
Chapter 2
Interaction of Polarizable Particles with Light

More light!—Johann Wolfgang von Goethe’s last words

A proper understanding of the mechanics and susceptibility of nanoparticles under
the influence of coherent light fields will be a core ingredient throughout this thesis.
It will be required for the description of new matter-wave interferometry schemes
and of optical methods to manipulate the motion or measure the optical properties
of molecules and clusters. This chapter is dedicated to the light-matter interaction in
the presence of coherent laser fields, of high-finesse cavity modes and, not least, of a
(thermally occupied) radiation field. The latterwillmainly be useful to describe deco-
herence processes by the emission, absorption and scattering of photons, whereas
the coherent interaction with laser fields and cavity modes is the basis of optical
interference gratings and cavity-induced slowing and trapping methods.

I will start by introducing the basic effect of coherent light fields on the center-
of-mass motion of small particles in Sect. 2.1. In the limit of short interaction times
this directly leads to the description of optical gratings, as commonly used in matter-
wave interferometry. I will proceed with the more complex long-time dynamics of
polarizable point particles (PPP) coupled to strong laser fields in Sect. 2.2, where I
will present in detail the influence of high-finesse cavity modes. They can be used
to dissipatively slow down single particles, or to cool the motion of a hot ensemble
of particles, respectively [1].

In Sect. 2.3 I eventually take a step beyond the point-particle approximation and
study the effect of standing-wave fields on wavelength-sized dielectric spheres using
Mie theory [2, 3]. The results derived there will be directly applied in Sect. 2.3.3
where I discuss the radial slowing and trapping of microspheres in a strongly pumped
cavity mode.
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2.1 Mechanics of Polarizable Point Particles
in Coherent Light Fields

In a first and most elementary approach to the light-matter problem let us study
the classical and quantum dynamics of a polarizable point particle (PPP) in the
presence of a classical electromagnetic field mode. The point-particle idealization is
considered valid in many experimental situations where subwavelength molecules or
clusters are coupled to high-intensity light fields of laser beams or strongly pumped
cavity modes. Consequences and applications of the basic effect are discussed here,
before the restriction to point particles and classical light fields will successively be
lifted in the next sections.

For the moment let us represent the light by a single-mode electric and magnetic
field

E (r, t) = E0e−iωt u (r) , H (r, t) = E0

iμ0ω
e−iωt∇ × u (r) (2.1)

with a harmonic time dependence on the frequency ω = ck. It will be convenient to
work with complexified fields and allow for complex mode-polarization functions
u (r) ∈ C, as discussed in Appendix A.1. The physical fields are then represented
by the real partsRe {E} andRe {H}. We will mostly deal with the important case of
linearly polarized standing or running waves,

Esw (r, t) = E0e−iωt ex f (x, y) cos (kz) , Hsw (r, t) = i E0

μ0c
e−iωt ey f (x, y) sin (kz) ,

(2.2)

Erw (r, t) = E0ex f (x, y) exp (ikz − iωt) , Hrw (r, t) = E0

μ0c
ey f (x, y) exp (ikz − iωt) ,

(2.3)

with f (x, y) the transverse mode profile. Realistic light fields occupy only a finite
region in space, as described by their mode volume V = ∫

d3r |u (r)|2, and we may
associate with the field of strength E0 a complex amplitude α = √

ε0V/2�ωE0
and a mean photon number |α|2. With this the Hamiltonian, that is, the field energy
contained in the mode, takes the well-known form

Hf = 1

2

∫

V

d3r
[
ε0Re {E (r, t)}2 + μ0Re {H (r, t)}2

]
= �ω

2

(
α∗α + αα∗) = �ω |α|2 .

(2.4)
The amplitude is replaced by the photon annihilation operator a when generalizing
to quantum fields. A Gaussian mode1 is described by two waist parameters wx , wy

and the transverse mode profile f (x, y) = exp
(
−x2/w2

x − y2/w2
y

)
.

1 The full mathematical description of Gaussian light fields, as generated by focused laser beams
or found in curved-mirror cavities, is a little bit more involved than presented here. I give a detailed
formula for symmetric Gaussian mode functions with wx = wy = w in Appendix A.2. Strictly
speaking, the above representations (2.2) and (2.3) are zeroth order approximations of the Gaussian
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2.1.1 The Linear Response of a Polarizable Point
Particle to Light

In order to model the interaction of a polarizable point particle with harmonic light
fields one generally associates to the particle a scalar polarizabilityχ = χ (ω), which
represents its linear response to the electric light field E. In most cases beyond the
level of a single atom, the polarizability is taken to be a phenomenological frequency-
dependent parameter.2 It determines the induced electric dipole moment d = χE
and the associated Lorentz force [6], F (r, t) = (Re {d} · ∇)Re {E}+μ0Re {∂t d}×
Re {H}. It involves only real physical quantities. The first term represents the net
Coulomb force of the electric field component E (r) acting on the dipole d at posi-
tion r, whereas the second term describes the force exerted by the magnetic field
component H

(
r′) on the associated current density j

(
r′) = ∂t dδ

(
r − r′). We find

that the overall force oscillates rapidly at the given optical frequency, and it is there-
fore expedient to restrict to the time-averaged expression3

〈F (r)〉t =
〈(
Re

{
χE (r) e−iωt

}
· ∇

)
Re

{
E (r) e−iωt

}〉

t

+
〈
μ0Re

{
−iωχE (r) e−iωt

}
× Re

{
H (r) e−iωt

}〉

t

= 1

2
Re

{
χ [E (r) · ∇]E∗ (r)

} + 1

2
Re

{
χE (r) × [∇ × E∗ (r)

]}

= Re {χ}
4

∇ |E (r)|2 − Im {χ}
2

Im
{[∇ ◦ E∗ (r)

]
E (r)

}
. (2.5)

In the absence of absorption,Im {χ} = 0, the average force is conservative, and it can
be written as the negative gradient of the time-averaged dipole interaction potential,

Hint (r) = −1

4
Re {χ} |E (r)|2 . (2.6)

The second term in (2.5) represents the non-conservative radiation pressure force
related to the net absorption of field momentum per time. It appears only in the

(Footnote 1 continued)
mode fields in the waist parameter 1/kw, and additional polarization components must be taken
into account for higher orders.
2 Note that the light-atom interaction can also bemodeled by a complex linear polarizability provided
the light is far detuned from any internal electronic transition and the transition is not strongly driven.
In the latter case the atom’s response saturates at sufficiently high field intensities, as described by
the Jaynes-Cummings model [4, 5].
3 The vector identities [7],

∇ (a · b) = a × (∇ × b) + b × (∇ × a) + (b · ∇) a + (a · ∇) b,

(∇ ◦ b) a = a × (∇ × b) + (a · ∇) b,

might occasionally be useful here and in the following. The dyadic term B = ∇ ◦ b is defined as
the matrix B jk = ∂bk/∂x j .
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case of complex running-wave fields with a directed momentum flux, and it acts
only on particles with a nonzero light absorption cross-section σabs = σabs (ω),
which determines the imaginary part of the complex polarizability χ . We find the
relation σabs = kIm {χ} /ε0 between both parameters by looking at the average
power absorbed by the dipole. It is determined by the average rate of work the field
does on the dipole [7, 8],

Pabs (r) =
〈∫

d3r ′ Re
{
j
(
r′, t

)} · Re
{
E

(
r′, t

)}
〉

t
= 1

2
Re

{
[∂t d (r)]∗ · E (r)

}

= ω

2
Im {χ} |E (r)|2 = σabs I (r) , (2.7)

with I (r) = cε0 |E (r)|2 /2 the local electric field intensity.
Another contribution to the radiation pressure effect on the particle is due to the

Rayleigh scattering of light from the coherent field into free space. The absorption
cross-section σabs is thus complemented by the elastic light scattering cross-section
σsca = k4 |χ |2 /6πε20, as givenby the total radiated power of the oscillating dipole [8],

Psca (r) = ω4

12πε0c3
|d|2 = ck4 |χ |2

12πε0
|E (r)|2 = σsca I (r) . (2.8)

The cross-section σext = σabs + σsca describes the combined extinction of the light
by absorption and Rayleigh scattering. The influence of Rayleigh scattering on the
force (2.5) can usually be neglected for point-like particles of diameter a 
 λ. Since
their polarizability is roughly determined by the volume, χ ∼ a3, the scattering
contribution to the total force is then strongly suppressed by the factor (ka)3 
 1.

The conservative part of the interaction generalizes to the case of a quantum
particle in a straightforward manner; we simply replace the position r by the operator
r and add the dipole potential Hint (r) to the Hamiltonian of the free particle,

HPPP = p2

2m
− Re {χ}

4
|E (r)|2 = p2

2m
+ �U0 |α|2 |u (r)|2 . (2.9)

In the second equation I have introduced the coupling frequency

U0 = − ω

2ε0V
Re {χ} , (2.10)

which represents the single-photon interaction strength or, in the case of a high-
finesse cavity field, the cavity resonance shift due to the presence of the particle. A
full quantum treatment of both light and matter is obtained by replacing |α|2 → a†a
and adding the single-mode Hamiltonian Hf = �ωa†a.

The quantum counterpart of the non-conservative light-matter interaction cannot
be obtained by such simple means as it cannot be expressed in terms of the parti-
cle’s Hamilton operator. We expect that, apart from exerting a net radiation pressure



2.1 Mechanics of Polarizable Point Particles in Coherent Light Fields 13

force, it also contributes a diffusion in momentum space as the particle randomly
absorbs and scatters single photons from the field mode. That is to say, the full quan-
tum dynamics of the particle must be phrased in terms of a Lindblad-type master
equation [9, 10].

2.1.2 Absorption, Emission and Rayleigh Scattering of Photons

Aphysical derivation of the nonconservative radiation pressure forces, of momentum
diffusion and the associated decoherence effects requires a full quantum description
of the coupling to both the coherent light field and the free-space mode vacuum. This
will be given in Sect. 2.2. At this point we take a more intuitive, operational approach
to arrive at the same results based on a formulation in terms of quantum jumps [10].

The absorption, emission, or scattering of single photons can be understood as
a stochastic Poisson process, where the random variable N (t) ∈ N0 denotes the
number of absorbed, emitted, or scattered photons at each point in time t starting
from N (0) = 0. Given a mean rate of events Γ the Poisson process is determined
by the time evolution of the probability P (n, t) of counting a total of n events until
time t ,

d

dt
P (n, t) = Γ [P (n − 1, t) − P (n, t)] , P (n, 0) = δn,0. (2.11)

As time evolves, the number of events increases stepwise by the increment dN (t) =
N (t + dt)−N (t) ∈ {0, 1} in each coarse-grained time step4 dt , with the expectation
value E [dN (t)] = Γ dt .

The binary random variable dN (t) = dN 2 (t) can now be employed in the sto-
chastic time evolution of the quantum state of motion |ψ (t)〉 of a particle absorbing,
emitting or scattering photons at an average rate Γ . Let us suppose that the system
state undergoes the transition |ψ〉 
→ A|ψ〉/〈ψ |A†A|ψ〉1/2 in the case of an event
(which would correspond to a momentum kick in our case), while it evolves coher-
ently under the influence of the Hamiltonian H otherwise. The random trajectory of
the system state is then described by the stochastic Schrödinger equation [10]

d|ψ (t)〉 =
(

− i

�
H + Γ

〈ψ (t) |A†A|ψ (t)〉 − A†A
2

)

|ψ (t)〉dt

+
(

A
√〈ψ (t) |A†A|ψ (t)〉 − 1

)

|ψ (t)〉dN (t) , (2.12)

4 Stochastic differential equations can serve to describe the effective time evolution of open systems
in contact with an environment inducing rapid (uncontrollable) state transitions that cannot be
examined with the coarse-grained time resolution of observation [9]. The transitions thus show up
as random events, or ‘jumps’. Using a Poissonian model we assume single infrequent jumps that
can be clearly distinguished.
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where the antihermitian addition to the coherent time evolution in the first line ensures
norm conservation. An ensemble average over all random trajectories leads to a
master equation for the motional state ρ of the system, which is of the renowned
Lindblad form,

∂tρ = − i

�

[
H, ρ

] + Γ

(

AρA† − 1

2

{
A†A, ρ

})

=: − i

�

[
H, ρ

] + L (ρ) . (2.13)

Additional Lindblad superoperators L appear in the presence of several statistically
independent jump processes influencing the system.

We are left with specifying the rate constants Γ and the jump operators A of the
Lindblad terms that correspond to photon absorption, emission and scattering at a
PPP,

∂tρ = − i

�

[
HPPP, ρ

] + Labs (ρ) + Lemi (ρ) + Lsca (ρ) (2.14)

2.1.2.1 Photon Absorption

Complex polarizabilities represent point-like particles that absorb light. Dividing
the average absorption power (2.7) by the energy of a single photon yields the rate
constant Γabs = Pabs/�ω = γabs |α|2, which can be expressed as a product of the
photon number in the field times the single-photon absorption rate γabs = cσabs/V =
ωIm {χ} /ε0V .

Each absorbed photon modifies the particle momentum state according to the
mode function u (r) of the coherent light field. In the simple case of a plane wave,
for instance, the absorbed photon shifts the particle by �k in momentum space, so
that the jump operator reads as A = exp (ik · r). Different mode structures emerge
when plane waves are reflected and transmitted at particular geometries. We restrict
our view here to modes with a fixed (linear, circular or elliptic) polarization vector,
u (r) = εu (r). The spatial structure of the mode is then contained in the scalar mode
function5 u (r), which can be decomposed into a Fourier sum of polarized plane-
wave components, u (r) = ∑

k uk exp (ik · r). The momentum components uk being
indistinguishable, photon absorption transforms a momentum state |p〉 of the particle
into the superposition state

|p〉 
→
∑

k

uk|p + �k〉 =
∑

k

ukeik·r|p〉 = u (r) |p〉, (2.15)

5 Using a fixed polarization ε (r) = ε is a good approximation in many practical cases such
as Gaussian TEM modes, where position-dependent corrections are negligibly small. A detailed
description of modes with a position-dependent polarization vector is more involved and requires
a specific physical model of the particle’s response during the absorption process. This is because
the orientation of the induced dipole moment then contains information about the position of the
particle in the field mode, which is traced out when only the center-of-mass state is monitored.
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accordingly. The jump operator is thus given by A = u (r), and the corresponding
Lindblad term of photon absorption reads as

Labs (ρ) = γabs |α|2
[

u (r) ρu∗ (r) − 1

2
|u (r)|2 ρ − 1

2
ρ |u (r)|2

]

. (2.16)

Note that this form of the superoperator fully accounts for the local intensity distrib-
ution of the field. If the particle state is localized, say, at the node of a standing-wave
field (2.2), where the mode function vanishes, the Lindblad term will not contribute
to themaster equation of the particle. In contrast, the particle ismost strongly affected
in the antinodes.

