
Chapter 2
Robust Speaker Verification: A Review

Abstract This chapter provides an overview of various feature and model-based
approaches developed in past for robust speaker recognition. The advantages and
disadvantages of some standard methods applied for robust speaker verification
tasks have been highlighted. The main focus is to summarily introduce popular
state-of-the-art techniques adopted for enhancing speaker verification performance
in noisy conditions.

This chapter provides a broad overview of research methods developed for robust
speaker recognition tasks in past. The focus is to summarily introduce popular state-
of-the-art techniques adopted for enhancing speaker verification performance in
noisy conditions, especially those within the current scope of work. The chapter
mainly emphasizes in the feature extraction and statistical modeling stages of
speaker recognition. The merits and de-merits of some of these techniques are
discussed in the purview of the book. It is to be noted that many of these methods
have primarily been applied for robust speech recognition in noisy environment.
Since some of the intermediate stages of speaker verification are similar to that of
speech recognition, they may be interchangeably used for the former. The readers
are encouraged to follow the references for detailed description of the methods
discussed especially notable reviews such as [1–4] or recent research works [5].
Concise overviews of methods adopted for feature compensation, feature extraction,
model compensation and robust speaker modeling are briefly presented in different
sections of this chapter. The role of each of these stages has been discussed in the
first chapter. The final section briefly describes the motivation of carrying out the
present research work.
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2.1 Feature Compensation

Ever since parameterization of raw speech signal was first studied [6], the moti-
vation was to discover speaker-discriminative features for generalized recognition
tasks [7]. The significance of cepstral features [8], especially the mel-cepstrum
[9] for speaker recognition (SR) was established during the contemporary period.
However, there were practical limitations of the use of cepstral features due
to arbitrary modification of the cepstral distribution in the presence of channel
distortions or background noise. A series of feature compensation techniques were
proposed during the early 1990s as a refinement of the common feature extraction
process [10–12]. The motivation was to make real-life applications of SR or speech
recognition which countered channel-induced distortions and handset mismatches
over telephonic conversations [13]. The class of feature compensation methods
developed since then, may be broadly categorized into three groups i.e., filtering-
based compensation, noise model-based compensation and empirical compensation.
Apart from the conventional compensation techniques, there exists a group of
feature transformation methods which are often used in conjunction with the former.
In [14], neural network models are used as mapping functions for transforming
the emotion-specific features to emotion-independent features for developing robust
speaker recognition system.

The filtering techniques aim to denoise or suppress the effect of noise in the
extracted features. They exploit the fact that convolutive channel or environmental
distortions become additive in the log-spectral and cepstral domain. It was studied in
[15] that slow variations in the channel appear as an offset of individual co-efficients
of a cepstral vector. Cepstral Mean Subtraction (CMS) [15] suppresses the channel
effects by subtracting the mean of cepstral co-efficients extracted from short-term
frames, from the individual coefficients. The removal of the average spectrum
also suppress inter-session variabilities to certain extent [11]. Apart from simple
mean-removal as in CMS the variance of the cepstral vectors are often scaled to
unity. Relative Spectra (RASTA) [16], principally similar to CMS, was proposed
to compensate for rapidly varying channel conditions. Instead of uniform mean
subtraction over the entire cepstra, a moving average filter was employed for an
exponentially decaying mean subtraction. CMS and RASTA are commonly applied
for front-end compensation in SR tasks due to the simplicity of implementation.
A set of more sophisticated ‘kernel filtering’ methods [17] were later developed
which captured the non-linear features of speech by fitting a higher dimensional
mapping function and eventually projecting the features to a lower dimensional
manifold. However later studies had promptly revealed that these techniques are
not much effective for channel mismatches and additive background noise.

The model-based feature compensation methods assume a priori knowledge of
the noise spectrum. An estimate of the clean speech parameters is made using either
a noise model or representation of the effects of noise in speech. The primitive meth-
ods in this group include Spectral Equalization [18] and Spectral Subtraction (SS)
[19]. In SS, the clean speech spectra is estimated by subtracting the mean magnitude
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of an approximate noise spectra from that of the noisy speech spectra. These
methods relied on the stationary assumption of noise and independence of spectral
estimates across frequencies explicitly. To overcome this limitation, some of the
methods developed later were based on the minimum mean squared error (MMSE)
predictor [20] which modeled the correlation of frequency components e.g., MMSE
log spectral amplitude estimator [21]. During the early 1990s, stereo-data based
compensation techniques were first introduced [10]. Cepstral compensation vectors
were derived from a stereo database and applied to the training data to adapt
to environmental changes. The compensation could also be in the form of affine
transformations learned from stereo data [12]. Popular examples are Codeword
Dependent Cepstral Normalization (CDCN) [22] and its variants like Fast CDCN
(FCDCN) [10]. Other methods relied on a mathematical model of the environmental
mismatch due to noise. The parameters of the model were estimated and applied to
the appropriate inverse operation to compensate the test signal e.g., feature-level
Vector Taylor Series [23].

