
Chapter 2
Quantum Information

Quantum information deals with the information processing tasks that can be
accomplished by using the laws of quantum mechanics. Its aim is to develop suit-
able strategies in particular for quantum computation and quantum communication,
but also for quantum metrology and quantum simulation. In this chapter, I briefly
provide an introduction to the wide range of topics concerning quantum information
and recall some basic theoretical elements, to which I will refer in this thesis.

2.1 Why Quantum Information

Information theory was introduced by Shannon in 1948 and extended to the quantum
world by Feynmann in the early 1980s with the hypothesis that quantum mechanics
could be used to process and transmit information [1]. It has been demonstrated that
by encoding information on quantum systems many interesting advantages arise,
like the enhancement of security in communication protocols, or the speed up of
computational algorithms [2].

Moreover, Feynman suggested that a quantum computer would be ideal for
simulating quantum-mechanical systems, an unachievable task for classical com-
puters [1].

These promising applications made quantum information a very attractive field:
the first experiments took place about 20years ago and since the 1990s many QI
protocols have been developed and realized.

In the following I give a brief description of this wide range of application fields
within the large context of quantum information.
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2.1.1 Quantum Computation

Aquantum computer is a system ofmany qubits (two-level quantum systems), whose
evolution can be controlled, and a quantum computation is a unitary transformation
that acts on this many-qubit state [3]. The power of quantum computers resides on
fundamental quantum laws, such as the quantum superposition principle and entan-
glement. Entanglement is at the heart of many quantum-information protocols. It
is the most intriguing and counter-intuitive manifestation of quantum mechanics,
observed in composite quantum systems: it signifies the existence of non-local cor-
relations between measurements performed on separated particles [4].

A quantum computer would allow to solve certain computational problems much
more efficiently than a classical computer [3]. These include basic problems of
computer science: from the search of a marked item in an unstructured database to
integer factoring. In 1994, Peter Shor proposed a quantum algorithm that efficiently
solves the prime-factorization problem: given a composite integer, find its prime
factors [5, 6]. This is a central problem in computer science and it is conjectured,
though not proven, that for a classical computer it is computationally difficult to
find the prime factors. Shor’s algorithm efficiently solves the integer factorization
problem and therefore it provides an exponential improvement in speed with respect
to any known classical algorithm. For example, there are cryptographic procedures,
such as RSA [7], extensively used today and that are based on the conjecture that
no efficient algorithms exist for solving the prime factorization problem. Shor’s
algorithm, if implemented on a large-scale quantum computer, would break the RSA
cryptosystem. Lov Grover has shown that quantum mechanics can also be useful for
solving the problem of searching for a marked item in an unstructured database [8].
In this case, the gain with respect to classical computation is quadratic.

The technological challenge of realizing a quantum computer is very demand-
ing: we need to be able to control the evolution of a large number of qubits for the
time necessary to perform many quantum gates. Decoherence may be considered
the ultimate obstacle to the practical realization of a quantum computer. Here the
term decoherence denotes the decay of the quantum information stored in a quantum
system, due to its unavoidable interaction with the environment. Such interaction
affects the performance of a quantum computer, introducing errors into the com-
putation. Another source of errors that must be taken into account is the presence
of imperfections in the quantum-computer hardware. Even though quantum error-
correcting codes exist, a necessary requirement for a successful correction procedure
is that one can implement many quantum gates inside the decoherence time scale.
Notwithstanding the many limitations connected with the experimental realizations,
a quantum computer still seems to be an achievable task.
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2.1.2 Quantum Communication

