2.47)
on the other hand can be used directly as generalized coordinates. However, their
engineering applicability is limited by the infinite values of the tangent function for
ϕ = π/2,3π/2,5π/2, . . . .

Finally, the rotation tensor (2.33) can also be expressed by means of three rotation
angles from elementary rotations. Elementary rotations exist when the rotation axis
coincides with one of the coordinate axes. They are defined by the name of the
rotation angle and the specification of the rotation axis. There are three elementary
rotation matrices, these corresponding to the three basis vectors of a Cartesian
frame.

In order to construct a unique rotation tensor, we now make use of the property
that orthogonality is preserved in the multiplication of orthogonal tensors, and we
restrict ourselves also to three independent angles as generalized coordinates

ααα1(t) =

⎡

⎣
1 0 0
0 cosα −sinα
0 sinα cosα

⎤

⎦ , (2.55)

βββ 2(t) =

⎡

⎣
cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

⎤

⎦ , (2.56)

γγγ3(t) =

⎡

⎣
cosγ −sinγ 0
sinγ cosγ 0

0 0 1

⎤

⎦ . (2.57)
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Among the numerous possible ways to describe finite rotations with three general-
ized coordinates, here we will mention the Euler angles

SSS(t) =ψψψ3(t) ·ϑϑϑ 1(t) ·ϕϕϕ3(t) (2.58)

and the Cardano angles

SSS(t) =ααα1(t) ·βββ 2(t) ·γγγ3(t). (2.59)

In the construction of rotation tensors from elementary rotations, it should also be
kept in mind that the tensor product is not commutative. For this reason, a complete
definition includes not only the angle name and rotation axis, but also the sequence
of elementary rotations. If we now evaluate (2.59) with (2.55)–(2.57), we obtain

SSS(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cosβ cosγ −cosβ sinγ sinβ

cosα sinγ cosα cosγ −sinα cosβ
+sinα sinβ cosγ −sinα sinβ sinγ

sinα sinγ sinα cosγ cosα cosβ
−cosα sinβ cosγ +cosα sinβ sinγ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.60)

The Cardano angles can now be found conversely from the rotation tensor. For this
purpose it is appropriate to use the sparsely populated coordinates, e.g.,

sinβ = S13, cosα =
S33

cosβ
, cosγ =

S11

cosβ
. (2.61)

Singular rotation angles β = π/2,3π/2,5π/2, . . . exist here for cosβ = 0. They
come from the fact that two elementary rotation axes coincide and thus one degree
of freedom in the rotation is lost. This is especially clear if we consider, for example,
the rotation tensor (2.60) in the area of a singularity, α = Δα , β = π/2+Δβ , γ =Δγ
with Δα,Δβ ,Δγ � 1,

SSS(t) =

⎡

⎣
−Δβ 0 1

(Δα +Δγ) 1 0
−1 (Δα +Δγ) −Δβ

⎤

⎦ . (2.62)

Only the sum of the angles (Δα + Δγ) and the single angle Δβ remain as
generalized coordinates.

The singularities of rotation angles can be avoided by limiting the angle of the
second elementary rotation and by introducing complementary rotation angles. If
we limit, e.g., the second Cardano angle

−π/3 < β < π/3, (2.63)



2.1 Free Systems 25

and if we add the complementary Cardano angle to (2.59)

SSS(t) =ααα1(t) ·βββ 2(t) ·γγγ1(t), |β |> π/6, (2.64)

then no singularity arises. For α = Δα , β = π
2 +Δβ , γ = Δγ with Δα , Δβ , Δγ � 1

we obtain from (2.64) the rotation tensor

SSS(t) =

⎡

⎣
−Δβ Δγ 1
Δα 1 Δγ
−1 Δα −Δβ

⎤

⎦ . (2.65)

With this we obtain three independent coordinates Δα,Δβ ,Δγ . At the boundaries
(2.63) and (2.64), transformation of the angle takes place over the sparsely populated
coordinates of both rotation tensors. The intersecting boundaries guarantee however
a low number of shifts between (2.59) and (2.64). In particular, the relations

β = arcsin(sinβ cosγ), (2.66)

sinα =
1

cosβ
(cosα sinγ + sinα cosβ cosγ), (2.67)

cosα =
1

cosβ
(−sinα sinγ + cosα cosβ cosγ), (2.68)

sinγ =− 1
cosβ

(sinβ sinγ), (2.69)

cosγ =
1

cosβ
cosβ (2.70)

apply and the complementary relations

β = arccos(cosβ cosγ), (2.71)

sinα =
1

sinβ
(cosα sinγ + sinα sinβ cosγ), (2.72)

cosα =
1

sinβ
(−sinα sinγ + cosα sinβ cosγ), (2.73)

sinγ =− 1

sinβ
(cosβ sinγ), (2.74)

cosγ =
1

sinβ
sinβ . (2.75)

The elementary rotations permit us to construct, by means of numerous combination
possibilities, a suitable rotation tensor for every engineering problem. Especially
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Table 2.1 Possible methods for describing the rotation of a rigid body

Coordinates of the rotation tensor Relations of the coordinates Generalized coordinates

9 direction cosines 6 constraints e.g.
SSS(t) SSS ·SSST =EEE S11(t),S12(t),S23(t)
4 rotation parameters 1 constraint e.g.
ddd(t),ϕ(t) ddd ·ddd = 1 d1(t),d2(t),ϕ(t)
4 quaternions 1 constraint e.g.
q0(t) qqq(t) q2

0 +qqq ·qqq = 1 q0(t),q1(t),q2(t)
3 Euler angles
ψ(t),ϑ(t),ϕ(t) – ψ(t),ϑ(t),ϕ(t)
3 Cardano angles
α(t),β (t),γ(t) – α(t),β (t),γ(t)

flight mechanics and theory of gyroscopes make extensive use of this, see e.g.
Magnus [35] or Arnold and Maunder [2].

Possible methods of describing the rotation of a rigid body are summarized in
Table 2.1. If we merge the remaining generalized coordinates of rotation again in a
3×1 position vector

xxx(t) =
[

x1 x2 x3
]

(2.76)

then the following applies quite generally,

SSS(t) = SSS(xxx(t)) = SSS(xxx), (2.77)

independent of the particular choice of generalized coordinates.
A rigid body is in a state of general motion when its rotation is complemented

with displacement. According to Fig. 2.8, the current configuration of the rigid body
K is then

rrr(ρρρ, t) = rrr1(t)+rrrP(ρρρ, t) = rrr1(t)+SSS(t) ·ρρρ. (2.78)

This equation, first introduced in an intuitive manner, can also be found formally
by integrating (2.28) with a fixed reference time t0. In the case of the rigid body, this
integration is possible in a closed form since the deformation gradient, in accordance
with (2.33), does not depend on the mass coordinates.

In (2.78), rrr1(t) is the 3 × 1 location vector of point P1(t). It describes the
translation of the rigid body. The 3 × 3 rotation tensor SSS(t) denotes the rotation
of the rigid body. Translation, as opposed to rotation, does not contribute to the
deformation gradient, as follows from (2.78), (2.28). Furthermore, the following
applies according to (2.29), (2.32) and (2.33) for the inverse deformation,

ρρρ = SSST (t) ·rrrP(ρρρ, t). (2.79)
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Fig. 2.8 Motion of a free rigid body

Inserted into (2.78) we obtain

rrr(ρρρ, t) = rrr1(t)+SSS(t; t0) ·SSST (t; t0) ·rrrP(ρρρ, t)

= rrr1(t)+SSS(t; t0) ·SSS(t0; t) ·rrrP(ρρρ, t) = rrr1(t)+SSS(t; t) ·rrrP(ρρρ, t)

= rrr1(t)+rrrP(ρρρ, t). (2.80)

The instantaneous rotation tensor SSS(t, t) =EEE is independent of the reference time t0.
It thus has the property of being a field in the sense of continuum mechanics.

A free rigid body has six degrees of freedom. For the three degrees of freedom of
translation all the relations of point kinematics are valid, see Sect. 2.1.1. According
to Table 2.1, the three degrees of freedom of rotation also require three generalized
coordinates, so on the whole the 6×1 position vector

xxx(t) =
[

x1 x2 x3 x4 x5 x6
]

(2.81)

describes the general motion of a rigid body. The location vector and rotation tensor
of the rigid body are thus written

rrr(t) = rrr(xxx), SSS(t) = SSS(xxx). (2.82)

In special cases of pure translation or rotation (2.82) becomes (2.4) or (2.77),
whereby the number of degrees of freedom is in both cases reduced to three.
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The current velocity of a point on the rigid body K is obtained by the time
derivative of (2.78) in the form

vvv(ρρρ, t) =
d
dt

rrr(ρρρ, t) = ṙrr1(t)+ ṠSS(t) ·ρρρ (2.83)

since ρρρ does not depend on time. If we also take (2.79) into consideration, we can
also write

vvv(ρρρ, t) = ṙrr1(t)+ ṠSS(t) ·SSST (t) ·rrrP(ρρρ, t). (2.84)

The first term on the right-hand side corresponds to the translation velocity of the
reference point P1 from (2.5). The second term clearly is based on rotation and
should be inspected more closely here. From (2.84) we obtain, with a Taylor series
expansion with respect to dt taking into account the orthogonality of SSS, the result

ṠSS(t) ·SSST (t) =
SSS(t +dt; t0)−SSS(t; t0)

dt
·SSST (t; t0)

=
SSS(t +dt; t)−EEE

dt
= d̃dd(t; t)

dϕ(t; t)
dt

=
ds̃ss(t)

dt
= ω̃(t).

(2.85)

Here d̃dd(t; t) denotes the rotation axis and ϕ̇(t; t) the velocity of the instantaneous
rotation. Also, ds̃ss(t)=d̃dd(t; t)dϕ(t; t) is designated as the 3×3 tensor of infinitesimal
instantaneous rotation and ω̃ωω(t) as the 3×3 tensor of rotation velocity. In accor-
dance with (2.38), to this tensor is assigned the 3×1 vector ωωω(t) of rotation velocity.