From the resulting master equation ∂tρ = −i
[
HPPP, ρ

]
/� + Labs (ρ) we can

deduce the mean force acting on the particle by means of the Ehrenfest theorem. The
timederivative of themomentumoperator expectation value in theHeisenberg picture
should correspond to the expected classical force expression (2.5). A straightforward
calculation (using the commutator identity

[
p, f (r)

] = −i�∇ f (r)) reveals that this
is indeed the case,

∂t 〈p〉 = tr

(

− i

�
p

[
HPPP, ρ

] + pLabs (ρ)

)

= i

�

〈[
Hint (r) , p

]〉 + γabs

2
|α|2 〈[

u∗ (r) , p
]

u (r) + u∗ (r)
[
p, u (r)

]〉

= −�U0 |α|2
〈
∇ |u (r)|2

〉
+ �γabs |α|2 〈

Im
{
u∗ (r)∇u (r)

}〉

= Re {χ}
4

〈
∇ |E (r)|2

〉
− Im {χ}

2

〈
Im

{[∇ ◦ E∗ (r)
]

E (r)
}〉

, (2.17)

with the electric field E (r) = E0εu (r). The absorption superoperator (2.16) repro-
duces the classical radiation pressure force correctly, but it also contributes a diffu-
sion of the particle momentum. The time derivative of the energy expectation value
∂t 〈HPPP〉 becomes non-zero due to the presence of the absorption-induced momen-
tum diffusion,6

∂t 〈HPPP〉 = tr

(
p2

2m
Labs (ρ)

)

= γabs |α|2
4m

〈[
u∗ (r) , p2

]
u (r) + u∗ (r)

[
p2, u (r)

]〉

= �γabs |α|2
m

〈
Im

{
u∗ (r)∇u (r)

} · p
〉 + �

2γabs |α|2
2m

〈
|∇u (r)|2

〉
. (2.18)

The first term is related to the radiation pressure force exerted by directed running
waves; it vanishes in the case of standing-wave modes u (r) ∈ R. The positive
second term is always present, it describes the heating of the particle by momentum

6 Here I have used the identity
[
p2, f (r)

] = −�
2Δ f (r)−2i�∇ f (r)·p = �

2Δ f (r)−2i�p·∇ f (r),
aswell as the fact that themode function by construction solves theHelmholtz equationΔu = −k2u.
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diffusion, and it represents the main quantum correction to the classical derivation
of the non-conservative radiation pressure force.

This raises the question as to whether, or when, the diffusion correction becomes
relevant in practice. Given that the mode function solves the Helmholtz equation
Δu = −k2u we can estimate the magnitude of the gradient by |∇u| ∼ k, which
leads to an energy increase per time of the order of γabs |α|2 �

2k2/2m = Γabs�ωr

due to diffusion. That is, the energy grows at the total absorption rate Γabs in units
of the so-called recoil energy �ωr = �

2k2/2m, or recoil frequency ωr if units of
� are discarded. This diffusion heating must be compared to the rate of change
in potential energy ∼ 2�kvU0 |α|2 when the particle is moving at the velocity v.
The ratio of non-conservative heating to the conservative change in potential energy
γabsωr/2U0kv then scales as the quotient of recoil frequency over Doppler frequency
ωr/kv = �k/2mv—a tiny quantity in many practical cases dealing with fast and
large molecules or clusters.

The diffusion effect becomes relevant in the quantum limit of motion, where
particles are so slow that theirmomentum p = mv becomes comparable to the photon
momentum �k. The minimal kinetic energy a particle can reach in the presence of
the photon field is then given by the recoil energy �ωr . The absorption, emission,
or scattering of photons induces a random walk in momentum space and thereby
prevents the particle from reaching even lower velocities.

A purely classical treatment of the radiation pressure forces may suffice far above
the quantum limit as long as decoherence is of no concern. On the other hand, if
the particle is prepared in a nonclassical state of motion, the Lindblad superoperator
(2.16) accounts for the coherence loss due to photon absorption.

2.1.2.2 Photon Emission into Free Space

The discussed absorption model eventually runs into constraints once the total
absorbed photon energy during the time scale of the experiment reaches a critical
level where it significantly modifies or destroys the internal structure of the particle
such that the linear response regime breaks down.

On the other hand, an internally hot or excited particle may gradually reduce its
internal energy by fluorescence or thermal emission of radiation, which results in a
similar diffusion and decoherence effect as in the absorption process. The associ-
ated Lindblad term can be modeled as a random unitary process [11]. Each emitted
photon with a wave vector k exerts a momentum kick of −�k onto the particle,
as described by the unitary transformation Uk = exp (−ik · r). Given the spectral
emission rate γemi (ω) and the normalized angular distribution R (n) of the emitted
radiation,

∫
|n|=1 d

2n R (n) = 1, the Lindblad term reads as

Lemi (ρ) =
∞∫

0

dω γemi (ω)

[∫
d2n R (n) e−iωn·r/cρeiωn·r/c − ρ

]

. (2.19)
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While the details on the radiation spectrum γemi (ω) and pattern R (n) depend on the
nature of the emission process, we should certainly expect that there is no preferred
direction of emission,

∫
d2n R (n) n = 0. This is fulfilled in the case of an isotropic

radiation pattern, R (n) = 1/4π . As a consequence, the emission process does
not contribute another net force term to (2.17), but it naturally contributes to the
momentum diffusion effect,

〈
p2Lemi (ρ)

〉
=

∞∫

0

dω γemi (ω)

(
�ω

c

)2

, (2.20)

as well as to decoherence. For instance, nondiagonal elements in the position repre-
sentation decay like

〈r|Lemi (ρ) |r′〉 = −
∞∫

0

dω γemi (ω)

[

1 −
∫

d2n R (n) exp

(

−iωn · r − r′
c

)]

〈r|ρ|r′〉

(2.21)
due to emission. The decay saturates at the maximum rate Γemi = ∫

dω γemi (ω) for
nondiagonal elements that are further apart than the spectrumof emittedwavelengths.
We can distinguish between three types of emission spectra:

• Fluorescence Some species of excited molecules or clusters may get rid of their
excess energy by emitting a fluorescence photon, which typically happens within
nanoseconds after the excitation [12]. The emission spectrum is expected to be
narrow, but it is often red-shifted with respect to the excitation energy due to fast
internal relaxation before reemission. In fact, these energy conversion processes
may be so efficient that the particle hardly fluoresces at all. One generally observes
a low quantum yield of fluorescence Pfluo 
 1 in a variety of complex organic
molecules whichmay even absorb energies beyond the ionization threshhold emit-
ting neither an electron nor a fluorescence photon [13, 14]. Such particles then
simply heat up internally and will cool down slowly by thermal radiation.

• Thermal radiation of a hot particle Large and hot particles with many internal
degrees of freedom can be regarded as a (microcanonical) heat bath of fixed energy
[15]. Neglecting small corrections due to the finite number of excited degrees of
freedom (finite heat capacitance CV < ∞), we may approximate the particle as a
canonical heat bath at a temperature T that is much higher than the temperature T0
of the environment. The particle can thus freely emit photons into the essentially
unoccupied free-space radiation field, at a rate given by the spectral free-space
mode density, the frequency-dependent photon absorption (and emission) cross-
sectionσabs (ω) and aBoltzmann factor relating the internal density of states before
and after the emission of �ω [16],

γemi (ω) = ω2σabs (ω)

π2c2
exp

(

− �ω

kB T

)

. (2.22)
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If thermal emission is to be observed over a long period of time the gradual
temperature decrease must be taken into account, which may also impact the
absorption cross section.

• Blackbody radiation in thermal equilibrium The radiation spectrum changes
if the particle and the environment are in thermal equilibrium, T = T0. We may
then approximate the particle as a blackbody radiator with an aperture given by its
photon absorption cross section, and the emission spectrum is of the well-known
Planck form

γemi (ω) = ω2σabs (ω)

π2c2

[

exp

(
�ω

kB T

)

− 1

]−1

. (2.23)

The particle becomes a colored body if finite-size corrections are taken into
account [16].

2.1.2.3 Elastic Light Scattering into Free Space

The effect of Rayleigh scattering on the particle can now be understood as a combi-
nation of photon absorption from the coherent light field followed by a reemission
of the same energy into free space. Hence, the net momentum transfer of a single
scattering event is described by applying the mode function operator u (r) times the
unitary operator exp (−ik · r) on the particle state, with |k| = k the wave number
of the original light mode. Averaging over all possible scattering directions (in the
same way as in the emission case (2.19)) yields the Lindblad term

Lsca (ρ) = γsca |α|2
[∫

d2n R (n) u (r) e−ikn·rρeikn·ru∗ (r) − 1

2

{
|u (r)|2 , ρ

}]

,

(2.24)
with the single-photon scattering rate γsca = ck4 |χ |2 /6πε20V . The Rayleigh scat-
tering pattern of the PPP is that of a radiating dipole [8], R (n) = 3 sin2 θ/8π , where
θ denotes the angle of n with respect to the polarization direction ε of the electric
field (and therefore of the induced dipole).

Rayleigh scattering contributes to both the radiation pressure force and the
momentum diffusion effect. The former has the same form as the absorption term in
(2.17), as is immediately understood by viewing a scattering event as a subsequent
absorption and emission process. The latter does not induce any net force since there
is no preferred direction of emission,

∫
d2n R (n) n = 0.

In summery, we find that the total non-conservative radiation-pressure part of the
force on a PPP reads as

Fnc = 〈p [Labs (ρ) + Lsca (ρ)]〉 = � (γabs + γsca) |α|2 〈
Im

{
u∗ (r)∇u (r)

}〉
.

(2.25)
It complements the conservative force from the optical potential, Fc = −�U0 |α|2〈∇ |u (r)|2〉. Both the absorption and the reemission part of the scattering process
induce momentum diffusion,
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〈
p2Lsca (ρ)

〉
= �γsca |α|2

〈
2Im

{
u∗ (r)∇u (r)

} · p + � |∇u (r)|2 + �k2 |u (r)|2
〉
.

(2.26)
The total increase of kinetic energy due to absorption, emission and elastic light
scattering then becomes

∂t 〈HPPP〉 =� (γabs + γsca) |α|2
2m

〈
2Im

{
u∗ (r) ∇u (r)

} · p + � |∇u (r)|2
〉

+ �
2k2 |α|2
2m

γsca

〈
|u (r)|2

〉
+

∞∫

0

dω

2m
γemi (ω)

(
�ω

c

)2

. (2.27)

The emission part can be safely neglected in the presence of strong coherent fields,
|α|2 � 1, and the scattering part is only relevant if the particle does not absorb
considerably at that particular wavelength.

In the course of this work, I will focus on two main types of applications of the
developed formalism, corresponding to two distinct interaction regimes between the
PPP and the strong coherent light field:

• Cavity-assisted motion control The non-conservative nature of the light-matter
coupling can be exploited to dissipatively manipulate and slow down themotion of
hot and free-flying polarizable particleswhile they interactwith the strong coherent
field inside a high-finesse optical cavity. This requires sufficiently long interaction
times, as compared to the time scale of the cavity field dynamics. I will present
a basic classical assessment of the general effect in the next Sect. 2.1.3, before
turning to a more rigorous quantum model in Sect. 2.2, and before I generalize the
description to objects beyond the point-particle approximation in Sect. 2.3.

• Diffraction elements for matter-wave interferometry Coherent light fields act
as beam splitters and optical diffraction elements for matter-waves of polarizable
particles in the limit of short interaction times (i.e. passage times through the field
mode). Modern-day interference experiments with molecules and clusters [17]
rely on the coherent part of the light-matter interaction to create optical gratings
for matter-waves, while the non-conservative part of the interaction plays only a
minor role in these applications. I will discuss in Sect. 2.1.4 how light fields can
coherently modulate the phase or the amplitude of matter-waves of polarizable
particles. This effect will be an essential ingredient in the general assessment of
matter-wave interferometry in Chap.3 of this thesis.

2.1.3 Classical Dynamics of a Polarizable Point Particle Coupled
to a Strongly Pumped Cavity Mode

Both the conservative and the non-conservative light forces can be employed to
dissipate kinetic energy of a PPP when it is coupled to the retarded dynamics of a

http://dx.doi.org/10.1007/978-3-319-07097-1_3
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Fig. 2.1 Sketch of the experimental situation when a polarizable point particle (PPP) passes a
standing-wave Fabry-Pérot cavity pumped by a strong laser field through one of the cavity mirrors.
The steady-state amplitude of the cavity is determined by the pump rate η, the cavity decay rate κ ,
and the detuning Δ between the cavity resonance and the pump laser frequency. The PPP couples
coherently to the intra-cavity field through the single-photon coupling frequency U0, and it may
also scatter or absorb cavity photons at the total extinction rate γext

high-finesse optical resonator. Off-resonant cavity-assisted slowing is a well-studied
effect [18–20] (so far only observed in experiments with atoms [21–24]), whose
potential lies in its applicability to arbitrary polarizable particles without the need to
address a distinct internal level structure [1, 25].

