
Chapter 2
Theoretical Background

This chapter reviews the theoretical foundation of the work presented in this thesis.
Section 2.1 outlines the main features of the Standard Model of particle physics.
Section 2.2 gives an introduction to Supersymmetry. The content is taken from the
referenced sources. Parts of this chapter are taken from the diploma thesis of the
author [1] and have been adapted according to the latest developments.

2.1 The Standard Model of Particle Physics

Today’s experimentally verified knowledge of the fundamental particles and their
interactions is summarized in the Standard Model of particle physics (SM).

Within the Standard Model, the elementary constituents of matter are 12 spin-1/2
fermions and their respective antiparticles. They can be further classified according
to their interactions into quarks and leptons, for each of which three generations of
particle pairs exist. For both fermion species the second and third generations are
heavier copies1 of the first generation with identical quantum numbers. A summary
of the Standard Model fermions is shown in Table 2.1 (left).

Quarks participate in the strong, weak and electromagnetic interactions and there-
fore carry color, electric charge and weak isospin. For each generation there is one
up-type quark with electric charge +2/3 (“up”, “charm”, “top”) and one down-type
quark with −1/3 (“down”, “strange”, “bottom”). The lepton generations consist of
one electron-type lepton (“electron”, “muon”, “tau”) with electric charge −1 and a
neutral almost massless lepton-neutrino. Whereas electron-type leptons are charged
and participate in electromagnetic and weak interactions, neutrinos can only interact
weakly due to their lack of electric charge.

The interactions between the matter particles are mediated by the spin-1 gauge
bosons summarized in Table 2.1 (right). Their existence arises from invariance of
the respective interaction Lagrangians under local symmetry transformations. The

1 Not yet established for neutrinos.
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Table 2.1 Summary of the experimentally measured spin- 1
2 fermions (left) and the spin-1 gauge

bosons (right) of the Standard Model of particle physics

Fermions 1. Generation 2. Generation 3. Generation Bosons

Quarks u
m=2.3+0.7

−0.5 MeV
Q=2/3 c m=1.28±0.03 GeV

Q=2/3 t m=173.5±0.6±0.8 GeV
Q=2/3 γ m=0

Q=0

d
m=4.8+0.7

−0.3 MeV
Q=−1/3 s

m=95+5
−5 MeV

Q=−1/3 b m=4.19±0.03 GeV
Q=−1/3 g m=0

Q=0

Leptons νe
m<2.05 ev
Q=0 νμ

m<0.19 MeV
Q=0 ντ

m<18.2 MeV
Q=0 Z0m=91.19±0.002 GeV

Q=0

em=0.511 MeV
Q=−1 μ m=106 MeV

Q=−1 τ m=1.78 GeV
Q=−1 W± m=80.39±0.02 GeV

Q=±1

The numbers in small font correspond to the electric charge Q in units of the elementary charge e
and the mass m of the particles as given by [2]. The very small uncertainties on the masses of the
charged leptons are not quoted. The existence of the spin-0 Standard Model Higgs boson has not
yet been fully established at the time of writing and is therefore not listed here

underlying mathematical structure is the direct product of the internal symmetry
groups SU(3)C⊗SU(2)L⊗U(1)Y , where SU(3)C describes the strong force mediated
by eight gluons and SU(2)L ⊗U(1)Y the unified electroweak force mediated by W±,
Z bosons and the photon γ. Gravitational interactions are not incorporated into the
Standard Model.

The unification of the weak and electromagnetic forces happens by virtue of
the so-called Glashow-Salam-Weinberg (GSW) mechanism [3–5], in which a local
gauge transformation of the left-handed weak isospin doublets SU(2)L and the U(1)Y

multiplets and singlets with respect to hypercharge Y takes place. The invariance of
the Lagrangian under these transformations necessitates the introduction of new
massless vector fields W1,2,3 and B, of which the physically observed W±, Z and γ
bosons are linear combinations. The physical eigenstates of the latter two bosons are
additionally rotated by a so-called Weinberg-angle θW .

The Standard Model particles acquire their masses through interaction with a
scalar Higgs background field, which spontaneously breaks the electroweak symme-
try. The introduction of this breaking mechanism is necessary since gauge invariance
requires massless gauge bosons, which contradicts experimental results. The neutral
spin-0 Higgs boson associated to this mechanism has been the subject of many exper-
imental searches. Recently the discovery of a new particle has been reported which
could finally bring the long awaited experimental verification of this last missing
piece of the Standard Model. Further details on this subject are given in Sect. 2.1.6.

The mathematical framework behind the Standard Model is a relativistic quantum
field theory which can be derived using the Lagrangian formalism. The starting point
is the Lorentz invariant scalar Lagrangian density L which describes the dynamics
of the system of interest. The application of Hamilton’s principle of least action,
δS = 0, where the action S is defined as

S =
∫

d4x L, (2.1)
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then leads to the Euler–Lagrange equations from which the explicit equations of
motion for the considered fields can be derived. While every global symmetry of
the Lagrangian up to a total derivative leads to a conservation law according to
Noether’s theorem [6], invariance with respect to local gauge transformations implies
the introduction of new gauge fields which mediate the fundamental interactions of
the Standard Model.

In the following sections the theory of the electromagnetic, weak, and strong
interactions of the Standard Model as well as the Higgs mechnism is derived using
the Lagrangian formalism.

2.1.1 Electromagnetic Interaction

The free propagation of the fermions of the Standard Model is described by the Dirac
equation,

(iγμ∂μ − m)ψ = 0. (2.2)

Here ψ is the four-component spinor representing the fermionic field, m the rest mass
of the associated particle, and γμ are the Dirac matrices, defined as

γ0 =
[

112 0
0 112

]
, γk =

[
0 σk

−σk 0

]
, k = 1, 2, 3, (2.3)

where σk are the Pauli matrices,

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (2.4)

Every component of the spinor ψ is a function of the space-time coordinates, which
in their contravariant form are written as

xμ = (t, x, y, z) = (x0, x1, x2, x3), (2.5)

with the corresponding covariant derivative defined as

∂μ = ∂

∂xμ
=

(
∂

∂t
,
−→∇

)
=

(
∂

∂x0 ,
∂

∂x1 ,
∂

∂x2 ,
∂

∂x3

)
. (2.6)

In the Lagrangian formalism the Dirac equation 2.2 follows from the Lagrangian

L = ψ(iγμ∂μ − m)ψ, (2.7)
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with the adjoint spinor ψ defined as

ψ = ψ†γ0, (2.8)

where ψ† is the hermitian conjugate of the spinor. This Lagrangian is invariant under
a global transformation of the type

ψ → ψ′ = eiqαψ (2.9)

which, following Noether’s theorem, leads to the conservation of the electromagnetic
current

jμ = qψγμψ (2.10)

with the electric charge q. Here q is defined as q = Qe, where Q is the charge
quantum number of the particle involved (see Table 2.1) and e is the elementary
charge. The transformations of Eq. 2.9 with the real parameter α build the group of
unitary transformations U(1).

To introduce the electromagnetic interaction to the theory the symmetry of the
Lagrangian has to be extended to local gauge transformations of the type

ψ → ψ′ = eiqα(x)ψ, (2.11)

where the parameter α is now dependent on the position in space-time. To preserve
the invariance of the Lagrangian density under such transformations, the derivative
∂μ in Eq. 2.7 must be replaced by a new covariant derivative

Dμ = ∂μ + iqAμ. (2.12)

This expression contains a newly introduced vector field Aμ which is required to
transform as

Aμ → Aμ − ∂μα(x). (2.13)

With these modifications the Lagrangian density of Eq. 2.7 reads

L = ψ(iγμDμ − m)ψ = ψiγμ∂μψ − mψψ − qψγμψAμ. (2.14)

Here the first two terms are equivalent to Eq. 2.7 and describe the free propagation
of the fermion fields of the Standard Model. The last term accounts for the newly
found interaction of the charged fermions with the vector field Aμ which can be
identified with the photon γ. The coupling strength of the interaction is given by the
electric charge q of the fermion. Since a mass term of the form Lγ = 1

2 m2AμAμ is
not gauge invariant, the theory requires the photon to be massless in accordance with
experimental observation.

To complete the Lagrangian of the electromagnetic interaction a gauge invariant
kinetic term for Aμ needs to be added to Eq. 2.14. The kinematics of the photon field
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are governed by Maxwell’s equations, which in their covariant form can be expressed
in terms of the field strength tensor

Fμν = ∂μAν − ∂νAμ. (2.15)

The kinetic term of the photon in the Lagrangian, from which Maxwell’s equations
can be derived, is given by

L = −1

4
FμνFμν (2.16)

The final Lagrangian density of quantum electrodymanics is thus given by:

LQED = ψiγμ∂μψ︸ ︷︷ ︸
fermion kinetic term

− mψψ︸ ︷︷ ︸
fermion mass term

− 1

4
FμνFμν︸ ︷︷ ︸

photon kinetic term

− qψγμψAμ︸ ︷︷ ︸
interaction term

. (2.17)

2.1.2 Weak Interaction and Electroweak Unification

The first theory of the weak interaction was proposed by Fermi in 1933 [7]. The theory
was motivated by the earlier postulation of the neutrino in 1927 by Pauli to explain the
continuous energy spectrum of electrons from β decays. The Fermi theory describes
the weak interaction with four-fermion vertices which is a valid approximation at
energies much lower than the mass of the W-boson. The Lagrangian of this interaction
is of the type current–current

LFermi = GF√
2

J†
μJμ, (2.18)

where the current is given by
Jμ = ψγμψ, (2.19)

and ψ, ψ are spinors associated with the fermions of the interaction. The value of the
constant GF can be obtained for example from measurements of the muon lifetime
[8, 9]. However, the form of the Lagrangian of Eq. 2.18 is not complete since it does
not account for the parity violating nature of the weak interactions, which was first
suspected by Lee and Yang [10] and then experimentally confirmed by Wu et al. in
1956 [11]. The Wu experiment observed that in β-decays of Cobalt 60 nuclei the
emission of electrons occurs preferentially opposite to the direction of the spin of
the nucleus. Since the electron momentum transforms like a vector and the spin like
an axial vector this means that parity is not conserved in this process. This effect is
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taken care of in the so-called V-A (vector minus axial vector) extension [12, 13] of
Fermi’s theory, which introduces chirality operators

ψL = PLψ = 1

2
(1 − γ5)ψ ψR = PRψ = 1

2
(1 + γ5)ψ, (2.20)

which project out the components of left- and right-handed chirality of the spinor ψ
respectively. The matrix γ5 is defined as

γ5 = iγ0γ1γ2γ3. (2.21)

and the weak current is then of the type

Jμ = ψeγ
μ (1 − γ5)

2
ψν, (2.22)

where the example of the leptonic e − νe process has been chosen. Equation 2.22
has the form vector current minus axial-vector current which explains the name V-A
theory. The simultaneous appearance of the two types of currents means that parity is
not conserved in weak processes and only the left-chiral component of the fermions
and the right-chiral component of anti-fermions participate in the interaction.

As mentioned above the Fermi theory as well as its V-A extension is only valid
in a low energy regime. Above a certain threshold the calculated cross-section of a
given process rises quickly with its energy which violates the unitarity of the theory.