Another important research direction concerns the (secure) transmission of
information. In this case, quantum mechanics allows us to perform not only faster
operations but also operations inaccessible to classicalmeans.Among the various fea-
tures of quantum systems, entanglement is central to many quantum-communication
protocols. Of particular importance are quantum dense coding [9], which permits
transmission of two bits of classical information through the manipulation of only
one of two entangled qubits, and quantum teleportation [10, 11], which allows the
transfer of the state of one quantum system to another over an arbitrary distance.
Quantum mechanics also provides a unique contribution to cryptography, i.e. secret
communication. Quantum cryptography enables two communicating parties, namely
Alice (the sender) and Bob (the receiver), to detect whether the transmitted message
has been intercepted by Eve (an eavesdropper). This is a consequence of a basic
property of quantum mechanics, the “no-cloning theorem”: an unknown quantum
state cannot be cloned [12]. In the context of quantum cryptography the most popular
protocol is the one introduced by Bennet and Brassard in 1984 [13], the so called
BB84 protocol, which enables Alice andBob to discover whether any eavesdropper is
trying to catch information from their communication channel. This task is achieved
by exploiting states prepared from Alice and measured by Bob in different basis,
whose states correspond to eigenstates of non-commuting observables. In the ideal
formulation of the protocol any channel attack is recognized with certainty, while in
presence of noise and errors, as it happens in practical realizations, the probability
of detecting an eavesdropper decreases. Nevertheless, in analogy to their classical
counterparts, a theory of quantum error-correction has been developed which allows
quantum computers to compute effectively in the presence of noise, and also allows
communication over noisy quantum channels to take place reliably [5].

2.1.3 Quantum Simulation

Quantum simulation can be seen as a relevant class of quantum algorithms:
algorithms for simulation of physical systems. Simulating one quantum system using
another more controllable one has turned out to be not so easy, indeed. However, a lot
of progress has been made since 1982, when Feynman delivered his seminal lecture
‘Simulating Physics with Computers’ [1]. The wide advances in isolating, manip-
ulating and detecting single quantum systems—particularly in the past decade or
so—allow us to say that physical implementations of ‘quantum simulators’ are now
becoming a reality. Quantum simulations are being implemented in, or have been
proposed for, a number of other systems—among them nuclear spins addressed using
NMRmethodology, and electron spins in quantum dots or in point defects. Each plat-
form has its own advantages and limitations, and different approaches often tackle
complementary aspects of quantum simulation. Each of them aims to solve problems
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that are computationally too demanding to be solved on classical computers.
Furthermore, the simultaneous development of different platforms for practical quan-
tum simulation offers the intriguing prospect of verifying, once uncharted territory
is reached, one simulator using another. In fact, implementing quantum simulations
that are too complex for the most powerful classical computers should be already a
short-term goal. This is reported in detail in Part III.

2.1.4 Quantum Metrology

As a last scenario quantum metrology is the study of performing high-resolution
and highly sensitive measurements of physical parameters using quantum theory to
describe the physical systems, particularly exploiting quantum entanglement. This
field promises to develop measurement techniques that give better precision than the
same measurement performed in a classical framework. One example worth noting
is given by the use of the so-called N00N state in a Mach-Zender interferometer to
perform accurate phase measurements [14, 15]. A similar effect can be obtained by
using other quantum states, such as squeezed states [16].

2.2 Basic Elements of Quantum Information

The above brief landscape of quantum information tasks highlights how exploitation
of quantum systems in the context of quantum information is a promising scenario,
not only for fundamental research in quantum mechanics, but also for technological
realizations.

Let us now move to recall some basic concepts of quantum information theory.

2.2.1 The Quantum Bit

Quantum information is built upon the concept of “quantum bit” or qubit. Qubits
are represented by two-level quantum systems so {|0〉, |1〉} represent the ground and
excited state of such a system. These two states constitute the computational basis
and are defined in a bi-dimensional Hilbert space. At variance with the classical case,
the general state of a qubit is given by a superposition:

|ψ〉 = α|0〉 + β|1〉, (2.1)

where α, β are complex coefficients satisfying |α|2 + |β|2 = 1. Because of this last
relation it is possible to rewrite the state (2.1) in the following way:
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|ψ〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
β|1〉. (2.2)

The numbers θ and φ define a point on a unit three-dimensional sphere, known as
Bloch sphere. Each point on this sphere represents a possible state of a qubit.