To begin with, let me present the cavity-assisted slowing effect by the example of
a PPP inside an ideal Fabry-Pérot standing-wave cavity. A sketch of the geometry
is given in Fig. 2.1. For the time being, I shall restrict the view to a classical one-
dimensional treatment of the particle motion, assuming that it stays far above the
quantum limit of motion (where momentum diffusion would have a strong impact)
and that we may neglect weak light forces perpendicular to the standing-wave direc-
tion due to the finite-size intensity profile f (x, y) of the cavity mode.7

2.1.3.1 Intra-Cavity Field Dynamics

The field dynamics is comprised of the pump laser power Pin leaking through the
mirrors into the Fabry-Pérot resonator and the power loss Pout leaking out. In the

7 In this approximation, the intensity profile merely limits the interaction time between the field
mode and the PPP traversing the cavity volume.
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steady-state situation when no particle is present, the net power flow must cancel,
Pin = Pout (assuming other scattering losses at the mirrors are negligible). The
description of the field dynamics is based on the simple differential equation

∂tα (t) = −iωcα (t) + ηe−iωP t − κα (t) . (2.28)

It complements the harmonic oscillation of the intra-cavity field amplitude α (t) at
its resonance frequency ωc by the input term η exp (−iωP t) and the output term
−κα (t). The former represents the driving of the amplitude by a strong pump laser
at frequency ωP that leaks into the resonator volume at a rate η. The latter represents
the loss of field amplitude due to the finite reflectivity of the mirrors. Equation (2.28)
describes a harmonically driven damped oscillator, where the steady-state amplitude

αss (t) = η

κ + iΔ
e−iωP t (2.29)

oscillates at the driving frequency ωP . The steady-state intensity, proportional to
|αss |2 = |η|2 /

(
κ2 + Δ2

)
, has a Lorentzian shape as a function of the detuning

Δ = ωc − ωP between cavity resonance and pump frequency, with κ the cavity
linewidth. For far detuned driving frequencies, |Δ| � κ , the cavity volume inside the
Fabry-Pérot mirror geometry is impenetrable, and the pump field is totally reflected
on the outside. On resonance, Δ = 0, the cavity becomes perfectly transmissive,
and the intra-cavity field energy assumes its maximum Ef = �ωP |η|2 /κ2. The
transmitted power is obtained by decomposing the standing-wave field into two
running-wave components; only the forward-directed part can be transmitted. This
amounts to 50% of the intra-cavity amplitude, or 25% of the intra-cavity intensity,
which leaks out at the rate κ , or 2κ , respectively. The fully transmitted input power
thus reads as Pin = Pout = 2κ Ef/4 = �ωP |η|2 /2κ , which determines the pump
rate η up to an arbitrary phase by |η| = √

2κ Pin/�ωP .

2.1.3.2 Coupled Cavity-Particle Dynamics

Inserting a PPP into the cavitymode volumemodifies the steady-state field amplitude
by detuning the cavity resonance frequency and by introducing an additional damping
channel. The detuning scales with the single-photon coupling frequency U0 of the
particle, and it is accounted for by adding the dipole interaction potential Hint (r)
from Eq. (2.6) to the field Hamiltonian. The additional damping is given by the
combined photon absorption and scattering rate of the particle, γext = γabs + γsca;
the field amplitude decays at half this rate. One usually formulates the resulting
field evolution equation in a rotating frame, which removes the fast oscillation at the
optical pump frequency ωP from the much slower particle-field dynamics [26],

∂tα (t) = − (iΔ + κ) α (t)+η−
(

iU0 + γext

2

)
α (t) | f (x, y)|2 cos2 kz (t) . (2.30)
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Fig. 2.2 Trajectories of a model particle along the standing wave of a Fabry-Pérot cavity for
positive (blue, bottom curve) and negative (red, top curve) cavity-pump detuning,Δ = ±κ . The left
and the right panel depict the particle’s position and velocity, respectively. Natural, cavity-related
units are used. The simulation is based on Eqs. (2.30) and (2.31), using the parameters η = 103κ ,
U0 = −0.1κ , γext = 0, ωr = 10−6κ . We assumed an initial velocity of kvz = 0.5κ . While the red
trajectory is constantly accelerated, the blue trajectory is slowed until trapping occurs after about
100 cavity lifetimes

The motion of the particle along the cosine pattern of the standing wave is then
governed by the z-component of the dipole force (2.5),

∂2t z (t) = 2�k

m
U0 |α (t) f (x, y)|2 sin kz (t) cos kz (t)

= 2ωr U0

k
|α (t) f (x, y)|2 sin 2kz (t) . (2.31)

There is no radiation pressure force in the standing-wave case. The two coupled
differential equations (2.30) and (2.31) describe the one-dimensional particle-cavity
dynamics in the classical limit if transverse light forces are neglected. For a particle
traversing the cavity we can introduce a finite time window of the interaction by
setting x = x0 + vx t and y = y0 + vyt .

Figure 2.2 depicts two simulated trajectories of a model particle moving along the
central z-axis of a pumped standing-wave cavity (x = y = 0). The upper (red) and
lower (blue) trajectories correspond to a negative and positive detuning Δ between
the cavity and the laser, respectively. In both cases we observe a sinusoidal velocity
modulation as the particle moves along the periodic optical potential of the standing-
wave cavity field. Indeed, if the cavity field α were not modified by the presence
of the particle, Eq. (2.31) would describe the oscillatory motion of a mathematical
pendulum.

On a time scale larger than the cavity reaction time 1/κ , the trajectories exhibit a
gradual decrease (blue, bottom curve) or increase (red, top curve) in velocity, which
cannot be explained by the conservative dipole force. In the former case, the particle
is eventually trapped in the optical potential, and its total energy becomes negative. Its
velocity then oscillates between negative and positive values as it bounces between
the walls of the standing-wave potential.
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It is the delayed reaction of the cavity to the particle that is responsible for the
effective dissipation (or heating) of the kinetic energy. This effect establishes the
basis of potential cavity-induced slowing and trapping methods for molecules, clus-
ters and other polarizable objects. In the following I will study this effect in more
detail, including also an assessment of its strength and applicability under realistic
conditions.

2.1.3.3 Estimated Friction Force

The characteristics of the dissipation effect are best studied in a first order approxi-
mation of the delayed reaction of the cavity to themoving particle. For this we expand
the field amplitude α (t) = α0 (t) + α1 (t) into the modified steady-state term

α0 (t) = η

κ + iΔ + (
iŨ0 + γ̃ext/2

)
cos2 kz (t)

=: η

Ω (t)
, (2.32)

which would be the solution if the field adjusted instantaneously to the current posi-
tion z (t) of the particle, and the term α1 (t) incorporating the corrections due to the
finite reaction time scale of the cavity. Here I have absorbed the transverse coor-
dinates into the coupling parameters Ũ0 = U0 | f (x, y)|2, γ̃ext = γext | f (x, y)|2.
Neglecting again their time dependence, we find that the correction term evolves
according to

∂tα1 (t) = η
∂tΩ (t)

Ω2 (t)
− Ω (t) α1 (t) , (2.33)

which can be formally solved by applying the same expansion procedure iteratively,
α1 (t) = η∂tΩ/Ω3 + α2 (t) etc. Let us, however, stop the iteration at the first order
correction term, α1 (t) ≈ η∂tΩ (t) /Ω3 (t), neglecting all higher-order delayed reac-
tion contributions. This is valid if the particle does not couple too strongly to the cavity
andmoves slowly along the standingwave profile so that the field amplitude can keep
up. In other words, the approximation holds for coupling frequenciesU0 andDoppler
frequencies kv smaller than the parameters κ and Δ which determine the reaction
time scale of the cavity. The approximate field amplitude now also depends on the
velocity v (t) = ∂t z (t) of the particle,

α (t) ≈ η

Ω (t)

[

1 − kv (t)

Ω2 (t)

(

iŨ0 + γ̃ext

2

)

sin 2kz (t)

]

, (2.34)

which results in a velocity-dependent force when inserted into the equation ofmotion
(2.31). Looking only at the friction force term that is linear in velocity, Fv = mβv,
we find as the approximate friction coefficient
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β = −ωr

∣
∣
∣

η

Ω3

∣
∣
∣
2
sin2 2kz

[
8κΔŨ 2

0 + 2
(
κ2 − Δ2

)
Ũ0γ̃ext

+2κŨ0

(
γ̃ 2
ext + 4Ũ 2

0

)
cos2 kz + Ũ0γ̃ext

(
γ̃ 2
ext + 2Ũ 2

0

)
cos4 kz

]
. (2.35)

Only the first two terms in the square brackets can change their sign by varying the
detuning Δ. Given that most polarizable particles in question are high-field seeking,
U0 < 0, and that γext is small, we observe that a negative friction coefficient β is
obtained for positive detuning Δ > 0. That is to say, dissipative slowing requires
the pump laser to be red-detuned with respect to the cavity resonance, whereas a
blue-detuned laser will always lead to the opposite effect.

The basic physical picture underlying the slowing effect is sketched in Fig. 2.3.
Suppose the pump laser is red-detuned to the steep flank of the Lorentzian cavity
resonance line, Δ ∼ κ , and the particle moves towards the antinode of the intra-
cavity standing-wave field. As it enters the high-insensity region its potential energy
decreases immediately, and it speeds up until it reaches the potential minimum at the
antinode. At the same time, the particle shifts the cavity resonance towards the laser
frequency, thereby effectively decreasing the detuning Δ and increasing the field
intensity. This leads to a slightly delayed lowering of the optical potential ‘valley’,
while the particle is already moving out of the minimum and up the potential ‘hill’,
which is now higher than it was when the particle came in. Hence, if the cavity delay
matches the particle’s velocity, kv < κ , the latter must on average climb up more
than it falls down, gradually losing kinetic energy.

Are the simulated results comparable to a realistic scenario? I list the light coupling
parameters of different polarizable particles in Table 2.1. The selection covers a mass
range of 9 orders of magnitude between a single lithium atom and a gold nanosphere.
The coupling parameters are evaluated for a standing-wave cavity operating at the
IR wavelength λ = 1.56µm with κ = 1MHz linewidth, which is pumped at the
detuning Δ = −κ by a laser of Pin = 1W continuous-wave power. These rather
demanding parameters should be feasible using a resonator geometry with 25mm
curved mirrors that are positioned at L = 1mm distance [27].8 By pumping a
Gaussian TEM00 mode with a waist of w = 40µm it should be possible to achieve
a mode volume as small as V = π Lw2/4 = 0.0013mm3, which trumps our earlier
estimates for the light-matter coupling parameters in [1] by orders ofmagnitude. This
leads to considerable friction rates

∣
∣β

∣
∣, as given by the position-averaged expression

(2.35). The latter predicts an average dissipation of the z-velocity on a time scale
∼ 1/

∣
∣β

∣
∣. Within the boundaries of the above model, the obtained values that can

be as small as a few nanoseconds for the heaviest nanoparticles in the table. Being
100 nm large in diameter, these are at the top end of the point particle regime; the

8 A cavity linewidth of 1MHz corresponds to a so-called cavity finesse parameter F = πc/2κL ≈
5×10−5. The latter is related to the reflectivity R of bothmirrors via the relation F = π

√
R/ (1 − R)

in the absence of additional losses in the resonator [28]. The suggested cavity setup requires 1− R ≈
7 × 10−6.
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Fig. 2.3 Schematic energy diagram of Fabry-Pérot cavity and particle for two different particle
positions (red and green circles). The initial detuning of the pump laser to the red side flank of
the cavity resonance line (Δ = ωc − ωP > 0) facilitates a dissipative slowing effect. A high-field
seeking particle moving from a node (red circle) to an antinode (green circle) of the standing wave
is accelerated due to the change in optical potential. In addition, it tunes the cavity resonance closer
to the pump frequency, thereby lowering its own optical potential. As the latter effect lags behind
due to the finite reaction time of the cavity, the particle must climb up a steeper potential hill, and
gradually loses kinetic energy, when moving towards the next field node

description of larger objects will be discussed in Sect. 2.3. Moreover, a more rigorous
quantum treatment of the dissipative slowing effect in the limit of weakly coupling
point particles will be discussed in detail in Sect. 2.2.

2.1.4 Optical Gratings for Matter-Waves

Having discussed the classical long-time dynamics of a PPP in the presence of a
(classical) strong cavity field I now turn to quite the opposite regime: The short-time
effect of strong coherent fields on the propagation of PPP matter-waves. Rather than
trying to explicitly solve the time evolution in the presence of the field, I am going
to adhere to the scattering picture and implement the short presence of the field as
a scattering event that transforms an incoming matter-wave state ρ to an outgoing,
scattered state ρ′ = S (ρ).

The coherent standing-wave (or running-wave) light field in question shall be
generated by a strong laser that is (or is not) retroreflected off a mirror (rather than
by a driven high-finesse resonator mode, as in the previous section). The laser may
either be shortly pulsed 9or continuous, in which case we shall assume the particle to
be fast in traversing the light mode. This regime provides the means to employ light

9 Since thewavelength of the laser is required to be sufficientlywell defined for the present purposes,
ultrashort pulses with a broad frequency spectrum are excluded here.
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Table 2.1 Coupling parameters between the standing-wave field of an IR high-finesse cavity (λ =
1.56µm, κ = 1MHz, V = 0.0013mm3) to various polarizable (high-field seeking) particles
ranging from a single lithium atom to nanospheres of 50 nm radius

Particle m (amu) ωr (Hz) |U0| (Hz) γabs (Hz) γsca (Hz)
∣
∣β

∣
∣ (Hz)

Li 7 7.4 × 104 0.14 – 3.0 × 10−10 1.2 × 104

C60 720 715 0.50 2.4 × 10−4 3.6 × 10−9 1.4 × 103

He1000 4,000 129 1.2 – 2.1 × 10−8 1.5 × 103

Li1000 7,000 74 33 0.59 1.6 × 10−5 6.4 × 105

(SiO2)1000 60, 000 8.6 18 1.4 × 10−10 4.4 × 10−6 2.1 × 104

Au1000 197,000 2.6 25 0.19 9.2 × 10−6 1.3 × 104

SiO2 sphere 6.9 × 108 7.4 × 10−4 2.0 × 105 1.6 × 10−6 592 2.9 × 108

Si sphere 7.3 × 108 7.1 × 10−4 5.9 × 105 – 5.1 × 103 3.2 × 109

Au sphere 6.1 × 109 8.5 × 10−5 7.8 × 105 5.8 × 103 8.8 × 103 6.9 × 108

The dielectric functions of bulk lithium (ε = −50.41+7.55i), gold (ε = −91.49+10.35i), silicon
(ε = 12.05) and silica (ε = 2.1+ 6× 10−12i) are used to estimate the cluster parameters [29, 30].
Their polarizabilities are given by the standard formula [31], χ = 4πε0R3 (ε − 1) / (ε + 2), with
R = 3

√
3m/4π� the sphere radius and � the bulk mass density. The polarizability of C60 is taken

from [32], and the static value per atom is used for the Li atom and the He droplet [33, 34]. We
neglect the absorption of the IR-transparent particles. The position-averaged friction coefficient β

is evaluated at the cavity-laser detuning Δ = κ

fields as diffractive elements in matter-wave interferometry, as will be discussed in
the following with a focus on the Viennese near-field interference experiments with
molecules and clusters [17].