The third group of feature compensation techniques are entirely data-driven and
are stochastic in nature. They are ‘blind’ towards the nature of the corrupting
process and are based on empirical compensation methods that use direct spec-
tral comparison. Prior work shows that they often outperform the previous two
approaches for feature enhancement [24]. During the training phase, some trans-
formations are estimated by computing the frame-by-frame differences between
the vectors representing speech in the clean and noisy environments (stereo data).
The differences between clean and noisy feature vectors are modeled by training
additive bias vectors on the mean and covariance of either of the two (clean or
noisy) probability distributions. During evaluation phase, the bias vectors are used
to transform noisy test feature vectors to their clean feature equivalent based on the
MMSE predictor. Previous MMSE-based methods like CDCN [22] and FCDCN
[10], used vector quantization (VQ) codebooks to represent the distribution of
clean feature vectors. Due to their quantization-based framework, these algorithms
were unable to learn the variance of a distribution and were later replaced by the
more flexible Gaussian Mixture Model (GMM)-based normalization techniques
e.g., Multivariate Gaussian-based Cepstral Normalization (RATZ) [25]. Although
the RATZ family of algorithms approximated the normalized features, the posterior
probability of clean GMM components with respect to the noisy test feature
vectors were usually distorted, causing poor MMSE estimates. To suppress these
distortions, the Stereo-based Piecewise Linear CompEnsation for Environments
(SPLICE) algorithm proposed in [26] modeled the noisy feature space using GMMs
instead. This produced significantly better result in robust speech recognition
tasks compared to its predecessors [27]. The effectiveness of SPLICE framework
has since then encouraged its extended applications e.g., speech recognition in
non-stationary noisy environments within cars using the Multi Environment Model-
based Linear Normalization (MEMLIN) algorithm [28] and word recognition using
Noise Adaptive Training [27]. The more recently proposed Stereo-based Stochastic
Mapping (SSM) [29] is principally a more accurate version of SPLICE based on
joint probability modeling of the noisy and clean feature spaces using GMMs.
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2.2 Robust Feature Extraction

The conventional features used for SR tasks can be broadly categorized as spectral,
prosodic and high-level features. In this section we briefly discuss each.

Prosody is a collective term for certain aspects manifested in long term speech
segments e.g., stress, intonation pattern, rhythm etc. The most significant amongst
these is intonation which is characterized by the fundamental frequency con-
tour (Fo). Fo contour and energy (stress) were effectively used for speaker recogni-
tion in [30]. A few other significant applications of prosodic features for SR include
combination of energy trajectory with Fo [31] and construction of SVM speaker
models using pitch, duration and pause features [32]. In [33], temporal variations
in speaker-specific prosodic parameters are proposed in addition to conventional
spectral features for improving the speaker recognition accuracy in presence of
noisy background environments. A comparative study about the significance of the
various prosodic features for SR tasks can be found in [34]. Modeling the different
levels of prosodic information (instantaneous, long-term) for speaker discrimination
is considered to be a difficult task. At the same time, it is desired that the features
are free from the effects that a speaker can voluntarily control. Due to these
complications, prosodic features haven’t been much used for robust SR tasks.

High-level features exploit speaker’s choice of words or vocabulary for recog-
nizing them. The term ‘high-level’ refers to modeling speech utterances using the
sequence of ‘tokens’ present in them. The co-occurrence pattern in the tokens,
often termed as ‘idiolect’ [35], characterizes speaker differences. The tokens that
are commonly used for speaker recognition may be in the form of phones [36],
words [35], prosodic gestures [31, 34] or even articulatory movements [37]. Signif-
icant applications of these features for SR include [36, 38], where GMMs trained
using individual sets of extracted tokens are used in parallel for classification. Due
to their nature, high-level features can often be interchangebly used for speaker and
language recognition [39]. Other approaches share similarities with the common
prosodic features [31]. A study on the joint application of prosodic and high-level
features for robust SR tasks can be found in [40]. However, high-level features
are not a very attractive group to work with, due to the computational complexity
involved in recognizing tokens.

The most common features for generalized speech related tasks as well as
speaker recognition, are the family of spectral or spectro-temporal features. These
features are extracted from short overlapping frames (10–25 ms) which are pre-
emphasized and smoothed. Based on their interpretation they can be categorized
as temporal, spectral or spectro-temporal. Popular examples of cepstral features are
the Linear Prediction Cepstral Coefficient (LPCC) [8], Perceptual Linear Prediction
(PLP) [41] coefficients and Mel Frequency Cepstral Coefficient (MFCC) [9], etc.

LPCCs are based on the principle of correlation of a sample with its adjacent
ones. An instantaneous sample is approximated in terms of its neighborhood
samples weighted with a set of predictor coefficients. The error in estimation is
often termed as LP residual. The frequency domain equivalent of this representation
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is that of an all-pole filter with the same set of LP coefficients. The coefficients
are determined by minimizing the residual energy using the Levinson Durbin
algorithm [42]. The prediction coefficients instead of being used by themselves are
transformed into a set of robust, less correlated features like LPCCs, PLP [41], Line
Spectral Frequencies (LSF) [43], formant frequencies and bandwidth etc. [42].

The MFCCs [9] are the most successful and extensively used features for speaker
recognition. MFCCs were psychoacoustically motivated in the sense that they were
found to mimic the human auditory perception. MFCCs are extracted by a non-linear
filter-bank analysis of the Discrete Fourier Transform (DFT) magnitude spectrum
of short-term frames. The filterbank usually consist of a set of triangular band-pass
filters, which are spaced according to the ‘mel’ scale. The log-magnitude of the
filtered spectra is subjected to a Discrete Cosine Transform (DCT) for obtaining
the cepstral features. MFCCs have arguably shown the best results compared to
contemporary features like LPCC, PLP, LSF etc., in several prior works in SR using
clean speech [10–12, 44]. Thus they are considered to be the default features for
several speech related tasks including SR.

However the presence of background noise or channel effects inhibit the
performance of MFCCs significantly primarily due to the distortion in the feature
distribution [25]. The default use of MFCCs in most baseline SR systems necessi-
tated the development of feature compensation methods as discussed in Sect. 2.1.
However quite recently, researchers have focussed on alternative ways of modi-
fying the cepstral feature extraction process for resistance towards ambient noise.
Amongst several others, some notable features are Mean Hilbert Envelope Coef-
ficient (MHEC) [45], Power Normalized Cepstral Coefficient (PNCC) [46] and
Normalized Modulation Cepstral Coefficient (NMCC) [47]. Instead of modifying
the features for compensating the effect of noise, features can be extracted from
selective-regions of speech. Even in presence of noise also, glottal closure region
in each pitch cycle and steady vowel regions contain high signal to noise ratio,
and hence, features extracted from these regions are more robust compared to other
regions of speech. In [48–50], features extracted from above mentioned regions are
explored for robust speaker and language recognition tasks.