The solution to this problem is the introduction of intermediate vector bosons,
which, as in the electromagnetic interactions, arise from invariance of the Lagrangian
under a given set of local gauge transformations. In fact, as will be shown in the
following, a complete and renormalizable theory of the weak and electromagnetic
interactions requires their unification into a common electroweak framework [3–5]
based on the symmetry groups SU(2)L ⊗ U(1)Y .

To describe the weak interactions with parity violation the symmetry SU(2)L is
assumed. The left-handed fermions are ordered in doublets of weak isospin, e.g. for
the first generation of leptons

ψL =
(

ψ1,L

ψ2,L

)
=

(
νL

eL

)
. (2.23)

In analogy to Eq. 2.7 for the electromagnetic interactions, the Lagrangian density of
two free, massless, left-handed fermions is given by

LL = ψ1,L
(
iγμ∂μ

)
ψ1,L + ψ2,L

(
iγμ∂μ

)
ψ2,L = ψL

(
iγμ∂μ

)
ψL. (2.24)

To obtain the mediators of the weak interaction, invariance of the Lagrangian under
local gauge transformations of the form
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ψL → ψ′
L = eigαa(x)Ta

ψL (2.25)

is required. The 2×2 matrices Ta are the generators of SU(2)L and can be chosen as

Ta = σa

2
, a = 1, 2, 3, (2.26)

where σa are the Pauli matrices given in Eq. 2.4. The α(x) are arbitrary space and
time dependent functions, and g will be interpreted as the coupling constant of the
interaction.

To preserve invariance of the Lagrangian under SU(2)L transformations, a new
covariant derivative

Dμ = ∂μ + igTaWa
μ (2.27)

is introduced along with three new vector boson fields Wa
μ , which are required to

transform according to

Wa
μ → Wa

μ′ = Wa
μ = ∂μαa(x) − gεabcαb(x)Wc

μ, (2.28)

where ε is the Levi-Civita tensor. To account for the kinetic energy of the newly
found gauge fields a tensor of the form

Wa
μν = ∂μWa

ν − ∂νWa
μ − gεabcWb

μWc
ν (2.29)

is defined. The complete, gauge invariant Lagrangian of SU(2)L is then written as

LL = ψL(iγμDμ)ψL − 1

4
WaμνWa

μν

= ψL(iγμ∂μ)ψL︸ ︷︷ ︸
fermion

kinetic term

− gψL(γμTaWa
μ)ψL︸ ︷︷ ︸

fermion—vector field
interaction term

− 1

4
WaμνWa

μν︸ ︷︷ ︸
vector field kinetic and

self-interaction term

(2.30)

The first term describes the kinetic energy of the left-handed fermions, the second
term their interaction with the vector fields, and the third term the kinetic energy of
the vector fields and their self-interaction. The self-interaction of the vector fields
originates from the fact that, contrary to U(1) in the case of the electromagnetic
interactions, the symmetry group SU(2)L is non-abelian i.e. its generators (Eq. 2.26)
do not commute.

While the SU(2)L gauge theory alone describes many aspects of the weak interac-
tions it is not a complete theory. For instance it is not able to explain the experimentally
observed masses of the fermions and gauge bosons associated with the vector fields
and it lacks a consistent description of the interactions mediated by the neutral Z
boson.

To resolve these problems the electroweak formalism introduces a combination
of SU(2)L and a new U(1)Y symmetry group, where Y is the so-called hypercharge.
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The behaviour of the Lagrangian under U(1)Y gauge transformations is identical to
that of the electromagnetic interactions and leads to a covariant derivative of the form

Dμ = ∂μ + ig′ Y
2

Bμ, (2.31)

with a new vector field Bμ and a new coupling constant g′. In analogy to Eq. 2.15 the
field strength tensor

Bμν = ∂μBν − ∂νBμ (2.32)

is defined. In contrast to the SU(2)L , the U(1)Y symmetry applies not only to particles
of the left-handed doublets (Eq. 2.23) but also to right-handed particles which are
ordered in isospin singlets. The U(1)Y invariant Lagrangian can thus be written as:

LY = ψ
(
iγμ∂μ

)
ψ+g′ YR

2
ψR

(
γμBμ

)
ψR+g′ YL

2
ψL

(
γμBμ

)
ψL− 1

4
BμνBμν, (2.33)

where the couplings depend on the type and chirality of the particle considered.
The combined electroweak Lagrangian of the SU(2)L and U(1)Y gauge theories

is then simply obtained from the sum of the Lagrangians of Eqs. 2.30 and 2.33. With
the combined covariant derivative

Dμ = ∂μ + igTaWa
μ + ig′ Y

2
Bμ, (2.34)

written out the complete Lelectroweak is given by:

Lelectroweak = −1

4
WaμνWa

μν − 1

4
BμνBμν︸ ︷︷ ︸

gauge field kinetic energy
and self-interaction terms

+ ψLγμ(i∂μ − 1

2
gσaWa

μ − 1

2
g′YBμ)ψL︸ ︷︷ ︸

left-chiral fermion kinetic
energy and interaction term

+ ψRγμ(i∂μ − 1

2
g′YBμ)ψR︸ ︷︷ ︸

right-chiral fermion kinetic
energy and interaction term

(2.35)

To relate this Lagrangian to the physically observed charged and neutral currents
of the electroweak interactions the SU(2)L generators (Eq. 2.26) and thus the Pauli
matrices are inserted into the covariant derivative 2.34 which then becomes

Dμ = ∂μ + ig

2

((
0 1
1 0

)
W1

μ +
(

0 −i
i 0

)
W2

μ +
(

1 0
0 −1

)
W3

μ

)
+ ig′ Y

2
Bμ

= ∂μ + ig

2

(
W3 W1 − iW2

W1 + iW2 −W3

)
μ

+ ig′ Y
2

(
B 0
0 B

)
μ

. (2.36)
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The expression is simplified by introducing the ladder operators

T± = 1√
2

(
T1 ± iT2

)
and W± = 1√

2

(
W1 ∓ iW2

)
, (2.37)

where the W± are identified with the charged gauge bosons. Equation 2.36 can then
be written as

Dμ = ∂μ + 1√
2

(
0 W+

W− 0

)
μ

+ 1

2

(
gW3 + g′YB 0

0 −gW3 + g′YB

)
μ

= ∂μ + (
T+W+ + T−W−)

μ︸ ︷︷ ︸
DW

μ

+
(

gT3W3 + g′ Y
2

B

)
μ︸ ︷︷ ︸

DγZ
μ

, (2.38)

where the first term inserted into the Lagrangian 2.35 describes the interactions of
the W± gauge bosons with fermions

LL, charged = igψLiγμ
(
T+W+ + T−W−)

μ
ψL

= 1√
2

ig (νe, e)L iγμ

(
0 W+

W− 0

)μ (
νe

e

)
L

= − 1√
2
g

(
νe,LγμW+

μ eL + eLγμW−
μ νe,L

)
. (2.39)

The interaction of the fermions with the neutral gauge bosons originates from the
term DγZ

μ , which leads to the neutral interaction Lagrangian of the form

LL, neutral = ψLiγμi

(
gT3Wμ + g′ Y

2
Bμ

)
ψL + ψRiγμi

(
g′ Y

2
Bμ

)
ψR

=
∑

ψ=eL,eR,νL,νR

ψiγμi

(
gT3Wμ + g′ Y

2
Bμ

)
ψ. (2.40)

To obtain the physically observed photon and Z boson a change of base can be
performed of the type

(
W3

μ

Bμ

)
=

(
cos θW sin θW

− sin θW cos θW

) (
Zμ

Aμ

)
. (2.41)

This corresponds to a rotation by the so-called Weinberg angle θW with which one
obtains the interaction Lagrangian for the neutral current
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Lγ,Z =
∑
eν

ψiγμi

(
g sin θW T3 + g′ Y

2
cos θW

)
︸ ︷︷ ︸

fermion-photon coupling

Aμψ

+
∑
eν

ψiγμi

(
g cos θW T3 + g′ Y

2
sin θW

)
︸ ︷︷ ︸

fermion-Z coupling

Zμψ (2.42)

Identifiying the field Aμ with the photon with coupling constant equal to the Q times
electric charge e leads to the expression

Qe = g sin θW T3 + g′ Y
2

cos θW (2.43)

Together with the Gell-Mann Nishijima equation [14, 15]

Q = T3 + Y

2
. (2.44)

one obtains the relation between the Weinberg angle and the coupling constants:

e = g sin θW = g′ cos θW (2.45)

For the coupling of the Z boson to the fermions one obtains:

gZ = g cos θW T3 + g′ Y
2

sin θW = e

sin θW cos θW

(
T3 − sin2 θW Q

)
(2.46)

With the above relations the interaction Lagrangian (Eq. 2.42) can be rewritten as

Lγ,Z =
∑
eν

iψiγμ
(
QeAμ + gZ Zμ

)
ψ (2.47)

Since the field Zμ is a combination of the field W3
μ and Bμ it couples to left- and

right-handed fermions.

2.1.3 Spontaneous Symmetry Breaking and Higgs Mechanism

The formalism developed in the previous sections describes all phenomena of the
electroweak interactions except for the masses of the gauge bosons and fermions.
The particle masses can be incorporated into the Standard Model by introducing the
Higgs mechanism [16–21] which spontaneously breaks the electroweak symmetry.
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Fig. 2.1 Visualization of the Higgs potential in the complex (φ1,φ2)-plane. The green circle
indicates the position of the degenerate mimima of the potential

The Higgs-mechanism postulates a new complex scalar SU(2)L doublet field with
hypercharge Y = 1. The electric charge Q of the two field components follows from
the Gell-Mann Nishijima relation 2.44:

φ =
(

φ+
φ0

)
= 1√

2

(
φ1 + iφ2
φ3 + iφ4

)
(2.48)

As can be seen above the complex nature of the fields leads to 4 degrees of freedom.
The Lagrangian density of the spin-0 doublet follows the Klein-Gordon equation

Lφ = |Dμφ|2 − V (φ) ≡ (
Dμφ

)† (
Dμφ

) − V (φ), (2.49)

where Dμ is the previously introduced covariant derivative of the electroweak inter-
actions

Dμ = ∂μ + igTaWa
μ + ig′ Y

2
Bμ, (2.50)

and V (φ) is a newly postulated potential which is required to be invariant under
local gauge transformations. This requires the potential to be symmetric in all four
components which leads to the ansatz

V (φ) = −μ2|φ|2 + λ|φ|4, (2.51)

where μ2 and λ are real constants. For positive values of μ2 the potential has the
characteristic “Mexican Hat” type shape shown in Fig. 2.1. The potential has a circle
of degenerate minima in the complex (φ1,φ2)-plane with a radius of
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v =
√

μ2

λ
, (2.52)

which is referred to as the vacuum expectation value of the Higgs field.
The choice of a particular ground state of the vacuum on this circle breaks the

symmetry spontaneously. Since the vacuum is electrically neutral the ground state

< φ+ >= 0, < φ0 >= v, (2.53)

can be chosen. An expansion around this ground state gives

φ(x) = 1√
2

(
0 + η+(x) + iξ+(x)
v + η0(x) + iξ0(x)

)
. (2.54)

The fields η+(x), ξ+(x), ξ0(x) lead to massless Goldstone bosons [22, 23] which can
be absorbed with a local gauge transformation of the type

φ → φ′ = eigαa(x)Ta
φ, (2.55)

where the arbitrary functions α(x) are chosen accordingly. This gauge transformation
results in the three spin degrees of freedom of the vector bosons of electroweak theory.
The field φ is now given by

φ(x) = 1√
2

(
0

v + η0(x)

)
, (2.56)

where η0(x) can be associated with the field of the Higgs particle and will be denoted
H in the following. Substituting Eq. 2.56 into the potential given in Eq. 2.51 and using
Eq. 2.53 leads to

V (φ) = 1

2

(
2μ2

)
H2 + λvH3 + 1

4
λH4, (2.57)

where the first term describes the mass of the Higgs boson

mH =
√

2μ2, (2.58)

and the second and are third terms are associated with the self-interactions of the
Higgs-field with 3 and 4 particle vertices.