Infinitesimal rotation dsss(t) thus has, in contrast to finite rotation, the property of
being a vector. Moreover, it also no longer depends on the reference time and is thus
a field quantity in the sense of continuum mechanics. Accordingly, (2.84) can also
be written as

vvv(ρρρ, t) = vvv1(t)+ω̃ωω(t) ·rrrP(ρρρ, t) = vvv1(t)+ωωω(t)×rrrP(ρρρ, t), (2.86)

which corresponds to the known formula for the velocity field of a rigid body. The
3×1 vectors vvv1(t) and ωωω(t) clearly describe the state of velocity of the rigid body.
They can also be merged into the 6×1 twist (vvv1(t),ωωω(t)), see Sect. 5.7.2.

In order to calculate the rotational velocity vector ωωω(t), we thus have relation
(2.85) available which means a formal time differentiation of the rotation tensor.

Example 2.3 (Rotational Velocity of a Rigid Body). With the rotation tensor (2.49)
from Example 2.2 we get the rotational velocity tensor

ω̃ωω(t) = ϑ̇

⎡

⎣
−sinϑ 0 −cosϑ

0 0 0
cosϑ 0 −sinϑ

⎤

⎦ ·
⎡

⎣
cosϑ 0 sinϑ

0 1 0
−sinϑ 0 cosϑ

⎤

⎦

= ϑ̇

⎡

⎣
0 0 −1
0 0 0
1 0 0

⎤

⎦ (2.87)
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and thereby the rotation velocity vector

ωωω(t) =
[

0 −ϑ̇ 0
]
. (2.88)

The rigid body is thus carrying out a planar rotation around the 2-axis with a negative
direction of rotation, see also (2.53).

End of Example 2.3.

If we also apply (2.85) to (2.43), we then obtain after lengthy calculation the 3×1
rotation velocity vector as a function of the rotation parameters

ωωω(t) = dddϕ̇ + ḋdd sinϕ + d̃dd · ḋdd(1− cosϕ). (2.89)

It is obvious that the rotation velocity depends not only on the temporal change ϕ̇(t)
of the rotation angle but also on the temporal change ḋdd(t) of the direction of the
rotation axis. This underlines it clearly that finite rotation and instantaneous rotation
have different properties.

If we insert half the rotation angle into (2.89), with the quaternions (2.44) we
obtain the simplified relation

ωωω(t) = 2(q0q̇qq− q̇0qqq+ q̃qq · q̇qq). (2.90)

If we supplement (2.90) with the time derivative of (2.46)

q0q̇0 +qqq · q̇qq = 0, (2.91)

both equations can be merged into one 4×1 vector differential equation

⎡

⎣
0

−−−−
ωωω(t)

⎤

⎦= 2QQQ(q0,qqq) ·
⎡

⎣
q̇0

−−
q̇qq

⎤

⎦= 2

⎡

⎣
q0 | qqq
−− | −−−−−−
−qqq | q0EEE + q̃qq

⎤

⎦ ·
⎡

⎣
q̇0

−−
q̇qq

⎤

⎦ , (2.92)

which relates the rotation velocity with the quaternions. It should be noted in
particular that the 4× 4 coefficient matrix QQQ is orthogonal and thus nonsingular,
so the inversion problem is easy to solve, see Table 2.2.

A further, intuitive way to calculate the rotation velocity vector is by using ele-
mentary rotations. For every elementary rotation there is one elementary rotational
velocity. Following (2.57), we obtain

ωωωα1(t) = α̇αα1(t) = [α̇ 0 0], (2.93)

ωωωβ2(t) = β̇ββ 2(t) = [0 β̇ 0], (2.94)

ωωωγ3(t) = γ̇γγ3(t) = [0 0 γ̇ ]. (2.95)
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Table 2.2 Kinematic differential equations

Sought coordinates Rotation velocity in the spatially-fixed frame

9 direction cosines SSS ṠSS = ω̃ωω ·SSS

4 quaternions [q0 qqq]

[
q̇0

q̇qq

]
= 1

2QQQT (q0,qqq) · [0 | ωωω]

[
q̇0

q̇qq

]
= 1

2

⎡

⎣
0 | −ωωω

−− − −−−
ωωω | ω̃ωω

⎤

⎦ ·
[

q0

qqq

]

3 Cardano angle α(t),β (t),γ(t)

ẋxx =HHH−1
R (xxx) ·ωωω

HHH−1
R =

⎡

⎢
⎢
⎣

1 sinα tanβ −cosα tanβ
0 cosα sinα

0 − sinα
cosβ

cosα
cosβ

⎤

⎥
⎥
⎦

Rotation velocity in the body-fixed frame 1

9 direction cosines SSS ṠSS = SSS ·1ω̃ωω

4 quaternions [q0 qqq]

[
q̇0

q̇qq

]
= 1

21QQQT (q0,qqq) · [0 | 1ωωω]

[
q̇0

q̇qq

]
= 1

2

⎡

⎣
0 | −1ωωω

−− − −−−
1ωωω | −1ω̃ωω

⎤

⎦ ·
[

q0

qqq

]

3 Cardano angle α(t),β (t),γ(t)

ẋxx = 1HHH−1
R (xxx) ·1ωωω

1HHH−1
R =

⎡

⎢⎢
⎣

cosγ
cosβ

− sinγ
cosβ

0

sinγ cosγ 0
−cosγ tanβ sinγ tanβ 1

⎤

⎥⎥
⎦

These elementary rotation velocities can be added vectorially, whereby the sequence
of rotations and the transformations of the coordinate axes through previous
rotations must be accounted for. This yields for the Euler angle

ωωω(t) = ψ̇ψψ3(t)+ψψψ3(t) · ϑ̇ϑϑ 1(t)+ψψψ3(t) ·ϑϑϑ 1(t) · φ̇φφ 3(t) (2.96)

and for the Cardano angle

ωωω(t) = α̇αα1(t)+ααα1(t) · β̇ββ 2(t)+ααα1(t) ·βββ 2(t) · γ̇γγ3(t). (2.97)

We can also represent rotation velocity vectors in a body-fixed frame, e.g. with the
Cardano angles as
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ωωω(t) = γγγT
3 (t) ·βββ T

2 (t) · α̇αα1(t)+γγγT
3 (t) · β̇ββ 2(t)+ γ̇γγ3(t). (2.98)

Evaluation of (2.97) yields, with the Cardano angles as generalized coordinates,

xxx(t) =
[

α β γ
]
, (2.99)

the relation

ωωω(t) =HHHR(xxx) · ẋxx(t) =
⎡

⎣
1 0 sinβ
0 cosα −sinα cosβ
0 sinα cosα cosβ

⎤

⎦ ·
⎡

⎣
α̇
β̇
γ̇

⎤

⎦ , (2.100)

where the 3×3 Jacobian matrix HHHR(xxx) of rotation has been introduced.
Calculation of the position or configuration from the rotation velocity is very

important in dynamics. This can be done by integrating the corresponding differ-
ential equations. The rotation velocity is given in a body-fixed or spatially fixed
frame, see Table 2.2. The kinematic differential equations of the direction cosines
and quaternions are overdetermined. The constraints shown in Table 2.1 are included
in differentiated form in the differential equations, although a first integral is known,
namely the constraints themselves. This can lead to numerical difficulties, i.e. the
constraints can be violated in case of longer integrations. It is therefore wise to
provide a correction method that performs a normalization in accordance with (2.32)
or (2.46) after each integration step. This normalization is undertaken automatically
for the differential equation of the Cardano angle as well as for all other elementary
rotations. However, then the functional matrix HHHR is no longer regular in the singular
configurations. Yet these singularities can be avoided by using complementary
rotation angles, an adjustment which requires a higher level of programming effort.

Example 2.4 (Integration of the Direction Cosines). Let the rotation velocity vector
(2.88) of the rotation be around the negative 2-axis and the initial condition be SSS(t =
t0) = SSS0. According to Table 2.2, the differential equations of the direction cosines
are then written ṠSS = ω̃ωω ·SSS or

Ṡ11 = ω2S31, Ṡ12 = ω2S32, Ṡ13 = ω2S33,

Ṡ21 = 0, Ṡ22 = 0, Ṡ23 = 0,
Ṡ31 =−ω2S11, Ṡ32 =−ω2S12, Ṡ33 =−ω2S13.

(2.101)

If we now consider that linear, time-variant differential equation systems of the form

[
ẋ1(t)
ẋ2(t)

]
=

[
0 ω(t)

−ω(t) 0

]
·
[

x1(t)
x2(t)

]
, (2.102)

[
x1(t = t0)
x2(t = t0)

]
=

[
x10

x20

]
(2.103)
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have the general solution

[
x1(t)
x2(t)

]
=

⎡

⎣
cos

(∫ t
t0

ωdt
)

sin
(∫ t

t0
ωdt

)

−sin
(∫ t

t0
ωdt

)
cos

(∫ t
t0

ωdt
)

⎤

⎦ ·
[

x10

x20

]
, (2.104)

then we obtain from (2.101) with ω2 =−ϑ̇ ,

SSS(t) =

⎡

⎣
cosϑ 0 −sinϑ

0 1 0
sinϑ 0 cosϑ

⎤

⎦ ·
⎡

⎣
S110 S120 S130

S210 S220 S230

S310 S320 S330

⎤

⎦ . (2.105)

If SSS0 =EEE, we again obtain the rotation tensor (2.49).
If the differential equations (2.101) are solved not analytically but numerically,

integration errors can destroy the orthogonality. For example, if we allow one
integration error ε in a solution of the differential equation (2.101),

S11 = cosϑ + ε , (2.106)

then the corresponding condition of orthogonality is no longer satisfied. For SSS0 =EEE
we obtain for example

S2
11 +S2

21 +S2
31 = 1+2ε cosϑ �= 1. (2.107)

A non-orthogonal rotation tensor corresponds however to the deformation gradient
of a nonrigid body. For this reason, orthogonality must constantly be checked and
enforced.

End of Example 2.4.

Example 2.5 (Integration of the Cardano Angle). The rotation shown in Exam-
ple 2.4 will now be described with Cardano angles. In Table 2.2 we find

α̇ = ω2 sinα tanβ , β̇ = ω2 cosα, γ̇ =−ω2
sinα
cosβ

. (2.108)

This nonlinear system of differential equations can now be solved in a closed form
with the initial condition α0 = 0, β0 = 0, γ0 = 0

α(t) = 0, β (t) =
∫

ω2dt =−ϑ , γ(t) = 0. (2.109)

The rotation tensor (2.49) has again been determined, and orthogonality has by
definition been preserved.

