
Introduction 1

1.1 Enterprise Application Software in the Age
of Globalization

Without a doubt, today’s companies are facing increased competition as a result of

globalization. In their daily fight for survival with their competitors, their reaction

to change must be swift, yet sustained. The following quote from Charles Darwin is

particularly valid in this context:

It is not the strongest of the species that survives,
nor the most intelligent that survives.

It is the one that is the most adaptable to change.

It is a company’s ability to find effective solutions in response to changes that

will ultimately guarantee its survival. Information technology (IT) is an important

contributory factor here. Efficiently providing new software solutions is not the

main problem, thanks to enormous advances in software engineering:

– Model-driven software development,

– The standardization of communication and interface technologies,

– The modularization of business functions in the form of reusable services,

– Productivity improvements for software developers due to highly integrated

development environments,

– The deployment of agile development methods.

As far as the total cost of ownership (TCO) is concerned, it is the maintenance,

enhancement, and adaptation of software to changing conditions that are proving to

be much greater hurdles. The adaptability of software systems is becoming ever

more important, but efforts to reflect this in software architectures are being

thwarted by time and cost pressures. This is particularly true for software that

needs to integrate existing business functions with new applications spanning

multiple systems and applications in line with the service-oriented architecture

(SOA) approach. Service-oriented architecture originally promised to leverage

V. Stiehl, Process-Driven Applications with BPMN, DOI 10.1007/978-3-319-07218-0_1,
Springer International Publishing Switzerland 2014

1

the potential of increased agility, lower costs, reusability, and a rapid implementa-

tion of business strategy into software, but results in projects have been disappoint-

ing. Anne Thomas Manes has even predicted the death of SOA in her now almost

legendary blog (Manes 2009). There are surely many reasons why results have

fallen short of expectations, and this is no doubt at least partly due to the fact that

SOA does not have, indeed has never had, a precise definition. Another reason,

perhaps not immediately obvious, is that developers, when creating applications in

the service-oriented world, draw on the expertise they have gained while program-

ming tightly coupled solutions. Unfortunately, architectures that function perfectly

well for tightly coupled stand-alone applications are completely unsuitable for

loosely coupled, distributed applications. It doesn’t matter if you are dealing with

data types (working with only one data type system in contrast to working with

several data type systems), communication between systems, or transaction behav-

ior: a distributed environment requires different solutions. This means that

developers need to change their way of thinking; as with any paradigm shift, a

new approach is necessary. Be it a change from machine language programming to

structured programming, from structured programming to object-oriented program-

ming, or the current trend towards developing service-oriented architectures; at

each stage of this evolution the degree of abstraction increases, and developers must

adopt and adapt to the new paradigms if they are to fully exploit their potential.

Clinging to old habits in this new world is more of a hindrance than a help. Process-

driven applications or composite applications (composites for short)—I use these

terms synonymously in this book—are no exception; there is no longer sole control

over the resources involved (for example, database systems or ERP systems).

Rather, we work in heterogeneous system landscapes where we are tasked with

combining existing services and new business logic; application developers need to

be much more aware of the problems that this presents.

The list of requirements goes on: Flexibility is another aspect that must not be

underestimated. We can illustrate this by looking at two specific requirements:

1. Need for changes within the process-driven application itself, particularly

changes to business processes

2. Ongoing changes within the system landscape on which the process-driven

application operates

Changes to Business Processes Business processes, understood in the classic

sense as “a series of specified operations (activities, tasks) executed by humans or

machines to achieve one or more objectives” (see for example Hammer and

Champy 1993), play a special role in process-driven applications. To differentiate

themselves from their competitors, companies must constantly fine-tune those

business processes that give them a competitive edge. Inevitably, successful pro-

cesses are copied by competitors, so the competitive lead is short-lived. Let us look

at an example from the airline industry: self-service check-in terminals. The airline

that first introduced this idea could offer their customers the advantage of shorter

waiting times (leading to higher customer satisfaction), and the airline itself

2 1 Introduction

benefited from personnel savings leading to lower costs. Today, almost all airlines

use this service, so the competitive advantage has disappeared. Companies also

have to change their processes as quickly as possible to adapt to changing market

conditions. Whatever the trigger for the change, the consequences are always the

same: A new innovation cycle compels companies to optimize their business-

critical processes yet further, to ensure their continued success. The quicker these

changes can be implemented, the higher the chances of a successful outcome. To

ensure that software has this flexibility and agility, readiness for change must

underpin the architecture of process-driven applications.