In MHEC extraction, the pre-emphasized speech is first decomposed into a
number of spectral subbands using a gammatone filter constrained in the telephonic
bandwidth of 300–3400 Hz. Unlike MFCC, the filters are uniformly spaced on
an equivalent rectangular bandwidth (ERB) scale. The temporal envelope (Hilbert
envelope) of each subband is estimated by using the Hilbert transform of the
subband signal followed by low-pass filtering. The smoothed envelope is then used
for deriving the required cepstral features. In PNCC extraction, the pre-emphasized
signal is analyzed using short overlapping frames. A short-time Fourier analysis
is performed over the Hamming windowed data, followed by frequency domain
filtering using a gammatone filterbank constrained in 133 and 4,000 Hz, where the
center frequencies of the gammatone bank are spaced equally in the ERB scale.
The NMCCs are similar to PNCC except that amplitude modulation (AM) signals
are estimated from the gammatone filtered sub-band signals using a Teager non-
linear energy operator. The resulting signal is power normalized followed by DCT
transform to obtain the cepstral features.
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2.3 Model Compensation

Though feature-level compensation techniques are often applied as a front-end
denoising process due to their low computational complexity and independence
of any recognition model, they have certain limitations. In most cases, the feature
compensation techniques produce point estimates of clean speech features. Due
to this, they are unable to capture the uncertainty of observations which is
represented as the variance of the conditional distribution of noisy speech given
clean speech [51]. An alternative is to alter the statistical parameters of the
acoustic model learned during the training phase to compensate for the channel or
environmental mismatch of the evaluation phase. Since the evolution of statistical
models for speech recognition, much research has been devoted in exploring model
compensation issues in parallel [52, 53].

The earlier methods focussed on rendering the speaker models ineffective
towards channel mismatches or handset variations [54]. In most cases, the mismatch
would be caused due to unseen channel data during the evaluation phase. Unlike
speech recognition tasks where multiple channel adaptation data could be obtained
by pooling all speaker data over individual channels, SR required speaker-specific
enrollment speech over multiple channels which could be later used for verification.
This was unfavourable for practical SR applications. Alternate methods would
cluster the data from a single conversation into multiple channel types to meet
data requirements. Synthetic variance distribution [55] used an auxillary database
of stereo recordings to artificially construct a global distribution of variances.
Transformations derived from this distribution were used to modify the variance of
individual speaker models. Speaker Model Synthesis (SMS) [56] learned speaker-
independent transformations between different channels and applied it to synthesize
speaker models under unseen enrollment conditions. The transformations were
learned in the form of mean shift, weight scaling and variance scaling of GMM
model parameters trained across various channel conditions.

In contrast to model-based channel compensation schemes, model-based envi-
ronment adaptation methods developed during the contemporary period, modify
speaker model parameters to reflect the acoustic environment of the evaluation
phase. Two most popular data-driven environmental adaptation techniques initially
proposed for robust speech recognition are Maximum aPosteriori (MAP)[57] and
Maximum Likelihood Linear Regression (MLLR) [58]. The successful application
of GMMs in the field of speaker recognition [59] has since then encouraged
their usage in robust speaker verification (SV) tasks [60]. Both these methods
use adaptation data to build speaker-specific models from a speaker independent
background model constructed offline. MAP is a two stage process in which
Bayesian statistics estimated using the training/adaptation data in the first stage,
are used to update the ‘a priori’ available background model parameters (mean,
covariances and weights) in the second stage. The Speaker Model Synthesis [56]
method was based on deriving individual channel dependent GMMs by MAP-
adaptation of a channel-independent background model. In another application,
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MAP was jointly used for model adaptation as well as feature transformation [61].
The advantage of MAP adaptation is its close approximation to the ideal maximum-
likelihood estimates given sufficient enrollment data. However in situations where
training data is sparse, MAP would only update a fractional number of GMM
components. The MLLR adaptation technique transform the background GMM
means and covariance matrices (optionally) by an affine transformation aiming at
maximizing the likelihood function given new adaptation data. The parameters of
the transformation are derived by iteratively using the Expectation Maximization
(EM) algorithm [62]. Unlike MAP, all the GMM components are updated with
limited amount of enrollment data. Other variants of MLLR like constrained
MLLR (CMLLR) [63] are often used for online model adaptation [64]. However
the performance improvement in MLLR-based methods saturates with increasing
adaptation data and at a certain stage they are outperformed by MAP. A comparison
of MLLR and Neural Network based environmental techniques was made in [65].

Apart from the traditional data driven methods that are dependent on adaptation
data representing acoustic conditions of the evaluation phase, another approach is
to exploit a priori information about the test environment. Popular state-of-the-art
techniques in this category are Parallel Model Combination (PMC) [66, 67] and
Vector Taylor Series (VTS) [68]. PMC relies on an available statistical noise model
of the recognition phase and clean speaker GMMs trained during enrollment. The
aim is to obtain noise-corrupted model for pattern matching, by combining the clean
speech and noise models. This is done in two stages. Firstly, clean speaker models
(GMMs/HMMs) and a simplified noise model (GMM) are built independently from
clean training data and a noise signal, respectively. Secondly, the effect of additive
noise on clean speech in the cepstral domain is analysed by using a function of noise
corruption. This function is then extended to the parametric space to estimate the
corrupted model parameters (mean and variances) from the clean and noise model
parameters, respectively. Prior work shows that PMC model parameter estimation
gets increasingly complex for dynamic and acceleration coefficients of MFCC.
A recent state-of-the-art technique [69] addresses this problem by exploiting the
relation between static and dynamic coefficients. The VTS method [70] uses a
similar mathematical structure to represent the noise corruption process. However,
unlike PMC the noise and channel statistics are obtained via an approximate taylor
series expansion of the function around the mean of GMM components. This
method is relatively much simpler compared to PMC and the tradeoff in terms of
accuracy is not significant.