The interaction of the Higgs boson with the vector boson of the electroweak theory
is determined from the covariant derivative term of the Lagrangian
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Lφ = |Dμφ|2 − V (φ)

=
∣∣∣
(
∂μ + DW

μ + DγZ
μ

)
φ
∣∣∣2 − V (φ)

=
∣∣∣
(
∂μ + ig

(
T+W+ + T−W−)

μ
+ iQeAμ + igZ Zμ

)
φ
∣∣∣2 − V (φ) (2.59)

Due to the photon being massless all terms including the photon field Aμ are evaluated
to zero. Also no mixing terms between W± and Z fields occurs since φ+ = 0 was
chosen. Expression 2.59 thus becomes

Lφ = |∂μ|2 + |DW
μ |2 + |DγZ

μ φ|2 − V (φ)

= 1

2

(
∂μH

) (
∂μH

) + 1

4
g2W+

μ W−
μ (v + H)2 + 1

2
g2

z ZμZμ(v + H)2 − V (φ)

(2.60)

The first term represents the kinetic energy of the Higgs field H. Since g and v are
constants, all terms with v2 can be interpreted as mass terms, where the mass values
are given by

mW = 1

2
gv and mZ = 1

2

√
g2 + g′2 v (2.61)

for the W and Z bosons respectively. The terms

1

2
g2W+W−H and

1

4
g2

Z ZZH (2.62)

demonstrate that the Higgs—vector boson couplings are proportional to the masses
of the vector bosons. Finally the terms

1

4
g2vW+W−HH and

1

2
g2

ZvZZHH (2.63)

correspond to the interactions of two Higgs bosons and two vector bosons.
Since the value of μ in Eq. 2.58 is not known, the mass of the Higgs cannot be

predicted from theory. The value of v can be derived e.g. from the experimentally
measured values of MZ and gZ

v = 2MZ

gZ
= 246 GeV. (2.64)

While the formalism developed above incorporates the masses of the electroweak
gauge bosons into the theory, the masses of the Standard Model fermions cannot be
explained in the same way. In addition, standard fermion mass terms of the type

Lm = −mψψ = −m
(
ψRψL + ψLψR

)
(2.65)
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are not invariant under local SU(2)L or U(1)Y gauge transformations. This leads to
the formulation of the so-called Yukawa interaction, which in the case of leptons it
is given by

LYukawa = −λl

(
LLφ0LR + LRφ+LL

)
, (2.66)

where LL are the left-handed lepton doublets and LR the lepton singlets. The Yukawa
term is automatically invariant under SU(2)L since both φ and L belong to the same
SU(2)L doublet. Looking at the first generation of leptons and using expression 2.56
one obtains

LYukawa = −λe
v√
2

(eReL + eLeR) − λe
H√

2
(eReL + eLeR) , (2.67)

containing the electron mass term with mass

me = λe
v√
2

(2.68)

and the coupling to the Higgs field proportional to that mass. Similar expressions can
be derived for the remaining Standard Model fermions. In the case of the quarks the
so-called Cabibbo-Kobayashi-Maskawa (CKM) matrix [24, 25] has to be introduced
to take care of the fact that the mass eigenstates are rotated with respect to the flavour
eigenstates.

In summary, the combined Lagrangian resulting from the Higgs mechanism and
electroweak symmetry breaking together with the Yukawa terms in short-hand nota-
tion is given by

LHiggs =
∣∣∣∣
(

∂μ + 1

2
igσaWa

μ + 1

2
ig′YBμ

)
φ

∣∣∣∣
2

︸ ︷︷ ︸
Higgs boson kinetic energy, W±/Z boson mass,

and W±/Z—Higgs boson interaction terms

+ μ2|ψ|2 − λ|ψ|4︸ ︷︷ ︸
Higgs boson mass and self-interaction terms

+
(

M1ψLφψR + M2ψLφCψR + h.c.
)

︸ ︷︷ ︸
Yukawa fermion mass and fermion—Higgs interaction terms

. (2.69)

2.1.4 Strong Interaction

The strong interaction between the quarks and gluons of the Standard Model is
described by quantum chromodynamics (QCD). The QCD formalism is a local gauge
theory based on the symmetry group SU(3)C , where the index C stands for colour
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charge and is a property of all strongly interacting particles. For quarks the colour
charge can take the values “green”, “red”, “blue”, and gluons carry combinations of
colour-anticolour. The quarks are assembled in colour tripletts of the type

ψ =
⎛
⎝ ψr

ψb
ψg

⎞
⎠ , (2.70)

where the notation

ψr =
⎛
⎝ 1

0
0

⎞
⎠ , ψb =

⎛
⎝ 0

1
0

⎞
⎠ , ψg =

⎛
⎝ 0

0
1

⎞
⎠ , (2.71)

is adopted. The Lagrangian density for free quarks can then be written just as before

L = ψ(iγμ∂μ − m)ψ. (2.72)

To derive the interaction, gauge invariance is required for local SU(3)C transforma-
tions of the type

ψ → ψ′ = eigsα
a(x)Ta

ψ, (2.73)

where gs will be identified with the strong coupling constant and the αa(x) are again
arbitrary functions of space and time. The Ta, a = 1..8, are the generators of the
non-abelian symmetry group SU(3) which follow the commutation relation

[Ta, Tb] = if abcTc, (2.74)

where f abc is the so-called structure constant of the symmetry group, given by the
tensor with values

f 123 = 1

f 458 = f 678 =
√

3

2
(2.75)

f 147 = f 246 = f 257 = f 345 = f 516 = f 637 = 1

2

and antisymmetric permutations thereof, 0 otherwise. A possible representation of
the generators Ta = λa/2 are the Gell-Mann matrices
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λ1 =
⎛
⎝ 0 1 0

1 0 0
0 0 0

⎞
⎠ , λ2 =

⎛
⎝ 0 −i 0

i 0 0
0 0 0

⎞
⎠ , λ3 =

⎛
⎝ 1 0 0

0 −1 0
0 0 0

⎞
⎠ ,

λ4 =
⎛
⎝ 0 0 1

0 0 0
1 0 0

⎞
⎠ , λ5 =

⎛
⎝ 0 0 −i

0 0 0
i 0 0

⎞
⎠ , λ6 =

⎛
⎝ 0 0 0

0 0 1
0 1 0

⎞
⎠ , (2.76)

λ7 =
⎛
⎝ 0 0 0

0 0 −i
0 i 0

⎞
⎠ , λ8 = 1√

3

⎛
⎝ 1 0 0

0 1 0
0 0 −2

⎞
⎠ .

For the Lagrangian density to stay invariant under SU(3)C symmetry transformations,
the covariant derivative

Dμ = ∂μ + igsT
aGa

μ (2.77)

is introduced. It contains eight new vector fields Ga
μ which correspond to the massless

gluons. These fields are required to transform as

Ga
μ → G ′a

μ = Ga
μ − ∂μαa(x) − gsf

abcαb(x)Gc
μ. (2.78)

The kinetic energy of the gluons is given by the field strength tensor

Ga
μν = ∂μGa

ν − ∂νGa
μ − gsf

abcGb
μGc

ν . (2.79)

The complete, gauge invariant Lagrangian density of the strong interactions is thus
given by

LQCD = ψ
(
iγμDμ − m

)
ψ − 1

4
GaμνGa

μν

= ψ
(
iγμ∂μ − m

)
ψ︸ ︷︷ ︸

quark kinetic
and mass term

− 1

2
gsψ

(
γμλaGa

μ

)
ψ

︸ ︷︷ ︸
quark - gluon field

interaction term

− 1

4
GaμνGa

μν .︸ ︷︷ ︸
gauge field kinetic and
self-interaction term

(2.80)

The first term describes the kinetic energy and the mass of the quarks. The second
term accounts for the interaction of the quarks with the gluon fields. The third term
contains the kinetic energy of the gluon fields and their self interaction with 3 point
and 4 point vertices. The self-interacting nature of the gluon fields originates from
the fact that the symmetry group SU(3)C is non-abelian. The self-interaction is also
responsible for the confinement of coloured particles, which means that only colour-
less particles, i.e. mesons consisting of a quark-antiquark pairs, or hadrons consisting
of three quarks of different colour may exist freely. Not included in Eq. 2.80 is an
additional CP-violating term inherent to QCD, for which no experimental evidence
has been observed to date.
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2.1.5 Total Lagrangian of the Standard Model

The combined Lagrangian density of the Standard Model as derived in the previous
sections before electroweak symmetry breaking is given by

LSM = −1

4
BaμνBa

μν − 1

4
WaμνWa

μν − 1

4
GaμνGa

μν︸ ︷︷ ︸
gauge boson kinetic energy and self-interaction terms

+ ψLγμ
(

i∂μ − 1

2
gσaWa

μ − 1

2
g′YBμ

)
ψL + ψRγμ

(
i∂μ − 1

2
g′YBμ

)
ψR

︸ ︷︷ ︸
fermion kinetic energy and electroweak interaction terms

+
∣∣∣∣
(

∂μ + 1

2
igσaWa

μ + 1

2
ig′YBμ

)
φ

∣∣∣∣
2

︸ ︷︷ ︸
Higgs boson kinetic energy,W±/Z boson mass,

and W±/Z—Higgs boson interaction terms

+ μ2|ψ|2 − λ|ψ|4︸ ︷︷ ︸
Higgs boson mass and self-interaction terms

+
(

M1ψLφψR + M2ψLφCψR + h.c.
)

︸ ︷︷ ︸
Yukawa fermion mass and fermion—Higgs interaction terms

− 1

2
gsq̄γμλaGa

μq.

︸ ︷︷ ︸
quark—gluon interaction term

(2.81)

2.1.6 Experimental Verification of the Standard Model

The Standard Model of particle physics in its simplest form with the assumption of
massless neutrinos is defined by 19 parameters: 9 fermion masses, 3 mixing angles
and 1 phase from the CKM matrix, 1 strong CP parameter, 3 coupling constants
for the electromagnetic, weak, and strong interactions, and 2 boson masses such
as e.g. that of the Z and Higgs particles. With the exception of the mass of the
Standard Model Higgs boson, 18 out of these 19 parameters have been determined
experimentally at some precision and are summarized in Ref. [2]. With the recent
observation of a new particle in the search for the Standard Model Higgs boson
the experimental determination of the last missing parameter of the Standard Model
seems within close reach. After a review of the theoretical and indirect experimental
bounds on the mass of the Higgs boson, the status of the direct searches at the LHC
is summarized in this section.