2.1.4.1 Coherent Grating Interaction

In the absence of photon absorption and Rayleigh scattering the interaction between
the laser field and the particle is entirely coherent. That is to say, the impact of the
short field presence on the quantum state of motion can be described by a unitary
scattering transformation S (ρ) = SρS†, S†S = I. An explicit form is obtained in
the basis of plane wave states by the renowned eikonal approximation [35–37],

〈r|p〉 
→ 〈r|S|p〉 = exp

⎡

⎣− i

�

∞∫

−∞
dt Hint

(

r + pt

m

)
⎤

⎦ 〈r|p〉, (2.36)

with Hint (r) = −Re {χ} |E (r)|2 /4 the optical dipole potential of the particle in
the field. The approximation holds in a semiclassical high-energy limit where the
classical action associated to the motion of the particle over the course of the short
interaction time exceeds by far the eikonal action integral over the optical potential in
(2.36) [37]. The transformation describes a coherent phase modulation of incoming
matter-waves. In the case of a standing-wave field, E (r) = E0ε f (x, y) cos kz, it
constitutes a one-dimensional periodic phase grating.
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In practice, one can employ an even simpler form of the transformation that acts
only on the reduced one-dimensional state of motion along the z-axis, thus omitting
the generally weak modulation effect in the x- and y-direction due to the transverse
mode profile f (x, y). Moreover, if the velocities vz constituting the state of motion
of the particle are sufficiently small,10 we may take the position distribution on the
z-axis to be at rest during interaction time. We arrive at the transformation rule

〈z|ψ〉 
→ exp
(

iφ0 cos
2 kz

)
〈z|ψ〉 (2.37)

for any state vector |ψ〉 for the one-dimensional z-motion of the particle that complies
with the above constraints. This longitudinal eikonal approximation is commonly
used to describe thin optical transmission gratings in matter-wave interferometry
[38–40], and it will be presumed throughout the remainder of the manuscript. I
refer the reader to [36, 37] for an exhaustive study of semiclassical corrections to
the eikonal approximation. The eikonal phase factor φ0 is obtained by integrating
the interaction potential over the intensity profile of the laser. We distinguish two
implementations regarding the interferometry of large molecules and clusters:

• Kapitza-Dirac Talbot-Lau interferometer (KDTLI) The KDTLI setup is a
three-grating near-field interferometer where the interference effect is related to
the periodic phase modulation at the central grating, a standing laser wave [40].
A collimated beam of fast molecules traverses the three-grating geometry along
the x-axis, and it is aligned in such a way that it crosses the laser grating centrally
and (almost) perpendicular to the standing-wave z-axis.11 This is made possible
by using a cylindrical lens system to narrow the laser spot (down to a few tens
of microns) in the direction of flight x , while keeping a large waist (of roughly
one millimeter) along y. We may thus assume that the collimated molecule beam
passes the laser grating in the xz-plane, setting y ≈ 0. The phase factor (2.37)
then reads as

φ0 = Re {χ} |E0|2
4�

∞∫

−∞

dx

v
f 2 (x, 0) , (2.38)

10 To bemore concrete, the travelled distance vzτ during the interaction period τ between the particle
and the field must be small compared to the laser wavelength, |vzτ | 
 λ. Given the reduced one-
dimensional quantum state of motion ρz , the condition should cover its entire velocity distribution
〈mvz |ρ|mvz〉.
11 Note that the direction of the grating is commonly referred to as the x-axis in the interferometry
literature, whereas the standing wave is directed along z in the present notation, which is conven-
tionally used in the description of light scattering at spherical particles. I will resort to the x-notation
in Chap.3.

http://dx.doi.org/10.1007/978-3-319-07097-1_3
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assuming a fixed longitudinal velocity v of the molecules.12 Assuming a Gaussian

intensity profile f (x, y) = exp
(
−x2/w2

x − y2/w2
y

)
with waist parameters wx,y

and an input laser power PL , we find [40]

φ0 = 4
√
2πRe {χ} PL

hcε0vwy
. (2.39)

Given molecular velocities of the order of 100m/s and an x-waist of wx = 20µm
each molecule spends less than a microsecond in the laser grating. It can travel not
more than 100 nm along the grating axis during that period, as the molecule beam
is typically collimated to a fewmilliradians opening angle. Hence, the longitudinal
eikonal approximation is well justified.

• Optical time-domain ionizing Talbot-Lau interferometer (OTITLI) The
OTITLI13 is a Talbot-Lau setup in the time domain where the gratings are gen-
erated by three short laser pulses, which are retroreflected off a mirror [41]. A
small cloud of nanoparticles flying alongside the mirror surface illuminated this
way may be ionized in the antinodes of the pulses; they play the role of the thin
transmission gratings of a regular Talbot-Lau setup. The phase modulation in each
pulse is given by

φ0 = 4πRe {χ} EL

hcε0aL
(2.40)

if we assume that the particle ensemble is always well localized in the center of
focus, f (x, y) ≈ f (0, 0) = 1, when illuminated by grating laser pulses of suf-
ficiently large spot size aL = ∫

dxdy f 2 (x, y) (or a flat-top shaped spot profile).
The pulse energy EL = ∫

τ
dt PL (t) is obtained by integrating the laser power

over the temporal pulse shape of length τ . Again, the eikonal expression (2.37) is
only valid if the particles are approximately at rest over the pulse duration τ . The
present experimental realization of the OTITLI setup in the Vienna group oper-
ates with vacuum-ultraviolet (VUV) laser pulses of τ � 10 ns at a wavelength of
λ = 157 nm. The particle velocities therefore must be restricted to below 10m/s
in z-direction by means of collimation, for instance.

The general working principle of Talbot-Lau interferometry will be discussed in
detail in Chap. 3. There I will show how the periodic phase modulation at a standing-
wave grating leads to matter-wave interferograms. A full assessment of thin optical
gratings, however, must also account for non-conservative effects, most prominently,
photon absorption.

12 A realistic description of the molecular beam state involves a broad distribution of velocities v,
and the resulting φ0-dependent interferogram must be averaged accordingly.
13 Also referred to as OTIMA: optical time-domain ionizing matter-wave interferometer.

http://dx.doi.org/10.1007/978-3-319-07097-1_3
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2.1.4.2 Amplitude Modulation by Means of Optical Depletion Gratings

The absorption of light from an optical standing-wave grating does not necessarily
imply the loss of matter-wave coherence. The latter can be avoided (or suppressed)
if the absorption of one or more photons removes the particle from the interfering
ensemble present in the experiment. Depending on the internal properties of the par-
ticles and the selectivity of the detection scheme with respect to these properties, the
removal can in principle be achieved by the ionization, fragmentation, isomerization,
excitation, or simply internal heating, that may be triggered by the deposited photon
energy. Consequently, the particle ensemble is depleted in the antinodes, whereas
nothing happens in the nodes of the standing-wave grating. The resulting periodic
modulation of the matter-wave amplitude renders the standing laser wave an opti-
cal generalization of a material diffraction mask, with the nodes representing the
apertures and the antinodes representing (semi-transmissive) walls of the grating.

Optical depletion gratings of this kind have been used in atom interferometry
[42], where the absorption of a single photon induces an internal state transition
and the atoms are post-selected according to their energy level in the detector. The
experimentalists working on the OTITLI setup in the Vienna lab make use of photon-
induced ionization to generate depletion gratings from VUV laser pulses,14 as the
energy of a single UV photon exceeds the ionization threshold of most molecular
and atomic cluster particles.

Let me now describe the action of an optical depletion grating on thematter-waves
interacting with the standing-wave field, in analogy to material diffraction masks.
An ideally thin one-dimensional diffraction grating, where the slits are periodically
arranged along the z-axis, is described by a periodic aperture function P (z), which
can only take the values zero (wall) or one (opening). Given an incomingmatter-wave
state ψ (z) = 〈z|ψ〉 we find the density distribution of particles behind the grating
to be P (z) |ψ (z)|2. That is to say, the grating transformation modulates the matter-
wave state by the square root of the transmission probability,ψ (z) 
→ √

P (z)ψ (z),
up to a prefactor that accounts for the renormalization of the state vector.

In the case of a thin optical depletion grating, the transmission probability P (z)
may take any value between zero and one, depending on the local standing-wave
intensity (with P (z) = 1 at the nodes of the standing wave). Including also the phase
modulation effect (2.37) due to the dipole interaction, as discussed in the preceding
section, we can introduce a complex transmission function t (z) to describe the full
modulation of the matter-wave state,

〈z|ψ〉 
→ √
P (z) exp

(
iφ0 cos

2 kz
)

〈z|ψ〉 =: t (z) 〈z|ψ〉. (2.41)

The density operator ρ transforms as ρ 
→ t (z) ρt∗ (z). Using a Poissonian model
for the photon absorption, as discussed in Sect. 2.1.2, and following the same argu-
ments as for the phase modulation, we can express the transmission probability in

14 The ionized particles are in practice removed from the ensemble with the help of a constant
electric field applied to the interferometer setup.
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terms of the mean number of absorbed photons, n (z) = n0 cos2 kz. In the case of
fast particles crossing a stationary thin laser beam of power PL , the value n0 at the
antinodes reads as

n0 = 8σabsPLλ√
2πhcvwy

, (2.42)

and in the case of illumination by a short laser pulse of energy EL as

n0 = 4σabsELλ

hcaL
. (2.43)

When a single absorbed photon suffices to remove a particle from the ensemble (e.g.
by ionization) the transmission probability can be written as the Poisson probabil-
ity p0 (z) of zero absorption, P (z) = p0 (z) = exp [−n (z)], and the transmission
function becomes

t (z) = exp
[(

−n0

2
+ iφ0

)
cos2 kz

]
. (2.44)

In the inverted situation, where it is the non-absorbing particles that are removed
from the ensemble, we arrive at

tinv (z) =
√
1 − exp

(−n0 cos2 kz
)
exp

(
iφ0 cos

2 kz
)

. (2.45)

More generally, one could also conceive situations where the depletion threshold is
reached by absorbing N ormore independent photons, inwhich case the transmission
function reads as

tN (z) =
√√
√
√

N−1∑

n=0

1

n!
(
n0 cos2 kz

)n exp
[(

−n0

2
+ iφ0

)
cos2 kz

]
. (2.46)

Here one must be careful with using the simple Poissonian model of absorption.
The latter is only meaningful when subsequent absorption events can be regarded
as statistically independent, and it ceases to be valid when the internal state and the
absorption cross-section σabs of the particle are noticeably modified by each absorp-
tion. Moreover, one must also take into account the photon momenta transferred to
all those particles that did not absorb enough photons to be removed.

2.1.4.3 Momentum Transfer by Absorption and Scattering

Any full description of optical elements, which are not based on single-photon deple-
tion,must include themomentum transfer due to the possible absorption andRayleigh
scattering of laser photons. This generally comes with the loss of matter-wave coher-
ence, an unwanted side-effect in optical gratings. For instance, it would be inexpe-
dient to try interfering strongly absorptive molecules in a KDTLI setup, where the
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purpose of the laser grating is to modulate coherently the phase of the matter-waves.
On the other hand, for most polarizable subwavelength particles the inevitable coher-
ence loss due to Rayleigh scattering is usually a negligible effect in the short-time
interaction regime relevant for interferometry at optical gratings.

Absorption

I presented a model of the absorption-induced momentum transfer in Sect. 2.1.2.1.
In accordance with the longitudinal eikonal approximation for the coherent grating
transformation, let me omit any action of the Lindblad term (2.16) on the transverse
motion in the fieldmode. This results in the effective one-dimensional transformation

Labs (ρ) = Γabs (t)

[

cos (kz) ρ cos (kz) − 1

2

{
cos2 (kz) , ρ

}]

(2.47)

of the quantum state ρ ofmotion along the standing-wave axis z. The time-dependent
rate term relates to the mean number of absorbed photons n0 = ∫

dt Γabs (t) through
an integration over the transverse laser beam profile in a co-moving frame along
the particle trajectory, Eq. (2.42), or over the temporal shape of the laser pulse,
Eq. (2.43). The above part of the master equation can be explicitly integrated in the
position representation 〈z|ρ|z′〉, which amounts again to omitting motion during the
interaction time,

〈z|eLabstρ|z′〉 = exp

[

−n0

(
cos2 kz

2
+ cos2 kz′

2
− cos kz cos kz′

)]

〈z|ρ|z′〉

= exp

[

−2n0 sin
2
(

k
z + z′

2

)

sin2
(

k
z − z′

2

)]

︸ ︷︷ ︸
=:Rabs(z,z′)

〈z|ρ|z′〉. (2.48)

The decohering effect is evident: All nondiagonalmatrix elements are damped except
for z − z′ = nλ, the strongest effect occuring between nodes and antinodes.15

In the position representation the transformation simply reduces to a multiplica-
tion of the density matrix by the positive decoherence function 0 < Rabs

(
z, z′) ≤ 1.

Recalling that the coherent grating transformation also contributes a mere multipli-
cation by t (z) t∗

(
z′) in this representation, we are allowed to combine both factors to

obtain the overall grating transformation 〈z|ρ|z′〉 
→ t (z) t∗
(
z′)Rabs

(
z, z′) 〈z|ρ|z′〉.

Scattering

The Rayleigh scattering of photons into free-space discussed in Sect. 2.1.2.3, no
matter howweak in practice, can be incorporated in the samemanner. Tracing out the
transverse part of the motion, the reduced one-dimensional version of the scattering
Lindblad term (2.24) reads as

15 This is intuitively clear since the absorption of a photon reveals the information that the particle
is not located at a node. On the other hand, the photon cannot distinguish two positions z and z′,
which differ by an integer multiple of the wavelength.
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Lsca (ρ) = Γsca (t)

[∫
d2n R (n) cos (kz) e−iknzzρ cos (kz) eiknzz − 1

2

{
cos2 (kz) , ρ

}]

= Γsca (t)

[∫
dΩ

3 sin2 θ

8π
cos (kz) e−ik sin θ sin ϕzρ cos (kz) eik sin θ sin ϕz

−1

2

{
cos2 (kz) , ρ

}
]

. (2.49)

Note that the solid angle integration over the dipole radiation pattern R (n) =
3 sin2 θ/8π must be performed on a sphere with its poles oriented along the polar-
ization ε of the electric light field, which is perpendicular to the z-axis. The explicit
expression for the decoherence function becomes,16

ln
[Rsca

(
z, z′)] + nsca

cos2 kz + cos2 kz′

2

= nsca
3 cos kz cos kz′

8π

∫
dΩ sin2 θeik(z′−z) sin θ sin ϕ

= nsca
3 cos kz cos kz′

2

π/2∫

0

sin3 θdθ J0
(
k

(
z′ − z

)
sin θ

)

= 3nsca cos kz cos kz′ sin k
(
z′ − z

) − j1
(
k

(
z′ − z

))

2k (z′ − z)
. (2.50)

Here, nsca gives the mean number of scattered photons in the antinodes. It is obtained
from the expressions (2.42) and (2.43) by replacing the absorption cross section
with σsca.