Though the model-compensation techniques perform better than their feature-
level counterparts, they are computationally intensive and often require substantial
amount of training data. Apart from the two broad types of compensation techniques
discussed in Sects. 2.1 and 2.3, there exists hybrid approaches which can be termed
as a combination of the two methods. Examples include Stochastic Matching [71]
and Joint Uncertainty Decoding [72]. These methods account for the imperfections
in feature enhancement process by approximating the marginal distribution of noisy
features. In realistic situations, it may also turn out that the verification environment
is entirely unknown [73]. In such scenarios, one might not expect availability of
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adaptation data or stereo training data. Quite recently, researchers have addressed
this issue [74] by combining ‘missing feature theory’ based techniques [75] to
subdue noise variation outside training conditions. The ‘posterior union model’
in [74], require detection and exclusion of the heavily mismatched subbands of the
speech spectra. However, the improvement in performance accuracy of all these
methods is usually associated with increased computational load and dependency
on numerical approximations.

2.4 Robust Speaker Modeling

Speaker modeling techniques have been extensively explored in the past few
decades of SR research. The scope of applying diverse pattern recognition tech-
niques for classification and clustering of features makes this field an exciting
area to work with. The broad classes of modeling techniques that are used in
practice can be broadly categorized as generative models (GMM, VQ, Joint Factor
Analysis (JFA)) or discriminative models (Neural Networks (NN) and Support
Vector Machines (SVMs)). A family of hybrid modeling techniques also exist which
are a combination of both e.g., GMM-SVM, SVM-JFA, etc. In this subsection we
shall briefly discuss each.

Vector Quantization, introduced in the late 1980s [76] is one the most primitive
form of SR model. Based on the principle of K-means [62], the set of feature
vectors extracted from a speaker’s training utterance are grouped into a number of
non-overlapping clusters. Individual speaker models are represented by the stack of
cluster centroids often termed as codebook. Classification of a test utterance is based
on minimization of a distortion measure commonly given by the average Euclidean
distance of a vector from each codebook. Despite its crude form of clustering, VQ
is often used for computational speedup required for real-time SR applications [77].

The Gaussian Mixture Models (GMMs) introduced in the mid-1990s [59] is
widely considered to be a benchmark for modern text-independent Speaker Recog-
nition. In contrast to VQ, a number of overlapping multivariate Gaussian functions
are used to cluster the feature space. The GMMs are able to characterize general
properties like multi-modal feature distribution, speaker-dependent spectral shapes
etc. Unlike VQ, GMMs are able to capture the variance of feature distribution.
In contrast to the naive K-means, GMM training is based on a more rigorous
approach of maximizing the likelihood of a given speaker’s data. The parameters
are estimated iteratively using the Expectation Maximization (EM) algorithm
[62]. Classification of test utterances are done on the basis of log likelihood
scores obtained from the sequence of test vectors. Though speaker-specific GMMs
performed reasonably well for SR given clean speech, a good amount of data
was required for parameter estimation. Besides, a more generalized approach was
required for unifying model-compensation techniques with the GMM framework.
A novel GMM-based approach was proposed in [60], where a single speaker-
independent GMM (Universal Background Model (UBM)) trained using multiple
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speaker data across various channels and sessions, was used as a common impostor
model for speaker verification. HMM-based speaker models were derived using
MAP and MLLR adaptation of the UBM using the speaker’s training data. Besides
reducing data requirements, these techniques provided scope for model adaptation
as discussed in Sect. 2.3. Comparative studies of alternate adaptation techniques
were made in [78]. Efforts were also made to approximate the common MAP adap-
tation process in terms of a VQ model [79]. However in the context of environmental
robustness, GMMs often provide limited performance improvement despite model-
adaptation. This problem received a new direction with the introduction of Joint
Factor Analysis and its variants [80].

Prior to the introduction of GMMs, role of Neural Networks (NN) for text-
independent SR was first studied in [81]. An advantage of NNs is its ability to
perform feature transformation and speaker modeling simultaneously [82]. In a later
study, Auto Associative Neural Networks (AANNs) were introduced for speaker
modeling [83]. Since GMMs relied on first and second order statistics, it was
hypothesized in [83] that they fail to capture feature distribution based on higher
order statistics. AANNs were found to be effective for SR tasks where distribution
of data is highly non-linear [83]. However, NNs have not been used much in practice
primarily due to the heavy computational costs involved in training them. Besides,
prior determination of the appropriate structure for NNs (number of neurons in each
layer) is a non-trivial task.

Support Vector Machines (SVMs) have emerged as a powerful discriminative
classifier in the field of robust SR in the last decade [32, 36, 84]. A SVM is a binary
classifier which distinguishes between two classes (true speaker and impostor) by
learning a decision hyperplane which separates them in some higher dimensional
feature space [62]. SVMs have been initially used to model individual speakers
using high-level [36] and prosodic features [32]. However the real significance of
SVMs in robust SV tasks was found in its effective combination with the traditional
GMM classifier [85]. A novel method of representing variable length training
utterances using fixed-length vectors was discovered contemporarily. The mean
vectors of MAP-adapted speaker GMMs were stacked together to produce a high
dimensional vector commonly termed as a ‘supervector’. The labelled supervectors
were used as input the SVMs. This led to the scope of exploring various ‘sequence
kernels’ or non-linear mappings for transforming features to high dimensional
spaces [85–87]. Several normalization techniques for minimizing inter-session and
intra-speaker variabilities in the supervector space have been introduced since
then. Common examples are Nuisance Attribute Projection (NAP) [88], Within
Class Covariance Normalization (WCCN) [89] and Linear Discriminant Analysis
(LDA) [62]. The GMM-SVM approach is often considered as a effective alternative
of the GMM-UBM method.