While the mass of the Higgs boson cannot be derived from the known parameters
of the Standard Model, some constraints on its upper and lower bounds arise from
theoretical arguments. Firstly, the requirement of unitarity of the theory in longitudi-
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Fig. 2.2 Left: Lower and upper bounds on the mass of the Higgs boson MH from vacuum stability
and triviality considerations respectively as a function of the cut-off scale � up to which the
Standard Model is assumed to be valid. The mass of the top quark and the strong coupling constant
are assumed to be at the values given in the figure. The black bands indicate the impact of various
uncertainties. Taken from Ref. [26]. Right: Distribution of �χ2 = χ2 − χ2

min from a global fit
to electroweak precision data as a function of different Higgs masses mH . The preferred value of
mH corresponds to the minimum of the curve at 94+29

−24 GeV. Values mH > 152 GeV are excluded
at 95 % confidence level. The blue band corresponds to the theoretical uncertainty from unknown
higher order corrections. Results are shown for two values of �α

(5)
had, which corresponds to different

contributions of the 5 lighter quarks to the QED fine structure constant. The yellow shaded areas
show the mass range excluded by the LEP (left) and LHC (right) experiments. Taken from Ref. [27]

nal W+W− scattering necessitates a Higgs particle with a mass mH � 870 GeV [28].
This bound can be reduced further with so-called triviality considerations, where the
evolution of the quartic Higgs coupling λ as it occurs in Eq. 2.57 is examined as a
function of the energy scale Q. The behaviour of λ(Q) is governed by the renormal-
ization group equations which are described in Sect. 2.2. For low values of Q2 � v2,
where v2 is identified with the electroweak breaking scale, λ converges → 0. The
resulting Higgs potential has no longer the characteristic “Mexican hat” shape shown
in Fig. 2.1 and the theory becomes “trivial” since no Higgs self-interactions occur.
In the opposite case, Q2 	 v2, the quartic coupling eventually becomes infinite and
develops a so-called Landau pole at a cut-off energy �, where the validity of the
Standard Model ends. For a given value of � one can then determine an upper limit
on the mass of the Higgs boson, e.g. in the case of the Planck scale � ∼ 1016 GeV,
mH � 200 GeV is required [29].

Lower theoretical bounds on the Higgs mass are derived from vacuum stability
considerations, which imply that at low values of λ and mH contributions from fermi-
ons and gauge bosons become significant and can result in negative overall values for
the quartic coupling constant. This would imply a Higgs potential without minimum
and thus lead to an instability of the vacuum. The lower and upper theoretical bounds
on the mass of the Higgs boson from vacuum stability and triviality arguments as a
function of the cut off scale � are shown in Fig. 2.2 (left).
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While theoretical considerations provide a rough window of possible values of
the mass of the predicted Higgs particle, experimental measurements are necessary
to prove its existence and determine its precise properties. Indirect experimental
constraints on mH arise from global fits to the observables of electroweak precision
measurements [27, 30], to which radiative corrections from the Standard Model
Higgs boson are expected. The current fit results for mH as a function of �χ2 =
χ2 −χ2

min are shown in Fig. 2.2 (right). The preferred value for the mass of the Higgs
boson corresponds to the minimum of the curve at a value of 94+29

−24 GeV. At the
upper bound, values mH > 152 GeV can be excluded at 95 % confidence level.

Direct searches for the Higgs boson at the LEP [34], Tevatron [35–37], and LHC
[38, 39] experiments have further narrowed the window of possible Higgs masses
down to a region between 116 and 127 GeV. In that mass range the ATLAS and CMS
experiments have recently reported the observation of a new Higgs-like boson [31, 32,
40, 41]. The statistical significance of the observation corresponds to approximately
seven standard deviations as shown on Fig. 2.3 (top). The measured masses are
125.2 ± 0.3 (stat.) ± 0.6 (syst.) GeV and 125.8 ± 0.4 (stat.) ± 0.4 (syst.) GeV for
the ATLAS and CMS experiments respectively. According to the measurements
performed to date the new particle seems to couple to W and Z bosons as expected,
whereas the signal strength in the H → γγ channel is observed to be somewhat
higher as shown in Fig. 2.3 (bottom left). The evidence for couplings to quarks and
leptons is weaker at present and will require more data for precise measurements.
The measurements of the spin of the new particle are ongoing. Spin-1 can be ruled
out since the new particle is observed in di-boson states. As shown in Fig. 2.3 (bottom
right) a spin-0 positive parity state (0+) as expected for the Standard Model Higgs
boson seems preferred over 2−, but the measurements are not fully conclusive yet.
A similar tendency is observed with respect to the 0− and 2+ hypotheses.

The fact that the mass of the observed Higgs-like particle falls within the narrow
window predicted by the fits to electroweak precision data as well as the previously
discussed theoretical bounds is a remarkable success of particle physics.

2.2 Supersymmetry

As shown in the previous part of this chapter, the Standard Model of particle physics
has been very successful in describing the fundamental particles and their interac-
tions at the currently accessible energy scales in high energy physics. It is expected,
however, that more comprehensive theories are necessary to explain the physical
phenomena in higher energy regimes. Such theories originate from the Standard
Model’s inability to clarify important theoretical questions, such as the arbitrariness
of gauge couplings, mixing angles and particle masses, the lack of an explanation
for gauge symmetry, quantum numbers and generations, the Higgs-mass fine-tuning
problem and eventually the incorporation of gravity into a unified theory. In addition
significant cosmological observations, such as cold dark matter, dark energy, the
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Fig. 2.3 Top: The observed local p-value is shown for a combination of the considered search
channels as a function of possible Higgs boson masses mH using data from the combined 2011
and 2012 LHC data-taking campaigns at 7 and 8 TeV in proton–proton collision. The dashed line
corresponds to the expected local p-value under the hypothesis of a Standard Model Higgs boson.
The results of the ATLAS searches are shown on the left and those of the CMS experiment on
the right. Bottom left: Measurements of the signal strength parameter μ under the assumption
of a Standard Model Higgs boson with mH = 125 GeV for the individual search channels and
their combination. Bottom right: Distributions of the log-likelihood ratio generated with pseudo-
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observed matter-antimatter asymmetry as well as results from neutrino physics are
not addressed within the Standard Model.

The ultimate goal of particle physics is to consistently explain and integrate all
these phenomena into a single Theory of Everything (ToE) valid up and beyond
the Planck energy scale2 MP ≈ 1019 GeV, including quantum gravitational effects.

2 The Planck scale is defined as the energy scale at which the effects of gravity become comparable
to the other forces and quantum gravity can no longer be ignored.
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Fig. 2.4 One-loop quantum correction to the physical Higgs mass from fermion loop (left) and
scalar loop (right) diagrams

Superstring models [42] are promising candidates on the way to such a ToE, but
they are not yet entirely understood and experimental validation is currently beyond
technical possibilities.

An essential requirement for most String models is Supersymmetry (SUSY).
SUSY is a fundamental symmetry between fermions and bosons introducing a set
of new partner particles with opposite spin statistics for each Standard Model par-
ticle. The possible implications of SUSY on the electroweak scale make it one of
the best-motivated theories beyond the Standard Model. As will be shown in the
following, Supersymmetry suggests very elegant solutions to many open questions
of the Standard Model.

The Hierarchy Problem. A strong argument for Supersymmetry at the electroweak
scale is the so-called Hierarchy Problem [43]. It describes the unnatural discrepancy
between the energy scale of the renormalized Higgs-boson mass and that of its bare
mass at the lowest order of perturbation theory. This tremendous difference is caused
by large quantum corrections to Higgs-boson processes, such as fermion loops as
illustrated in Fig. 2.4 (left). These contributions result in quadratically divergent
correction terms to the physical Higgs mass:

m2
H = m2

0 − |λf |2
8π2 �2 + O

(
ln

�2

m2
f

)
(2.82)

Here m0 is the bare mass of the Higgs-boson at Born-level, λf is the Yukawa coupling
of the process of interest, mf the mass of the involved fermion, and � a cut-off
parameter that can be interpreted as the upper validity limit of the theory and is
usually identified with the GUT scale at �GUT ≈ 1016 GeV.

In contrast, the mass of the Higgs Boson mH , as shown in the previous sections,
is expected to lie within 116–127 GeV. It follows then from Eq. 2.82 that m2

0 must be
known up to a precision of ∼24 significant digits to yield the correct value of mH .
From a theoretical point of view it is unlikely that such a fine-tuning of parameters
in every order of perturbation theory is realized in nature.

A more elegant solution to this problem is provided by Supersymmetry, where the
supersymmetric partner particles, due to their half-spin difference, contribute with
opposite sign loop corrections to those of the Standard Model. In this way fermion
loop processes cancel with loop diagrams from bosonic SUSY particles as shown in
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Fig. 2.4 (right). Likewise Standard Model boson contributions are absorbed by their
respective fermionic superpartners.

For the case of a scalar particle S with mass mS the corrections can be written as

�m2
H = λS

16π2

(
�2 − 2m2

S ln
�

mS
+ · · ·

)
. (2.83)

A comparison between Eqs. 2.82 and 2.83 shows that the quadratic divergences can
be absorbed, if there are two scalar contributions and λS = |λf |2 holds between
the couplings. In fact this relation is an intrinsic property of Supersymmetry as will
be shown in the following sections. Now the remaining one loop correction can be
approximated as

�m2
H ≈ O

(α

π

) (
m2

S − m2
f

)
, (2.84)

where α can be identified with a typical coupling constant. Hence, if Supersymmetry
is broken, the masses of the fermions and their supersymmetric partners must lie close
together to allow for a natural value of mH without artificial fine tuning:

|m2
S − m2

f | � 1 TeV2 (2.85)

This is one of the strongest motivations to expect Supersymmetry at the electroweak
scale.

Grand Unification. Motivated by the evolution of the Standard Model coupling
constants with energy, Grand Unified Theories (GUTs) aim to provide a unified
description of the electroweak and strong interactions at high energies. The underly-
ing idea is to embed the Standard Model’s gauge groups SU(3)C ⊗ SU(2)L ⊗ U(1)Y

into a universal symmetry group GGUT , representing a single interaction with one
coupling constant at a unification scale MGUT .

This requires the three previously defined coupling constants g, g′, and gs of the
SM, if rewritten according to [44]

α1 = (5/3)g′2/(4π) = 5α/(3 cos2 θW ),

α2 = g2/(4π) = α/ sin2 θW , (2.86)

α3 = g2
s /(4π),

to intersect at MGUT .
The energy dependence of the parameters αi is provided by the renormalization

formalism. Using a specific renormalization scheme,3 the contributions of vacuum
polarization processes to the boson propagators are taken into account. The corre-
sponding renormalization group equations at one-loop level are given by [47]

3 Here the so-called modified minimal subtraction scheme MS is used [45, 46].
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dαi

dt
= bi

2π
α2

i , i = 1, 2, 3, (2.87)

with t = ln(Q2/μ2
R), where Q2 stands for the energy of the interaction and μ2

R is the
renormalization scale. The analytical solution of Eq. (2.87),

1

αi(Q2)
= 1

αi(μ
2
R)

− bi

2π
ln

(
Q2

μ2
R

)
, (2.88)

describes the so-called ‘running’ of the coupling constants as a function of energy.
The coefficients bi carry intrinsic information about the particle content of the under-
lying model. In the case of the Standard Model they have been determined to [48]

bi =
⎛
⎝ b1

b2
b3

⎞
⎠ =

⎛
⎝ 0

−22/3
−11

⎞
⎠ + NFam

⎛
⎝ 4/3

4/3
4/3

⎞
⎠ + NHiggs

⎛
⎝ 1/10

1/6
0

⎞
⎠ , (2.89)

where NFam = 3 stands for the number of generations and NHiggs = 1 is the number
of Higgs doublets.