A slightly different and somewhat simpler result would be obtained if the particle
scattered the light isotropically, a frequently used simplification,

Rsca,iso
(
z, z′) = exp

{

−nsca

[
cos2 kz + cos2 kz′

2
− cos kz cos kz′ sinc k

(
z′ − z

)
]}

.

(2.51)
In most cases relevant for interferometry, however, the mean number of scattered
photons is negligibly small, nsca 
 1, and one may omit the Rayleigh scattering
effect alltogether.

16 Imade use of the integral representation of theBessel function
∫ 2π
0 dϕ exp (iξ sin ϕ) = 2π J0 (ξ),

as well as of the integral identity [43]

π/2∫

0

dθ J0 (β sin θ) sin θ cos2r+1 θ = 2r β−1−r Γ (r + 1) Jr+1 (β) ,

with r = ±1/2 and theGamma functionΓ (3/2) = √
π/2 = 2Γ (1/2). The identity leads naturally

to spherical Bessel function expressions jn (β) = √
π/2β Jn+1/2 (β), where j0 (β) = sincβ.
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Taking both the absorption and the scattering effect into account, the overall
matter-wave state transformation at an optical standing-wave grating becomes

〈z|ρ|z′〉 
→ t (z) t∗ (z)Rabs
(
z, z′)Rsca

(
z, z′) 〈z|ρ|z′〉. (2.52)

We note that the present absorption and scattering transformations are based on an
elementary Markovian model where the laser mode is linearly coupled to an initially
cold reservoir of free-space vauum modes (in case of scattering) and of internal
degrees of freedom of the particle (in case of absorption). In particular, the model
accounts for the correct momentum state of a standing-wave photon, a superposition
of two counter propagating plane waves, which is coherently transferred to the par-
ticle upon absorption. This improves the probabilistic argument presented in [40],
where the absorption of standing-wave photons is implemented as a purely classical
binary random walk with 50% chance to be kicked by +�k or −�k.

This classical model is indistinguishable from the present treatment in the case
of photon absorption from a running-wave field, say, directed into the positive
z-direction. The corresponding Lindblad term is then of random unitary type,
Labs (ρ) = Γabs

[
exp (ikz) ρ exp (−ikz) − ρ

]
, and the quantum state of motion

transforms as

〈z|ρ|z′〉 
→ exp
{
−n0

[
1 − eik(z−z′)

]}
〈z|ρ|z′〉 = e−n0

∞∑

n=0

nn
0

n! 〈z|e
inkzρe−inkz′ |z′〉

≡ 〈z|
∞∑

n=0

pnUnρU†
n|z′〉. (2.53)

This expression is a probabilistic sum of unitary momentum kick transformations
Un = exp (inkz), which also follows from a classical Poissonian ansatz.

2.2 Quantum Mechanics of Polarizable Point Particles
in High-Finesse Cavities

The preceding study of polarizable point particles interacting with coherent light
fields has lead to a first assessment of cavity-induced slowing in Sect. 2.1.3, where
both the PPP motion and the field were treated classically, and to the description
of optical diffraction gratings of PPP matter-waves in Sect. 2.1.4, where the strong
coherent field remained a classical degree of freedom.

Letmenowproceedwith a full quantum treatment of both the light and the particle,
a necessary prerequisite to assess the diffusive and dissipative effects arising from
the coupling between a PPP and one or more driven or empty high-finesse cavity
modes. A rigorous derivation of the friction and diffusion parameters in the presence
of one strongly driven pump mode will be given in the weak-coupling limit where
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the particle-induced field fluctuations are small. This assumption of weak coupling
holds true for many subwavelength molecules and clusters, which do not exhibit
a distinct internal resonance that could be addressed by the cavity light. Table 2.1
lists several examples where the rate U0 defined in Eq. (2.10), at which the particle
may induce field shifts, is by orders of magnitude smaller than realistic decay rates
κ ∼ 1MHz of optical high-finesse cavities.

This does not mean, however, that it is a lost cause to study the dynamics of
weakly coupling particles in a cavity. I will show how a large coherent driving
field can effectively enhance the coupling to the empty cavity modes by orders of
magnitude. The weak coupling model, as presented in the following, will then admit
a systematic assessment of the main dissipative effects of the enhanced coupling.
In particular, we will find that the cavity-induced friction force increases with each
empty cavity mode that is accessible for the pump light—a potential application
for confocal resonator geometries with a large spectrum of degenerate modes. The
presented results have been published in [1].

2.2.1 Quantum Model of a PPP Coupled to Multiple
Cavity Modes

I start by quantizing the light-matter interaction model of Sect. 2.1 for the generic
configuration of one particle in the presence of M empty cavity modes and one
strongly driven pump mode, which provides the necessary field input to enhance the
coupling of the PPP with the cavity. In practice, one of the cavity modes can play the
role of the pump mode when driven by a strong mode-matched laser. An alternative
two-dimensional implementation is sketched in Fig. 2.4, where the pump field is
generated in a different (free laser or driven cavity) mode oriented perpendicularly
to the empty cavity axis. This configuration may be favourable in practice, as it
avoids a strong dipole force along the cavity axis as well as the need for selective
single-mode driving of a (possibly degenerate) multimode cavity.

The described configuration is characterized by the following parameters:

• The driving field is described by the steady-state pump amplitude α (in the absence
of the particle) andby the pump frequencyωP . The latter serves as the fast reference
frequency, and I will switch to the corresponding rotating frame to describe the
field dynamics of all other modes.

• The behaviour of each field mode (including the pump) is determined by its detun-
ing Δn = ωn −ωP with respect to the pump frequency, its decay rate κn , its mode
function un (r), and its mode volume Vn = ∫

d3r |u (r)|2, where n = 0, 1, . . . , M ,
and n = 0 is representing the pump mode. The field polarization vectors are omit-
ted by assuming the same polarization throughout.17

17 The coupling strength between fields of different polarizations through a PPP may vary, most
notably if the particle is described by a tensorial polarizability. I omit this additional modulation of
the coupling for simplicity.
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Fig. 2.4 Sketch of an exemplary two-dimensional mode configuration with a strongly driven field
mode u0 directed along the y-axis and amultitude of M empty standing-wave cavitymodes un along
the z-axis (adapted from [1]). In the overlapping region, a particle of polarizability χ redistributes
photons between the modes thereby inducing dissipation. Each mode is damped by the rate κn and
detuned by Δn with respect to the driving field. The latter generates a steady-state amplitude α in
the absence of the particle

• The particle of mass m P is described by a scalar polarizability χ , which leads to
the effective coupling frequencies Umn = −√

ωnωm/Vn VmRe {χ} /2ε0 between
the nth and the mth mode.

2.2.1.1 Quantum Description of a Driven Cavity Mode

Before introducing the coupling to the particle, I first translate the classical descrip-
tion of a driven high-finesse cavity mode in Sect. 2.1.3.1 into the quantum picture.
Here Imake use of the canonical field quantization procedure [44–46] and replace the
coherent field amplitude and its complex conjugate by the annihilation and creation
operators in the expressions for the physical fields,

E (r, t) 
→
√
2�ω0

ε0V0
a0εu0 (r) , H (r, t) 
→ −ic

√
2�

μ0ω0V0
a0∇ × εu0 (r) .

(2.54)

This results in the free field Hamiltonian H0 = �ω0

(
a†
0a0 + 1/2

)
, where the con-

stant term is dropped for convenience. In order to describe a driven cavity mode
one must include the driving field leaking into the cavity and the losses leaking out.
Both effects are covered by a linear coupling model, where the exchange of field
amplitude with an external mode b is described by a coupling Hamiltonian of the
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form18 ∝ a0b† + h.c. That is, the coupling of the modes can be understood as an
exchange of single photons between the field states.

Based on this physical picture wemay pin down the loss and driving terms heuris-
tically. The cavity field loss can be seen as a random and uncontrolled elimination
of photons as they escape through the cavity mirrors or by scattering into free space
at a total rate 2κ0. In mathematical terms, this is well modelled by a Poisson jump
process of the same type as in (2.13), with the jump operator given by the photon

annihilator a0, Lloss (ρ) = κ0

(
2a0ρa†

0 −
{
a†
0a0, ρ

})
.

The same linear description can be applied to the driving by the mode b of a
strong laser illuminating the cavity mirror. The quantum representation of a strong
coherent laser field is given in terms of coherent states [45]

|β〉 = D (β) |0〉 = e−|β|2/2
∞∑

n=0

βn

√
n! |n〉 = exp

(
βb† − β∗b

)
|0〉, (2.55)

with β the complex field amplitude and |β|2 the mean photon number. Coher-
ent states are defined as displaced vacuum states, and they are the eigenvectors
of the annihilation operator, b|β〉 = β|β〉. Mimicing the behaviour of classical
monochromatic light fields they oscillate harmonically at the laser frequency ωP ,
|β (t)〉 = exp

(−iωP tb†b
) |β〉 = |β exp (−iωP t)〉. They can be understood as the

vacuum state in a displaced and rotating frame.19 In the classical limit |β| � 1 the
vacuum field fluctuations around the displacement amplitude are small compared to
|β|, and we may substitute the laser mode operator b by β exp (−iωP t) (assuming
there is no relevant backaction of the cavity field onto the state of the driving laser).
The driving Hamiltonian thus assumes the formHpump (t) ∝ β∗ exp (iωP t) a0+h.c.
We get rid of the time dependence by switching to a frame rotating at the optical
pump frequency ωP , introducing the cavity-pump detuning Δ0 = ω0 − ωP and the
effective pump rate η. This leaves us with the master equation for the field state of a
driven cavity mode,

∂tρ = −i
[
Δ0a

†
0a0 + iηa†

0 − iη∗a0, ρ
]

+ κ0

(
2a0ρa†

0 −
{
a†
0a0, ρ

})
. (2.56)

The quantum expectation value of the field amplitude evolves in the same way as the
classical version (2.28),

18 The form is easily obtained by adding the quantized physical fields (2.54) of the modes a0 and b
to an overall electric and magnetic field. When the corresponding field energy density is integrated
over the volume in (2.4) the cross terms between both modes yield the above linear coupling
Hamiltonian. Terms of the form a0b and a†

0b are omitted in the rotating wave approximation [45],
since they oscillate rapidly at twice an optical frequency, ωP +ω0, and thus do not affect the actual
mode coupling.
19 A rotating frame is defined through the unitary state transformationU (t) = exp

(
iωP

∑
n a†

nan

)
,

with ωP the corresponding rotation frequency. Given the quantum state ρ (t) of a system of
field modes {an} in the Schrödinger picture, the state in the rotating picture reads as ρ′ =
U (t) ρ (t) U† (t). Analogously, a displaced frame is defined via the unitary displacement opera-
tor, ρ′ = D† (β) ρD (β). Field observables are displaced as D† (β) bD (β) = b + β.
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∂t 〈a0〉 = − (iΔ0 + κ0) 〈a0〉 + η. (2.57)

It is then straightforward to show that the coherent state ρss = |α〉〈α| is the steady-
state solution of the above master equation for the same steady-state amplitude
α = η/ (κ0 + iΔ0) as in the classical case. An elegant and convenient way to
incorporate the driving is to work with quantum states in the displaced frame,
ρ 
→ ρα = D† (α) ρD (α), where the steady-state amplitude shifts the state of
the mode from |α〉〈α| to the ground state 
→ |0〉〈0|. The resulting master equation,

∂tρα = −i
[
Δ0a

†
0a0, ρα

]
+ κ0

(
2a0ραa†

0 −
{
a†
0a0, ρα

})
, (2.58)

does not contain the explicit driving term anymore, and the field operator a0 now
represents the quantum field fluctuations on top of the coherent steady state.

Derivation of the loss term

Note that the non-Hamiltonian loss term in the master equation (2.56) can also be
derived using a standard textbook approach [9, 47]. For this let us couple the cavity
mode linearly to a bath of harmonic oscillators, Henv = ∑

j �ω j b
†
j b j . It represents

the environmental vacuumofmodes,which canbepopulatedby aphoton escaping the
cavity.We shall assume a linear coupling termof the formHint = ∑

j �g j a0b
†
j +h.c.,

with g j the effective photon exchange rates between cavity and environment. The
coupled dynamics of the combined state ρSE (t) of system and environment is most
conveniently assessed in the interaction frame, ρSE,I (t) = U (t) ρSE (t) U† (t), with
U (t) = exp

[
i (H0 + Henv) t/�

]
. A formal integration and re-insertion of the von

Neumann equation yields the integro-differential equation for the combined state,

∂tρSE,I (t) = − i

�

[
HI (t) , ρSE,I (0)

] − 1

�2

t∫

0

dτ
[
HI (t) ,

[
HI (τ ) , ρSE,I (τ )

]]
,

(2.59)
where

HI (t) = U (t) HintU† (t) =
∑

j

�g j e
i(ω j −ω0)t a0b

†
j + h.c. (2.60)

We obtain a closed equation for the reduced cavity state ρI = trE
(
ρSE,I

)
by tracing

out the environment and subsequently applying the so-called Born approximation:
The cavity leaves the environment practically unaffected at all times, ρSE,I (t) ≈
ρI (t)⊗|vac〉〈vac|. Every photon that espaces disperses almost immediately, and the
cavity is thus effectively surrounded by vacuum20 on all relevant time scales.We find

20 Optical frequencies in the environmental mode spectrum are practically unoccupied even at finite
temperatures. I thus use the zero-temperature vacuum state here, since the cavity only couples to
modes of similar frequencies.
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∂tρI (t) = − 1

�2

t∫

0

dτ trE
([

HI (t) ,
[
HI (t − τ) , ρI (t − τ) ⊗ |vac〉〈vac|]])

=
∑

j

t∫

0

dτ
∣
∣g j

∣
∣2 e−i(ω j −ω0)τ

{
a0ρI (t − τ) a†

0 − a†
0a0ρI (t − τ)

}
+ h.c.