Changes in the System Landscape Process-driven applications must likewise be

prepared for a constantly changing system environment. It is one of the central

characteristics of composite applications that they function in a heterogeneous

system environment. Reusability, as we have already met in SOA, plays an impor-

tant role here as well. However, we should not try to reinvent the wheel. If

established, functioning business logic is already in place, then it should be used

accordingly. This does present a particular challenge though, since system

landscapes are not stable. When designing process-driven applications, you must

take into account from the very start that changes to landscapes are inevitable.

There are at least three reasons to expect that system landscapes will continue to

change in the future, perhaps at an even faster rate:

1. System consolidations

2. Company mergers

3. Software as a service (SaaS), on-demand, cloud

Let us examine these three points in more detail. IT departments in companies

are subject to enormous cost pressure. Executive management demands constant

cost optimization from IT managers. System consolidations are a proven tool for

reducing costs; the more systems and functions that can be pooled, the greater the

cost-saving potential. For this reason alone, system landscapes will continue to

change and develop. For process-driven applications, this means that calls that were

previously made to several systems now have to be processed by a reduced number

of systems.

On one side of the coin, retiring systems and moving diverse processes to

standard software does indeed simplify the IT landscape. The flip side of this

coin is company mergers. In order to reach growth targets, companies supplement

their organic growth with corporate takeovers. Fusing companies together in this

way swells the number of systems and applications in the landscape. In such cases,

the composite application must be adapted to the increased number of services in

the new environment.

Let us also not forget the newest trends: software as a service (SaaS),

on-demand, and cloud providers. These offer IT managers further optimization

potential by providing cost-effective business services. You can now farm out

non-critical functions, thus contributing towards an optimized IT cost structure.

1.1 Enterprise Application Software in the Age of Globalization 3

However, this scenario does demand a higher degree of flexibility from the archi-

tecture of process-driven applications. All of these scenarios, be it system

consolidations, the addition of new systems, or the outsourcing of functions, belong

to the daily challenges that process-driven applications must face, and must be

considered as an integral part of their design right from the start. In other words, in

spite of the havoc they wreak on system landscapes, profitable innovation processes

are not something that companies are willing to forgo. Nor should they have

to. With the right architecture, they can rest assured that changes to their system

landscape, which are both inevitable and necessary if a company is to innovate, will

have almost no negative impact on process-driven applications. Their capacity for

innovation is not impaired.

Process-Driven Applications for SMEs and ISVs So far, this introduction may

have given the impression that process-driven applications are only a matter for

large companies, but this is certainly not the case. Even though constantly changing

system landscapes are less of an issue for small businesses and midsize companies

(SMEs) (although SaaS will surely leave its mark), the same principles still apply:

Only successful processes that differentiate them from their competitors will

guarantee survival. The demands placed on them in this respect are just the same

as for large enterprises, and the readiness for change in application architecture

discussed above is just as vital.

It is not just within companies that the new generation of process-driven

applications has an important role. Independent software vendors (ISVs) can also

use composite applications to gain entry to lucrative new markets. The business

model for ISVs usually focuses on developing solutions as extensions to the

products of well-known vendors such as SAP, Oracle, or Microsoft that can only

connect to these standard solutions (think back to the example mentioned in the

preface of an application for managing software licenses). The problem with this

business model is obvious: Even if a customer shows interest in the vendor’s

business solution, a business deal is not possible quite simply because the customer

does not meet the technical requirements. That is, the customer does not use the

standard application required and has no plans to do so in the near future. Many

potential customers are ruled out at the outset, because the solution stipulates a

particular vendor. If software could be created that could be adapted to a customer’s

system landscape, this would open up a whole new avenue of possibilities for ISVs.

Process-driven applications meet exactly this requirement. Once created, their

architecture allows them to be adapted to the customer’s landscape, without affect-

ing the actual business solution. This is only possible if we can make the business

application and the system landscape as independent of one another as possible.

This book discusses in detail how this goal can be achieved.

Design and Implementation Approach for Process-Driven Applications The

attributes, problems, and scenarios mentioned above form the starting point for this

book. The emergence of the SOA idea and the accompanying hype around it led to a

flood of books and articles elaborating on the various aspects of this topic.