Using Eqs. (2.88), (2.89) and the experimentally measured values for the cou-
plings, one can extrapolate to high energies to examine a possible unification [44].
The result of this extrapolation is shown in Fig. 2.5 (left), which clearly indicates
that a unification in a single point is not natural. In fact it is ruled out by more than
7 standard deviations [44] and so is a minimal GUT based on the Standard Model.

To maintain the idea of a Grand Unified Theory, new physics must exist between
the electroweak and Planck scale to alter the behaviour of the αi. This is where
Supersymmetry enters the picture. Assuming a minimal supersymmetric model as
described in Sect. 2.2.3, the extended particle content changes the coefficients bi to
[48]

bi =
⎛
⎝ b1

b2
b3

⎞
⎠ =

⎛
⎝ 0

−6
−9

⎞
⎠ + NFam

⎛
⎝ 2

2
2

⎞
⎠ + NHiggs

⎛
⎝ 3/10

1/2
0

⎞
⎠ , (2.90)

where NFam = 3 remains and an additional Higgs doublet is introduced NHiggs = 2.
It turns out, with these parameters a unification becomes possible at ∼1016 GeV
as illustrated in Fig. 2.5 (right). Furthermore the most perfect intersection of the
coupling constants can be obtained if the masses of the SUSY particles are of the
order of 1 TeV [44]. This provides yet another very strong motivation for low energy
Supersymmetry.

Dark Matter. A third argument in favour of Supersymmetry is its possible expla-
nation for dark matter. Dark matter is a hypothetical form of matter that cannot be
observed directly, but whose existence can be inferred from gravitational effects on
visible matter, such as the rotation of galaxies or the structure formation in the uni-
verse. Latest cosmological results, e.g. from WMAP-data [50], suggest that the cold
dark matter content makes up about 23 % of the energy density of the universe.



26 2 Theoretical Background

10
log Q [GeV] 

1/
α i

0

10

20

30

40

50

60

0 5 10 15

SM1/α

1/α

1

2

1/α3

MSSM

1/
α i

0

10

20

30

40

50

60

0 5 10 15

1/α1

1/α2

1/α3

10
log Q [GeV] 

Fig. 2.5 Evolution of the inverse coupling constants with energy. Within the Standard Model
(left) a unification is not natural, whereas for minimal supersymmetric models (right) the coupling
constants intersect at MGUT ≈ 1016 GeV [44]. The thickness of the lines indicates the error on the
coupling constants. The plots are taken from [49]

Candidate particles for dark matter include the so-called weakly-interacting mas-
sive particles (WIMPs). These hypothetical neutral particles only participate in the
gravitational and weak interactions and thus are extremely difficult to detect. Neutri-
nos are the only WIMP-like particles within the Standard Model. They are, however,
not massive and abundant enough to provide an explanation for dark matter.

In R-Parity conserving SUSY models (see Sect. 2.2.3) the lightest supersymmetric
particle (LSP) is stable and can be neutral and only weakly interacting. It therefore
exhibits all features of a WIMP and constitutes a possible dark matter candidate.

Gravity. As a last important point the connection between Supersymmetry and Grav-
ity is briefly mentioned. As will be further explained in Sect. 2.2.5, by making Super-
symmetry a local symmetry the principles of both theories can be unified into a single
concept, called Supergravity.

Supergravity is non-renormalizable and therefore not a candidate for a Theory of
Everything, but it can be understood as an effective description of physical phenom-
ena including gravity at energies below the Planck scale [51].

In conclusion, a variety of reasons point to Supersymmetry as a possible theory
for physics beyond the Standard Model. In the following sections of this chapter the
mathematical formalism of Supersymmetry is introduced step-by-step.

2.2.1 Supersymmetry Algebra

In this section the group-theoretical foundations of Supersymmetry are reviewed.
As a starting point the so-called Poincaré group is considered, one of the most
fundamental symmetry groups in physics. It contains the full symmetry of special
relativity, including the four translations in Minkowski space, plus the three rotations
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and boosts of the Lorentz group. The known elementary particles are irreducible
representations of the Poincaré group.

To obtain a unified theory of all interactions, it is desirable to combine the internal
gauge symmetries of the Standard Model, represented by the Lie groups SU(3)C ⊗
SU(2)L ⊗ U(1)Y , with the structure of space-time provided by the Poincaré group.
Unfortunately, the existence of such a group is ruled out for any but the trivial case,
as was shown by Coleman and Mandula [52] in 1967. However, after Wess and
Zumino found the first supersymmetric model in 1974 [53], this theorem had to be
significantly generalized. In fact it was shown by Haag, Lopuszanski, and Sohnius
[54] a year later that under weaker assumptions a non-trivial extension to the Poincaré
symmetry is possible, namely Supersymmetry.

Thus Supersymmetry is a space-time symmetry. Its generators Q transform
bosonic states into fermionic states and vice-versa:

Q|Boson〉 = |Fermion〉, Q|Fermion〉 = |Boson〉 (2.91)

It follows that Q and its hermitian conjugate Q† must have fermionic character and
carry spin-1/2. Within the easiest supersymmetric extension of the Poincaré group,
the above mentioned Wess-Zumino model, the generators are required to satisfy the
following algebra,

{Qα, Q†
α̇} = 2σ

μ
αα̇Pμ (2.92)

{Qα, Qβ} = {Q†
α̇, Q†

β̇
} = 0 (2.93)

[Qα, Pμ] = [Q†
α̇, Pμ] = 0, (2.94)

where Pμ denotes the four-momentum in space-time, σμ are the Pauli matrices and
α, α̇,β, β̇ are the indices of two-component Weyl spinors.

Direct implications of this supersymmetric algebra are the following:

• The bosonic or fermionic states and their respective superpartners with opposite
spin statistics are ordered in supersymmetric multiplets, so-called supermultiplets.
The supermultiplets are the irreducible representations of the supersymmetric alge-
bra.

• Superpartners must have equal mass, since −P2 commutes with both Q and Q† as
well as all generators of the Poincaré group.

• Superpartners must have equal gauge quantum numbers, such as charge, isospin
and color, since Q and Q† commute with all generators of the internal gauge
symmetry groups.

• A concatenation of two supersymmetric transformations leads to a translation in
space-time, since the square of the generator Q is equal to Pμ. For local super-
symmetric transformations this implies a connection between Supersymmetry and
General Relativity as will be shown later on.

• The bosonic and fermionic degrees of freedom of each supermultiplet are related
as nB = nF .
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The latter statement needs a short explanation: As stated earlier the fermionic gen-
erators of Supersymmetry Q and Q† map the bosonic subspace B onto a fermionic
subspace F and vice-versa. It is also known that for a linear mapping f : X → Y
the relation dim(Y) ≤ dim(X) holds. Thus, for a two-fold supersymmetric transfor-
mation B → F → B, the equation dim(F) = dim(B) must apply, since the con-
catenation of two SUSY transformations maps the bosonic subspace onto itself. The
same argument holds for the fermionic subspace and thus the bosonic and fermionic
degrees of freedom in each supermultiplet must be equal.

Following this rule the possible constellations of supermultiplets are examined.
The easiest example is the so-called chiral supermultiplet. Each chiral supermul-
tiplet consists of one fermion with two spin degrees of freedom nF = 2 and two
real scalar fields with nB = 1 each. The two real components are equivalent to
one complex scalar field. Per naming convention, the supersymmetric scalar particle
states receive an “s”-prefix to their name (“s-fermion”), to distinguish them from the
original particle.

Next are the gauge supermultiplets. They contain massless spin-1 vector bosons
with two helicity states and again a spin-1/2 fermion with nF = 2 as superpartner.
Here the superparticles are indicated by an “ino”-suffix to the name of the corre-
sponding gauge boson (“gaugino”).

Depending on the underlying supersymmetric model there are also other possible
constellations. An explicit discussion of the supermultiplets and their particle content
will be given in Sect. 2.2.3 for the case of the Minimal Supersymmetric Standard
Model.

2.2.2 Supersymmetric Lagrangians

In this section the Lagrangian formalism of Supersymmetry is derived. The goal is
to obtain a general formulation of the supersymmetric field theory with its particle
masses and interactions. Following closely the approach in [43], the Lagrangians
of the chiral and gauge supermultiplets and their respective field interactions are
introduced step-by-step.

2.2.2.1 The Chiral Supermultiplet

To begin with, the simplest possible SUSY model, containing a single left-handed
two component Weyl fermion ψ and a complex scalar field φ as its superpartner is
considered. This is equivalent to a theory with only one chiral supermultiplet, also
referred to as the massless non-interacting Wess-Zumino model [53]. The Lagrangian
density of this model is of the form

Lchiral,free = Lscalar + Lfermion = −∂μφ∗∂μφ − iψ†σμ∂μψ, (2.95)

and contains two kinetic terms for the scalar and fermionic states.
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Now minimal supersymmetric transformations of the scalar fields of the type

δφ = εψ and δφ∗ = ε†ψ† (2.96)

are introduced, where ε is an infinitesimal fermion-like parameter. The scalar part of
the Lagrangian transforms under these equations as

δLscalar = −ε∂μψ∂μφ∗ − ε†∂μψ†∂μφ. (2.97)

According to Hamilton’s principle the action (Eq. 2.1) must stay invariant under any
symmetry transformations. Therefore the Lagrangians before and after the transfor-
mation must be equivalent up to a total derivative L′ = L+ ∂μ�μ. This implies the
following transformations of the fermion fields:

δψα = i(σμε†)α∂μφ and δψ†
α̇ = −i(εσμ)α̇∂μφ∗ (2.98)

Using Pauli matrix identities and commutation relations for partial derivatives one
obtains

δLfermion = ε∂μψ∂μφ∗ + ε†∂μψ†∂μφ − ∂μ

(
εσνσ̄μψ∂νφ∗ + εψ∂μφ∗ + ε†ψ†∂μφ

)
.

(2.99)

Comparing 2.97 and 2.99 one sees that the two contributions cancel up to a total
derivative and thus leave the action invariant as required.

However, for the SUSY algebra to be valid off-shell, this formalism needs to be
generalized by the introduction of an auxiliary field F. F has no kinematic term and
its Lagrangian density is given by

Lauxiliary = F∗F. (2.100)

The auxiliary fields transform as

δF = iε†σ̄μ∂μψ and δF∗ = −i∂μψ†σ̄με, (2.101)

and to keep the action invariant Eq. 2.98 have to be modified with additional F-terms

δψα = i
(
σμε†

)
α

∂μφ + εαF and δψ†
α̇ = −i

(
εσμ

)
α̇

∂μφ∗ + ε†
α̇F∗. (2.102)

The need for the auxiliary field F becomes apparent, if one compares the scalar and
fermionic degrees of freedom on- and off-shell. In the on-shell case, the complex
scalar field φ has two real components corresponding to the two helicity states of the
fermion field ψ. Going off-shell, however, ψ becomes a two-dimensional complex
object with four real degrees of freedom. To balance out this inequality the complex
field F with two additional degrees of freedom must be introduced.
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The final Lagrangian of the free chiral supermultiplet can now be written as

Lchiral,free = −∂μφ∗i∂μφi − iψ†iσμ∂μψi + F∗iFi , (2.103)

where i is the index over all flavour and gauge degrees of freedom.