(2.61)

Next we can apply the Markov approximation: The environment shall not memorize
the cavity state at earlier times and the time evolution equation shall become time-
local. That is to say, we may set ρI (t − τ) ≈ ρI (t) and integrate up to infinity. This
is formally justified if the cavity field couples to a sufficiently broad frequency range
such that

∑
j

∣
∣g j

∣
∣2 exp

[
i
(
ω0 − ω j

)
τ
] ≈ κδ (τ ) and

∂tρI (t) ≈ κ
[
2a0ρI (t) a†

0 − a†
0a0ρI (t) − ρI (t) a†

0a0

]
. (2.62)

The desired master equation (2.56) follows by combining this with the above driving
term of a classical coherent laser field.

2.2.1.2 A Particle, a Driving Laser, and a Handful of Empty Cavity Modes

With the quantum model of a driven cavity mode at hand we can now collect all
ingredients to model the system of a single pump mode, M empty cavity modes and
a PPP, as sketched in Fig. 2.4. It will be expedient to work in a frame rotating at
the optical frequency ωP of the driving laser, with the pump mode displaced by the
steady-state amplitude α. This results in a master equation term of the above form
(2.58) for each of the M + 1 modes.

The presence of a polarizable particle comes with an additional Hamiltonian rep-
resenting the optical potential, aswell aswith scattering and absorption contributions,
which couple the motion of the particle to the field degrees of freedom. We obtain
directly the optical potential term by quantizing the electric field expression E (r)
in the PPP Hamiltonian (2.9). However, we must bear in mind that the electric field
is now given by a sum of all M cavity modes plus the displaced pump mode. This
results in the total particle Hamiltonian

HPPP =

=:HP︷ ︸︸ ︷
p2

2m P
+ �U00 |αu0 (r)|2 +

=:HI︷ ︸︸ ︷
M∑

n=0

�U0n

[
αa†

nu∗
n (r) u0 (r) + h.c.

]

+
M∑

k,n=0

�Ukna†
naku∗

n (r) uk (r) . (2.63)
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Thefirst termHP describes the particlemotion in the steady-state dipole potential, the
second term HI represents the pump-enhanced linear coupling of the particle to the
field fluctuations in each cavity mode, and the remainder represents the inter-mode
coupling, which also causes the position-dependent resonance shift of the modes.

The above Hamiltonian must be complemented by the field energy term in the
displaced and rotating frame, HC = ∑

n �Δna†
nan . The free fields are thus included

via the superoperator

LC (ρ) = −i
M∑

n=0

Δn

[
a†

nan, ρ
]

+
M∑

n=0

κn

(
2anρa†

n −
{
a†

nan, ρ
})

. (2.64)

It describes the field evolution in the absence of the particle. In addition, the time
evolution of the combined state of cavity and particle contains another two field loss
terms Labs and Lsca due to absorption and scattering,

∂tρ = − i

�

[
HPPP, ρ

] + LC (ρ) + Labs (ρ) + Lsca (ρ) . (2.65)

Both cause additional coupling between the particlemotion and the field fluctuations.
The explicit formof these terms is found by combining the original expressions (2.16)
and (2.24) for a classical field with the above derivation of the Lindblad term (2.62),
which represents the incoherent loss of single field quanta. Keeping the displacement
of the pump mode in mind, we arrive at

Labs (ρ) =
M∑

n=0

cσabs
Vn

[
(an + αδn0) un (r) ρ (an + αδn0)

† u∗
n (r)

−1

2

{
(an + αδn0)

† (an + αδn0) |un (r)|2 , ρ
}]

, (2.66)

Lsca (ρ) =
M∑

m=0

cσsca
Vm

[

(am + αδm0) um (r)
∫

d2n R (n) e−ikn·rρeikn·ru∗
m (r)

× (am + αδm0)
† − 1

2

{
(am + αδm0)

† (am + αδm0) |um (r)|2 , ρ
}]

.

(2.67)

Thermal or fluorescent photon emission from the particle into free space is neglected,
as well as internal heating of the particle due to photon absorption.21 In the following
I will simplify the overall master equation (2.65) to the case of weak coupling.

21 Practical implementations of the present cavity dissipation scheme are restricted to non-absorbing
particle species. The typically large pump field intensities might otherwise lead to the destruction
of the particle.
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2.2.2 Eliminating the Quantum Field Dynamics in the Weak
Coupling Limit

With the quantum model of the coupled cavity-particle dynamics at hand, I will now
assess the general effect of the dynamical quantum field on the motion of the PPP.
The goal is to find an effective description of the reduced particle state by eliminating
the explicit field dynamics. We should expect that such a separation can formally be
achieved only in the limit of weak coupling between the particle and the field. I will
therefore introduce two weak coupling assumptions which will facilitate a low-order
expansion of the coupling effect. Although the resulting model will be strictly valid
under those assumptions only, wemight retain its qualitative predictions even beyond
the weak coupling limit.

2.2.2.1 The First Weak-Coupling Assumption

I assume that the coupling rates of the polarizable particle to the modes are signif-
icantly smaller than the mode damping rates, |Umn| 
 κn ∀m, n. This means that
the particle-induced cavity field fluctuations are limited to a few photons, as they
typically escape the cavity much faster than they can be redistributed by the particle.
The strong pump amplitude |α| � 1 then represents the only potential source of
large photon numbers that may populate empty modes through coherent scattering
at the particle. We may thus omit those coupling terms in the Hamiltonian (2.63)
which are of second order in the field fluctuations, HPPP ≈ HP + HI .

Secondly, if we extend the above weak-coupling assumption for the coherent
inter-mode scattering rates to the rates of photon absorption and Rayleigh scattering,
we may approximate the Lindblad terms (2.66) and (2.67) as

Labs (ρ) ≈ γabs |α|2
[

u0 (r) ρu∗
0 (r) − 1

2

{
|u0 (r)|2 , ρ

}]

, (2.68)

Lsca (ρ) ≈ γsca |α|2
[∫

d2n R (n) u0 (r) e−ikn·rρeikn·ru∗
0 (r) − 1

2

{
|u0 (r)|2 , ρ

}]

.

(2.69)

The terms γabs,sca = cσabs,sca/V0 denote the absorption and the Rayleigh scattering
rate with respect to the pump mode volume V0. According to our assumption, both
the absorption and the scattering rate must be small compared to the cavity decay
rates, and we can safely neglect their contribution to the particle-cavity dynamics.
We are left with the momentum diffusion caused by the absorption and scattering of
pump photons in (2.68) and (2.69); the only relevant non-conservative contributions
to the model, apart from the cavity damping terms in LC .

The first weak-coupling assumption simplifies considerably the quantum descrip-
tion of cavity and particle at almost no costs. In fact, the assumption is very well
fulfilled in practice by a wide range of nanoparticles, as can be seen from the exem-
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plary Table2.1. Using infrared light it remains valid up to a mass of roughly 108 amu.
The quantum description of the weakly coupling system splits into the two separate
superoperators LC and LP (ρ) = −i

[
HP , ρ

]
/� +Labs (ρ) +Lsca (ρ) acting solely

on the cavity and particle subspace, respectively. The coupling of both subsystems
is mediated by the effective interaction Hamiltonian

HI =
M∑

n=0

�U0nαa†
nu∗

n (r) u0 (r) + h.c. (2.70)

It resembles the standard linear couplingHamiltonian, butwith a coupling rate |U0nα|
enhanced by the strong pump field α. In principle, this allows a weakly coupling
particle to enter the strong coupling regime |U0nα| � κn with the help of a sufficiently
strong pump laser.Note that it requires only one drivingmode to enhance the coupling
of the particle to all the othermodes that overlapwith the pump field. However, cavity
modes with a large detuning Δn cannot be addressed in practice, given that their
oscillating amplitude an averages out in the interaction Hamiltonian. What counts
are degenerate or near-degenerate resonator modes with a detuning of the order of
the cavity linewidth. Only they contribute to the interaction. I will analyze the benefit
of a large degenerate mode spectrum for cavity-induced cooling in Sect. 2.2.3.4.

While previous weak-coupling approaches towards the cavity-induced slowing of
atoms [48] did not yet consider the pump enhancement (because it was not necessary
there), it is a practiced technique in the field of optomechanics [49] to reach the
strong coupling regime [50, 51]. There, however, the interaction is restricted to a
single oscillatory degree of freedom of a rigid system such as a mirror or membrane.
It is typically coupled to a single driven cavity mode a0, and a low-order expansion
of the respective mode function u0 (r) around the equilibrium value of the oscillator
yields the standard optomechanical interaction Hamiltonian [52].

The pump enhancement facilitates the strong coupling of a weakly interacting
nanoparticle to high-finesse cavity modes. It thus has the potential of inducing a
substantial dissipative slowing effect.Wehave seen this already in the simple classical
model calculation in Sect. 2.1.3.1, and I will study the strong coupling regime further
in Sect. 2.3.3. On the other hand, an effective master equation for the reduced particle
state can only be derived by adiabatically eliminating the cavity degrees of freedom.
This requires an even stronger assumption.

2.2.2.2 The Second Weak-Coupling Assumption

I now assume in addition that even the pump-enhanced coupling rates are small
compared to the decay rates of all relevant cavity modes, |U0nα| 
 κn ∀n. In other
words, any excitation of the cavity field will always leak out much faster than it
can be built up by the in-mode scattering of pump photons off the particle. As a
consequence, the M cavity modes (and the pump mode) will remain empty (relative

to the pump displacement) at almost all times,
〈
a†

nan

〉

 1.
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Obviously, the second weak-coupling assumption represents a very restrictive
condition, which one should be anxious to violate in actual experiments in order to
achieve a significant slowing effect. Still, I make the assumption here to define an
effective quantum description of the particle motion under the dissipative influence
of the cavity. It will provide us with a clear and rigorous understanding of the origin
of cavity-induced friction and diffusion effects. Judging from complementary semi-
classical treatments and numerical simulations [48, 53], we should expect the basic
features and qualitative behaviour of those effects to remain valid in a strong-coupling
regime where our effective quantum model will break down.

In the following I derive the effectivemaster equation for the reduced particle state
by employing the projection formalism [54–56]. For this letmedefine a superoperator
P as the projection of the combined cavity-particle state on the cavity ground state in
the displaced frame,Pρ = trC (ρ)⊗|vac〉〈vac|. The complementary projection shall
be denoted byQ = id−P . As both superoperators represent orthogonal projections
in operator space (P2 = P , Q2 = Q and PQ = QP = 0), the master equation
∂tρ = −i

[
HI , ρ

]
/� +LC (ρ) +LP (ρ) can be divided into two coupled equations

for Pρ and Qρ with help of the following relations:

• Both superprojectors P and Q commute with the master equation term LP , that
is, PLP = LPP = PLPP and QLP = LPQ = QLPQ. The reason is that the
projectors act solely on the field degrees of freedom, whereas LP operates on the
particle subspace.

• The relation LCP = 0 is obviously true since P singles out the cavity vacuum
state.

• The flipped relation PLC = 0 holds as well since LC is restricted to the cavity
subspace and traceless by construction, tr (LCρ) = trC (LCρ) = 0.

• It follows immediately from the previous two points thatQLC = LCQ = QLCQ.
• The relation PLIP = 0, with LI (ρ) = −i

[
HI , ρ

]
/�, can easily be verified by

plugging in the explicit form of the coupling Hamiltonian (2.70) and noting that
〈vac|HI |vac〉 = 0.

Putting everything together we arrive at the coupled equations

∂tPρ (t) = PLPPρ (t) + PLIQρ (t) , (2.71)

∂tQρ (t) = Q (LP + LC )Qρ (t) + QLIPρ (t) + QLIQρ (t) . (2.72)

The initial conditions at time t = 0 shall be given by the initial state ρP (0) of the
particle and the steady state of the cavity system, Pρ (0) = ρP (0) ⊗ |vac〉〈vac| and
Qρ (0) = 0. The second weak-coupling assumption will now form the basis of three
steps of approximation that will finally lead to a closed equation for Pρ (t) and for
the reduced particle state ρP (t) = 〈vac|Pρ (t) |vac〉.

Recall that any particle-induced field excitations in the weak-coupling limit are
assumed to decay before they can add up or disperse over the system of modes. The
state of the cavity is thus well approximated by the vacuum at almost all times, and
the component Qρ can be regarded as a small correction to the full quantum state
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ρ = Pρ +Qρ. This component will only be occupied at the effective coupling rates
|U0nα| via the termQLIPρ in (2.72), while the termQLCQρ causes it to decay on
a much faster time scale of the order of the cavity lifetimes 1/κn . The assumption
|U0nα| 
 κn allows us to neglect the ‘second order’ term QLIQρ, which would
describe the back-action of persistent field excitations on the particle. The remainder
can be formally integrated respecting the initial condition Qρ (0) = 0,

Qρ (t) =
t∫

0

dτ Qe(LC +LP )(t−τ)QLIPρ (τ) . (2.73)

Inserting this into Eq. (2.71), we arrive at a closed integro-differential equation for
the vacuum component,

∂tPρ (t) = PLPPρ (t) +
t∫

0

dτ PLIQe(LC +LP )(t−τ)QLIPρ (τ)

= LPPρ (t) +
t∫

0

dτ PLI e(LC +LP )τLIPρ (t − τ) , (2.74)

which depends on the whole past trajectory of Pρ. The integral represents the small
correction to the particle state evolution in the absence offieldfluctuations.A standard
way of converting the above expression to a time-local differential equation is to
expand it as Pρ = Pρ0 +Pρ1 + . . . using the following iteration process: First one
formally solves the time-local equation in the absence of the integral term to obtain
the zeroth order solution Pρ0 (t) = exp [LP (t − t0)]Pρ0 (t0). This is then plugged
into the correction term to obtain an equation for the first-order term Pρ1, which is
again solved in the absence of the next-order correction, and so forth. Here we are
only interested in the lowest order, which leaves us with the equation

∂tPρ (t) ≈ LPPρ (t) +
t∫

0

dτ PLI eLC τ eLP τLI eLP (t−τ−t0)Pρ (t0) , (2.75)

with t0 > 0 an arbitrary initial time. I have separated the time evolution under LC

and LP since the superoperators commute as they act on distinct subsystems.
Unfortunately, we are now running into trouble when we try to make this equation

time-local by setting t0 = t . Temporal inversion of the particle evolution LP is not
allowed due to the non-unitary contributions Labs,sca of absorption and Rayleigh
scattering, which increase the entropy of the particle state by diffusion.

