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Abstract In this paper, the motion performance of manipulators considering the
uncertainty in the kinematic parameters is investigated. Interval analysis is
employed to deal with the uncertainty in the kinematic parameters in the form of
small uncertainty boxes. For a given range of uncertainties in the kinematic
parameters, the interval linear equations are formulated to relate the velocity of
joints to the end effector velocity with the Jacobian matrix. A novel approach for
calculating the exact size and shape of the solution for the system of interval linear
equations is presented. A 2 degrees of freedom planar serial manipulator is used as
a case study to analyze the motion performance of the manipulator in the presence
of uncertainties.

Keywords Interval analysis - Robot manipulators - Uncertainty - Parametric
method - Parameter solution set

1 Introduction

Robot manipulators are typical of systems that are intrinsically subjected to
uncertainties. The nominal relationship between the end effector pose and joints
displacement is known but this relationship is not necessarily accurate due to
changes in the robot hardware and uncertainties in the kinematic parameters [1]. A
real robot analysis should be performed in the presence of uncertainties in the
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modeling of the manipulator and measurements of the kinematic parameters. The
sources of uncertainties include the manufacturing tolerances of the mechanical
parts, measurement error, control error, and round-off error. All types of uncer-
tainties can be accommodated as bounded variations in the kinematic parameters.

Several methods are known for calculating the lower and upper bounds for each
component of the solution set in the interval linear systems. One of the first
contributions on determining the bounds of the solution set was given in [2]. It was
shown that the solution set for this system is a polyhedron. More general algo-
rithms for determining the bounds containing the exact solution were presented in
[3-5]. These bounds were not necessarily identical to the exact solution. The exact
solution was determined in [6] as the union of finitely many convex polytopes
whose vertices were denoted by matrices with entries equal to the lower or upper
bounds of the interval coefficient matrix. The shape of the solution set, in general,
was a non-convex polyhedron.

The exact solution of the interval linear systems is generally complicated and not
easily described. Therefore, calculation of this solution is computationally expen-
sive and, hence, is not convenient to use for the real time application. Accordingly,
the researchers are drawn to find the fastest methods to enclose the exact solution.
One of the first publications on parametric interval systems for special coefficient
matrices, such as symmetric and skew-symmetric matrices, was presented in [7, 8].
The characterization of the boundary of the solution set of the parametric system
based on a set of inequalities was done by [9]. This approach was designed par-
ticularly for visualizing the boundary of the parametric solution set.

In this paper, the motion performance of manipulators with uncertainty in the
kinematic parameters is investigated using parametric interval method. The
organization of paper is as follows. The basic principles of the interval analysis
and the parametric interval systems are given in Sect. 2. The proposed method-
ology for formulating the exact solution, which is based on parameterizing the
interval linear systems, is presented in Sect. 3. The simulation results are reported
in Sect. 4 and the paper is concluded in Sect. 5.

2 Parametric System of Interval Linear Equations

Interval analysis is a numerical method of representing the uncertainty in values
by replacing a number with a finite range of values. An interval denoted by
[X] = [X, X] is the set of real numbers X verifying X < X <X where X and X are
the lower and upper bounds of the interval, respectively. The interval is also
represented by the midpoint, X, and the radius, AX, as [X] = [X, — AX, X, + AX]
or [X] = X, + AX[—1, 1]. A real number is a special case of an interval in which
X = X. The width of the interval [X] is defined as (X) = X — X. The midpoint of
[X] is given by m(X) = 1 (X + X). A matrix whose entries are interval is called an
interval matrix and denoted by [A], A, is the midpoint of [A] whose entries are the
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(c) (d)

Fig. 1 a2 DOF planar serial manipulator, b one of two-parameter solution sets in red, c all two-
parameter solution sets in red and the exact solution in blue, d a three-parameter solution set in
red and the smallest box containing the exact solution in green

midpoints of the corresponding entries of [A], the radius of the interval matrix, 4,
is defined as 1 (A—A).