Supervector-based speaker recognition opened an interesting new direction
for compensating channel and session variabilities. It was thought that channel
variations in recorded training utterances might lead to the problem of mismatch
in the supervector space. A feasible alternative was to explicitly model the channel
variability by representing the supervector space as a combination of statistically
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independent channel and speaker subspaces. This approach was named Joint Factor
Analysis (JFA) [80] where the term ‘factor’ denotes the low-dimensional projection
of the speaker or channel supervectors in their corresponding spaces. JFA as a
new research trend has been extensively studied for robust SR tasks since the late
2000s [80, 90]. However it was later argued in [91], that instead of two distinct
subspaces a single ‘total variability’ space could in fact be useful for simultaneously
representing both speaker and channel variabilities. A low-dimensional projection
of the supervectors in the total variability space, commonly known as ‘i-vectors’
has since then been considered as the modern state-of-the-art in robust speaker
verification. Various studies have since then been conducted to combine JFA
and SVM based methods with appropriate normalization techniques [92]. Quite
recently, i-vector based studies have conducted for robust speaker recognition
tasks where authors have proposed alternative methods of projecting the i-vectors
into a subspace for improved speaker discrimination and suppression of channel-
effects [93].

2.5 Motivation for the Present Work

Robust speaker recognition in noisy environments till date remains an open issue
despite the diverse array of methods developed to address it in past. The ever
increasing usage of hand-held devices in the modern era has driven new demand
for robust speaker recognition applications. Despite being well explored in past,
new methods keep unfolding in this field which are either suggested improvements
or alternatives of the existing ones. This makes robust SR a very challenging and
yet an interesting area to work in.

Despite the availability of robust features as discussed in Sect. 2.2, feature
compensation techniques play a crucial role for SV applications that demand noise-
robustness without compromising on speaker-discriminative power [94]. An inter-
esting fact to notice about the state-of-the art data-driven feature compensation
methods discussed in Sect. 2.1, is that their application has mostly been restricted
to robust speech recognition tasks but rarely studied for robust SV tasks. The brief
discussion about model compensation techniques in Sect. 2.3 reveal some of their
vulnerabilities. They either rely explicitly on an available clean speaker model
(e.g., PMC [66], VTS [70]) or a priori knowledge about the noisy environment
(e.g., noise model for PMC, adaptation data for MAP [57], MLLR [58]). These
drawbacks suggest the use of robust speaker modeling methods as an alternative
for practical scenarios (e.g., unknown noisy environment, unavailable clean speaker
models). In a similar context it can be argued that the state-of-the-art robust speaker
modeling methods (e.g., GMM supervectors [85], i-vectors [95] etc.) have mostly
been applied to counter channel/handset mismatches but not additive background
noise specifically.

Summarily, the above two points motivates us to propose new studies in
which we explore the application of feature enhancement techniques for speaker
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verification in additive background noise. Studies are also conducted to demonstrate
the effectiveness of supervector-based approaches and its state-of-the-art variants
(e.g., i-vectors) for robust speaker verification in noisy environments.

References

1. J. Campbell, Speaker recognition: a tutorial. Proc. IEEE 85(9), 1437–1462 (1997)
2. F. Bimbot, J.F. Bonastre, C. Fredouille, G. Gravier, I. Magrin-Chagnolleau, S. Meignier,

T. Merlin, J. Ortega-Garcia, D. Petrovska-Delacrétaz, D.A. Reynolds, A tutorial on text-
independent speaker verification. EURASIP J. Adv. Signal Process. (Spec. Issue Biom. Signal
Process.) 4(4), 430–451 (2004)

3. B.G.B. Fauve, D. Matrouf, N. Scheffer, J.F. Bonastre, J.S.D. Mason, State-of-the-art perfor-
mance in text-independent speaker verification through open-source software. IEEE Trans.
Audio Speech Lang. Process. 15(7), 1960–1968 (2007)

4. T. Kinnunen, H. Li, An overview of text-independent speaker recognition: from features to
supervectors. Speech Commun. 52, 12–40 (2010)

5. S. Sarkar, Robust speaker recognition in noisy environments. Master’s thesis, School of
Information Technology, Indian Institute of Technology Kharagpur, Mar 2014

6. R. Schafer, L. Rabiner, Digital representations of speech signals. Proc. IEEE 63(4), 662–677
(1975)

7. B. Atal, Automatic recognition of speakers from their voices. Proc. IEEE 64(4), 460–475
(1976)

8. J. Makhoul, Linear prediction: a tutorial review. Proc. IEEE 63(4), 561–580 (1975)
9. S. Davis, P. Mermelstein, Comparison of parametric representations for monosyllabic word

recognition in continuously spoken sentences. IEEE Trans. Acoust. Speech Signal Process.
28(4), 357–366 (1980)

10. A. Acero, Acoustical and environmental robustness in automatic speech recognition. PhD
thesis, Carnegie Mellon University, Sept 1990

11. D.A. Reynolds, Experimental evaluation of features for robust speaker identification. IEEE
Trans. Speech Audio Process. 2(4), 639–643 (1994)

12. R. Mammone, X. Zhang, R. Ramachandran, Robust speaker recognition: a feature-based
approach. IEEE Signal Process. Mag. 13(5), 58–71 (1996)

13. D. Reynolds, The effects of handset variability on speaker recognition performance: exper-
iments on the Switchboard corpus, in Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing, Atlanta, 1996, vol. 1, pp. 113–116