Interactions. The interactions between the scalar and fermion fields inside the super-
multiplets are now considered. It can be shown [43] that the most general renormal-
izable form of the interaction Lagrangian is given by

Lchiral,int =
(

−1

2
Wijψiψj + WiFi

)
+ c.c. , (2.104)

where Wij and Wi are functions of the scalar fields participating in the interaction.
The invariance of Lchiral,int under SUSY transformations implies the following form
of the Wij and Wi [43]

Wij = ∂2

∂φi∂φj
W = 1

2
Mij + 1

6
yijkφk, (2.105)

Wi = ∂W

∂φi
= 1

2
Mijφj + 1

6
yijkφjφk, (2.106)

where W is the so-called superpotential

W = 1

2
Mijφiφj + 1

6
yijkφiφjφk . (2.107)

Here Mij is the symmetric fermion mass matrix and yijk the Yukawa coupling of two
fermion fields with one scalar. It can be seen that the superpotential contains only
bilinear and trilinear scalar coupling terms and no fermionic contributions.

The auxiliary field terms of Lagrangians 2.103 and 2.104 are FiFi∗ + WiFi +
W∗

i Fi∗. They can be reformulated in terms of the superpotential by applying the
Euler–Lagrange equations of motion for Fi leading to

Fi = −W∗
i and Fi∗ = −Wi. (2.108)

With this the auxiliary-free representation of the total Lagrangian of the interacting
chiral supermultiplet is obtained:

Lchiral = − ∂μφi∗∂μφi − V (φ,φ∗) − iψi†σμ∂μψi − 1

2
Mijψiψj − 1

2
M∗

ijψ
i†ψj†

− 1

2
yijkφiψjψk − 1

2
y∗

ijkφ
i∗ψj†ψk† (2.109)
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Here V is referred to as the scalar potential

V (φ,φ∗) = WkW∗
k = F∗kFk = M∗

ikMkjφi∗φj + 1

2
Miny∗

jknφiφ
j∗φk∗

+ 1

2
M∗

inyjknφi∗φjφk + 1

4
yijny∗

klnφiφjφ
k∗φl∗. (2.110)

It can be seen that the scalar potential contains cubic and quartic scalar coupling terms
as well as a mass term with the same mass matrix as the fermionic part in Eq. 2.109.
This leads to the expected mass-degenerate partner states inside each supermultiplet.

Equation 2.109 also demonstrates that the coupling strength of a scalar particle
with two fermion fields is of the order yijk , whereas Eq. 2.110 implies (yijk)2 for a
quartic scalar process. This is equivalent to the relation λS = λ2

f that was postulated
in the introduction of Sect. 2.2 for the solution of the hierarchy problem.

2.2.2.2 The Gauge Supermultiplet

The gauge supermultiplets consist of massless gauge bosons Aa
μ and their gaugino

superpartners λa (
Aa

μ

λa

)
, (2.111)

where a is the index over the group representations, e.g. a = 1, ..., 8 for SU(3)C . The
corresponding supersymmetric transformations are given by

δgaugeAa
μ = ∂μ�a + gf abcAb

μ�c (2.112)

δgaugeλ
a = gf abcλb�c. (2.113)

Here � is an infinitesimal gauge transformation parameter, g represents the coupling
strength of the interaction and f abc the structure constant in the case of a non-abelian
theory. The total Lagrangian density of the gauge supermultiplets must again leave
the action invariant under Eqs. 2.112 and 2.113. It is given by:

Lgauge = −1

4
FaμνFa

μν − iλ†aσ̄μDμλa + 1

2
DaDa (2.114)

The first term describes the kinetic energy with the gauge field tensor

Fa
μν = ∂μAa

ν − ∂νAa
μ + gf abcAb

μAc
ν, (2.115)
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where the Aμ are the respective gauge field components of the interaction. The second
term in Eq. 2.114 expresses the kinetic energy of the gaugino fields and includes a
covariant derivative

Dμλa = ∂μλa + gf abcAb
μλc, (2.116)

which contains the interactions between the gauge and gaugino fields. With the third
term in Eq. 2.114 again an auxiliary field D is introduced to account for the inequality
of degrees of freedom within the supermultiplets on- and off-shell. In this case only
one additional degree of freedom is necessary and thus D has one real component.
As in the case of the chiral Lagrangian this field vanishes when going on-shell.

2.2.2.3 The Combined Supersymmetric Lagrangian

Now the results for the Lagrangian of the chiral and gauge supermultiplets can be
combined. First, the derivatives of the scalar and fermion fields need to be replaced
by the respective covariant derivative to preserve gauge invariance:

∂μψ → Dμψ = ∂μψ + igAa
μTaψ (2.117)

∂μφ → Dμφ = ∂μφ + igAa
μTaφ (2.118)

Here Ta stands for the generators of the gauge groups, and one can see that Eqs. 2.117
and 2.118 yield the couplings between the gauge bosons and the scalar and fermionic
fields of the chiral supermultiplet.

There are also possible couplings between the gaugino fields λa and the D auxil-
iary fields. It can be shown [43] that possible renormalizable couplings of this sort
contribute with terms:

−√
2g

(
φ∗Taψ

)
λa − √

2gλ†a(φ†Taφ) + g
(
ψ∗Taφ

)
Da (2.119)

The D-term in Eq. 2.114 and the last term in 2.119 combine to the equation of motion

Da = −g
(
φ∗Taφ

)
. (2.120)

Since 2.120 contains only scalar fields it is then usually written with the scalar
potential

V
(
φ,φ∗) = W∗

i Wi + 1

2
g2 (

φ∗Tφ
)2

. (2.121)

The results of this chapter can now be summarized in the total Lagrangian density
for Supersymmetry:
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LSUSY = −Dμφ∗Dμφ︸ ︷︷ ︸
scalars

−iψ†σμDμψ︸ ︷︷ ︸
fermions

−1

2

(
Wijψiψj + Wij∗ψi†ψj†

)
︸ ︷︷ ︸

fermion mass term and Yukawa coupling

−WiW∗
i − 1

2
g2 (

φ∗Tφ
)2

︸ ︷︷ ︸
scalar potential

−1

4
Fa

μνFaμν

︸ ︷︷ ︸
gauge bosons

−iλ†aσ̄μDμλa

︸ ︷︷ ︸
gauginos

−√
2g

(
φ∗Taψ

)
λa − √

2gλ†a
(
ψ†Taφ

)
︸ ︷︷ ︸

additional couplings

+Lsoft︸ ︷︷ ︸
soft breaking term

(2.122)

The first two terms are the kinetic terms of the scalar and fermionic fields in the
chiral supermultiplet. They are followed by the fermion mass terms and the Yukawa
coupling of scalar and fermionic fields, written in terms of the superpotential 2.107.
The mass terms of the scalar fields and their associated interactions are contained in
the scalar potential. The next three terms account for the kinetic energy and interac-
tions of the gauge bosons and their gaugino superpartners plus additional couplings
as discussed above. For completeness the SUSY breaking term Lsoft is also included
and will be discussed in Sect. 2.2.4.

2.2.3 The Minimal Supersymmetric Standard Model

In the previous section of this chapter the general theoretical features of Super-
symmetry have been discussed. Now the Minimal Supersymmetric Standard Model
(MSSM) is discussed specifically. It represents the simplest possible supersymmetric
extension of the Standard Model and has long been the main focus of experimental
searches. Implications of a possible Higgs boson in the mass range of 126 GeV and
recent experimental bounds on the MSSM will be discussed in Sect. 2.2.7.

2.2.3.1 Particle content of the MSSM

The MSSM contains the minimal number of couplings and fields. The field content
is described in terms of:

• Chiral supermultiplets with SM leptons and quarks and their associated scalar
superpartners (“squarks” and “sleptons”).

• Gauge supermultiplets with SM gauge bosons and associated superpartners
(“gauginos”).

A summary of all MSSM multiplets can be found in Tables 2.2 and 2.3. For the chiral
supermultiplets, each SM fermion has two helicity states, which transform differently
under gauge symmetry. Therefore they must both have their own scalar superpartner.
This is illustrated in Table 2.2, e.g. for the left- and right-handed electrons eL and eR

and their corresponding scalar particles ẽL and ẽR.4 The latter two scalar fields are

4 The tilde symbol is used to denote supersymmetric partners of SM particles.
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Table 2.2 Content of the chiral supermultiplets in the Minimal Supersymmetric Standard Model

Name Scalar φ (S = 0) Fermion ψ (S = 1/2)

Squarks, Quarks Q1 (ũL, d̃L) (uL, dL)

(3 Generations) Ū1 ũ∗
R u†

R

D̄1 d̃∗
R d†

R
Sleptons, Leptons L1 (ν̃e, ẽL) (νe, eL)

(3 Generations) Ē1 ẽ∗
R e†

R
Higgs, Higgsino Hu (H+

u , H0
u ) (H̃+

u , H̃0
u )

Hd (H0
d , H−

d ) (H̃0
d , H̃−

d )

The symbols Qi and Li stand for the supermultiplets containing SU(2)L doublets, while Ūi, D̄i, and
Ēi contain the corresponding conjugate right-handed singlet states. Table adapted from [43]

completely independent and the index refers only to the handedness of the associated
SM particles. All fermions in the chiral supermultiplets are defined in terms of left-
handed Weyl-spinors. Conjugations are therefore applied to the right-handed fields
of Table 2.2.

In the supersymmetric Higgs-sector, the scalar Higgs fields are accommodated in
the chiral supermultiplets along with their “Higgsino” superpartners (see Table 2.2).
However, within the MSSM one Higgs-doublet is not sufficient. In particular, gauge
anomalies from triangle diagrams, as they are known from the SM, do not cancel
within the MSSM unless a second doublet is introduced. Two Higgs-doublets are
also required to give mass to all matter fermions by means of electroweak symmetry
breaking. The doublets are of the form

(
H+

u
H0

u

)
and

(
H0

d
H−

d

)
, (2.123)

with weak Isospin Y = ±1/2 to induce the necessary Yukawa couplings to all
up- and down-like quarks. As can be seen from Eq. 2.123 there are 4 complex or 8
real degrees of freedom in the Higgs doublets. As in the Standard Model three phases
are absorbed by Goldstone bosons leaving 5 physical Higgs eigenstates:

• h, a light neutral scalar Higgs particle.
• H, a heavy neutral scalar Higgs Particle.
• A, a neutral CP-odd pseudoscalar Higgs particle.
• H±, two charged scalar Higgs particles.