On the other hand, there is a singularity for α0 = −γ0 = 0 and β0 = π/2.
This can be rectified by using complementary Cardano angles (2.64). According
to (2.71), (2.72), and (2.74), the corresponding initial conditions are α0 = 0,
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β 0 = π/2, and γ0 = 0 and the nonlinear time-variant system of differential equa-
tions has the form

α̇ =−ω2 sinα cotβ , β̇ = ω2 cosα, γ̇ = ω2
sinα
sinβ

(2.110)

with the solution

α(t) = 0, β (t) =
π
2
+

∫
ω2dt, γ(t) = 0. (2.111)

We can see that the transition from Cardano angles to complementary Cardano
angles was even possible in one singular position. But this should be avoided for
numerical reasons.

End of Example 2.5.

This concludes our discussion of rotational velocity. According to (2.86), the
velocity of a rigid body is given completely by the translational velocity vvv(t) of
a mass point P(t) and by the rotational velocity ωωω(t) of the body, which is equal
at every point. These velocities can however also be expressed in accordance with
(2.6) and (2.100) by the generalized coordinates of the 6×1 position vector (2.81) as

vvv(t) = vvv(xxx, ẋxx) = [HHHT (xxx) 000] · ẋxx(t) =HHHT (xxx) · ẋxx(t),
ωωω(t) =ωωω(xxx, ẋxx) = [000 HHHR(xxx)] · ẋxx(t) =HHHR(xxx) · ẋxx(t), (2.112)

whereby the 3× 6 functional matrices can be obtained from (2.6) and (2.100) by
extending the matrices by zero submatrices. Formally, it yields according to (2.7)

HHHT (xxx) =
∂rrr(xxx)

∂xxx
, HHHR(xxx) =

∂sss(xxx)
∂xxx

. (2.113)

It should be noted that, in the second formula of (2.113), the infinitesimal instan-
taneous rotation from (2.85) must be used. The transition from (2.82) to (2.113) is
therefore somewhat laborious and must be undertaken using the skew-symmetric
tensor of the infinitesimal instantaneous rotation tensor

∂ s̃αβ

∂xδ
=

∂Sαγ

∂xδ
Sβγ , α,β ,γ = 1(1)3, δ = 1(1)6. (2.114)

Equation (2.114) is best analyzed with a formula manipulation program. However,
the Jacobian matrix HHHR(xxx) in (2.113) can also be obtained descriptively with the
help of elementary rotations from (2.100).

The current acceleration of the rigid body is given by a further time derivative
from (2.83)

aaa(ρρρ, t) =
d
dt

vvv(ρρρ , t) = r̈rr1(t)+ S̈SS(t) ·ρρρ. (2.115)
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If we again consider (2.79), we obtain

aaa(ρρρ, t) = r̈rr1(t)+ S̈SS(t) ·SSST (t) ·rrrP(ρρρ, t). (2.116)

We again recognize the translational acceleration (2.12) as the first term, while the
second term denotes the rotational acceleration, yielding

S̈SS ·SSST = S̈SS ·SSST + ṠSS · ṠSST − ṠSS · ṠSST
= S̈SS ·SSST + ṠSS · ṠSST − ṠSS ·SSST ·SSS · ṠSST

= ˙̃ωωω(t)+ω̃ωω(t) ·ω̃ωω(t), (2.117)

where the definition (2.85) of angular velocity and its derivatives ˙̃ωωω = S̈SS ·SSST + ṠSS · ṠSST

are applied. If we now introduce the 3×1 rotational acceleration vector

ααα(t) = ω̇ωω(t), (2.118)

we then obtain

aaa(ρρρ , t) = r̈rr1(t)+
[

α̃αα(t)+ω̃ωω(t) ·ω̃ωω(t)
] ·rrrp(ρρρ, t). (2.119)

The acceleration of a rigid body is thus given by the translational acceleration aaa1(t)
of the mass point P1, its rotational acceleration ααα(t) and the square of its rotational
velocity ωωω(t).

Just like in (2.13), the accelerations can be expressed with generalized coordi-
nates

aaa(t) = aaa(xxx, ẋxx, ẍxx) =HHHT (xxx) · ẍxx(t)+
(

∂HHHT (xxx)
∂xxx

· ẋxx(t)
)
· ẋxx(t), (2.120)

ααα(t) =ααα(xxx, ẍxx, ẋxx) =HHHR(xxx) · ẍxx(t)+
(

∂HHHR(xxx)
∂xxx

· ẋxx(t)
)
· ẋxx(t). (2.121)

We thus obtain, in accordance with (2.112), the 3× 6 functional matrices HHHT and
HHHR and their derivatives.

A free system of p rigid bodies has 6p degrees of freedom, which are described by
the 6p×1 position vector xxx(t) of the generalized coordinates of the overall system.
Applying (2.82), for the ith body

rrri(t) = rrri(xxx), SSSi(t) = SSSi(xxx) (2.122)

is true. We can likewise apply (2.112)–(2.114) and (2.121) to the ith body.
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2.1.3 Kinematics of a Continuum

Like the rigid body, the continuum is a model of mechanics. The distances between
the mass points of a continuum are not constant like those of a rigid body, however.
A continuum in the deformation process is thus subject not only to a translation and
a rotation but also to strain. However, strain is generally small in elastic materials,
so we can usually work with linear relations. Fluids, which are subject to major
strains, or plastic materials will not be dealt with in this book. Strains arising in
a continuum also permit the calculation of internal forces and stresses, which are
of crucial importance in strength tests. Nevertheless, the use of continuum models
in dynamics is not always mandatory. Frequently, motions are calculated with a
rigid body model and the strength tests – under consideration of inertia forces – are
carried out using static methods. In order to describe free continua kinematically, it
is again sufficient to consider a single body as was the case in the previous sections.

In order to describe the configuration of a continuum K mathematically, Fig. 2.4
and Eqs. (2.25)–(2.30) can be adopted without any alterations. The deformation
gradient FFF(ρρρ, t) is now no longer orthogonal, however. But it can, like any second-
order tensor, undergo a polar decomposition

FFF(ρρρ, t) = SSS(ρρρ, t) ·UUU(ρρρ, t), (2.123)

where we see not only the location-dependent, proper orthogonal 3 × 3 rotation
tensor

SSS
T
(ρρρ, t) = SSS

−1
(ρρρ, t) (2.124)

but also the equally location-dependent, symmetric and positive definite 3×3 right
stretch tensor

UUUT (ρρρ, t) =UUU(ρρρ, t), (2.125)

which is a measure of strain. Proof of the properties mentioned can be found e.g.
in Lai, Rubin, Krempl [31] or Becker and Bürger [9] and will not be repeated here.
From the 3×3 right stretch tensor we obtain the Green strain tensor

GGG =
1
2
(UUU ·UUU −EEE) =

1
2
(FFFT ·FFF −EEE), (2.126)

which is also symmetric. With (2.123) and (2.125) we can also write the deformation
gradient as

FFF = SSS · (EEE +2GGG)
1
2 . (2.127)
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Further information on the calculation of the roots of a matrix can be found
in Zurmühl and Falk [69]. In the case of a rigid body, the Green strain tensor
disappears, and from UUU = EEE follows GGG = 000, as a result of which (2.127) reverts
to (2.33).

Example 2.6 (Strain of a Twisted Round Bar). The current configuration of a
twisted round bar, Fig. 2.9, is described by point P with the 3×1 location vector

rrr(ρρρ, t) =

⎡

⎣
ρ1

ρ2 −αρ3

ρ3 +αρ2

⎤

⎦ , α(ρ1, t)� 1, (2.128)

where the 3 × 1 location vector ρρρ denotes the mass points in the reference
configurations. The small angle α is a function of location and time, its location-
dependence being restricted to the longitudinal direction of the bar.

According to (2.28), the deformation gradient is

FFF =

⎡

⎣
1 0 0

−α ′ρ3 1 −α
α ′ρ2 α 1

⎤

⎦ , α ′ =
∂α
∂ρ1

� 1 (2.129)

and the square of the right stretch tensor without taking quadratically small
magnitudes into account, results in
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ρ

Fig. 2.10 Free motion of a linear-elastic body

UUU ·UUU =FFFT ·FFF =

⎡

⎣
1 −α ′ρ3 α ′ρ2

−α ′ρ3 1 0
α ′ρ2 0 1

⎤

⎦ . (2.130)

If α � 1, then UUU from (2.130) can be written in a closed form

UUU =

⎡

⎣
1 − 1

2 α ′ρ3
1
2 α ′ρ2

− 1
2 α ′ρ3 1 0

1
2 α ′ρ2 0 1

⎤

⎦ . (2.131)

With (2.123) we now find the rotation tensor

SSS =

⎡

⎣
1 1

2 α ′ρ3 − 1
2 α ′ρ2

− 1
2 α ′ρ3 1 −α

1
2 α ′ρ2 α 1

⎤

⎦ (2.132)

and with (2.126) we obtain for the linearized Green strain tensor

GGGlin =
α ′

2

⎡

⎣
0 −ρ3 ρ2

−ρ3 0 0
ρ2 0 0

⎤

⎦ . (2.133)

The relation Rα(ρ1) = γρ1 applies for cases of static strain, see Fig. 2.9. If we
consider the deformation of an infinitesimal triangle at the mass point ρρρ = [0 R 0],
we determine from Fig. 2.9 that in addition to strain, characterized by a pure change
of angle, there is also a rotation of the infinitesimal triangle. This confirms the
assertion of (2.127) concerning simultaneously possible rotations and strains in
nonrigid bodies.

End of Example 2.6.

If we now note that elastic strain in elastic materials are usually small in relation to
rigid body motion, then the above relations can generally be linearized, see Fig. 2.10.
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Now the following is true for the current configuration with rigid body rotation
SSSr(t),

rrr(ρρρ, t) = rrr1(t)+SSSr(t) ·
[

ρρρ +www(ρρρ, t)
]
, (2.134)

where the relative 3 × 1 displacement vector www(ρρρ, t) is small in relation to a
characteristic length of the continuum. In addition, the following relation is valid
in (2.134)

www(000, t) = 000, (2.135)

which specifies the location vector rrr1(t) to the reference point P1. With the
associated 3×3 displacement gradient

FFFw(ρρρ, t) =
∂www
∂ρρρ

(2.136)

the linearized deformation gradient is

FFFlin = SSS · (EEE +GGGlin), (2.137)

where the relations

GGGlin =
1
2
(FFFw +FFFT

w), SSS = SSSr(t) ·SSSw(ρρρ, t), (2.138)

SSSw =EEE +
1
2
(FFFw −FFFT

w), SSSw(000, t) =EEE, (2.139)

must be taken into account. In the linear case, we thus obtain the linear 3 × 3
Green strain tensor GGGlin and the 3 × 3 tensor SSSw of relative rotation by simple
decomposition of the displacement gradient FFFw into its symmetric and skew-
symmetric components, see (2.138) and (2.139). It should also be mentioned that
the tensor SSSw(ρρρ, t) of relative motion, as opposed to the rotation tensor SSSr(t), is
dependent on location and time. According to (2.138), the total rotation SSS(ρρρ, t) is
composed of the rigid body rotation SSSr(t) and the relative rotation SSSw(ρρρ, t).