In manipulators, the Jacobian matrix relates the joint velocity vector to the end
effector velocity vector. Due to the uncertainty in the kinematic parameters, the
relationship between the joint velocity vector and the end effector velocity vector
takes the form of the interval linear system. This interval system is parameterized
as [J([p])]a = [V([p])] in which the entries of the Jacobian matrix and the end
effector velocity vector linearly depend on parameters [p] = ([p1], [p2], - - -, [Pk])
even though in general, the entries of the Jacobian matrix and the velocity vector
could be nonlinear functions of the interval parameters [p]. The exact values of
these parameters are unknown but bounded within given intervals. Considering the
serial manipulator in Fig. 1a and using a linear parametric model for each entry of
[J([p])] and [V([p])], the entries of the Jacobian matrix and the velocity vector
could be defined as
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Ui ([p])] ,ko+ZJ;ku [P [Vi([pD)] = Vj,0+zvjﬂ [p,] (1)

p=1

where Jix ., Viy €Rsu=1,.. kj=1,...,mk=1,...,n; m is the task space
dimension and # is the number of joints. The value of parameter K depends on the
number of the interval parameters used to parameterize the interval system. The
maximum number of the interval entries of [J] and [V] is mn and m, respectively.
Depending on the uncertainty of the kinematic parameters in the manipulator,
some entries of the Jacobian matrix and the end effector velocity vector may not be
interval.

3 Parametric Method for Exact Solution

In this section, the exact solution of the interval system is calculated using solution
sets obtained from parameter groups of interval systems. Depending on the number
of interval parameters involved in the Jacobian matrix and the velocity vector, the
exact solution will be characterized. The parameter assignment of the entries of [J]
and [V] in the manipulator is performed by selecting some interval entries of either
[J] or [V] as parameters [p,| and formulating other entries as functions of interval
parameters [p,]. All parameter assignments of the entries of [J] and [V] which lead
to the same solution set are collected as one parameter group. That is, a parameter
group may consist of one or several different parameter assignments.

The number of parameter groups in each interval system depends on the total
number of interval entries of [J([p])] and [V([p])], denoted as #, and the number of
interval parameters in the interval system, K. The solution sets of all parameter
assignments of the interval system are checked and the parameter assignments
which result in the same solution set are categorized as one parameter group.
Considering a general spatial serial manipulator, to form [J] q= [V] with 5
interval entries in [J] and [V] and 2 interval parameters, K = 2, there exist

%Zi’;,i_, ( i> e 1 1! o different parameter groups. When the number of

interval parameters is K = 3, all the number of possible parameter groups is

) (” )
calculated as Z?:’I?A# S ZM_

(n—i—2)! 2lil(n—i—2)!

In this paper, once the numerical interval matrix [J] is calculated, the entries of
[J([p])] and [V([p])] are expressed as linear functions of the interval parameters
[Pul, 1 <u<K. Considering entry [J;] and [V;] as linear function of [p,], then
ie([Pu))] = Jiko + Jjulpu] and [Vi(pu)] = Vo + Vjulpu]. The lower and upper
bounds of any interval entry [Ji] = [Ju,Ju] are related to those of interval

parameter p, € [py, Pul, Py # Pu through the following system of linear equations
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Jie = Jiobu + Jjku N Pu [ Jio _ Jir 2)
Jik = Jior, + w7 [Py U] [ ik Ji

The coefficients ! /ik,0 and ijjk7,¢ are calculated by taking inverse of Eq. (2) as

][] [ @
Tkl [Py 1 Jik

The same procedure is performed to formulate the entry of [V}] as a function of
[py). It should be noted that the entry of [J([p])] or [V([p])] nominated for the
interval parameter must be interval. Otherwise, the matrix in Eq. (2) would be
singular and the entry [J;] cannot be formulated in terms of parameter [p,]. If
[J([p])] is an n x n square matrix and non-singular for each p, € []_)H,p_HL U=

L...K, [J7'([p])] exists and [q([p)] = (I ([pD][V([p])] is a function of
K interval parameters which is continuous [9]. This parametric joint velocity
vector provides the solution set for each parameter group.