14. K.S. Rao, J. Yadav, S. Sarkar, S.G. Koolagudi, A.K. Vuppala, Neural network based fea-
ture transformation for emotion independent speaker identification. Int. J. Speech Technol.
(Springer) 15(3), 335–349 (2012)

15. S. Furui, Cepstral analysis technique for automatic speaker verification. IEEE Trans. Acoust.
Speech Signal Process. 29(2), 254–272 (1981)

16. H. Hermansky, N. Morgan, RASTA processing of speech. IEEE Trans. Speech Audio Process.
2(4), 578–589 (1994)

17. A. Kocsor, L. Toth, Kernel-based feature extraction with a speech technology application. IEEE
Trans. Signal Process. 52(8), 2250–2263 (2004)

18. T.G. Stockham, T.M. Cannon, R.B. Ingebretsen, Blind deconvolution through digital signal
processing. Proc. IEEE 63(4), 678–692 (1975)

19. S. Boll, Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans. Acoust.
Speech Signal Process. 27(2), 113–120 (1979)

20. A. Erell, M. Weintraub, Spectral estimation for noise robust speech recognition, in Proceedings
of DARPA Speech and Natural Language Workshop, Philadelphia, 1989



24 2 Robust Speaker Verification: A Review

21. Y. Ephraim, D. Malah, Speech enhancement using a minimum mean-square error log-spectral
amplitude estimator. IEEE Trans. Acoust. Speech Signal Process. 33(2), 443–445 (1985)

22. A. Acero, R.M. Stern, Environmental robustness in automatic speech recognition, in Proceed-
ings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP
’90), Albuquerque, 1990, vol. 2, pp. 849–852

23. S. Suhadi, S. Stan, T. Fingscheidt, C. Beaugeant, An evaluation of VTS and IMM for speaker
verification in noise, in Proceedings of 4th Annual Conference of the International Speech
Communication Association (INTERSPEECH ’03), Geneva, 2003, pp. 1669–1672

24. L. Deng, J. Droppo, A. Acero, Recursive estimation of non-stationary noise using iterative
stochastic approximation for robust speech recognition. IEEE Trans. Speech Audio Process.
11(6), 568–580 (2003)

25. P.J. Moreno, B. Raj, R.M. Stern, Data-driven environmental compensation for speech recogni-
tion: a unified approach. Speech Commun. 24(4), 267–285 (1998)

26. L. Deng, A. Acero, M. Plumpe, X. Huang, Large-vocabulary speech recognition under adverse
acoustic environments, in Proceedings of the International Conference of Spoken Language
Processing (ICSLP ’00), Beijing, 2000, pp. 806–809

27. L. Deng, A. Acero, L. Jiang, J. Droppo, X. Huang, High-performance robust speech recognition
using stereo training data, in Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing, Salt Lake City, 2001, vol. 1, pp. 301–304

28. L. Buera, E. Lleida, A. Miguel, A. Ortega, Multi-environment models based linear normaliza-
tion for speech recognition in car conditions, in Proceedings of IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP ’04), Montreal, 2004

29. M. Afify, X. Cui, Y. Gao, Stereo-based stochastic mapping for robust speech recognition. IEEE
Trans. Audio Speech Lang. Process. 17(7), 1325–1334 (2009)

30. L. Mary, B. Yegnanarayana, Extraction and representation of prosodic features for language
and speaker recognition. Speech Commun. 50, 782–796 (2008)

31. A.G. Adami, R. Mihaescu, D.A. Reynolds, J.J. Godfrey, Modeling prosodic dynamics for
speaker recognition, in Proceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP ’03), Hong Kong, 2003

32. L. Ferrer, E. Shriberg, S. Kajarekar, K. Sonmez, Parameterization of prosodic feature dis-
tributions for SVM modeling in speaker recognition, in Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP ’07), Honolulu, 2007,
pp. 233–236

33. S.G. Koolkagudi, K.S. Rao, R. Reddy, A.K. Vuppala, S. Chakrabarti, Robust speaker recogni-
tion in noisy environments: using dynamics of speaker-specific prosody, in Forensic Speaker
Recognition (Springer, New York, USA, 2013), pp. 183–204

34. E. Shriberg, L. Ferrer, S. Kajarekar, A. Venkataraman, A. Stolckea, Modeling prosodic feature
sequences for speaker recognition. Speech Commun. 46, 455–472 (2005)

35. G. Doddington, Speaker recognition based on idiolectal differences between speak-
ers, in Proceedings of the European Conference of Speech Communication Technology
(EUROSPEECH ’01), Aalborg, 2001, pp. 2521–2524

36. W.M. Campbel, J.P. Campbell, D.A. Reynolds, D.A. Jones, T.R. Leek, Phonetic speaker
recognition with support vector machines, in Proceedings of the Neural Information Processing
Systems Conference, Vancouver, 2003, pp. 1377–1384

37. K. yee Leung, M. wai Mak, M. Siu, S. yuan Kung, Adaptive articulatory feature-based
conditional pronunciation modeling for speaker verification. Speech Commun. 48, 71–84
(2006)

38. B. Ma, D. Zhu, H. Li, R. Tong, Speaker cluster based GMM tokenization for speaker recogni-
tion, in Proceeding of the 7th Annual Conference of the International Speech Communication
Association (INTERSPEECH ’06), Pittsburgh, 2006

39. B. Ma, H. Li, R. Tong, Spoken language recognition using ensemble classifiers. IEEE Trans.
Audio Speech Lang. Process. 15(7), 2053–2062 (2007)



References 25

40. D. Reynolds, W. Andrews, J. Campbell, J. Navratil, B. Peskin, A. Adomi, Q. Jin, D. Kluracek,
J. Abramson, R. Mihaescu, J. Godfrey, D. Jones, S. Xiang’, The supersid project: exploiting
high-level information for high-accuracy speaker recognition, in Proceedings of IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP ’03), Hong Kong,
2003