2.2.2 The Density Matrix

A possible representation of a state of the system is given by the density matrix. If the
system is in the pure state |ψ〉, the associated density matrix is

ρ = |ψ〉〈ψ |, (2.3)

which satisfies the property ρ2 = ρ. In the case of mixed states, i.e. for an incoherent
mixture of pure states {|ψa〉}, the density matrix reads:

ρ =
∑

a

pa |ψa〉〈ψa |, (2.4)

where 0 < pa ≤ 1 are the probabilities associated with each |ψa〉 and the relation∑
a pa = 1 holds. In general for a mixed state ρ2 �= ρ.

2.2.3 Bi-Partite Systems and Entanglement

Let us now consider two systems, namely A and B, belonging to the Hilbert spaces
HA and HB respectively. For a pure state of the joint system the state vector is

|ψ〉AB =
∑

i j

ai j |i〉A| j〉B, (2.5)

where {|i〉A} and {| j〉B} are two complete bases for systems A and B respectively,
and ai j are complex numbers satisfying the condition

∑
i j |ai j |2 = 1. This state

belongs to the Hilbert spaceHAB = HA ⊗HB of dimension d = dA × dB , dA (dB)
being the dimension of the subspace HA (HB).

When dealing with bi-partite systems, two classes of states can be recognized: the
separable states and the entangled ones. A state is separable if it can be decomposed
as the inner product of a wavefunction of the first system (A) and a wavefunction of
the second system (B) and it is written as:

|ψ〉AB = |ψ〉A ⊗ |ψ〉B (2.6)
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otherwise it is called entangled. This is can be generalized for mixed states as well
[17]. The spaceHAB is described by a basis of d states which can be either separable
or entangled. For d = 4 the so called Bell states

|φ+〉 = 1√
2

(|0, 0〉 + |1, 1〉)
|φ−〉 = 1√

2
(|0, 0〉 − |1, 1〉)

|ψ+〉 = 1√
2

(|0, 1〉 + |1, 0〉)
|ψ−〉 = 1√

2
(|0, 1〉 − |1, 0〉)

(2.7)

represent a basis of entangled states for two-qubit systems.
Entanglement is not only a pure mathematical representation, it represents one of

the building blocks of quantum mechanics. Indeed entanglement explains non clas-
sical correlation between systems, which has been experimentally observed through
Bell inequalities violation [18, 19] and, as previouslymentioned, it is the fundamental
feature of many quantum information protocols.

2.3 Quantum Gates

Changes occurring to a quantum state can be described using the language of quan-
tum computation. Classical computer circuits consist of wires and logic gates. The
wires are used to carry information around the circuit, while the logic gates per-
form manipulations of the information, converting it from one form to another. The
two classical single-bit gates are the identity—each bit remain unchanged under this
operation—and the NOT gate—in which 0 → 1 and 1 → 0, that is, the 0 and 1
states are interchanged, while there are many gates operating on two-bit inputs.

At the quantum level, operations on a single qubit must preserve its norm, and
thus are described by 2×2 unitary matrices. Among all these, it is useful to mention
the Pauli matrices:

σx =
(

0 1
−1 0

)
, σy =

(
1 i
−i 1

)
, σz =

(
1 0
0 −1

)
, (2.8)

which are widely adopted as basis for description of single-qubit operations.
Other important single-qubit maps are the Hadamard gate and the Phase Shift:

H = 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 eiφ

)
, (2.9)

respectively. The Hadamard rotates by an angle π/2 the computational basis, thus
transforming the states |0〉 and |1〉 into |±〉 = 1√

2
[|0〉 ± |1〉], while S introduces a

phase shift φ between the two basis states. It is also useful to remember operators
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associated with rotations of qubits whose expression reads

R j (θ) = e−iθσ j , j = x, y, z. (2.10)

As well as single-qubit gates, there are many two-qubit logic gates. In particular
the Controlled-NOT (CNOT) gate is important for quantum information processing
and, when combined with single-qubit gates, represents a universal set of operations
that can be combined to perform any arbitrary computation. Qubits undergoing the
CNOT are labeled target and control: the gate flips the target qubit depending on
the state of the control qubit (in this sense it is a controlled gate) [3]. The operator
representing this gate is the following 4 × 4 matrix

UC N OT =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ . (2.11)

In 2001 Knill et al. demonstrated that scalable universal quantum computing can be
achieved with single photons using only linear optics and photon counting measure-
ments [20]. This is based upon the measurement-induced nonlinearity that arises in
two-photon, Hong-Ou-Mandel interference [21]. Furthermore, it has been demon-
strated that, a general quantum transformation can be achieved by using single qubit
gates and one two-qubit gate, thus the CNOT, the most adopted two-qubit gate, is
considered one of the building blocks of a quantum computer. More details about
this gate are given in Sect. 6.2.