4 1 Introduction

Unfortunately, they did not manage to actually solve the challenges at hand; in my

opinion this is largely due to, among other things, the bottom-up approach for

interface determination and the strong focus on services and their reusability. In this

book, we will propose a top-down methodology instead and shift the focus to the

business processes that are implemented.

Another element I felt was missing was a detailed and comprehensive descrip-

tion of the architecture of business-oriented (process-driven) applications and their

actual implementation, exploiting the full potential of the service-oriented idea and

keeping the SOA promise. To provide such a description, the individual aspects that

are relevant to process-driven applications, such as loose coupling, transaction

handling using compensation, error tolerance, the role of service repositories, the

requirements that services need to meet to support process-driven applications, and

so on, need to be combined into a harmonious ensemble. To this aim, this book sets

out a practical architecture proposal that takes these aspects into account and asserts

the separation of business and technical processes. This book is also a plea for

sustainable architectures that are robust yet flexible, that can adapt swiftly and

effectively, in a way that exactly reflects management’s business strategy. With a

well thought-out architecture, the time lag between the announcement of a new

(business) strategy and its implementation can be reduced to a minimum.

I will also consider new possibilities for the implementation already mentioned.

I will explain how the latest version of Business Process Model and Notation

(BPMN) (version 2.0) can be used for exactly this purpose, since there have been

interesting new developments as regards the implementation of collaborative but

also integration-centric processes. I will examine these new developments with

reference to actual examples, and assess their potential and their limitations.

To summarize, the design and implementation approach presented in this book is

based on the following three pillars:

1. The use of a top-down methodology (I also use the term process-driven method-
ology) to determine the main components/artifacts of the solution. The business

processes are undoubtedly the drivers of the solution; hence the term process-
driven in the title of the book. Throughout the book I also refer to solutions

created in this way as process-driven applications, to emphasize this point.

2. A sustainable architecture (the same as a process-driven architecture) for

process-driven applications that separates the actual business processes at the

level of the end application and the technical processes of the so-called service

contract implementation layer. The assignment of tasks to the two layers is

clearly defined, as is their interaction with each other. The separation by a

service contract protects the business processes from the constant changes at

the system level.

3. The use of Business Process Model and Notation (BPMN) throughout for

modeling as well as for implementing all process components at the business

application level and at the level of the service contract implementation layer. As

you will also see, a differentiation can be made in the service contract imple-

mentation layer between stateful and stateless processes.

1.1 Enterprise Application Software in the Age of Globalization 5

1.2 Book Structure

To help achieve our goals of flexibility, scalability, and fault tolerance, this book

will explain the concept of the process-driven application in more detail (Chap. 2).

We will look at the typical properties of these applications and how they differ from

other application types such as tightly coupled stand-alone programs, project-

specific solutions, and pure integration applications. I will use examples to illustrate

the ideas that composite applications are based on.

Once you have an understanding of process-driven applications, Chap. 3 moves

on to the basic architecture of composite applications and the method for determin-

ing the main components of a composite (processes, user interfaces, data in the

form of business objects, the required and provided services, and the service

contract itself). Chapter 4 looks at an actual implementation of a process-driven

application. BPMN, the standardized graphical notation for modeling business

processes, plays an important role here, as already mentioned, and will be discussed

in detail. As well as covering the theory, I will also use an example to demonstrate

that the desired effect can actually be achieved. I will use a purchasing process as an

example to demonstrate the implementation in software using SAP Process Orches-

tration, briefly describe the main implementation steps, and evaluate the

experiences.

Process-driven applications encompass your critical business processes, they

handle distributed architectures and a host of potential error situations. Still, to

ensure that they can match the robustness and reliability provided by conventional

tightly coupled applications, they need more than just a solid architecture. There are

numerous additional technical concepts that you can use to help stabilize the overall

solution, such as optimized locking in the involved systems, idempotence support

in services, transaction processing using compensation, a troubleshooting concept

close to the participating back-end systems, and so on. Chapter 5 investigates how

these additional measures interact and how you can model them using BPMN.

Chapter 5 also introduces typical BPMN process fragments (patterns), which

you can use to connect process-driven applications to systems in IT landscapes.

In this context I will also present an enhancement proposal for BPMN that will

make it possible to model integration processes in particular even more precisely.