41. H. Hermansky, Perceptual linear prediction (PLP) analysis for speech. J. Acoust. Soc. Am. 87,
1738–1752 (1990)

42. L. Rabiner, B.H. Juang, Fundamentals of Speech Recognition, 1st edn. (Prentice-Hall, Engle-
wood Cliffs, 1993)

43. X. Huang, A. Acero, H. Hon, Spoken Language Processing: a Guide to Theory, Algorithm, and
System Development (Prentice Hall, Upper Saddle River, 2001)

44. S. Sarkar, K.S. Rao, D. Nandi, Multilingual speaker recognition on Indian languages, in IEEE
INDICON, Mumbai (IIT Mumbai, Mumbai, 2013)

45. J.W. Suh, S.O. Sadjadi, G. Liu, T. Hasan, K.W. Godin, J.H. Hansen, Exploring Hilbert envelope
based acoustic features in i-vector speaker verification using HT-PLDA, in Proceedings of NIST
Speaker Recognition Evaluation Workshop, Gaithersburg, USA, 2011

46. C. Kim, R.M. Stern, Power-normalized cepstral coefficients (PNCC) for robust speech
recognition, in Proceedings of IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP ’12), Kyoto, 2012

47. V. Mitra, H. Franco, M. Graciarena, A. Mandal, Normalized amplitude modulation features
for large vocabulary noise-robust speech recognition, in Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP ’12), Kyoto, 2012

48. A.K. Vuppala, K.S. Rao, Speaker identification under background noise using features
extracted from steady vowel regions. Int. J. Adapt. Control Signal Process. 27(9), 781–792
(2013). Wiley

49. A.K. Vuppala, K.S. Rao, S. Chakrabarti, Improved speaker identification in wireless environ-
ment. Int. J. Signal Imaging Syst. Eng. 6(3), 130–137 (2013)

50. K.S. Rao, S. Maity, V.R. Reddy, Pitch synchronous and glottal closure based speech analysis
for language recognition. Int. J. Speech Technol. 16, 413–430 (2013). Springer

51. T. Kristjansson, B. Frey, Accounting for uncertainity in observations: a new paradigm for
robust speech recognition, in Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP ’02), Orlando, 2002, vol. 1, pp. 61–64

52. C.H. Lee, On stochastic feature and model compensation approaches to robust speech
recognition. Speech Commun. 25, 29–47 (1998)

53. C.H. Lee, Q. Huo, On adaptive decision rules and decision parameter adaptation for automatic
speech recognition. Proc. IEEE 88(8), 1241–1269 (2000)

54. T. Quatieri, D. Reynolds, G. O’Leary, Estimation of handset nonlinearity with application to
speaker recognition. IEEE Trans. Speech Audio Process. 8, 567–584 (2000)

55. H.A. Murthy, F. Beaufays, L.P. Heck, M. Weintraub, Robust text-independent speaker identifi-
cation over telephone channels. IEEE Trans. Speech Audio Process. 7(5), 554–568 (1999)

56. R. Teunen, B. Shahshahani, L. Heck, A model-based transformational approach to robust
speaker recognition, in Proceeding of the Annual Conference of the International Speech
Communication Association (INTERSPEECH ’00), Beijing, 2000, vol. 2, pp. 495–498

57. J. Gauvain, C. Lee, Maximum a posteriori estimation for multivariate Gaussian mixture
observations of Markov chains. IEEE Trans. Speech Audio Process. 2(2), 291–298 (1994)

58. C. Leggetter, P. Woodland, Maximum likelihood linear regression for speaker adaptation of
continuous density HMMs. Comput. Speech Lang. 9, 171–185 (1995)

59. D.A. Reynolds, R.C. Rose, Robust text-independent speaker identification using Gaussian
mixture speaker models. IEEE Trans. Acoust. Speech Signal Process. 3(1), 72–83 (1995)

60. D. Reynolds, T. Quatieri, R. Dunn, Speaker verification using adapted Gaussian mixture
models. Digit. Signal Process. 10(1), 19–41 (2000)

61. D. Zhu, B. Ma, H. Li, Joint MAP adaptation of feature transformation and Gaussian mixture
model for speaker recognition, in Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP ’09), Taipei, 2009, pp. 4045–4048



26 2 Robust Speaker Verification: A Review

62. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, New York, 2006)
63. V. Digalakis, D. Rtischev, L. Neumeyer, E. Sa, Speaker adaptation using constrained estimation

of Gaussian mixtures. IEEE Trans. Speech Audio Process. 3(5), 357–366 (1995)
64. S. Kozat, K. Visweswariah, R. Gopinath, Feature adaptation based on Gaussian posteriors, in

Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing,
Toulouse, 2006, pp. 221–224

65. K.K. Yiu, M.W. Mak, S.Y. Kung, Environment adaptation for robust speaker verification,
in Proceedings of the European Conference of Speech Communication and Technology
(EUROSPEECH ’03), Geneva, 2003, vol. 2, pp. 2973–2976

66. M.J.F. Gales, S.J. Young, Robust speech recognition in additive and convolutional noise using
parallel model combination. Comput. Speech Lang. 9, 289–307 (1995)

67. L.P. Wong, M. Russell, Text-dependent speaker verification under noisy conditions using
parallel model combination, in Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP’01), Salt Lake City, 2001, pp. 457–460

68. P. Moreno, Speech recognition in noisy environments. PhD thesis, Electrical & Computer
Engineering Department, Carnegie Mellon University, Pittsburgh, 1996

69. K.C. Sim, M.T. Luong, A trajectory-based parallel model combination with a unified static
and dynamic parameter compensation for noisy speech recognition, in Proceedings of the
Workshop on Automatic Speech Recognition and Understanding (ASRU ’11), Waikoloa, Dec
2011, pp. 107–112