The gauge supermultiplets are shown in Table 2.3. They contain the mediators of the
SM interactions and their spin-1/2 superpartners. These are 8 gluons and gluinos in
the case of SU(3)C for QCD and W±, W0, B0 with superpartners for SU(2)L⊗U(1)Y .
After electroweak symmetry breaking the latter four mix to the mass eigenstates Z0

and γ and the respective gaugino combinations “Zino” Z̃0 and “Photino” γ̃.
Electroweak gauginos also form new mass eigenstates with the Higgsinos of same

charge. In the neutral sector W̃0, B̃0, H̃0
u , H̃0

d mix to four “Neutralinos” χ̃0
1,2,3,4,

whereas the charged W̃±, H̃+
u and H̃−

d form the “Charginos” χ̃+
1,2 and χ̃−

1,2. The
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Table 2.3 Content of the gauge supermultiplets in the Minimal Supersymmetric Standard Model

Name Boson Aμ (S = 14) Fermion λ (S = 1/2)

Gluon, Gluino g g̃

W-Bosons, Winos W±, W0 W̃±, W̃0

B-Boson, Bino B0 B̃0

Table adapted from [43]

mixing is possible because the participating states have identical quantum numbers
as can be inferred from Table 2.3.

It should be noted here that if Supergravity (see Sect. 2.2.5) is to be included into
the theory, one must also introduce an additional type of supermultiplet containing
the spin-2 graviton and its spin-3/2 superpartner (“gravitino”).

2.2.3.2 R-parity

An important quantum number in the MSSM is R-parity. Whereas in the Standard
Model baryon- and lepton-numbers are automatically conserved, the MSSM theo-
retically allows interaction terms that violate this symmetry. To avoid this undesired
effect, the conservation of R-parity

R = (−1)3(B−L)+2S (2.124)

is imposed. B an L are lepton and baryon numbers and S the spin of the participating
particles in the process. All SM fields carry R-parity R = +1, all superfields R = −1.
In addition R-parity is a multiplicative quantum number. It follows that in this case
supersymmetric particles can only be produced in pairs by SM particles due to

Rtotal = RSM
1 · RSM

2 = 12 = RSUSY
1 RSUSY

2 = (−1)2 = 1. (2.125)

Another consequence of R-parity conservation is the stability of the lightest super-
symmetric particle. Due to R = −1 it cannot decay into SM matter and due to its mass
not into any other supersymmetric particle. It is therefore considered a candidate for
dark matter.

In some supersymmetric models, which are not the subject of this thesis, the
violation of R-parity is allowed to the extent that it is compatible with the observed
proton lifetime.

2.2.3.3 Interactions of the MSSM

In the MSSM the generic superpotential of Eq. 2.107 is replaced by [43]

WMSSM = yuŪQHU − ydD̄QHd − yeĒLHd + μHuHd, (2.126)
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where Q, L, Ū, D̄, Ē, Hu, and Hd stand for the superfields of the respective mul-
tiplets shown in Table 2.2. The indices for each generation of quarks and leptons
are suppressed in this vector notation. The 3 × 3 matrices yu, yd and ye are the cor-
responding Yukawa couplings and determine the CKM mixing angles and masses
after electroweak symmetry breaking. The last term is the supersymmetric Higgs
term with mass parameter μ.

The supersymmetric Yukawa interactions can be derived from Eq. 2.126. They
describe cubic and quartic couplings of fermions, sfermions, Higgs, and Higgsino
fields. The coupling of SM gauge bosons to supersymmetric particles is governed
by the kinetic terms of the SUSY Lagrangian. The MSSM gauge interactions can
be obtained by interchanging any two of the three participating particles in a SM
gauge interaction by their respective superpartners. In this way one can also obtain
gaugino-sfermion-fermion interactions, which are possible through the additional
renormalizable couplings, corresponding to the first two terms in Eq. 2.119.

2.2.4 Breaking of Supersymmetry

If Supersymmetry exists it must be broken, since no mass-degenerate superpart-
ners of the SM particles have been found. The breaking mechanism should preserve
the renormalizability of the theory as well as the cancellation of quadratic diver-
gences to maintain the hierarchy of the energy scales as discussed in the introduction.
A symmetry breaking with these basic SUSY properties can be introduced into the
theory by adding a so-called “soft-breaking” term in the Lagrangian density. The
general form of this term is [43]

Lsoft = −
(

1

2
Maλ

aλa + 1

6
aijkφiφjφk + 1

2
bijφiφj + c.c.

)
− (m2)i

jφ
j∗φi, (2.127)

with squared scalar mass terms (m2)i
j and bij, cubic scalar couplings aijk , and gaugino

mass terms Ma for each gauge group. It can be seen that 2.127 contains only scalar
and gaugino terms and thus breaks the symmetry by giving masses to the associated
particles. A phenomenological explanation of this breaking mechanism will follow
in the next section. In the case of the MSSM the soft breaking term specializes to [43]

LMSSM
soft = − 1

2

(
M3g̃g̃ + M2W̃W̃ + M1B̃B̃ + c.c.

)

− (
ŪaUQHu − D̄aDQHd − ĒaELHd + c.c.

)
− Q†m2

QQ − L†m2
LL − Ūm2

Ū
Ū† − D̄m2

D̄
D̄† − Ēm2

Ē
Ē†

− m2
Hu

H∗
u Hu − m2

Hd
H∗

d Hd − (bHuHd + c.c.) . (2.128)

The first line represents the mass terms of winos, gluinos and binos, and the third
line those of the squarks and sleptons with hermitian 3 × 3 mass matrices. Here the
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tildes on the scalar superfields Q, Ū, D̄, L, Ē are again suppressed for readability.
The second line contains the cubic scalar couplings of Eq. 2.127 with the matrices
aU , aD, aE , where again all three generations contribute. The last line corresponds
to the soft breaking contributions from the squared Higgs-mass terms m2

Hu
and m2

Hd

plus one bij-type term.
Equation 2.128 demonstrates the complexity of the spontaneously broken MSSM.

In total 105 new parameters are introduced: 21 masses, 36 mixing angles, 40
CP-violating phases in the squark and slepton sector and 5 real and 3 CP-violating
parameters in the Higgs-sector. However, not all of these parameters are independent.
In particular flavour and CP-conserving relations reduce the number of degrees of
freedom significantly.

The most common framework for SUSY breaking models is based on a so-called
“hidden sector”, in which the symmetry is spontaneously broken [55, 56]. The intro-
duction of this hidden sector is necessary, since none of the MSSM fields, which are
referred to as the “visible sector”, can have a non-zero vacuum expectation value in
order to not violate gauge invariance.5 Therefore the underlying idea of the hidden
sector is, that the spontaneous SUSY breaking is communicated down to the observ-
able MSSM sector via hypothetical flavour-blind messenger fields. This mediation
mechanism, however, is highly dependent on the model framework assumed.

Some of the most common scenarios are:

• Gauge Mediated Supersymmetry Breaking (GMSB)
• Anomaly Mediated Supersymmetry Breaking (AMSB)
• Gravity Mediated Supersymmetry Breaking (MSUGRA)

In GMSB the SUSY breaking is invoked by the minimal gauge group interactions
SU(3)C ⊗ SU(2)L ⊗ U(1)Y , where the associated gauge bosons couple to the mes-
senger fields to make the breaking observable. AMSB is a special case of gravity-
mediated SUSY breaking, where there are no direct tree-level couplings between the
sectors and the masses of the sparticles are generated with higher order loop correc-
tions. MSUGRA is one of the most commonly assumed scenarios in experimental
searches. It will be discussed in more detail in the following section.

2.2.5 Minimal Supergravity

The principles of Supergravity were already briefly mentioned in the introduction of
Sect. 2.2. The underlying idea is that supersymmetry, when made a local symmetry,
yields both, an effective field theory for energies below the Planck scale and an elegant
mechanism for SUSY breaking. In this way Supergravity, as any local gauge theory,
necessitate the introduction of new gauge fields, the spin-2 graviton and its spin-3/2

5 Spontaneous breaking of global Supersymmetry would require non-zero vacuum expectation
values of either the F or D auxiliary fields (see Sect. 2.2.2).
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gravitino superpartner. In an unbroken theory the masses of both particles are zero.
The couplings, however, still scale with the dimensionful Newton’s constant and are
thus proportional to ∼1/MPlanck. Therefore the associated terms in the Lagrangian
are non-renormalizable and so is the concept of Supergravity, which hence does not
represent a full theory of quantum gravity.

The breaking mechanism of Supergravity, also referred to as super-Higgs-
mechanism, takes place in two steps: First the spontaneous breaking of global Super-
symmetry yields a massless Weyl fermion called Goldstino. This Goldstino has two
degrees of freedom which are subsequently absorbed through the spontaneous break-
ing of local Supersymmetry to give mass to the gravitino. The graviton, however, is
still massless and thus the degeneracy in the gravitational supermultiplet is broken.

The breaking happens in the hidden sector with a vacuum expectation value
<F> and a non-renormalizable coupling to the visible sector of strength ∼1/MPlanck
as mentioned above. In the case of vanishing gravitational interactions MPlanck → ∞
and vacuum expectation value < F >→ 0, the soft breaking mass terms msoft must
also vanish. This leads to the following approximative formula

msoft ∼ < F >

MPlanck
, (2.129)

which implies for msoft � 1 TeV a scale of
√

< F > ≈ 1011 GeV for the hidden
sector. The F-Field here refers to the auxiliary field of Sect. 2.2.2, which is related to
the superpotential as in Eq. 2.106.

An attractive, but quite constrained scenario, is that of minimal Supergravity
(MSUGRA) which is often also referred to as constrained MSSM (CMSSM). It
implies universal soft breaking terms and thereby reduces greatly the number MSSM
parameters at the unification scale to:

• m0, the universal scalar mass,
• m1/2, the universal gaugino mass,
• A0, the universal trilinear Higgs-sfermion-sfermion couplings,
• tan β, the ratio of the vacuum expectation values of the two Higgs-doublets,
• signμ, the sign of the Higgsino mass parameter.

All parameters of the MSSM at the electroweak scale can be obtained from these
five GUT scale parameters by application of the renormalization group equations as
is illustrated in Fig. 2.6 for one particular MSUGRA/CMSSM scenario. The mass
spectrum of a given model at the electroweak scale depends on the chosen GUT-
scale parameters. Figure 2.7 shows the spectrum for a typical MSUGRA/CMSSM
scenario.
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Fig. 2.8 Leading order Feynman diagrams for the strong production of SUSY particles at the LHC,
with gluon–gluon, gluon–quark, and quark–quark initial states from top to bottom. Taken from [43]

2.2.6 Production and Decay Processes at the LHC

Supersymmetric particles, if they exist at energies accessible by the Large Hadron
Collider, can be produced via the electroweak and strong interactions. Within
R-parity conserving scenarios, such as the MSSM, sparticles are produced in pairs.
The dominant production processes at the LHC are those of the strong interactions
via gluon-gluon and gluon-quark processes and to a smaller extent via quark-quark
interactions. The possible Feynman graphs of such processes at leading order are
shown in Fig. 2.8. The electroweak production processes lead to charginos, neutrali-
nos, and sleptons in the final state via electroweak vector bosons in the s-channel, and
t-channel squark exchange. The corresponding diagrams can be found e.g. in
Ref. [43]. For most supersymmetric mass spectra, the strong production cross-
sections dominate over those of the weak processes as can be seen from Fig. 2.9.