When the parametric Jacobian matrix is of full-row rank, the solution which
minimizes the 2-norm of the joint velocity vector is selected. If the square para-
metric matrix [J([p])][J” ([p])] is regular for every p, € h—’u’ DyJ, the minimum 2-

norm solution set to the parametric system exists and is formulated as a function of

interval parameters [4([p])] = (37 (1)) ([7([pDII ([p])]) " [V([p])]. If the manip-
ulator has a combination of revolute and prismatic joints, the joint velocity vector
is not physically consistent. If the interval entries with the same dimension are
parameterized, a weighting matrix would be required to calculate the generalized

(Moore-Penrose) inverse of [J([p])] as J* = W[ ([p])] (W([p)IW LI ([p])]) .
Similarly, when parametric Jacobian matrix [J([p])] is of full column-rank and
7 (pP)][I([p])] is regular for every p, € [Pu: Pyl, the least square solution set is

calculated. The weighted left generalized inverse of [J([p])] is calculated as J# =

(I ([p])WJ ([p])]flJT([p])W if the interval entries of the Jacobian matrix are
parameterized using the interval parameters with the same dimension.

4 Case Study

In this section, the 2 DOF planar serial manipulator in Fig. la with two revolute
joints is used as a case study for the interval analysis to visualize the solution set.
The manipulator has uncertainty in two joint variables 0, and 0, and the link
lengths a; and a;.

For the joint variables 0; =% rad and 0, =7 rad, the link lengths
a; = a; = 0.5 m, the radius of uncertainty %5 rad in 0; and 0, and the radius of
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uncertainty 0.010m in link lengths, the interval Jacobian matrix is
) = ([—0.760, —0.706] [—0.497,—0.469]
[0.530,0.595] [0.110,0.149]
is V=[] =[1 1]"(m/s).
If the Jacobian matrix and the end effector velocity vector are functions of two
parameters [p;] and [p,], i.e., p = 1,2, the parametric linear system will be

01] _ ( u([o])]
[J([p])][ej = <[vy([p])]) 4)
The parameter solution set is derived using the inverse of [J([p])] as

@D ot ( Be(o])
O(p])] = <[92<[pm> — ()] ‘([vy([p])]) 5)

Generally, the entries of the Jacobian matrix and the end effector velocity
vector can be parameterized such that the entries with the consistent dimension are
categorized in the same groups. In this example, the Jacobian matrix has physi-
cally consistent entries. Therefore, the parameter assignment can be performed to
any entries of the Jacobian matrix. If the entries of the end effector velocity vector
are interval and have the same dimension, e.g., m/s, these entries could be
parameterized using an interval parameter with the same dimension, e.g., m/s. In
the case study, the entries of the end effector velocity vector are not interval.
Therefore, they are not functions of an interval parameter, i.e., [Vj] =Vjo =1,
j=1,2.

Entries [J12] and [Jyi] are selected as the interval parametersp; € [—0.497,
—0.469] and p, € [—0.760, —0.706], entries [J5;] and [Jo;] are assigned as func-
tions of [p;] and entries v, and v, are constant values 1. The interval entries of
Eq. (3) are substituted into Eq. (5) and the two-parameter solution set for this
parameter group is formulated as

). The desired end effector velocity

—0.372[p;]—-0.792
01,2 = | O e (6)

1.669[p1]—0.792[p2]—1.372[p: ] [p2]+2.291[p1 |

Similar to the procedure in calculating the two-parameter solution set in
Eq. (6), the two-parameter solution set for each parameter group is formulated.
Other parameter groups are obtained by new parameter assignment of the interval
entries of [J([p])] as either [p;] or [p,] and the rest of entries as functions of [p;] and
[p2]. The new parameter solution set for each parameter assignment forms a
parameter group. The boundary curves of the solution set for each group of

parametric linear system are specified by 4 curves; two curves é(pl, Ez) and

é(pl ,D2) in 2-dimensional space when p; varies from p, to p1 and p; is set once to
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the lower bound and then to the upper bound. Similarly, the other two curves
9(192,1_71) and é(pz,pl) are formulated when p; varies from p, to p; and p; is set to
the lower bound and the upper bound, respectively. In the resulting solution set
enclosed by four curves, each curve is connected to the other two curves in two
points and the two attached curves share a point. Therefore, four points G(Bl , 132),

9([)1,[72), é(gl,ﬁg) and 9([71,]32) form vertices of the solution set for each

parameter group. This two-parameter solution set (in red color) is illustrated in
Fig. 1b and completely lies inside the exact solution (in blue color).
To characterize the exact solution, first all parameter groups which result in the

same solution sets are determined and then plotted in 0,-0, plane. In this example,
since there are four interval entries in the Jacobian matrix, 1 = 4, there will exist

Z ’7' =3 Zl 17 ,1, = %(4 +6+4)=7 different parameter groups

among all possible solutlon sets, i.e., 2* = 16. These 16 solution sets are illustrated
in red color in Fig. Ic. The outer vertices of the different groups of the two-
parameter solution sets are connected to form the boundary of the exact solution
(in blue color). Generally speaking, when the exact solution is non-convex, the
two-parameter solution sets might not be able to distinguish the indented vertices.