Fortunately, we can generally neglect the non-unitary parts when the weak-
coupling conditions hold. This is because the past-trajectory integral in (2.75)
involves only time periods τ of the order of the cavity lifetimes 1/κn as the rapid
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cavity decay term in exp (LCτ) suppresses the coupling termLI . During that period,
absorption and scattering events changing the particle momentum in units of �k
occur at the rates γabs,sca |α|2. We can safely ignore them if they do not modify the
particle’s momentum m Pv = 〈|p|〉 too much,

γabs,sca |α|2
κn

∣
∣
∣
∣
2ωr

kv

∣
∣
∣
∣ 
 1 ∀n. (2.76)

As once again illustrated in Table 2.1 typical nanoparticles (in the absence of strong
internal resonances close to the laser frequency) exhibit scattering and absorption
rates smaller than their respective coupling frequencies. The weak-coupling limit
thus implies γabs,sca |α| 
 |U0α| 
 κn . At the same time, the massive molecules
and nanoparticles of interest feature sub-kHz recoil frequencies ωr = �k2/2m P

when interacting with infrared light. This must be compared to Doppler frequencies
of kv ∼ 4MHz � ωr at rather low velocities of v ∼ 1m/s; such slow particles are
still orders of magnitude away from the quantum limit of motion.

Moreover, given that the integral in (2.75) is restricted by the integrand to times
τ � 1/κn , we can replace the upper integral bound by infinity. This leaves us with
the time-local equation

∂tPρ (t) ≈
⎡

⎣LP +
∞∫

0

dτ PLI eLC τLI (τ )

⎤

⎦Pρ (t) , (2.77)

where LI (τ ) represents the von Neumann commutator with the back-in-time-
evolved coupling Hamiltonian

HI (τ ) = e−iHP τ/�HI eiHP τ/� =
M∑

n=0

�U0nαa†
nu∗

n (r, p; τ) u0 (r, p; τ) + h.c.,

(2.78)

un (r, p; τ) = un

(

exp

[
ip2τ

2m P�
+ iU00 |αu0 (r)|2 τ

]†
r exp

[
ip2τ

2m P�
+ iU00 |αu0 (r)|2 τ

])

.

(2.79)

2.2.2.3 Effective Time Evolution of the Reduced Particle State

The time-local expression (2.77) is now easily turned into an effective time evolution
equation for the reduced particle state ρP (t) = trC [ρ (t)],
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∂tρP (t) = 〈vac|∂tPρ (t) |vac〉 = − i

�

[
HP , ρP (t)

]

− 1

�2

∞∫

0

dτ trC
{[

HI , eLC τ
[
HI (τ ) , ρP (t) ⊗ |vac〉〈vac|]

]}
. (2.80)

The free evolution underLC and the trace over the cavity subsystem can be performed
straightforwardly,22

∂tρP (t) = LPρP (t) −
M∑

n=0

|U0nα|2 ([
u∗
0 (r) un (r) , gnρP (t)

] + h.c.
)
. (2.81)

Here I introduce the so-called memory operators

gn =
∞∫

0

dτ e−(κn+iΔn)τ u∗
n (r, p; τ) u0 (r, p; τ) . (2.82)

They collect the particle-induced coupling between the pump field and the cavity
modes over a short period of time before the present time t . In other words, they
represent the delayed reaction of each cavity mode to the position of the particle
that continuously scatters pump light into them. The delay, or memory time scale, is
determined by the damping rate κn and the detuning Δn of each mode.

Once again, we can approximate the past trajectory of sufficiently fast particles by
neglecting the influence of the optical potential on short time scales. We may follow
the same line of argument as in the case of absorption and Rayleigh scattering. The
optical dipole potential of a standing-wave pumpmode23 can be viewed as a coherent
backscattering process of pump photons within the mode and at the rate U00 |α|2. As
each backscattering event transfers 2�k of momentum to the particle, we find that
the optical potential is negligible in the limit of

∣
∣
∣
∣
∣
U00 |α|2

κn

4ωr

kv

∣
∣
∣
∣
∣

 1 ∀n. (2.83)

If this is the case we can explicitly write

22 Applying the interaction Hamiltonian to the vacuum state leads to nondiagonal elements of the
form |1n〉〈vac|, with |1n〉 = a†

n |vac〉 a single-excitation multimode Fock state. One can easily show
that these nondiagonals evolve like exp (LC t) |1n〉〈vac| = exp (−κnt − iΔnt) |1n〉〈vac|.
23 Running-wave modes do not exhibit a wavelength-scale oscillatory intensity pattern. Their influ-
ence on the particle through the optical potential is considerably weaker.
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gn ≈
∞∫

0

dτ e−(κn+iΔn)τ u∗
n

(

r − pτ

m P

)

u0

(

r − pτ

m P

)

. (2.84)

The memory operators then average the inter-mode coupling over an approximately
straight particle trajectory reaching a few mode lifetimes into the past. Note that the
above condition (2.83) is only relevant for a standing-wave pumpmodedirected along
the axis of the other cavity modes. In an orthogonal configuration with a running-
wave pump field, as depicted in Fig. 2.4, the optical dipole force merely scales with
the transverse pump laser profile.24

I will discuss in the following section that the delay effect is responsible for cavity-
induced friction forces and the potential slowing of the particle. It vanishes in the
limit of far-detuned or bad cavity modes, when the field fluctuations can follow the
moving particle almost instantaneously. This happens in the limit of |kv| 
 κn, |Δn|,
as the Doppler frequency determines the rate at which the particle-induced coupling
changes during motion. We may then approximate gn ≈ u∗

n (r) u0 (r) / (κn + iΔn)

leaving us with the completely positive Lindblad-type master equation

∂tρP = − i

�

[

HP −
M∑

n=0

�Δn |U0nα|2
κ2

n + Δ2
n

|u0 (r) un (r)|2 , ρP

]

+ LabsρP + LscaρP

+
M∑

n=0

κn |U0nα|2
κ2

n + Δ2
n

[
2u∗

n (r) u0 (r) ρP u∗
0 (r) un (r) −

{
|u0 (r) un (r)|2 , ρP

}]
.

(2.85)

Apart from the addition to the Hamiltonian, it features a positive Lindblad term,
which is form-equivalent to the Rayleigh scattering term (2.69). Bad cavity modes
simply act as an additional diffusion channel for the particle. On the other side, even
good cavity modes will result in a mere momentum diffusion when the particle is
sufficiently slow.

2.2.3 Semiclassical Description of Friction and Diffusion

Based on the effective evolution equation (2.81) and the memory operator (2.84) for
a particle in the presence of a strongly driven pump and M empty cavity modes, I
will formulate the resulting dissipative dynamics using a semiclassical phase-space
picture.

To keep things simple and clear let me trace out the particle’s xy-motion and
resort to a one-dimensional version of the present model along the z-axis of the

24 Condition (2.83) would be alleviated by a factor kw 
 1 in the case of a Gaussian profile with
waist w.
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standing-wave modes of the cavity, un (x, y, z) 
→ fn (x, y) un (z). This is where a
moving particle can cause the fastest field modulation and the most delayed reaction
by the cavity. Dissipative effects, and indeed any field-induced forces on the particle,
are expected to be much weaker in the xy-directions, given that the transverse mode
profiles of the cavity fn (x, y) extend over much more than a wavelength. To be
concrete, the delayed cavity-backaction on the transverse motion is negligible for
velocities

∣
∣vx,y/wn

∣
∣ 
 κn,Δn , with wn the characteristic transverse width of the

nth mode (as given by the waist in case of an xy-symmetric Gaussian mode profile).
We are left with the one-dimensional memory operator

g(z)
n =

∞∫

0

dτ e−(κn+iΔn)τ u∗
n

(

z − pτ

m P

)

u0

(

z − pτ

m P

)

. (2.86)

for the z-state of the particle, at fixed transverse coordinates x and y. The latter can be
sufficiently well described by a straight classical trajectory (xt , yt ) if we assume that
the particle is hardly affected in its transversemotionwhile it passes the high-intensity
region of the cavity. This effective parametric time dependence can be incorporated,
if necessary, in the coupling frequencies, Ũmn (t) = Umn f ∗

m (xt , yt ) fn (xt , yt ), as
already done in the simple classical model of cavity-induced slowing in Sect. 2.1.3.
For the time being I will simply ignore the transverse trajectory when assessing the
one-dimensional friction and diffusion effects. Nevertheless, one should take notice
of this time dependence when estimating the overall effect in realistic scenarios.
The one-dimensional slowing of the z-motion of a particle crossing the cavity, for
instance, would have to be averaged over its limited residence time inside the pump
mode. In the complementary case of a trapped particle that overlaps with the cav-
ity modes, one could average the slowing effect over each trapping cycle. In such
scenarios, the cavity system could well be given by the configuration sketched in
Fig. 2.4, or by the simpler setup of Fig. 2.1, where a single Fabry-Pérot mode is
directly pumped by a laser.

The starting point shall now be the master equation for the one-dimensional state
of motion ρ, as obtained from (2.85) using the discussed simplifications,

∂tρ = − i

�

[
p2

2m P
+ �Ũ00 |αu0 (z)|2 , ρ

]

−
M∑

n=0

∣
∣Ũ0nα

∣
∣2

([
u∗
0 (z) un (z) , g(z)

n ρ
]

+ h.c.
)

+ γ̃abs |α|2
[

u0 (z) ρu∗
0 (z) − 1

2

{
|u0 (z)|2 , ρ

}]

+ γ̃sca |α|2
[∫

d2n R (n) u0 (z) e−iknzzρeiknzzu∗
0 (z) − 1

2

{
|u0 (z)|2 , ρ

}]

.

(2.87)
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2.2.3.1 Friction and Diffusion Terms in the Fokker-Planck Equation

The effective friction force anddiffusion effect can nowbe extracted in a standard pro-
cedure [57] from the phase-space representation of the above master equation (2.87);
the resulting partial differential equation can be expanded in orders of �, and the
respective friction and diffusion terms can be identified by comparison to the stan-
dard form of a Fokker-Planck equation [9, 26, 58].

For this purpose I introduce the Wigner function,

w (z, p) = 1

2π�

∫
ds eips/�〈z − s

2
|ρ|z + s

2
〉, (2.88)

which represents the one-dimensional quantum state of motion ρ in a phase-space
picture with position and momentum coordinates (z, p) ∈ R

2. It is a real-valued
and normalized function,

∫
dzdp w (z, p) = 1, and it can be regarded as the natural

quantum generalization of the phase-space distribution function f (z, p) ≥ 0 of
a classical particle state [36, 59]. The Wigner function of sufficiently mixed states,
such as the thermal state ρth ∝ exp

(−p2/2m P kB T
)
, is in fact indistinguishable from

its counterpart in a purely classical description, the Maxwell-Boltzmann distribution
wth (z, p) = fth (z, p) ∝ exp

(−p2/2m P kB T
)
. At the same time, the time evolution

equation for theWigner function equals the classical Liouville equation up to second
order in Planck’s quantum of action � if it is governed by a conservative force field
[59]. See Appendix A.3 for detailed expressions. In particular, the time evolution
under at most harmonic potentials V (z) = a + bz + cz2 is exactly the same in both
the quantum and the classical case.

Using the phase-space translation rules given inAppendixA.3we can translate the
abovemaster equation (2.87) into a partial differential equation for the corresponding
Wigner function. If, in addition, we omit any derivatives higher than second order in
position and momentum we will arrive at a Fokker-Planck-type equation (FPE) of
the generic form [9]

∂t w (z, p) = −∂z
[
gz (z, p) w (z, p)

] − ∂p
[
gp (z, p) w (z, p)

] + 1

2
∂2z

[
Dzz (z, p) w (z, p)

]

+ 1

2
∂2p

[
Dpp (z, p) w (z, p)

] + ∂z∂p
[
Dzp (z, p) w (z, p)

] + O
(
�
3
)

. (2.89)

We note that this approximation can also be understood as a semiclassical expansion
of the Wigner time evolution up to the second order in �. Each term in the FPE has a
clear physical meaning which becomes evident when looking at the time evolution of
the position and momentum expectation values as well as their second moments,25

25 Here I make use of the procedure of integration by parts and of the fact that a well-behaved and
normalizable Wigner function should vanish at the infinities.
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∂t 〈z〉 =
∫

dzdp z∂t w (z, p) =
∫

dzdp gz (z, p) w (z, p) , (2.90)

∂t 〈p〉 =
∫

dzdp gp (z, p) w (z, p) , (2.91)

∂t

〈
z2

〉
=

∫
dzdp

[
2zgz (z, p) + Dzz (z, p)

]
w (z, p) , (2.92)

∂t

〈
p2

〉
=

∫
dzdp

[
2pgp (z, p) + Dpp (z, p)

]
w (z, p) , (2.93)

∂t 〈zp + pz〉 = 2
∫

dzdp
[

pgz (z, p) + zgp (z, p) + Dzp (z, p)
]

w (z, p) . (2.94)

The term gz describes the overall drift of the position coordinate, the other drift term
gp represents the force field acting on the ensemble state. The combined diffusion
of both the position and the momentum coordinate, which leads to an increase in
the occupied phase-space area, is related to the diffusion matrix26 D jk (z, p). An
alternative way to describe the semiclassical motion of a particle is to work with a
set of stochastic Langevin equations for position and momentum random variables,
which reproduces the same ensemble-averaged time evolution as the FPE [26].

Let me split the phase-space representation of the state evolution (2.87) into a
coherent part as well as a dissipative and a diffusive part,

∂t w (z, p) = [∂t w (z, p)]coh + [∂t w (z, p)]dis + [∂t w (z, p)]dif , (2.95)

followingmynotation in [1]. The first part is associated to the first line in (2.87)which
describes the conservative motion under the optical potential of the pumped mode.
The second part represents the second line and contains the delayed reaction of all
cavitymodes. The remainder, that is, themomentumdiffusion by absorption and elas-
tic light scattering, is contained in the last part. All three parts are Taylor-expanded
and brought into the semiclassical FPE form in a tedious but straightforward calcu-
lation with help of the tools in the appendix.

The coherent part

A second-order expansion of the coherent part yields

[∂t w (z, p)]coh = − p

m P
∂zw (z, p) + �Ũ00∂z |αu0 (z)|2 ∂pw (z, p) + O

(
�
3
)

.

(2.96)

This equation describes a deterministic evolution of the system along classical
trajectories in the dipole force field the pump mode. The conservative motion does
not lead to any diffusion effect. This semiclassical approximation amounts to omit-
ting any diffraction effects and treating the motion through the optical potential in a

26 The diffusionmatrix generally should be positive semidefinite in order to ensure that the occupied
phase-space area increases and that the time evolution produces physical states at all times.
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purely classical manner.27 The lowest order quantum corrections originate from the
non-conservative parts of the time evolution.