The linearized Green strain tensor has, for reasons of symmetry, only six essential
elements

GGGlin =

⎡

⎣
ε11 ε12 ε31

ε12 ε22 ε23

ε31 ε23 ε33

⎤

⎦ , (2.140)

which can also be merged into a 6×1 strain vector

eee =
[

ε11 ε22 ε33 γ12 γ23 γ31
]
. (2.141)
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We call εαα , α = 1(1)3 normal strains or elongations. The secondary diagonal
elements ε12,ε23,ε31 are called shear strains. Here, in the strain vector γ12 = 2ε12,
γ23 = 2ε23, γ31 = 2ε31 appear, which are referred to as slidings and describe the
changes in one of the 90◦ angles in the reference configuration. The strains and
shear stresses are not mutually independent however, since they are calculated
from the three coordinates of the displacement vector www. Yet the conditions of
compatibility are now no longer denoted by algebraic equations but rather by
differential equations. If we now introduce the 6×3 differential operator matrix,

V =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂/∂ρ1 0 0
0 ∂/∂ρ2 0
0 0 ∂/∂ρ3

∂/∂ρ2 ∂/∂ρ1 0
0 ∂/∂ρ3 ∂/∂ρ2

∂/∂ρ3 0 ∂/∂ρ1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.142)

we can also calculate the strain vector directly from the displacement vector,

eee = V ·www. (2.143)

The algorithms of matrix multiplication are applicable for the differential operator
matrix V , as shown in Sect. A.3.

As a consequence of linearization, the rotation tensor (2.139) has only three
essential elements,

SSSw =

⎡

⎣
1 −γ β
γ 1 −α
−β α 1

⎤

⎦ , (2.144)

which correspond to the small Cardano angles α , β , γ . The essential elements of
(2.144) can be merged in the 3×1 rotation vector

sss =
[

α β γ
]

(2.145)

and with the 3×3 differential operator matrix of elastic strain,

D =
1
2

⎡

⎢
⎣

0 −∂/∂ρ3 ∂/∂ρ2

∂/∂ρ3 0 −∂/∂ρ1

−∂/∂ρ2 ∂/∂ρ1 0

⎤

⎥
⎦ , (2.146)

determined from the displacement vector,

sss = D ·www. (2.147)
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The rotation vector (2.145) plays an important role in the mechanics of polar
continua, among which we can include the Bernoulli beam, too. A polar continuum
is composed of mass points, which can execute both displacements and rotations
and is also known as a Cosserat continuum.

A nonrigid continuum has an infinite number of degrees of freedom since it
comprises infinitely many free mass points. This is also reflected in the fact that
the deformation gradient is dependent not only on time but also on the location or
material coordinates, respectively, of the mass points. A solution method often used
in linear continuum mechanics exploits this fact in conjunction with the principles
of separation and superposition,

www(ρρρ , t) =AAA(ρρρ) ·xxx(t), (2.148)

where the 3× f matrix AAA(ρρρ) of the relative shape functions and the f × 1 position
vector xxx(t) of the generalized coordinates appear with f →∞. The approach (2.148),
which does not always lead to the desired aim, thus in particular indicates the
infinitely many degrees of freedom of the continuum. With (2.143), we also obtain
for the strain vector

eee(ρρρ, t) =BBB(ρρρ) ·xxx(t) (2.149)

with the 6× f matrix BBB(ρρρ) of the strain functions,

BBB(ρρρ) = V ·AAA(ρρρ). (2.150)

For small elements of a continuum, it is also sufficient to choose with a finite number
of generalized coordinates, such as are utilized in the finite element method, see
Chap. 6. Furthermore, if we assume linear kinematics in the rigid body motion with
reference to point P1, we obtain from (2.134) and (2.148) for the displacement vector

rrr(ρρρ, t) = ρρρ +CCC(ρρρ) ·xxx(t), (2.151)

yielding the 3× f matrix CCC(ρρρ) of the absolute shape functions and a corresponding
f ×1 position vector xxx(t). Using the finite element method, the f ×1 position vector
xxx(t) is determined by means of the Cartesian coordinates of single mass points
Pj, j = 1,2,3, . . .,

xxx(t) =
[

rrr(ρρρ1, t) rrr(ρρρ2, t) rrr(ρρρ3, t) . . .
]
. (2.152)

In the case of continuous systems on the other hand, often the generalized
coordinates belonging to the eigenforms are merged in the position vector, see
Chap. 7.
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The current velocity of a point in the continuum is determined by the time
derivative of (2.25)

vvv(ρρρ, t) =
d
dt

rrr(ρρρ, t). (2.153)

We can obtain additional information if deformation is noted in accordance with
(2.28), (2.29),

vvv(ρρρ +dρρρ) = vvv(ρρρ)+ ḞFF(ρρρ) ·FFF−1(ρρρ) ·drrr(ρρρ). (2.154)

This yields the tensor of the spatial velocity gradient,

LLL = ḞFF ·FFF−1 =
∂vvv(rrr)

∂rrr
, (2.155)

which can be decomposed into symmetric and skew-symmetric components

LLL =DDD+WWW , DDD =
1
2
(LLL+LLLT ), WWW =

1
2
(LLL−LLLT ). (2.156)

Here, DDD denotes the symmetric 3× 3 strain velocity tensor, while WWW describes the
skew-symmetric 3× 3 rotation velocity tensor. Comparing (2.84) and (2.154), we
can see clearly that, due to (2.33), the strain velocity tensor vanishes as expected in
the case of a rigid body. In the linear case, we obtain from (2.137) to (2.139) with
(2.155) and (2.156), ignoring quadratically small elements

DDD = SSS ·ĠGGw ·SSST
, WWW = ṠSS ·SSST

. (2.157)

If we finally base our examination on the approach in (2.151), we then have

vvv(ρρρ, t) =CCC(ρρρ) · ẋxx(t) (2.158)

for the current velocity.
The current acceleration of a point in the continuum is taken from (2.153) via

mass derivation of the velocity

aaa(ρρρ, t) =
d
dt

vvv(ρρρ, t) =
∂
∂ t

vvv(rrr, t) =
∂vvv(rrr, t)

∂rrr
·vvv+ ∂vvv(rrr, t)

∂ t
. (2.159)

In this case, first the inverse function (2.27) was utilized, followed by a separation
of acceleration into a convective component (spatial velocity gradient) and a local
component. Furthermore, from (2.158) we obtain for the linear kinematics

aaa(ρρρ, t) =CCC(ρρρ) · ẍxx(t). (2.160)

The kinematics of the free continuum is now also concluded.
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Example 2.7 (Velocity and Acceleration of a Round Bar). From the current config-
uration (2.128), we obtain the vectors from the time derivative, which will in the
following be indicated by a point (.),

vvv(ρρρ, t) =

⎡

⎣
0

α̇ρ3

−α̇ρ2

⎤

⎦ , α̇ =
dα(ρ1, t)

dt
, (2.161)

aaa(ρρρ, t) =

⎡

⎣
0

α̈ρ3

−α̈ρ2

⎤

⎦ , α̈ =
d2α(ρ1, t)

dt2 . (2.162)

If we now observe the inverse function of (2.128) or the material coordinates,
respectively,

ρρρ(rrr, t) =

⎡

⎣
r1

r2 −αr3

r3 +αr2

⎤

⎦ , (2.163)

we then see that (2.161) and (2.162) are also valid in spatial coordinates. Also, it
can be shown quite generally that there are no differences between representations
with material and spatial coordinates in linear kinematics.

End of Example 2.7.

2.2 Holonomic Systems

Constrained systems differ from free systems in that the freedom of motion of one
or more position variables is limited by mechanical constraints. In engineering,
holonomic constraints are realized by means of ideal, i.e. inflexible guides, joints,
levers, bearings, rods, and other connections. The constraints between particular
machine elements permit the engineer to arrive at a certain total motion in order
to solve an engineering problem. On the other hand, constraints also serve to
break down a complicated total motion into simple sub-motions, which can then
be controlled independently of each other. For an industrial robot, see Fig. 2.11,
each degree of freedom is normally assigned one rigid body and a drive motor.

When defining holonomic systems, it is sensible to allow free systems as a special
case. This opens up more possibilities for the mathematical description of free
systems. The representation of a free system in the form of a holonomic system
means nothing more than an additional coordinate transformation. The number of
degrees of freedom is unaffected by this, as is the mechanical issue of lacking
constraints.
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2.2.1 Mass Point Systems

Constraints will first be discussed again using the example of a single point. The
motion of a mass point P(t) can be restricted due to being confined to a surface
or a path. Translational displacement on a surface that is changeable in time, see
Fig. 2.12, can be represented uniquely by means of two generalized coordinates
y1(t), y2(t) corresponding to the two degrees of freedom,

rrr(t) = rrr(xxx) = rrr(y1,y2, t). (2.164)

A surface in space is described by a scalar, algebraic and usually nonlinear
equation,

φ(xxx, t) = 0, (2.165)

where xxx(t) is the 3× 1 position vector of the free point. This provides us with an
implicit constraint onto a surface. With (2.164), we can also represent the constraint
explicitly,

xxx = xxx(y1,y2, t). (2.166)
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Both representations are equivalent. By means of (2.166), the reduction of the
order of the position vector due to the constraint is obvious. Translation along a time-
varying path, see Fig. 2.13, has only one degree of freedom with one generalized
coordinate y(t). The following applies

rrr(t) = rrr(xxx) = rrr(y, t). (2.167)

A path in space is given by two scalar equations,

φ1(xxx, t) = 0, φ2(xxx, t) = 0. (2.168)

Both of these constraints read in explicit form

xxx = xxx(y, t). (2.169)

The number of degrees of freedom of a constrained single point is uniquely deter-
mined by its number of constraints. For the point bound to the three-dimensional
path, we obtain f = 3−2 = 1 degrees of freedom.