70. P.J. Moreno, B. Raj, R.M. Stern, A vector Taylor series approach for environment-independent
speech recognition, in Proceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing, Atlanta, 1996, pp. 733–736

71. A. Sankar, C.H. Lee, Stochastic matching for robust speech recognition. IEEE Signal Process.
Lett. 1(8), 124–125 (1994)

72. H. Liao, M.J.F. Gales, Joint uncertainty decoding for noise robust speech recognition, in
Proceedings of 6th Annual Conference of the International Speech Communication Association
(INTERSPEECH ’05), Lisbon, 2005

73. J. Ming, D. Stewart, S. Vaseghi, Speaker identification in unknown noisy conditions –
a universal compensation approach, in Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP ’05), Philadelphia, 2005

74. J. Ming, T.J. Hazen, J.R. Glass, D. Reynolds, Robust speaker recognition in noisy conditions.
IEEE Trans. Audio Speech Lang. Process. 15(5), 1711–1723 (2007)

75. A. Drygajlo, M. El-Maliki, Speaker verification in noisy environment with combined spectral
subtraction and missing data theory, in Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP ’98), Seattle, 1998

76. D. Burton, Text-dependent speaker verification using vector quantization source coding. IEEE
Trans. Acoust. Speech Signal Process. 35(2), 133–143 (1987)

77. T. Kinnunen, E. Karpov, P. Franti, Real-time speaker identification and verification. IEEE
Trans. Audio Speech Lang. Process. 14(1), 277–288 (2006)

78. M.W. Mak, R. Hsiao, B. Mak, A comparison of various adaptation methods for speaker
verification with limited enrollment data, in Proceedings of IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP ’06), Toulouse, 2006, pp. 929–932

79. V. Hautamaki, T. Kinnunen, I. Karkkainen, M. Tuononen, J. Saastamoinen, P. Franti, Maximum
a posteriori adaptation of the centroid model for speaker verification. IEEE Signal Process.
Lett. 15, 162–165 (2008)

80. P. Kenny, G. Boulianne, P. Ouellet, P. Dumouchel, Factor analysis simplified, in Proceedings of
the IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP ’05),
Philadelphia, 2005, vol. 1, pp. 637–640

81. K. Farrell, R. Mammone, K. Assaleh, Speaker recognition using neural networks and conven-
tional classifiers. IEEE Trans. Speech Audio Process. 2(1), 195–204 (1994)

82. L.P. Heck, Y. Konig, M. Sonmez, M. Weintraub, Robustness to telephone handset distortion in
speaker recognition by discriminative feature design. Speech Commun. 31, 181–192 (2000)



References 27

83. B. Yegnanarayana, S.P. Kishore, AANN: an alternative to GMM for pattern recognition. Neural
Netw. 15, 456–469 (2002)

84. W. Campbell, J. Campbell, D. Reynolds, E. Singer, P. Carrasquillo, Support vector machines
for speaker and language recognition. Comput. Speech Lang. 20, 210–229 (2006)

85. W. Campbell, J. Campbell, D. Reynolds, Support vector machines using GMM supervectors
for speaker verification. IEEE Signal Process. Lett. 13(5), 308–311 (2006)

86. V. Wan, S. Renals, Speaker verification using sequence discriminant support vector machines.
IEEE Trans. Acoust. Speech Audio Process. 13(2), 203–210 (2005)

87. C.H. You, K.A. Lee, H. Li, An SVM kernel with GMM-supervector based on the Bhat-
tacharyya distance for speaker recognition. IEEE Signal Process. Lett. 16(1), 49–52 (2009)

88. A. Solomonoff, C. Quillen, I. Boardman, Channel compensation for SVM speaker recognition,
in IEEE Workshop on Speaker and Language Recognition (Odyssey ’04), Toledo, 2004,
pp. 57–62

89. A.O. Hatch, S. Kajarekar, A. Stolcke, Within-class covariance normalization for SVM-based
speaker recognition, in Proceedings of the International Conference of Spoken Language
Processing (ICSLP ’05), Lisbon, Portugal, 2005

90. P. Kenny, G. Boulianne, P. Dumouchel, Eigenvoice modeling with sparse training data. IEEE
Trans. Speech Audio Process. 13(3), 345–354 (2005)

91. N. Dehak, R. Dehak, P. Kenny, N. Brummer, P. Ouellet, P. Dumouchel, Support vector
machines versus fast scoring in the low-dimensional total variability space for speaker verifica-
tion, in Proceeding of the 10th Annual Conference of the International Speech Communication
Association (INTERSPEECH ’09), Brighton, 2009

92. N. Dehak, P. Kenny, R. Dehak, O. Glembek, P. Dumouchel, L. Burget, V. Hubeika, F. Castaldo,
Support vector machines and joint factor analysis for speaker verification, in Proceedings of
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP ’09),
Taipei, 2009, pp. 4237–4240

93. M. McLaren, D. van Leeuwen, Source-normalized LDA for robust speaker recognition using
i-vectors from multiple speech sources. IEEE Trans. Audio Speech Lang. Process. 20(3),
755–766 (2012)

94. T. Kinnunen, Spectral features for automatic text-independent speaker recognition. PhD thesis,
Department of Computer Science, University of Joensuu, 2004

95. N. Dehak, P.J. Kenny, R. Dehak, P. Dumouchel, P. Ouellet, Front-end factor analysis for speaker
verification. IEEE Trans. Audio Speech Lang. Process. 19(4), 788–798 (2011)



http://www.springer.com/978-3-319-07129-9


	2 Robust Speaker Verification: A Review
	2.1 Feature Compensation
	2.2 Robust Feature Extraction
	2.3 Model Compensation
	2.4 Robust Speaker Modeling
	2.5 Motivation for the Present Work
	References