2.4 Quantum Processes and Time Evolution

In the present section we describe the formalism for the time evolution of a physi-
cal system. For closed systems, the time evolution is described by the Schrödinger
equation, which permits to obtain the state vector of a physical system at time t
according to the action of a unitary operator on the initial state. Such a description
in terms of unitary operators cannot be adopted in the case of an open system, i.e.
interacting with an additional system not accessible by the observer. In this case, the
time evolution of the system is described by a completely positive map acting on the
density operator [3].

2.4.1 Unitary Evolution of Closed Systems

The time evolution properties of a closed physical system are defined by the quantum
mechanical extension Ĥ of the classical Hamiltonian H. The operator Ĥ acts as

http://dx.doi.org/10.1007/978-3-319-07103-9_6
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the generator of the time evolution of such a system according to the Schrödinger
equation

i�
∂|ψ〉
∂t

= Ĥ|ψ〉; ∂ρ̂

∂t
= − i

�
[Ĥ, ρ̂], (2.12)

where [Ĥ, ρ̂] is the commutator between the two operators [17]. The time evolution
at a fixed time t of a state vector in the initial state |ψ(0)〉 and on a density matrix
ρ̂(0) at t = 0 can be obtained as:

|ψ(t)〉 = Û (t)|ψ(0)〉; ρ̂(t) = Û (t)ρ̂(0)Û †(t), (2.13)

where Û (t) is a unitary operator describing the evolution of the system.
The expectation value at time t of a physical observable Ô , can be then evaluated

as the average value over the density matrix ρ̂(t), or equivalently, we can consider
that the time evolution modifies the action of the observable Ô without affecting the
state ρ̂(0). We obtain the two equivalent formulations:

〈Ô〉(t) = Tr[ρ̂(t)Ô] = Tr[ρ̂ Ô(t)]. (2.14)

Here, Ô(t) = Û †(t)ÔÛ (t) is the time evolution induced by the Heisenberg equation

∂ Ô

∂t
= i

�
[Ĥ, Ô]. (2.15)

The two representations are called the Schrödinger and Heisenberg pictures respec-
tively.

2.4.2 Nonunitary Evolution: Quantum Maps

Unitary operators with Hamiltonian generators describe the time evolution of closed
physical systems. In general, for any open quantum system it is not possible to
describe time evolution in terms of unitary operators acting on the system. However,
such evolution can be described in terms of quantum maps E , which must obey the
following constraints [3]:

(1) Hermiticity—If ρ̂† = ρ̂, then ρ̂′ = E[ρ̂] must satisfy (ρ̂′)† = ρ̂′.
(2) Trace preserving—If Tr(ρ̂) = 1, then ρ̂′ = E[ρ̂] must satisfy Tr(ρ̂′) = 1.
(3) Complete positivity—Consider a density matrix acting on a Hilbert space HA.

A map E is completely positive (CP) if for any extension of the Hilbert space
HA ⊗HB the map EA ⊗1B is positive. Recall that a map is positive if ρ̂′ = E[ρ̂]
is nonnegative when ρ̂ is nonnegative.