Chapter 5 continues with a discussion of the different approaches for increasing the

flexibility of the process-driven application itself, and also the integration with the

back-end systems. Business rules and analytical applications have an important

role here.

Chapter 5 concludes with an analysis of the current discussions about structured

and unstructured processes (keyword: adaptive case management), as well as their

possible effect on process-driven applications.

Chapter 6 sums up the findings of the book and concludes by examining how

customers can enhance composites like a product, without making any

modifications. I will briefly cover the new developments that are emerging in

this area.

6 1 Introduction

http://dx.doi.org/10.1007/978-3-319-07218-0_2
http://dx.doi.org/10.1007/978-3-319-07218-0_3
http://dx.doi.org/10.1007/978-3-319-07218-0_4
http://dx.doi.org/10.1007/978-3-319-07218-0_5
http://dx.doi.org/10.1007/978-3-319-07218-0_5
http://dx.doi.org/10.1007/978-3-319-07218-0_5
http://dx.doi.org/10.1007/978-3-319-07218-0_5
http://dx.doi.org/10.1007/978-3-319-07218-0_6

The appendix contains an overview of the BPMN elements and an excursus on

different approaches to managing services.

At this point, I would once again emphasize that this book does not address all
facets of the development of service-oriented software. Neither is it a comprehen-

sive introduction to BPMN. There is already excellent literature available on this

topic, such as BPMN 2.0 by Thomas Allweyer (Allweyer 2010b) and Real-Life
BPMN: Using BPMN 2.0 to Analyze, Improve, and Automate Processes in Your
Company by Jakob Freund and Bernd Rücker (2012). In his book BPMN Method &
Style (Silver 2011), Bruce Silver describes very well how to implement BPMN

correctly on the business side and how, in this way, you can distribute even complex

processes into manageable components that can communicate with each other.

The focal point of this book is how to create an architecture for business

applications that span multiple business processes, based on a process-driven

methodology and producing solutions that exploit the full potential of SOA, and

how to implement it using BPMN. You can, of course, deviate from the architecture

proposed, and develop your applications using only selected parts of the

recommended approaches. The book informs architects who choose to do so of

the possible disadvantages if they deviate from the solution described here, thus

enabling them to make an informed decision about how best to proceed.

I have intentionally left out subjects that have little relevance for the architecture

of a process-driven application, such as the following:

• Organizational aspects of an SOA

• Service lifecycle

• Version management

• SOA and security

• Enterprise Service Bus

• SOA governance

• SOA project management

• Searching for services

These are covered quite adequately as individual topics in the SOA literature.

In this regard, I would refer you to the (in my opinion, best) book about SOA,

entitled SOA in Practice, by Nicolai Josuttis (Josuttis 2007). I can also strongly

recommend Enterprise SOA—Service-Oriented Architecture Best Practices
(Krafzig et al. 2004) by Dirk Krafzig, Karl Banke, and Dirk Slama.

1.3 SOA and Process-Driven Applications

Process-driven applications certainly share many properties, values, and goals with

SOA, and you will encounter many commonalities throughout this book. However,

the two approaches differ fundamentally with regard to the following: the focus of
the approach, and how the applications and, in particular, the service contract are

created. I am often asked what the actual differences are between the two

approaches, so I would like to address this important aspect at the very start of

1.3 SOA and Process-Driven Applications 7

the book. However, I must insert a disclaimer before I begin my comparison: Since

SOA does not have an exact definition, but is rather an architecture paradigm

(Josuttis 2007), all I can do is compare process-driven applications with my
interpretation of SOA (and this applies to all comparisons with SOA in this

book). And this is the crux of the matter: SOA is a moving target and each person

has a different interpretation of one point or another. Even SOA experts find it

difficult to pin down the term SOA and its characteristics. This is evident from the

SOA manifesto (Erl et al 2009), which was formulated by industry thought leaders

who came together “to hash out a formal declaration of the vision and values behind

SOA and service orientation” (Erl 2013). Thomas Erl describes the process of

negotiating the wording for the SOA manifesto. One participant, Nicolai Josuttis,

published a German brochure called Das SOA-Manifest. Kontext, Inhalt,
Erl€auterung (Josuttis 2010), in which he writes about the particular difficulties

they faced when searching for suitable formulations for the SOA manifesto.