Example 2.8 (Pendulum). A pendulum of time-varying length L(t) can move on a
spherical surface with a varying radius. This introduces a constraint which can be
written in Cartesian coordinates as

φ = r2
1 + r2

2 + r2
3 −L2(t) = 0 (2.170)

or using (2.14), (2.15), and Fig. 2.2 in spherical coordinates as

φ = |rrr|−L(t) = 0. (2.171)

A constraint with the Cartesian coordinates r1, r2 as generalized coordinates is
written in explicit form

rrr(r1,r2, t) =

⎡

⎢
⎣

r1

r2

±
√

L2(t)− r2
1 − r2

2

⎤

⎥
⎦ (2.172)
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or with the spherical coordinates ψ , ϑ as generalized coordinates

rrr(ψ,ϑ , t) =

⎡

⎣
cosψ sinϑ
sinψ sinϑ

cosϑ

⎤

⎦L(t). (2.173)

Often, curvilinear coordinates serve better for the introduction of constraints than
Cartesian coordinates.

End of Example 2.8.

The constraints limit motion not only of single points in space but in particular the
freedom of movement between several mass points of a mass point system. The
number of degrees of freedom in a system of p points with q constraints is

f = 3p−q. (2.174)

The q constraints can be described implicitly by an algebraic, generally nonlinear
q×1 vector equation

φφφ(xxx, t) = 000 (2.175)

or explicitly by the 3p×1 vector equation

xxx = xxx(yyy, t), (2.176)

using the f ×1 position vector of the constrained mass point system

yyy(t) =
[

y1 y2 . . . y f
]
. (2.177)

Constraints of the form (2.175) or (2.176), which simultaneously restrict the
position and velocity of the system, are called geometric constraints. Another type
of constraint is the integrable kinematic constraint of the form

φφφ(xxx, ẋxx, t) = 000, (2.178)

which does indeed depend formally on the velocity parameters, but can be converted
to the form (2.175) via integration. Holonomic constraints comprise geometric and
integrable kinematic constraints and can always be written in the form (2.175).

Time-invariant constraints are called scleronomic constraints, while time-variant
constraints are designated as rheonomic constraints. In addition to the bilateral
constraints characterized by Eq. (2.175), there are also unilateral constraints that
lead to inequalities. In the form (2.176), unilateral constraints lead to a variable
number of degrees of freedom, e.g. such as those that arise in contact problems. An
extensive treatment of this subject can be found in Pfeiffer and Glocker [42].
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Example 2.9 (Planar Double Pendulum). The double pendulum, see Fig. 2.14, is
a two-mass point system with four constraints (both points on the plane, both rod
lengths are constant) and thus two degrees of freedom. The corresponding numbers
are p = 2,q = 4, f = 3p−q = 3 ·2−4 = 2. For the Cartesian coordinates

xxx(t) =
[

r11 r12 r13 r21 r22 r23
]

(2.179)

and the angular coordinates

yyy(t) =
[

α1 α2
]

(2.180)

the scleronomic constraints are written in implicit form

φφφ =

⎡

⎢
⎢
⎣

r11

r2
12 + r2

13 −L2

r21

(r22 − r12)
2 +(r23 − r13)

2 −L2

⎤

⎥
⎥
⎦= 000 (2.181)

and in explicit form

xxx =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
Lsinα1

−Lcosα1

0
Lsinα1 +Lsinα2

−Lcosα1 −Lcosα2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.182)

We can confirm the equivalence of both forms by inserting (2.182) into (2.181).

End of Example 2.9.

The translation of a holonomic mass point system is obtained from (2.24) and
(2.176), yielding

rrri(t) = rrri(yyy, t), i = 1(1)p. (2.183)
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For the velocity we obtain

vvvi(t) =
∂rrri

∂yyy
· ẏyy(t)+ ∂rrri

∂ t
= JJJTi(yyy, t) · ẏyy(t)+vvvi(yyy, t), i = 1(1)p, (2.184)

where, besides the 3× f Jacobian matrix JJJTi of translation, the local 3×1 velocity
vector vvvi can appear in the case of rheonomic constraints. For the acceleration one
obtains likewise

aaai(t) = JJJTi(yyy, t) · ÿyy(t)+ J̇JJTi(yyy, t) · ẏyy(t)+ dvvvi

dt

= JJJTi(yyy, t) · ÿyy(t)+aaai(yyy, ẏyy, t), i = 1(1)p. (2.185)

In the scleronomic case, the 3×1 acceleration vector aaai is quadratically dependent
on the first derivative of the position vector. With rheonomic constraints on the
other hand, terms can also arise that, in purely mechanical systems, depend either
linearly or not at all on the first derivative ẏyy(t) of the position vector. These terms
are calculated with the help of (2.185).

In addition to the real motions of a system, virtual motions are also important
in dynamics. A virtual motion is an arbitrary, infinitesimal motion of the system
which is compatible with scleronomic and rheonomic constraints (provided they are
“frozen” at the given point in time). The symbol δ of virtual quantities possesses
the properties of variations in mathematics. The following applies for holonomic
constraints

δrrr �= 000 for movable bearings,

δrrr = 000 for firm restraints, (2.186)

δ t = 0.

The virtual motion of a point is thus determined by the virtual displacement δrrr,
while time is not varied. With virtual motions, calculations are made the same way
as with differentials

δ (crrr) = cδrrr, δ (rrr1 +rrr2) = δrrr1 +δrrr2, δrrr(yyy) =
∂rrr
∂yyy

·δyyy. (2.187)

The following applies in particular for the virtual motion of the ith point

δrrri = JJJTi ·δyyy, i = 1(1)p. (2.188)

The virtual change of position δyyy determines, using the Jacobian matrices JJJTi, the
entire virtual motion of the system.
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According to the chain rule (2.11), there is a close connection between the
Jacobian matrices HHHTi of the free system and JJJTi of the constrained system. With
(2.8), (2.176) and (2.183), the following relation applies in particular,

JJJTi =
∂rrri

∂yyy
=

∂rrri

∂xxx
· ∂xxx

∂yyy
=HHHTi(yyy, t) ·III(yyy, t) (2.189)

with the 3p× f matrix III(yyy, t). In this way, the practical calculation of the Jacobian
matrices can often be simplified considerably.

Example 2.10 (Mathematical Pendulum). The mathematical pendulum is a planar
pendulum with one degree of freedom, see Fig. 2.15. With spherical coordinates as
generalized coordinates, see (2.14), the constraint equation is

xxx =
[ π

2
(π −α) L

]
. (2.190)

With this we obtain

∂xxx
∂α

=
[

0 −1 0
]
. (2.191)

Taking (2.16) into account, from (2.189) we thus obtain the 3×1 Jacobian matrix

JJJT =
∂rrr
∂xxx

· ∂xxx
∂α

=

⎡

⎣
0

Lcosα
Lsinα

⎤

⎦ . (2.192)

This result can easily be checked by means of direct partial differentiation of the
location vector (2.193), End of Example 2.10,

rrr(α) =

⎡

⎣
0

Lsinα
−Lcosα

⎤

⎦ . (2.193)
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2.2.2 Multibody Systems

Just like the translation of a point, the rotation of a rigid body can also be restricted.
The rotation of a rigid body K in a Cardano joint, see Fig. 2.16, is uniquely described
by two degrees of freedom with the Cardano angles α(t),β (t) as generalized
coordinates,

SSS(t) = SSS(α,β ). (2.194)

The associated constraint is written implicitly with (2.99)

φ(xxx) = γ − γ0 = 0 (2.195)

and explicitly

xxx = xxx(α,β ) =
[

α β γ0
]
. (2.196)

We see that the relations (2.165) and (2.166) found for the translation of a point can
be transferred directly to the rotation of a body.

The number of degrees of freedom in a system of p rigid bodies with q
constraints is

f = 6p−q. (2.197)

For the q constraints, (2.175)–(2.177) are valid again, whereby (2.176) represents,
in the case of a multibody system, a 6p×1 vector equation.

The position and orientation of a holonomic multibody system is described by

rrri(t) = rrri(yyy, t), SSSi(t) = SSSi(yyy, t), i = 1(1)p (2.198)
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in accordance with (2.122) and (2.176). Supplementing (2.184) and (2.185), the
following applies for the rotation,

ωωω i(t) =
∂sssi

∂yyy
· ẏyy(t)+ ∂sssi

∂ t
= JJJRi(yyy, t) · ẏyy(t)+ωωω i(yyy, t), i = 1(1)p, (2.199)

ααα i(t) = JJJRi(yyy, t) · ÿyy(t)+ J̇JJRi(yyy, t) · ẏyy+ω̇ωω i(yyy, t)

= JJJRi(yyy, t) · ÿyy(t)+ααα i(yyy, ẏyy, t), i = 1(1)p. (2.200)

Here, the instantaneous infinitesimal 3 × 1 rotation vector sssi from (2.85) has
been used again, and like before the comments regarding (2.113) and (2.114) are
applicable for the calculation of the 3× f Jacobian matrix JJJRi of rotation. Also, ωωω i

is the local 3×1 rotation velocity vector and ααα i is a 3×1 local rotation acceleration
vector defined by means of (2.185).

We obtain for the virtual motion of the multibody system

δrrri = JJJTi ·δyyy, δsssi = JJJRi ·δyyy, i = 1(1)p, (2.201)

supplementing (2.188). Also, the following applies in accordance with (2.189),

JJJRi =HHHRi(yyy, t) ·III(yyy, t), (2.202)

a relation that is very valuable for calculating the Jacobian matrix of rotation.