In the three-parameter case, each parameter group includes interval parameters
[p1], [p2] and [p3], i-e., u = 1,2,3. The procedure to calculate the solution set for
each parameter group is similar to that of the two-parameter case. The parameter

groups for three interval parameters are y |, 2( % = 6. The solution set

corresponding to each parameter group consists of 12 curves; the two parameters
p1,p2 are set to either lower or upper bounds and the resulting 4 curves, which are
functions of parameter ps, are plotted when p3 varies within the lower and upper
bounds. The formulation of the solution set of the interval system including three
parameters is applicable to the Jacobian matrices of the manipulators with more
than 2 joints such as planar 3 DOF manipulators. The process is repeated when
[p1], [p3] are set to either the lower or upper bounds and the next 4 curves are
functions of [p,]. The last 4 curves are formulated as functions of [p;] when
[P2], [p3] are set to either the lower or upper bounds. The resulting 12 curves form a
hypersurface which may have surfaces on the boundary surface of the exact
solution.

To show the solution set for a group of parametric linear system with three
interval parameters, the same example as the two-parameter case is considered.
For entries [J1;] and [Ji2] and [J5;] as interval parameters p; € [—0.760, —0.706],
p2 € [—0.497, —0.469] and p; € [0.530,0.595], respectively, [J22] as a function of
[p1], and [v,] and [v,] as constant values, the three-parameter solution set is plotted
in Fig. 1d. As illustrated, some edges of this solution set lie on the boundary of the
exact solution. The commonly calculated smallest box containing the exact
solution is depicted in Fig. 1d in green color. As shown, this solution is much
larger than the exact solution.
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In general, for K-parameter case, the number of curves involved to form the
solution set of each parameter group is calculated to be K x 2(K=1)_ For instance,
in three-parameter case, the number of curves which forms the solution set for
each parameter group is 3 x 2> = 12. It should be noted that as the size of the
interval matrix, especially the interval entries of the matrix, increases, the total
number of the parameter groups which have different solution sets drastically
grows.

The drawback of the two-parameter solution set is that the indented vertices of
the exact solution, if there is any, may be ignored. The three-parameter solution set
overcomes this limitation as more curves are contributed to characterize each
three-parameter solution set, and hence the actual vertices of the exact solution set
are obtained. The interval analysis in this paper is performed using INTLAB [10].

5 Discussion and Conclusions

In this paper, the motion analysis of manipulators considering uncertainty in the
kinematic parameters were investigated, and a novel method to identify the exact
solution of joint velocities for the given end effector velocities was presented. To
model the uncertainty in kinematic parameters, interval analysis was applied and
the lower and upper bounds of each entry of the Jacobian matrix were determined
and the interval linear equations were formulated to relate the velocity of joints to
the end effector velocity. Although the range of uncertainties in the kinematic
parameters was small, the accumulation effect of uncertainties caused a relatively
wide solution for the velocity of the joints. The lower and upper bounds of the joint
velocity components depended on the length of the links, the range of uncertainties
and the configuration of the manipulator. When the manipulator is close to the
singular configuration, even for small values of uncertainties, the width of joint
velocity components increases. The proposed method has been implemented for
the serial and parallel manipulators. Due to space limitation, only the results for a
serial manipulator were reported here.

Generally, there is a trade-off between the accuracy of the solution and the
computation time. The parametric interval system provides the exact solution with
more computation effort. For offline analysis such as the investigation of work-
space of manipulators, since the calculation time is not a concern, the parametric
interval method is valuable. In real time applications, methods that are not com-
putationally expensive are better suited. As a future work, the motion analysis of
manipulators with uncertainty in the kinematic parameters, velocity limits of the
joints and the joint failure will be investigated.
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