On page 7 of his brochure he explains:

“Discussions were quickly reduced to the question of whether we could live with a specific

formulation. We found that it was still possible for us to have different opinions about one

point or another, because we could interpret the formulations that we decided on in different

ways.”

It is exactly this room for interpretation that is my main criticism of SOA, and this is

probably where it differs most from the process-driven applications discussed in

this book. Whereas SOA leaves a great deal open to interpretation (which, unfortu-

nately, leads to unnecessary and time-consuming debate about the basic principles

of the approach), I want this book to be as practical and unambiguous as possible. I

want a specific application category (process-driven application) with a specific

application architecture (process-driven architecture) to solve a specific problem

(process-driven application development based on a distributed IT landscape), with

a specific method (process-driven methodology).

However, since the SOA manifesto is the closest thing we have to a characteri-

zation of SOA, I do make reference to it in the following comparison. The SOA

manifesto itself has three sections: a preamble, a value system, and the SOA

principles upon which the aims of SOA as well as the value system are based.

The preamble introduces the terms service orientation and SOA, and sets out the

aims of SOA. The preamble is followed by a list of value statements, in which the

authors compare and prioritize particular values. The final section sets out 14 guid-

ing principles that underlie the statements in the preamble and the value system.

1.3.1 Commonalities

First, I’d like to look at the commonalities. We can keep this section relatively

short, since I would go along with nearly all of the statements in the SOAmanifesto.

For example, I agree completely with the following sentence in the preamble:

8 1 Introduction

We have been applying service orientation to help organizations consistently

deliver sustainable business value, with increased agility and cost effective-

ness, in line with changing business needs.

This sums up the aims beautifully, and concurs fully with those of process-

driven applications. Let me also take a few examples from the value system. I agree

with these as well, and also rate them as particularly important (this does not imply

in any way that the values that I do not mention are wrong or insignificant):

Business value over technical strategy

Strategic goals over project-specific benefits

Flexibility over optimization

Evolutionary refinement over pursuit of initial perfection

There is also a degree of agreement in the principles. The following principles

are also very important for process-driven applications:

Products and standards alone will neither give you SOA nor apply the service

orientation paradigm for you.

SOA can be realized through a variety of technologies and standards.

Separate the different aspects of a system that change at different rates.

Reduce implicit dependencies and publish all external dependencies to

increase robustness and reduce the impact of change.

We can apply these principles unchanged to process-driven applications. Simply

replace SOA with PDA (process-driven application). You can already see that we

can draw many parallels between SOA and PDA. There are of course differences as

well, as discussed below.

1.3.2 Differences

I touched on the two main differences at the beginning of this subchapter: setting

the focus and how, on this basis, the resulting applications and the required service

contract result. Let us take SOA first. A focus on services is clearly expressed at

several points in the SOA manifesto. The preamble states:

1.3 SOA and Process-Driven Applications 9

Service-oriented architecture (SOA) is a type of architecture that results from

applying service orientation.

Josuttis expands on this in his commentary (loosely translated):

“Apart from stating the obvious, that is, that the focus is on services or service-

related concepts, it is very difficult to come up with an exact definition (of service

orientation).”

This concentration on services is a recurrent theme throughout the manifesto.

Other examples:

Shared services over specific-purpose implementations.

Identify services through collaboration with business and technology

stakeholders.

Maximize service usage by considering the current and future scope of

utilization.

At every level of abstraction, organize each service around a cohesive and

manageable unit of functionality.

This focus on services is intended to create a foundation upon which processes

spanning multiple systems can then be built. Josuttis expresses this as follows

(Josuttis 2010, p. 5, loosely translated):

“It is about creating a useful and appropriate foundation for business processes

that are distributed across multiple systems or entire system landscapes.”

These statements bring me to the second aspect, where I see a significant

difference. The above quotations imply a bottom-up procedure: Only once services

are established can you work on innovative processes. Accordingly, the SOA

literature lends great importance to matters such as identifying services, selecting

the right services and interfaces, service management, service governance, and the

reusability of services defined in this way.

Process-driven applications, on the other hand, put the focus firmly on the new

business processes to be implemented. This inevitably results in a different proce-

dure: top-down, starting from the business processes (I call this process-driven
methodology). This top-down approach also defines the service contract, which

ultimately determines the external representation of the process-driven application

in the form of interfaces, and encompasses the business functions that are provided

and those that are required. These interfaces contain only the fields that are

absolutely necessary, from the application perspective. The data types of the

interface fields are based on a canonical data model. An important point to consider

here is that, to start with, the interfaces of the service contract are not even expected

to be reusable. They are tailored individually to the process-driven application.