Example 2.11 (Cardano Joint). The Cardano point, see Fig. 2.16, is a two-body
system with ten constraints and two degrees of freedom, p= 2,q= 10, f = 6p−q=
6 ·2−10 = 2. For the 12×1 position vector of the free system

xxx(t) = [r11 r12 r13 r21 r22 r23 α1 β1 γ1 α2 β2 γ2] (2.203)

and the 2×1 position vector

yyy(t) =
[

α β
]

(2.204)

the explicit constraints are

xxx =
[

0 0 0 0 0 0 α β 0 α 0 0
]
. (2.205)

Here we took into account the fact that the origin O of the frame is a fixed point
of both bodies. Taking (2.100) and (2.202) into consideration, we obtain for the
Jacobian matrices

JJJT 1 = JJJT 2 = 000, JJJR1 =

⎡

⎣
1 0
0 cosα
0 sinα

⎤

⎦ , JJJR2 =

⎡

⎣
1 0
0 0
0 0

⎤

⎦ (2.206)
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and the accelerations are

aaa1(t) = aaa2(t) = 000, (2.207)

ααα1(t) =

⎡

⎣
α̈

β̈ cosα − α̇β̇ sinα
β̈ sinα + α̇β̇ cosα

⎤

⎦ , ααα2(t) =

⎡

⎣
α̈
0
0

⎤

⎦ . (2.208)

In practice, we dispense with writing the 6p × 1 position vector xxx(t) of the free
system in the case of large multibody systems, since this leads to long expressions,
as (2.203) shows. The relations (2.198) are then evaluated directly with the f × 1
position vector yyy(t).

End of Example 2.11.

By definition, holonomic systems also include free systems as a special case.
Specifically, q = 0, f = 6p, xxx = yyy, HHHTi = JJJTi, HHHRi = JJJRi, III = EEE then applies, i.e.
the functional matrix III becomes the 6p×6p unit matrix.

2.2.3 Continuum

Constraints in a continuum are of a more theoretical nature since they cannot
be influenced constructively. Nevertheless, we can easily model highly varying
stiffness properties with good approximation by means of constraints. It is then
possible to go from a general three-dimensional problem to a simpler two or one-
dimensional task. One typical example for a holonomic constraint in a continuum
is the Bernoulli hypothesis of beam bending, which requires planar cross-sectional
surfaces – even under stress.

Deformation of a continuum is generally dependent on location, so the constraints
must also be formulated locally. The constraints are then given as functions of the
deformation gradient

φφφ(FFF(ρρρ, t)) = 000. (2.209)

Rigidity is a constraint typical for a continuum. With (2.32), we can write

φφφ =FFFT ·FFF −EEE = 000, (2.210)

subjecting the nine coordinates of the deformation gradient to six constraints, so the
three degrees of freedom of rotation remain. Besides the internal constraints given
by (2.209), a continuum can also be bound to its surroundings. Additional external
constraints then arise,

φφφ(rrr(ρρρ, t)) = 000 on Ar, (2.211)
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which correspond to the boundary conditions on the surface Ar. Boundary condi-
tions restrict deformation on a plane or line segment or at discrete single points on
the surface.

Example 2.12 (Torsion of a Round Bar). A twisted round bar with the current
configuration (2.128) represents a continuum characterized by six degrees of
freedom of rigid body motion and infinitely many degrees of freedom of torsion.
In particular, we obtain from (2.130) the relations

φ1 =U2
11 −1 = 0, (2.212)

φ2 =U2
22 −1 = 0, (2.213)

φ3 =U2
33 −1 = 0, (2.214)

φ4 =U2
23 = 0, (2.215)

φ5 = ρ2U2
12 +ρ3U2

13 = 0. (2.216)

These constraints express the fact that the cross-sectional areas remain flat and
undistorted under stress. Also, the round bar can be attached at three points on its
left end. The external constraints are then

r1 −ρ1 = 0, r2 −ρ2 = 0, r3 −ρ3 = 0, for ρρρ = [0 0
R
2
],

r1 −ρ1 = 0, r2 −ρ2 = 0, for ρρρ = [0 0 − R
2
],

r1 −ρ1 = 0, for ρρρ = [0
R
2

0]. (2.217)

The number of degrees of freedom is f → ∞ for the one-dimensional problem of
torsion.

End of Example 2.12.

2.3 Nonholonomic Systems

While holonomic constraints limit the freedom of motion of the position variables,
and thus simultaneously of the velocity variables, nonholonomic constraints lead
only to a restriction of the velocity, not of the position. Nonholonomic constraints
are relatively rare in technology. Linear nonholonomic constraints can be realized
purely mechanically, e.g. via rolling rigid wheels, while nonlinear nonholonomic
constraints require the use of control devices. However, with the help of non-
holonomic constraints, generalized velocities can be employed for a simplified
description of holonomic systems as well.
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Fig. 2.17 Rolling ball

The number f of degrees of freedom of the position of a holonomic system is
reduced by r nonholonomic constraints to the number g of degrees of freedom of
velocity. Thus the following applies for a system of p rigid bodies,

g = f − r = 6p−q− r, (2.218)

where (2.197) has been taken into account. The r nonholonomic constraints can be
represented implicitly by the non-integrable r×1 vector equation

ψψψ(yyy, ẏyy, t) = 000 (2.219)

or explicitly by the f ×1 vector differential equation

ẏyy = ẏyy(yyy,zzz, t), (2.220)

yielding the g×1 vector of the generalized velocity coordinates

zzz(t) =
[

z1 z2 . . . zg
]
. (2.221)

The nonholonomic constraints belong to the kinematic constraints, and they can be
scleronomic or rheonomic. It is however an essential condition that (2.219) cannot
be integrated. Otherwise the constraints will be holonomic, see (2.175).

Example 2.13 (Rolling Ball). A ball (radius R) rolling on a surface, Fig. 2.17, is a
rigid body with a holonomic (motion on a plane) and two nonholonomic constraints
(rolling without slipping), p = 1, q = 1, r = 2, f = 5, g = 3. With the generalized
coordinates of the free ball

xxx(t) =
[

r1 r2 r3 α β γ
]
, (2.222)

the generalized coordinates of the ball bound to the surface

yyy(t) =
[

r1 r2 α β γ ,
]
, (2.223)
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and the generalized velocities

zzz(t) =
[

ω1 ω2 ω3
]

(2.224)

the holonomic, scleronomic constraint is

φ = r3 −R = 0 or xxx =
[

r1 r2 R α β γ
]
. (2.225)

The nonholonomic, scleronomic constraints are obtained implicitly from the rolling
condition, yielding

ψψψ =

[
ṙ1 −R(β̇ cosα − γ̇ sinα cosβ )

ṙ2 +R(α̇ + γ̇ sinβ )

]
= 000 (2.226)

and explicitly as

ẏyy =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ω2R
−ω1R

ω1 +ω2 sinα tanβ −ω3 cosα tanβ
ω2 cosα +ω3 sinα
−ω2

sinα
cosβ +ω3

cosα
cosβ

⎤

⎥
⎥
⎥
⎥
⎥
⎦
. (2.227)

The fact was taken into account that the absolute velocity of the point of contact B
disappears, and (2.100) and Table 2.2 were consulted.

End of Example 2.13.

The configuration of a nonholonomic multibody system is given in unchanged form
by (2.198). The state of velocity on the other hand is obtained from (2.184), (2.199),
and (2.220), yielding

vvvi = vvvi(yyy,zzz, t), ωωω i =ωωω i(yyy,zzz, t), i = 1(1)p. (2.228)

We thereby obtain for the acceleration

aaai(t) =
∂vvvi

∂zzz
· żzz(t)+ ∂vvvi

∂yyy
· ẏyy(t)+ ∂vvvi

∂ t
= LLLTi(yyy,zzz, t) · żzz(t)+aaai(yyy,zzz, t) (2.229)

and also

ααα i(t) =
∂ωωω i

∂zzz
· żzz(t)+ ∂ωωω i

∂yyy
· ẏyy(t)+ ∂ωωω i

∂ t
= LLLRi(yyy,zzz, t) · żzz(t)+ααα i(yyy,zzz, t). (2.230)

For brevity’s sake, the 3 × g Jacobian matrices LLLTi and LLLRi and the local 3 × 1
acceleration vectors aaai and ααα i have been introduced as in the holonomic case.

In analogy to the virtual motions of holonomic systems, we can also introduce
the virtual velocity of nonholonomic systems. A virtual velocity is an arbitrary,
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infinitesimal change in velocity which always agrees with the constraints. The
symbol δ ′ of the virtual velocity has the properties

δ ′rrri = δ ′sssi = 000, δ ′vvvi �= 000, δ ′ωωω i �= 000, δ ′t = 0. (2.231)

Thus, when determining the virtual velocity, the position and time are not varied. In
particular, the following applies for the virtual velocity of a multibody system,

δ ′vvvi = LLLTi ·δ ′zzz, δ ′ωωω i = LLLRi ·δ ′zzz, i = 1(1)p. (2.232)

The virtual change in velocity δ ′zzz determines, via the functional matrices LLLTi, LLLRi,
the total virtual velocity of the system.

Also, there is a close connection between the different Jacobian matrices, as was
already clarified by (2.202). The following is true,

LLLTi(yyy,zzz, t) = JJJTi(yyy, t) ·KKK(yyy,zzz, t) (2.233)

LLLRi(yyy,zzz, t) = JJJRi(yyy, t) ·KKK(yyy,zzz, t) (2.234)

with the f ×g matrix

KKK(yyy,zzz, t) =
∂ ẏyy(yyy,zzz, t)

∂zzz
. (2.235)

With this we can often simplify our calculation of the Jacobian matrices.

Example 2.14 (Transport Cart). A transport cart with two independent, massless
wheels, see Fig. 2.18, is characterized by the fact that the axial center P cannot move
in the body-fixed 2-direction as a result of the static friction forces of the wheels.
Assuming planar motion, we are concerned with a body with three holonomic
constraints and one nonholonomic constraint, p = 1,q = 3,r = 1, f = 3,g = 2. With
the 6×1 position vector of the free body

xxx(t) =
[

r1 r2 r3 α β γ
]
, (2.236)

the 3×1 position vector of the cart

yyy(t) =
[

r1 r2 γ
]

(2.237)
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and its 2×1 velocity vector

zzz(t) =
[

v γ̇
]
, (2.238)

the nonholonomic constraint is written in explicit form

ẏyy =

⎡

⎣
vcosγ
vsinγ

γ̇

⎤

⎦ . (2.239)

For the 3×3 Jacobian matrices we obtain

JJJT =

⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦ , JJJR =

⎡

⎣
0 0 0
0 0 0
0 0 1

⎤

⎦ , (2.240)

the 3×2 functional matrix is written as

KKK(yyy) =

⎡

⎣
cosγ 0
sinγ 0

0 1

⎤

⎦ , (2.241)

with which we can also determine using (2.233), (2.234), the 3 × 2 functional
matrices LLLT , LLLR where

LLLT =

⎡

⎣
cosγ 0
sinγ 0

0 0

⎤

⎦ , LLLR =

⎡

⎣
0 0
0 0
0 1

⎤

⎦ . (2.242)

We also find

aaa =

⎡

⎣
−vγ̇ sinγ
vγ̇ cosγ

0

⎤

⎦ , ααα = 000. (2.243)

Using (2.229), (2.230), this also yields the state of acceleration.