(4) Linearity—If ρ̂ = λρ̂1 + (1 − λ)ρ̂2, then E[ρ̂] = λE[ρ̂1] + (1 − λ)E[ρ̂2].
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It can be demonstrated that for a map E which obeys the constraints (1)−(4), it is
always possible to represent the map in the following form:

E[ρ̂] =
∑

μ

M̂μρ̂ M̂†
μ, (2.16)

where {M̂μ} is a set of operators satisfying
∑

μ M̂†
μM̂μ = 1̂ [22]. Note that the

number of operators in the set {M̂μ} in general is not bounded by the dimension
of the Hilbert space HA. This decomposition of quantum maps E is known as the
Kraus representation theorem [22], and provides a powerful tool to represent the
time evolution of a general open system. The action of the map E in the Kraus
representation can be also expressed in terms of the action of a rank-4 tensor on the
density matrix ρ̂. By choosing an orthonormal basis {|i〉}, the elements of the density
matrix E[ρ̂] can be evaluated as:

(E[ρ̂])l,k =
∑

n,m

En,m
l,k ρn,m, (2.17)

where ρ̂ = ∑
n,m ρn,m |n〉〈m|, and:

En,m
l,k =

∑

μ

〈l|M̂μ|n〉〈m|M̂†
μ|k〉. (2.18)

2.5 Quantum State Tomography

Quantum state tomography is an experimental procedurewhich allows determination
of the density matrix associated with a system. It is achieved by measuring some
system observables. Clearly, with only one measurement we are not able to know
exactly the state of the system or to distinguish between non-orthogonal states, so
we repeat the same measurements over a sample of many copies of the system under
consideration thus achieving the complete knowledge about its state [23, 24].

Let us consider, for simplicity, many copies of a two level system. Its state is
described by a 2 × 2 density matrix. It is well known that any 2 × 2 matrix can be
decomposed as a sum of 4 linearly independent matrices which form a basis for the
space of 2 × 2 matrices. We can choose as a basis the identity matrix and the three
Pauli matrices (2.8). Thus the state of the system can be written as:

ρ = c01 + c1σx + c2σy + c3σz, (2.19)

where c j = T r [σ jρ] and ∑
j |c j |2 = 1, thus (2.19) can be rewritten as:

ρ = T r [ρ]1 + T r [σxρ]σx + T r [σyρ]σy + T r [σzρ]σz . (2.20)
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Let us recall that expressions like T r [Aρ] have the interpretation of the average
value of observables. Now our task is to determine the values T r [σ jρ]: for example,
to estimate T r [σzρ] we measure the observable σz a large number of times, m,
obtaining outcomes z1, z2, . . . , zn all equal to +1 or −1. The empirical average
of these quantities,

∑
i zi/m, is an estimate for the true value of T r [σzρ]. We can

use the central limit theorem to determine how well this estimate behaves for large
m, where it becomes approximately Gaussian with average equal to T r [σzρ] and
standard deviation �(σz)/

√
m, where �(σz) is the standard deviation for a single

measurement of σz , which is upper bounded by 1. Hence the standard deviation in our
estimate

∑
i zi/m is at most 1/

√
m. In a similar way we can estimate the quantities

T r [σxρ] and T r [σyρ]with a high degree of confidence in the limit of a large sample
size, and thus obtain a good estimate for ρ.

Such measurements are easily achieved in an experimental setup by adopting
the proper basis to be measured. This procedure can be extended to systems with a
higher dimensionality, but clearly the number of measurements will grow: if d is the
dimension of the system under consideration, the number of measurements is given
by d2 − 1.

A similar method may be adopted for the experimental reconstruction of quantum
processes: this argument is detailed in Chap.7.

2.6 Comparison Between Theory and Experiment

Let us now ask how to compare the experimentally reconstructed quantum state
with the theoretical prediction, or how much two items of information are simi-
lar. A quantitative answer to these questions is provided by distance measures [3].
Distance measures are defined in a number of different ways, both classically and
quantum mechanically. Two of those measures, the trace distance and the fidelity,
have particularly wide currency today, and are the distance measures we adopted
in our experiments. The properties of both are quite similar, however for certain
applications it may be easier to deal with one over the other.

Since in the field of quantum information we deal with both quantum states and
probability distributions, I will start by defining distancemeasures for quantum states
and then I will generalize it to the case of probability distribution.