Squarks typically decay, if kinematically allowed, through the process q̃ → qg̃
or otherwise to charginos or neutralinos according to q̃ → q(′)χ̃0/(±). The direct
decay to the lightest neutralino χ̃0

1 is kinematically preferred and can dominate for
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Fig. 2.9 Next-to-leading
order MSSM SUSY pro-
duction cross-sections in
proton-proton collisions as a
function of the average final
state mass [58]
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1 has a large admixture of the Bino. The left-handed

squarks, in turn, may preferentially decay into heavier charginos and neutralinos
due to the stronger couplings to the Wino. Couplings of squarks to gauginos with a
large Higgsino admixture are usually suppressed except for third generation squarks
where the Yukawa couplings are large due to the heavy quark masses. Decays are
also possible through virtual quarks if not kinematically allowed on-shell.

Gluinos decay through the process g̃ → qq̃ or if the latter is kinematically
forbidden via a virtual squark directly to charginos or neutralinos according to
g̃ → qq(′)χ0/(±). If squarks are not kinematically accessible the decay g̃ → gχ0 is
possible.

As discussed previously the charginos and neutralinos are mixtures of the elec-
troweak gauginos and Higgsinos. Depending on the mass spectrum of the SUSY
scenario considered, the following two-body decays are in principle possible [43]:

χ̃0
i → Zχ̃0

j , W χ̃±
j , h0χ̃0

j , ll̃, νν̃, A0χ̃0
j , H0χ̃0

j , H±χ̃±
j , qq̃

χ̃±
i → W χ̃0

j , Zχ̃±
1 , h0χ̃±

1 , lṽ, vl̃, A0χ̃±
1 , H0χ̃±

1 , H±χ̃0
j , qq̃′ (2.130)

If these decays are kinematically excluded, they are replaced again by 3-body decays
with off-shell gauge bosons, which decay on to fermions.

Sleptons typically decay to leptons and charginos or neutralinos according to
l̃ → lχ̃0, νχ̃± and ν̃ → νχ̃0, lχ̃±. As for the quarks one has to distinguish between
left- and right-handed sleptons, which preferentially decay to Wino or Bino like
gauginos respectively.

Due to the cascade-like nature of supersymmetric decays described above, the
expected experimental signature at the LHC for most MSSM-like models consists of
several jets, missing transverse energy from the undetected LSP, and possible other
objects, such as for example leptons.
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2.2.7 Status and Implications of Experimental Bounds

While no evidence for supersymmetric particles has been found to date, experimental
efforts have helped to significantly constrain the allowed regions of supersymmetric
parameter space, in particular in the context of the well-studied MSUGRA/CMSSM
scenarios. Some of the most important experimental bounds and their implications
are described below. Figure 2.10 visualizes these bounds in the plane of universal
scalar and gaugino masses, for scenarios with μ > 0, A0 = 0, and tan β = 10 (left)
as well as tan β = 50 (right).

Cosmological constraints. It has previously been mentioned that in R-parity con-
serving SUSY models, the lightest supersymmetric particle (LSP) exhibits all fea-
tures of a weakly interacting massive particle (WIMP), which in turn constitutes
a candidate for cold dark matter. For MSUGRA/CMSSM scenarios this LSP with
WIMP-features is the lightest neutralino χ̃0

1.
According to cosmological models, WIMPs were created in the early universe,

when the energy density was high enough for the production processes. Thereafter
they remained in thermal equilibrium until temperatures dropped below mχ̃0

1
and

production was suppressed. At the same time increasing distances between the par-
ticles reduced annihilation rates until today’s “freeze-out” relic density �χ̃0

1
at a

temperature of ∼ 2.7 K was reached. Precise measurements of this relic density have
been performed by the WMAP collaboration [50].6 The results can be translated into
constraints of supersymmmetric parameter space by the following mechanism:

The relic density is proportional to the inverse expectation value of the thermally
averaged inclusive annihilation and co-annihilation cross section of the LSP pair
times its relative velocity �χ̃0

1
∝ 1/< σv > (e.g. [66]). The cross-section σ depends

highly on the particular supersymmetric model and its associated masses and cou-
plings. To find the allowed regions of parameter space for a model with universal
parameters at the GUT scale like MSUGRA/CMSSM, one first needs to evaluate
the renormalization group equations to obtain the MSSM parameters in the weak
regime. Then a SUSY-spectrum generator can be used to determine higher-order
contributions to masses and couplings. These are then fed into calculations of the
annihilation inclusive cross section σ to yield the corresponding neutralino density.
The bounds resulting from the latest WMAP measurements correspond to the green
shades areas in Fig. 2.10.

Constraints from b → sγ. Another restriction on the parameter space results from
measurements of the flavour-changing process b → sγ. In the SM this decay involves
loops containing W-bosons and up-type quarks as shown in Fig. 2.11 (top left). In
the MSSM additional diagrams with SUSY contributions are possible as shown
in Fig. 2.11 (top right and bottom). Measurements of the corresponding inclusive
branching ratio, i.e. b → Xsγ (see [67]) put constraints on the kinematically allowed
regions of parameter space, when compared with precise SM calculations.

6 Measurements are also expected from the Planck collaboration (e.g. [65]).
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1/
2

Fig. 2.10 Overview of experimental and theoretical constraints on MSUGRA/CMSSM parameter
space in the plane of universal scalar and gaugino masses, for scenarios with μ > 0, A0 = 0, and
tan β = 10 (left) as well as tan β = 50 (right). The green shaded area corresponds to WMAP
cosmological constraints [50], the blue shaded area to limits from LEP2 chargino searches [59],
the blue dashed line to LHCb Bs → μ+μ− constraints [60], the orange shaded area to the region
favoured by aμ measurements [61], and the black solid line to the bounds from direct searches at
the LHC [62, 63]. The red lines indicate the amount of fine-tuning according to the definition in
Ref. [64]. Taken from Ref. [64]

Constraints from Bs → μ+μ−. Within the Standard Model the flavour-violating
process Bs → μ+μ− can occur at one-loop level with a highly suppressed branching
ratio of the order of 10−9. In MSUGRA/CMSSM scenarios this branching ratio is
enhanced at large values of tan β due to additional flavour violating processes at one-
loop level emerging from the supersymmetric Higgs sector. However, the upper limit
on the Bs → μ+μ− branching ratio is constrained by a recent measurement of the
LHCb collaboration [60] to approximately less than two times the Standard Model
expectation, which leaves little room for SUSY contributions. The region where
the branching ratio calculated in MSUGRA/CMSSM falls below the experimentally
allowed range is indicated with a dashed blue line in Fig. 2.10 (right).

Muon anomalous magnetic moment. The magnetic moment of the muon

μ = eg

2mc
S, (2.131)

with spin operator S, contains a gyromagnetic factor g, which is expected to have a
value of two, plus small higher-order corrections. Deviations of 3σ with respect to
state-of-the-art theoretical calculations of the quantity aμ = (g−2)/2 [68] have been
observed by the Muon g-2 Collaboration [61]. This discrepancy can be interpreted
as a SUSY contribution, mainly through additional neutralino-smuon and chargino-
sneutrino loops. The measurement can be accommodated in the MSSM preferentially
for positive values of the Higgsino mass parameter μ and higher values of tan β. The



44 2 Theoretical Background

Fig. 2.11 Possible b → sγ processes in the Standard Model (top left) and supersymmetric models
(top right and bottom). The photon line may be attached in all possible ways. Taken from Ref. [51]

region favoured by this measurement corresponds to the shaded area labeled aμ in
Fig. 2.10.

Collider constraints. Direct searches at high energy physics collider experiments
provide the most stringent bounds on the masses of supersymmetric particles. The
current exclusion limits on gluino and squark production within MSUGRA/CMSSM
based on LHC data taken in 2011 at 7 TeV center-of-mass energy are denoted by the
solid black line labelled LHC7 in Fig. 2.10. The original results by the ATLAS and
CMS collaborations are shown in Fig. 2.12.

In addition the LHC experiments have published numerous analyses with inter-
pretations outside the MSUGRA/CMSSM framework. One example is the SUSY
search presented in this thesis, which is interpreted in terms of so-called simplified
models, a concept introduced in Chap. 6.

Apart from the limits on sparticle masses from direct searches the most far-
reaching implications on supersymmetric theories to date come from the recent
observation of a new Higgs-boson like particle at the LHC. While in the Standard
Model the mass of the Higgs boson is a free parameter of the theory as described in
Sect. 2.1.3, in the MSSM it is bound to values below the Z-boson mass in addition
to radiative corrections, which lead to a total upper limit of MH � 135 GeV [70–72].
The fact that the newly found particle lies within that rather narrow mass range may
be interpreted as a hint in favour of weak scale Supersymmetry. However, the mea-
sured mass range of this particle around 126 GeV requires a considerable amount
of radiative corrections which are expected to originate mostly from the supersym-
metric top quark. These corrections, in turn, require a careful tuning of the mass
parameters of the MSSM to cancel contributions to the Higgs potential and to arrive
at a vacuum expectation value within the electroweak regime. This problem is also
known as the “little hierarchy problem”. The amount of fine-tuning7 that is necessary
for a given MSUGRA/CMSSM scenario is indicated by the red lines in Fig. 2.10.

7 The high-scale fine-tuning definition described in Ref. [64] is used.

http://dx.doi.org/10.1007/978-3-319-07136-7_6
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A number of theoretical proposals exist to alleviate the effects of a heavy Higgs
boson on naturalness considerations. These are subject to ongoing studies and dis-
cussions inside the theoretical particle physics community. Two examples are given
below.

Amongst one of the most well-known approaches is the so-called Next-to-minimal
Supersymmetric Standard Model (NMSSM), which introduces a new gauge-singlet
chiral supermultiplet S. In the simplest version of the NMSSM, the term μHuHd in
the MSSM superpotential (Eq. 2.126) is replaced by λH1H2S + κ

3 S3 [73], where λ
is the coupling of S to Hu and Hd , and κ is the self-coupling of the singlet field. In
the NMSSM the μ-term is then generated dynamically via electroweak symmetry
breaking where S takes the vacuum expectation value vS resulting into an effective
μ-term, μeff = λvS . This mechanism allows to circumvent the so-called μ-problem
of the MSSM [74], which emerges from the explicit appearance of the μ-term in
the MSSM superpotential. While the value of μ is expected to be at the electroweak
scale to allow for spontaneous symmetry breaking in the supersymmetric Higgs
sector, there is no natural explanation why this value should be so small compared to
e.g. the Planck scale, and why it should be of the same order of magnitude as the soft
Supersymmetry breaking mass terms given that their physical origins are essentially
unrelated. In the NMSSM the additional coupling λ of S to Hu and Hd can lead to
larger masses of the lightest neutral CP-even Higgs boson than in the MSSM and
thus makes the NMSSM a more natural candidate for Supersymmetry in the light of
the recent experimental results.

Another path that is being followed by the theoretical community is that of “Nat-
ural” Supersymmetry (NSUSY). An overview can be found in [75] and references
therein. NSUSY is a collective term for supersymmetric models, in which the squarks
of the third generation are expected to be of the order of 1 TeV whereas the remaining
supersymmetric quarks and leptons as well as the electroweak gauginos are essen-
tially decoupled at energies of ∼10–50 TeV. The gluino mass can be of the order of
several TeV. These scenarios still allow for Supersymmetry with small fine-tuning
and are to date consistent with the experimentally excluded limits on squark and
gluino masses at the LHC.
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