End of Example 2.14.

The nonholonomic constraints (2.219) and (2.220) are sometimes also designated as
first-class nonholonomic constraints in order to differentiate them from second-class
holonomic constraints, see e.g. Hamel [25]. Second-class nonholonomic constraints
restrict accelerations, which is however only of theoretical interest.

Nonholonomic systems also include all holonomic systems as a special case.
Since the concept of generalized velocities is lacking in the case of holonomic
systems, this special case is not trivial, since the following is then true: r = 0, g = f ,
yyy = yyy(yyy,zzz), KKK = KKK(yyy,zzz). It should also be mentioned that the case at hand (2.220)
is always scleronomic and the f × f matrix KKK is usually regular and thus invertible.
Generalized velocities offer especially for large holonomic multibody systems
crucial advantages resulting from the separation of kinematics and dynamics.
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Example 2.15 (Point Motion in Spherical Coordinates). The use of generalized
velocities is already advantageous in the investigation of a simple point motion.
The Jacobian matrix HHHT can be reduced to a simpler functional matrix LLLT by means
of the appropriate choice of generalized velocities. With the generalized velocities

zzz(t) =
[

rψ̇ rϑ̇ ṙ
]

(2.244)

we obtain

ẏyy(yyy,zzz) =
[

1
r (rψ̇) 1

r (rϑ̇) ṙ
]

(2.245)

and the 3×3 matrix

KKK(yyy) =

⎡

⎣
1
r 0 0
0 1

r 0
0 0 1

⎤

⎦ , (2.246)

which, together with (2.16) and (2.233), leads to a dimensionless regular 3 × 3
matrix LLLT . This moves the singularity to (2.246) – it cannot be avoided even with
generalized velocities.

End of Example 2.15.

2.4 Relative Motion of the Frame

The previous discussions were always based on a spatially fixed frame that is not
in motion. This assumption was especially important in the calculation of velocity
and acceleration, see e.g. (2.5) and (2.12). Yet for many engineering problems, it is
useful to introduce a moving frame in addition to the fixed frame. The motion of
the frame can either be predefined as a target motion, or it is obtained directly as a
particular solution from the equations of motion. In the neighborhood of the target
motion or of a particular, periodic solution, we can then often execute a linearization
of the motion.

2.4.1 Moving Frame

In addition to the spatially fixed inertial frame {0I ;eeeIα}, now a moving reference
frame {0R;eeeRα}, α = 1(1)3 is introduced. The motion of the frame R is described
with respect to the frame I by the 3× 1 vector rrrR(t) and the 3× 3 rotation tensor
SSSR(t). For the basis vectors, the transformation law is applicable,

eeeIα = SSSR(t) ·eeeRα(t), α = 1(1)3, (2.247)
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Fig. 2.19 Relative motion of a rigid body

which is analogously also valid for the coordinates of vectors and tensors. For the
coordinates of a vector aaa or a tensor AAA, we obtain the relation

Iaaa = SSSR · Raaa, IAAA = SSSR · RAAA ·SSST
R . (2.248)

In case it is required, the frame is displayed by the lower left index.
Using Fig. 2.19, we thus obtain the following for the current configuration of a

rigid body K,

Irrr(ρρρ, t) = IrrrR(t)+SSSR(t) · [RrrrR1(t)+SSSRK(t) ·ρρρ], (2.249)

or completely written in the inertial frame I,

rrr(ρ , t) = rrrR(t)+rrrR1(t)+SSSR(t) ·SSSRK(t) ·ρρρ. (2.250)

By comparing with (2.78), we thus obtain for the absolute position of the rigid body,
expressed in the parameters of relative motion,

rrr1(t) = rrrR(t)+rrrR1(t), (2.251)

SSS(t) = SSSR(t) ·SSSRK(t). (2.252)

If we also take into account the inverse deformation

ρρρ = SSST
RK(t) ·SSST

R(t) ·rrrRP(ρρρ, t), (2.253)

we then obtain, via the material derivative of (2.249), the absolute velocity

Ivvv(ρρρ, t) =
d
dt IrrrR +

d
dt

SSSR · [RrrrR1 +SSSRK ·ρρρ]+SSSR · [ d
dt RrrrR1 +

d
dt

SSSRK ·ρρρ]

= Irrr
∗
R + Iω̃ωωR · IrrrR1 + IṙrrR1 +(Iω̃ωωR + Iω̃ωωRK) · IrrrRP, (2.254)
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where (∗) signifies the derivative in the inertial frame and (
...
) the derivative in the

reference frame. Comparison with (2.86) yields the following for the laws of relative
motion, see e.g. Magnus and Müller-Slany [36],

vvv1(t) = rrr∗R(t)+ω̃ωωR(t) ·rrrR1(t)+ ṙrrRK(t), (2.255)

ωωω(t) =ωωωR(t)+ωωωRK(t). (2.256)

A corresponding calculation finally leads to the following for the absolute accelera-
tion of the relative motion,

aaa1(t) = rrr∗∗R +( ˙̃ωωωR +ω̃ωωR ·ω̃ωωR) ·rrrR1 +2ω̃ωωR · ṙrrR1 + r̈rrR1, (2.257)

ααα(t) = ω̇ωωR +ω̃ωωR ·ωωωRK +ω̇ωωRK . (2.258)

In (2.257), the first two terms denote the guidance acceleration, the third term the
Coriolis acceleration, and the fourth term the relative acceleration.

The reference frame R can also be attached to the rigid body K. We then call it a
body-fixed frame {O1,eee11}. In this special case, the following applies,

rrrR1(t) = 000, SSSRK(t) =EEE (2.259)

and (2.250) turns directly into (2.78). This means that the motion of a rigid body can
also be interpreted as the motion of a Cartesian frame that is connected to the rigid
body. If we restrict ourselves to rigid body mechanics from the outset, this gives us
an easy access to the kinematics. However, describing rigid body motion with body-
fixed frames complicates the continuum-mechanical approach that is privileged in
this book.

Given a multibody system, a separate reference frame {OjR;eeejRα}, α = 1(1)3,
j = 1(1)n can be selected for each partial body Ki, i = 1(1)p. Then

rrri(t) = rrrjR(t)+rrrjRi(t), (2.260)

SSSi(t) = SSSjR(t) ·SSSjRi(t) (2.261)

applies and the relations (2.255)–(2.258) must also be generalized accordingly.

2.4.2 Free and Holonomic Systems

Holonomic systems include the free systems, q= 0, f = 6p, xxx=yyy, III =EEE, as a special
case. Mass point systems represent a subgroup of multibody systems with f = 3p.
For this reason, it will be sufficient to deal only with holonomic multibody systems
in this context.
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The number of degrees of freedom of a system is not changed by the introduction
of one or more reference frames. The degrees of freedom can however be distributed
varyingly to the reference and relative motions. If the reference motion is predefined
by pure time functions, the relative motion encompasses all degrees of freedom. If
we choose body-fixed reference frames exclusively on the other hand, all degrees
of freedom are found in the reference motion. In the common case of a mixed
distribution of degrees of freedom therefore

rrrR = rrrR(yyy, t), SSSR = SSSR(yyy, t) (2.262)

applies. Assuming that all vectors and tensors are represented in the reference frame,
we then obtain in accordance with (2.184), (2.199) for the guidance velocities of the
reference motion

rrr∗R = SSST
R ·

(
∂SSSr ·rrrR

∂yyy
· ẏyy+ ∂SSSr ·rrrR

∂ t

)
= JJJTR(yyy, t) · ẏyy(t)+vvvR(yyy, t), (2.263)

ωωωR =
∂sssR

∂yyy
· ẏyy+ ∂sssR

∂ t
= JJJRR(yyy, t) · ẏyy(t)+ωωωR(yyy, t) (2.264)

with the 3× f Jacobian matrices JJJTR and JJJRR of the guidance motion,

rrrRi = rrrRi(yyy, t), SSSRi = SSSRi(yyy, t) (2.265)

and for the relative velocities we obtain likewise

ṙrrRi =
∂rrrRi

∂yyy
· ẏyy+ ∂rrrRi

∂ t
= JJJTRi(yyy, t) · ẏyy(t)+vvvRi(yyy, t), (2.266)

ωωωRi =
∂sssRi

∂yyy
· ẏyy+ ∂sssRi

∂ t
= JJJRRi(yyy, t) · ẏyy(t)+ωωωRi(y, t). (2.267)

Here, JJJTRi and JJJRRi are the 3× f Jacobian matrices of the relative motion. We then
find the accelerations for the guidance and relative motions following (2.185) and
(2.200).

The absolute velocities and accelerations are then obtained with (2.262)–(2.267)
from (2.255) to (2.258). We hereby find for the Jacobian matrices the relation

JJJTi = JJJTR +JJJTRi − r̃rrRi ·JJJRR, (2.268)

JJJRi = JJJRR +JJJRRi. (2.269)

We can see that a purely time-dependent guidance motion does not at all affect the
Jacobian matrices of the multibody system at hand, JJJTR = JJJRR = 000.

Example 2.16 (Overturning Double Pendulum). Both bodies of the double pendu-
lum in Fig. 2.20 have a high initial velocity. The initial conditions are α10=α20=0,
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α̇10 = α̇20 = Ω 	 √
g/L. In order to examine the motion, it is practical to use a

reference frame that rotates with the rotation velocity Ω ,

rrrR(t) = 000, SSSR(t) =

⎡

⎣
1 0 0
0 cosΩ t −sinΩ t
0 sinΩ t cosΩ t

⎤

⎦ , (2.270)

rrr∗R(t) = 000, ωωωR =ωωωR =
[

Ω 0 0
]
, JJJTR = JJJRR = 000. (2.271)

Also, the following applies for the relative motion in the reference frame

rrrR1 =

⎡

⎣
0

sinα1

−cosα1

⎤

⎦L, rrrR2 =

⎡

⎣
0

sinα1 + sinα2

−cosα1 − cosα2

⎤

⎦L (2.272)

with the Jacobian matrices

JJJT R1 =

⎡

⎣
0 0

cosα1 0
sinα1 0

⎤

⎦L, JJJT R2 =

⎡

⎣
0 0

cosα1 cosα2

sinα1 sinα2

⎤

⎦L. (2.273)

Observing (2.255), the absolute velocities in the reference frame read as

vvv1 =

⎡

⎣
0

(α̇1 +Ω)cosα1

(α̇1 +Ω)sinα1

⎤

⎦L, (2.274)

vvv2 =

⎡

⎣
0

(α̇1 +Ω)cosα1 +(α̇2 +Ω)cosα2

(α̇2 +Ω)sinα1 +(α̇2 +Ω)sinα2

⎤

⎦L. (2.275)

By means of the moving reference frame R, the Jacobian matrices remain in the
simple form (2.273), even when using relative coordinates. Further advantages will
be seen in the linearization of the motion.