2.6.1 Quantum State Fidelity

How close are two quantum states? Let us consider two density matrices ρ1 and
ρ2 associated to two quantum states to be compared. The quantum state fidelity,
defined as

F(ρ1, ρ2) = T r

[√√
ρ1ρ2

√
ρ1

]2
, (2.21)

http://dx.doi.org/10.1007/978-3-319-07103-9_7
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can be an estimator of how close those states are [25]. The fidelity is bounded by
0 ≤ F ≤ 1 andF = 1 if ρ1 = ρ2, whileF = 0 if they are orthogonal. These bounds
can be easily obtained in the case of two pure states, indeed (2.21) reduces to

F(|ψ1〉, |ψ2〉) = |〈ψ1|ψ2〉|2 (2.22)

which is clearly vanishing if |ψ1〉 and |ψ2〉 are orthogonal, while F = 1 for
|ψ1〉 = |ψ2〉.

2.6.2 Trace-Distance

Let us nowmove to a second definition of a distancemeasure between quantum states.
Let us consider again two quantum states ρ1 and ρ2, the trace distance between them
is defined as

D(ρ1, ρ2) = 1

2
T r |ρ1 − ρ2|, (2.23)

where for definition |β| ≡ √
β†β. 0 ≤ D ≤ 1: if ρ1 = ρ2 the trace distance is

vanishing, while D(ρ1, ρ2) = 1 if ρ1 and ρ2 are orthogonal.
A property of the trace distance is its invariance under unitary transformations, i.e.

for a generic unitary operator U acting on the states under consideration the equality

D(Uρ1U †, Uρ2U †) = D(ρ1, ρ2) (2.24)

holds.

2.6.3 Comparison Between Processes

I now describe how to compare two quantum processes. It is well known that a
quantum state can be completely determined by a tomographic reconstruction [24,
26, 27] and compared with the expected theoretical state by a variety of measures,
such as quantum state fidelity [25]. Similarly, we know that a convenient way to
describe a generic quantum operation E is given by the process matrix χE , indeed its
action on a generic state ρ can be written as E(ρ) = ∑

mn χmn Amρ A†
n , where {A j }

is a complete set of Kraus operators and the elements χmn constitute the process
matrix χE [28]. A closely related but more abstract representation is provided by the
Jamiolkowski isomorphism [29], which relates a quantum operation E to a quantum
state, ρE :

ρE ≡ (I ⊗ E) |�〉〈�|, (2.25)



20 2 Quantum Information

where |�〉 = 1√
d

∑
j | j〉| j〉 is a maximally entangled state associated with the

d-dimensional system with another copy of itself, and {| j〉} is an orthonormal basis
set. If E is a trace-preserving process, then the quantum state ρE is normalized,
Tr[ρE ] = 1. In this way, by associating a quantum process to a quantum state, for
two trace-preserving processes E and G, a Process Fidelity � has been defined as
follows [30–33]

�(E,G) = F(ρE , ρG) (2.26)

where F is the quantum state fidelity (2.21). It is easy to demonstrate that, by

choosing the set Am =
{√

d|i〉〈 j |
}
as Kraus operators, we have ρE ≡ χE , and,

in general, F(ρE , ρG) = F(χE , χG) if any complete set of operators A′
m satisfying

Tr[A′
m A′†

n ] = dδmn is used (δmn is the Kronecker delta). Thus, if we want to compare
an experimental map χ with the expected one χid , the process fidelity is

� = Tr

[√√
χ χid

√
χ

]2
. (2.27)

The last expression gives the fidelity of density matrices with unit trace.
The same generalization can be adopted for the trace distance in the case of two

quantum processes: given χ1 and χ2 two process matrices describing two quantum
maps, the trace distance reads:

D(χ1, χ2) = 1

2
T r |χ1 − χ2|. (2.28)

2.6.4 Comparison Between Probability Distributions: Similarity

As a last step, it is useful to define a quantity able to give a measure of the distance
between two probability distributions. It is provided by the Similarity

S =
(
∑

i, j

√
Di j D′

i, j )
2

∑
i, j Di j

∑
i, j D′

i j
, (2.29)

which is a generalization of the classical fidelity between two distributions D and D′.
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