This embodies the objective of process-driven applications to be able to reuse the

10 1 Introduction

business functions themselves, but not their interfaces. In other words, the

interfaces of the back-end system themselves do not play a role in the process-

driven application. It is the business functions that are important. How they are

actually called, is secondary. Our application requirements first meet the interfaces

of the back-end systems in the form of the service contract at the service contract

implementation level that implements the service contract. It is in this layer that

mapping takes place.

This important aim, to reuse business functions and not interfaces, is

summarized in the following note:

Note

Process-driven applications build on the reuse of existing business functions,

but not on the direct reuse of the associated interfaces (for example, WSDL).

Therefore, process-driven applications are not at all concerned with the issues

that are so essential in SOA (see the list above). Of course, they are based on the

reuse of existing business functions, but they do not need to reuse the service

interfaces at the level of the end application. Therefore, the service contract

neutralizes all existing interfaces with the application. This method leads to differ-

ent content and a different task distribution within the resulting architecture. At first

glance, the application architecture may look very similar (the separation into

layers and the distribution of the functions that are to be performed across these

layers is crucial in both SOA and process-driven applications), but it differs

considerably in its details. Consequently, I will talk of a process-driven architec-
ture, to differentiate it from SOA. To sum up, process-driven applications represent

a different method, which results in a different architecture with a different distri-

bution of tasks within it, a different approach to services and, therefore, a different

management. The book contains detailed discussions of all of these topics:

– Procedure: Sect. 3.1

– Architecture and distribution of functions: Sects. 3.3, 3.3.3 and 3.3.5

– Services: Sects. 3.2.6 and 3.3.1

– Management of services in repositories: Sect. 3.4

Finally, I would like to draw your attention to yet another positive effect between

SOA and process-driven applications. If you have already established SOA in your

company, a process-driven application will definitely benefit from the services that

have been developed as a result of the SOA initiative. After all, they simplify the

implementation of the service contract implementation layer significantly; the

effort invested in their development is certainly not wasted.

1.3 SOA and Process-Driven Applications 11

http://dx.doi.org/10.1007/978-3-319-07218-0_3#Sec1
http://dx.doi.org/10.1007/978-3-319-07218-0_3#Sec16
http://dx.doi.org/10.1007/978-3-319-07218-0_3#Sec19
http://dx.doi.org/10.1007/978-3-319-07218-0_3#Sec13
http://dx.doi.org/10.1007/978-3-319-07218-0_3#Sec17
http://dx.doi.org/10.1007/978-3-319-07218-0_3#Sec35

1.3.3 Process-Driven Application, Process-Driven Architecture

The term process-driven architecture is not new. It has appeared in many articles

and scientific publications (Margulius 2005; Strnadl 2006; Togliatti 2008, to name

but a few) in which the authors recognize the significance of business processes in

application development. However, these authors treat the business process part

simply as a complementary enhancement to the service-oriented architecture; an

SOA is a prerequisite, upon which you can implement the business processes.

This is discussed by Krafzig et al. (2004) in Appendix A.2 entitled “BPM and the

Process-Enabled SOA”. The term process-driven architecture is used, but essen-

tially this is an SOA that is used as a basis for implementing processes (we can

express this as a formula: process-driven architecture¼ BPM + SOA). Whether this

alone justifies a new label is another matter. In my opinion, it does not adequately

reflect the influence of the business processes as the drivers of the design of the

architecture (and therefore the application), as described in my book. For me, the

terms process-driven application, process-driven architecture, and process-driven
methodology form a unit and one cannot exist without the others. I want to use this

book to explore the differences from the approaches mentioned above, and elabo-

rate on the details of the methodology, the architecture, and the applications that

result. Let us begin.

12 1 Introduction

http://www.springer.com/978-3-319-07217-3

	1: Introduction
	1.1 Enterprise Application Software in the Age of Globalization
	1.2 Book Structure
	1.3 SOA and Process-Driven Applications
	1.3.1 Commonalities
	1.3.2 Differences
	1.3.3 Process-Driven Application, Process-Driven Architecture