End of Example 2.16.
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2.4.3 Nonholonomic Systems

Nonholonomic constraints in the explicit form (2.220) can be inserted into the
expressions (2.263)–(2.267) of the guidance and relative velocities, so then they
depend too on the g × 1 vector of the generalized velocities. The corresponding
accelerations are again obtained using (2.229) and (2.230). We finally arrive at
the absolute velocities and accelerations with (2.255)–(2.258). For the Jacobian
matrices, we obtain the relation

LLLTi = LLLTR +LLLTRi − r̃rrRi ·LLLRR, (2.276)

LLLRi = LLLRR +LLLRRi. (2.277)

It is also true here that a purely time-dependent guidance motion does not influence
the Jacobian matrices of the multibody system under consideration, LLLTR=LLLRR=000.

2.5 Linearization of the Kinematics

We have already discussed the linearization of kinematic relations in our discussion
of continua in Sect. 2.1.3. In this section, the linearization of the motion of point and
multibody systems with respect to an arbitrary target motion will be considered. We
will again ignore the distinction between free and holonomic systems in this context.

In engineering, a target motion yyyS(t) is often defined by the task of a machine or
device, whereby the actual motion yyy(t) deviates only slightly from it. If it is true that
the velocities ẏyy(t) and accelerations ÿyy(t) essentially also correspond to the target
motion, then the following is valid for holonomic systems,

yyy(t) = yyyS(t)+ηηη(t), |ηηη(t)| � a, (2.278)

ẏyy(t) = ẏyyS(t)+ η̇ηη(t), |η̇ηη(t)| � b, (2.279)

ÿyy(t) = ÿyyS(t)+ η̈ηη(t), |η̈ηη(t)| � c, (2.280)

where ηηη(t) is the f × 1 position vector of the small deviations and a,b,c represent
suitable reference values. With (2.278), we obtain from (2.198) after a Taylor series
expansion,

rrri(ηηη , t) = rrriS(t)+JJJTiS(t) ·ηηη +rrri2(ηηη ·ηηη , t)+ . . . , (2.281)

SSSi(ηηη , t) = SSSiS(t)+SSSi1(ηηη , t)+SSSi2(ηηη ·ηηη , t)+ . . . , (2.282)
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where rrriS(t) and SSSiS(t) denote the 3 × 1 position vector and the 3 × 3 rotation
tensor of the target motion. Also, the following applies according to (2.184) for
the linearized 3× f Jacobian matrix of translation

JJJTi(ηηη , t) = JJJTiS(t)+JJJTi1(ηηη , t)+ . . . . (2.283)

For the linear term of the series expansion of the Jacobian matrix it follows

JJJTi1(ηηη , t) =
∂rrri2(ηηη ·ηηη , t)

∂ηηη
. (2.284)

If we now neglect the quadratic and higher components, we obtain for the velocity
and acceleration of holonomic systems

vvvi(t) = JJJTiS(t) · η̇ηη(t)+ J̇JJTiS(t) ·ηηη(t)+vvviS(t), (2.285)

aaai(t) = JJJTiS(t) · η̈ηη(t)+2J̇JJTiS(t) · η̇ηη(t)+ J̈JJTiS(t) ·ηηη(t)+aaaiS(t), (2.286)

while for the virtual translational motion

δrrri =
[

JJJTiS(t)+JJJTi1(ηηη , t)
] ·δηηη (2.287)

is true.
Equation (2.283) applies analogously for the linearized 3× f Jacobian matrix

of rotation. Calculation of the Jacobian matrices JJJRiS(t) and JJJRi1(t) is much more
complicated however. Taking the definition found in (2.113), (2.114) into account,
we obtain

∂ s̃iSαβ

∂ηδ
=

∂Si1αγ

∂ηδ
SiSβγ , (2.288)

∂ s̃i1αβ

∂ηδ
=

∂Si2αγ

∂ηδ
SiSβγ +

∂Si1αγ

∂ηδ
Si1βγ , α,β ,γ = 1(1)3,δ = 1(1) f . (2.289)

The rotation speed and rotation acceleration are thus

ωωω i(t) =JJJRiS(t) · η̇ηη(t)+JJJ′RiS(t) ·ηηη(t)+ωωω iS(t),

JJJ′RiS(t)ηηη(t) =
∂SSSiS

∂ t
·SSST

i1 +
∂SSSi1

∂ t
·SSST

iS, (2.290)

ααα i(t) =JJJRiS(t) · η̈ηη(t)+(J̇JJRiS(t)+JJJ′RiS(t)) · η̇ηη(t)+ J̇JJ
′
RiS(t) ·ηηη(t)+ααα iS(t), (2.291)

while the virtual rotation corresponds to the relation (2.287).
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We can see that the rotation, because of its nonlinearity, involves considerably
more complexity in the linearization process than the translation. Here again, the
relations (2.288) and (2.289) would only be applied in the context of a computer
program. For smaller problems, it is advisable to proceed from the elementary
rotations and to obtain the Jacobian matrices JJJRiS(t) and JJJ′RiS(t) appearing in (2.290)
intuitively using a geometric approach.

When linearizing, we must especially take heed that ηηη · δηηη is not a quadratic
term in the sense of a Taylor series expansion. This means that the series expansion
in (2.281) is required up to the second term in order to determine the virtual
motion. If the series expansion in (2.281) is already interrupted after the first term,
completely false results could emerge when determining the generalized forces.
This connection is commonly overlooked in the literature and in the development
of program systems designed to investigate linear multibody systems. If we obtain
the linearized accelerations (2.286), (2.291) not by total derivation of the linearized
velocities (2.285), (2.290), but rather using general, nonlinear relations (2.185),
(2.200), then even the third term in (2.281) must be taken into account for ẏyyS(t) = 000.
This method is therefore not recommended for setting up linear relations.

Nonholonomic systems can be linearized without difficulty. In addition to
(2.281), (2.220) must then also undergo a series expansion, i.e. the target motion
is determined by yyyS(t) and zzzS(t).

Furthermore, it is often useful to carry out a partial linearization. In this case,
some of the position coordinates and/or some velocity coordinates are viewed as
small due to the physics or the actual motion, while the rest may be large. We then
of course do not obtain completely linear equations of motion, but the solution can
nonetheless be substantially simplified.

Example 2.17 (Overturning Pendulum). Let the target motion of the double pendu-
lum, see Fig. 2.20, be given by the motion of the reference frame. Then the following
applies with respect to the inertial frame

yyyS(t) =

[
Ω t
Ω t

]
, ηηη(t) =

[
α1

α2

]
(2.292)

and it should be assumed here that, despite the large guidance motion yyyS(t), only
small deviations from this arise, i.e., α1 � 1, α2 � 1. The series expansion for the
first location vector is written up to the second term

Irrr1 =

⎡

⎣
0

sinΩ t
−cosΩ t

⎤

⎦L+

⎡

⎣
0

α1 cosΩ t
α1 sinΩ t

⎤

⎦L+

⎡

⎣
0

− 1
2 α2

1 sinΩ t
1
2 α2

1 cosΩ t

⎤

⎦L (2.293)
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and the Jacobian matrix is obtained for the first mass point in the form

IJJJT 1S =

⎡

⎣
0 0

cosΩ t 0
sinΩ t 0

⎤

⎦L, (2.294)

IJ̇JJT 1s =

⎡

⎣
0 0

−sinΩ t 0
cosΩ t 0

⎤

⎦L, (2.295)

Ivvvis =

⎡

⎣
0

Ω cosΩ t
Ω sinΩ t

⎤

⎦ . (2.296)

In accordance with (2.285), (2.286), now the velocity and acceleration of the first
mass point are also determined. We then obtain for example

Ivvv1 =

⎡

⎣
0

α̇1 cosΩ t −α1Ω sinΩ t +Ω cosΩ t
α̇1 sinΩ t +α1Ω cosΩ t +Ω sinΩ t

⎤

⎦L. (2.297)

If we observe the pendulum motion in the reference frame, then all expressions are
simplified. Equations (2.293)–(2.297) yield with (2.270) Equations (2.298)–(2.299),
End of Example 2.17,

Rrrr1 =

⎡

⎣
0

α1

−1+ 1
2 α2

1

⎤

⎦L, RJJJT 1S =

⎡

⎣
0 0
1 0
0 0

⎤

⎦L (2.298)

and

Rvvv1 =

⎡

⎣
0

α̇1 +Ω
α1Ω

⎤

⎦L. (2.299)

Kinematics is a very extensive branch of applied dynamics. Many important
concepts and definitions have been introduced in this chapter, such as the point, rigid
body, and continuum models, the motion types of translation, rotation, and strain,
generalized coordinates and velocities, holonomic and nonholonomic constraints,
motion relative to reference frames, and small, linearizable deviations from a target
motion. All these basic concepts will be made use of again and again in the following
chapters.



http://www.springer.com/978-3-319-07334-7


	2 Basic Kinematics
	2.1 Free Systems
	2.1.1 Kinematics of a Mass Point
	2.1.2 Kinematics of a Rigid Body
	2.1.3 Kinematics of a Continuum

	2.2 Holonomic Systems
	2.2.1 Mass Point Systems
	2.2.2 Multibody Systems
	2.2.3 Continuum

	2.3 Nonholonomic Systems
	2.4 Relative Motion of the Frame
	2.4.1 Moving Frame
	2.4.2 Free and Holonomic Systems
	2.4.3 Nonholonomic Systems

	2.5 Linearization of the Kinematics