The dissipative part

Our main interest lies in the dissipative part of the motion, which contains the cavity-
induced friction force. The phase-space representation of the memory operators
(2.86),

Gn (z, p) =
∞∫

0

dτ e−(κn+iΔn)τ u∗
n

(

z − pτ

m P

)

u0

(

z − pτ

m P

)

, (2.97)

and several steps of calculation lead to the following additions to the force and to the
diffusion:

g(dis)
p (z, p) =

M∑

n=0

∣
∣Ũ0nα

∣
∣2 Re

{
2i�Gn (z, p) ∂zu∗

0 (z) un (z)

−�
2 [

∂pGn (z, p)
]
∂2z u∗

0 (z) un (z)
}

, (2.98)

D(dis)
pp (z, p) =

M∑

n=0

2�
2
∣
∣Ũ0nα

∣
∣2 Re

{[
∂zGn (z, p)

]
∂zu∗

0 (z) un (z)
}
, (2.99)

D(dis)
zp (z, p) = −

M∑

n=0

�
2
∣
∣Ũ0nα

∣
∣2 Re

{[
∂pGn (z, p)

]
∂zu∗

0 (z) un (z)
}
. (2.100)

There is no dissipative contribution to the drift and the diffusion of the position
coordinate, g(dis)

z = D(dis)
zz = 0. Thememory effect due to the delayed cavity reaction

lies in the memory term Gn (z, p). It is responsible for the velocity dependence of
the dissipation force which may result in a net friction effect. I will analyze the
dissipative contributions in more details for specific cavity configurations below.

The diffusive part

The absorption and elastic scattering of pump photons contributes an additional
momentum diffusion effect, as we have already seen in Sect. 2.1.2. It complements
the non-conservative influence of the high-finesse cavity by the following terms:

g(dif)
p (z, p) = 2� (γabs + γsca) |α|2 Im {

u0 (z) ∂zu∗
0 (z)

}
, (2.101)

D(dif)
pp (z, p) = �

2 |α|2
[
(γabs + γsca) |∂zu0 (z)|2 + γscak2

〈
n2

z

〉
|u0 (z)|2

]
. (2.102)

27 This would be a bad approximation if the underlying quantum state would be a delocalized
matter-wave state that could be diffracted by the standing-wave structure of the pump mode (see
Sect. 2.1.4).
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Theymust be added to Eqs. (2.98) and (2.99), respectively. Scattering and absorption
mainly enhance the momentum diffusion by D(dif)

pp ≥ 0. Only for complex running-
wave modes u0 with a directed net momentum flow, there is a radiation-pressure
addition g(dif)

p to the dissipative force (2.98). The diffusion effect consists of two parts
related to the absorption and to the scattering of pump photons. The latter depends on
the angular scattering distribution of the particle, which is given by the dipole pattern
R (n) = 3

[
1 − (n · ε)2

]
/8π in the case of a PPP and a pump mode polarization ε

perpendicular to the z-axis.28 This leaves us with
〈
n2

z

〉 = ∫
d2n R (n) n2

z = 2/5.

2.2.3.2 Conditions for Cavity-Induced Slowing

The velocity-dependent part of the overall force acting on the particle lies solely in the
expression (2.98) which is a sum over M +1 single-mode force terms, g(dis)

p (z, p) =
∑M

n=0 g(n)
p (z, p). The potential motional damping induced by each mode can be

made explicit by a first-order expansion in the limit of low particle velocities,

g(n)
p (z, p) = g(n)

p (z, 0) + β(n) (z) p + O
(

p2
)

. (2.103)

The delayed reaction of the nth cavity mode damps the motion when the respective
friction coefficient β(n) (z) is negative, otherwise it accelerates the particle. To be
concrete, the above low-velocity expansion is valid when the Wigner function of the
particle covers mainly those velocities v = p/m P that correspond to a Doppler shift
|kv| < κn . The field fluctuations in the nth mode then lag behind the particle motion
only a little and we may expand the memory function (2.97) to

Gn (z, p) = u∗
n (z) u0 (z)

κn + iΔn
− p

m P

∂zu∗
n (z) u0 (z)

(κn + iΔn)2
+ p2

m2
P

∂2z u∗
n (z) u0 (z)

(κn + iΔn)3
+ O

(
p3

)
.

(2.104)
We arrive at the friction coefficient

β(n) (z) = − 4�
∣
∣Ũ0nα

∣
∣2 κn

m P
(
κ2

n + Δ2
n

)2

[

Δn
∣
∣∂zu∗

0 (z) un (z)
∣
∣2 + �

(
κ2

n − 3Δ2
n

)

2m P
(
κ2

n + Δ2
n

)
∣
∣∂2z u∗

0 (z) un (z)
∣
∣2

]

.

(2.105)
Note that the z-derivative of the mode function is proportional to ∂z ∼ k. Hence, the
two terms in the brackets correspond to first and second orders in the recoil frequency
ωr = �k2/2m P , which is assumed to be small, ωr 
 κn, |Δn|. We may thus neglect
the second order contribution for all practical purposes (except for the marginal cases
where the first order term vanishes) and focus entirely on the first term.

28 Rayleigh scattering can be viewed as absorption and immediate reemission of a pump pho-
ton into free space. The absorption is responsible for the radiation pressure force, whereas the
reemission does not contribute on average because there is no preferred direction of scattering,
〈nz〉 = ∫

d2n R (n) nz = 0.
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I conclude that damping may only occur for blue-detuned cavity modes, Δn > 0,
which agrees with the classical model from Sect. 2.1.3 illustrated in Fig. 2.3. More-
over, we find a similar parameter dependence as in the classical expression (2.35),
which is was derived with less rigour from a slightly different set of assumptions.
The slowing rate (2.105) is modulated by the z-dependence of the mode, but it does
not flip sign and accelerate the particle for a given set of cavity parameters. It appears
strongest neither at the nodes nor at the antinodes of each cavity mode, but rather in
between, at the steepest points of the overlap u∗

0un . If we average over all z-positions
we find that each cavity mode overlapping with the pump mode contributes a mean

velocity damping rate of
∣
∣
∣β

(n)
∣
∣
∣ ∼ 8ωrκnΔn

∣
∣Ũ0nα

∣
∣2 /

(
κ2

n + Δ2
n

)2
. It is maximized

for a detuning of Δn = κn/
√
3.

2.2.3.3 Case Study: A Single Strongly Pumped Standing-Wave Mode

It is instructive to apply the results to the most elementary case of a PPP inside
a single driven Fabry-Pérot standing-wave mode, as already discussed earlier and
sketched in Fig. 2.1. If we set u0 (z) = cos kz we can compute the memory function
explicitly,

G (z, m Pv) = 1

2 (κ + iΔ)
+ 1

4

[
exp (2ikz)

κ + i (Δ + 2kv)
+ exp (−2ikz)

κ + i (Δ − 2kv)

]

= 1

2ν
+ ν cos 2kz + 2kv sin 2kz

2
[
ν2 + (2kv)2

] , (2.106)

with the complex damping-detuning parameter ν = κ + iΔ. The non-conservative
force term becomes

g(dis)
p (z, m Pv) = �k

∣
∣Ũ0α

∣
∣2

[

Im

{
1

ν
+ ν cos 2kz + 2kv sin 2kz

ν2 + (2kv)2

}

sin 2kz

+Re

{
sin 2kz

ν2 + (2kv)2
− 2kv

ν cos 2kz + 2kv sin 2kz
[
ν2 + (2kv)2

]2

}

4ωr cos 2kz

]

.

(2.107)

Once again, we may neglect the second line because of its higher-order dependence
on the recoil frequency ωr . Let us, for the moment, focus on the velocity dependence
of the remaining term by averaging over the position in the standing wave,

g(dis)
p (m Pv) = −4

∣
∣Ũ0α

∣
∣2 ωrκΔ

∣
∣ν2 + (2kv)2

∣
∣2

m Pv + O
(
ω2

r

)
. (2.108)

I plot the velocity dependence for different positive detunings, which correspond to
a net slowing effect, in Fig. 2.5. Given a fixed cavity-pump detuning Δ > 0, we
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Fig. 2.5 Position-averaged friction force (2.108) of a pumped Fabry-Pérot cavity as a function of
velocity for different cavity-pump detunings (adapted from [1]). It is positive on the left and negative
on the right of v = 0, which means that it slows the particle. I use an effective coupling rate of∣
∣Ũ0α

∣
∣ = 0.1κ . The solid, the dashed, and the dotted lines correspond to Δ = κ/

√
3, 2κ and 5κ ,

respectively. Both velocity and force are plotted in natural cavity-related units of κ/k and (�k) κ

observe that only a limited range of velocities is efficiently slowed. If we increase
the detuning, the maximum of the friction force shifts to larger velocities, and faster
particles are more efficiently slowed at the expense of not capturing already slow
ones. In the limit of very large detunings Δ � κ the velocity capture range is
determined by kv ≈ Δ. On the other hand, we observe the strongest damping effect
(steepest slope) for small velocities at the detuning Δ = κ/

√
3 (solid line). This is

no surprise since we have found one section earlier that this detuning corresponds to
an optimal friction coefficient β.

The friction force is accompanied by momentum diffusion, which prevents the
cavity from slowing a particle arbitrarily close to zero velocity,

D(dis)
pp (z, m Pv) = 2 (�k)2

∣
∣Ũ0α

∣
∣2 Re

{
ν sin2 2kz − 2kv sin 2kz cos 2kz

ν2 + (2kv)2

}

,

(2.109)

D(dis)
pp (m Pv) = (�k)2 κ

∣
∣Ũ0α

∣
∣2

∣
∣ν2 + (2kv)2

∣
∣2

[
|ν|2 + (2kv)2

]
. (2.110)

Although the position-averaged diffusion coefficient is strictly positive, this does not
hold everywhere in the standing wave. The diffusion coefficient (2.109) is plotted
as a function of z in Fig. 2.6 for various particle velocities. In the vicinity of the
antinodes of the standing wave the diffusion coefficient assumes negative values at
nonzero velocities. The positive regions clearly dominate for slowparticles, |kv| � κ ,
where the position-averaged expression (2.110) assumes its maximum. Moreover,
the positive and negative parts nearly compensate for faster particles (solid line).
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Fig. 2.6 Momentum diffusion coefficient (2.109) of a pumped Fabry-Pérot cavity as a function
of position for different particle velocities (adapted from [1]). We use the effective coupling rate∣
∣Ũ0α

∣
∣ = 0.1κ and the detuning Δ = κ/

√
3. The solid, dashed, dash-dotted, and dotted line

correspond to kv = 5κ , κ , 0.5κ , and 0, respectively. The diffusion coefficient and the position are
expressed in cavity-related units of (�k)2 κ and 1/k

Anyway, the overall momentum diffusion effect vanishes in this case, because the
cavity dynamics can no more keep up with the moving particle.

Completely positive Lindblad-type master equations must always yield positive
semidefinite diffusion matrices D jk (z, p). In the present case, we have a vanishing

position diffusion, D(dis)
zz = 0, and a non-diagonal element given by

D(dis)
zp (z, m Pv) = 2�ωr

∣
∣Ũ0α

∣
∣2 Re

{
4νkv cos 2kz + [

(2kv)2 − ν2
]
sin 2kz

[
ν2 + (2kv)2

]2

}

sin 2kz.

(2.111)
The resulting determinant is negative and the diffusion matrix is indefinite. This
shows that the underlying master equation (2.87) is non-Markovian and cannot be
cast into the completely positive Lindblad form. I attribute this to the memory effect
of the cavity [60–62]. Its field does not adjust to the change in particle position
instantaneously, but it reacts retardedly to the trajectory that is accumulated over
the cavity lifetime 1/κ . The negativity in the diffusion matrix is negligible in most
practical cases when the cavity-induced slowing of large polarizable particles is
concerned. The diffusion effect hardly affects the motional state of fast particles,
which are far above the quantum limit of motion, as I will discuss in the following.

The whole cavity-induced damping-diffusion process can be understood as a ran-
dom walk induced by the recoil related to the coherent scattering of pump photons
between the two running-wave components of the standing-wave cavity mode. A
moving particle emits Doppler-shifted light which is blue-detuned in the direction
of motion and red-detuned in the opposite direction. By detuning the pump laser
to the red side of the cavity resonance, we enhance the coherent scattering of pho-
tons into the direction of motion, thereby gradually taking away kinetic energy over
many random walk cycles. It is then intuitively clear that the cavity-induced slowing
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effect cannot decrease the kinetic energy of a particle further than the so-called recoil
limit �ωr . The accompanying momentum diffusion in units of �k simply cannot be
overcome.

Is it then, at least in principle, possible to reach the recoil limit after a sufficiently
long waiting time? Let me answer this question by estimating the final kinetic energy
that can be obtained in the limit of t → ∞. For this purpose consider again the
time evolution equation (2.93) of the second moment in momentum, and ignore the
z-modulation by averaging both the force and the diffusion term over the standing-
wave profile. This cancels the conservative dipole force and leaves us with the dissi-
pative terms (in the absence of absorption and Rayleigh scattering). Given the above
expressions (2.108) and (2.110) in the limit of small particle velocities, |kv| 
 κ ,
we find that the average kinetic energy has a fixed point at the value29

〈
p2

2m P

〉

∞
= − pD(dis)

pp (p)

4m P g(dis)
p (p)

≈ �

8

(

Δ + κ2

Δ

)

. (2.112)

Ensembles of initially faster particles are eventually slowed down towards this lim-
iting mean kinetic energy value. It depends on the cavity reaction time scale, and it
reads as �κ/2

√
3 in the case of the optimal detuning Δ = κ/

√
3. Note that this limit

is considerably higher than the fundamental recoil limit since ωr 
 κ . It illustrates
that the cavity-induced slowing effect is in practice already limited by the finite cav-
ity lifetime and the associated energy uncertainty. In the presence of absorption and
Rayleigh scattering we must take the respective diffusion term (2.102) into account,
which leads to the increased slowing limit

〈
p2

2m P

〉

∞
≈ �

8

[

Δ + κ2

Δ
+

(
κ2 + Δ2

)2

2Ũ 2
0 κΔ

(

γabs + 7

5
γsca

)]

. (2.113)

Concerning the interplay between friction and diffusion, I conclude: While the fric-
tion force determines the rate at which the kinetic energy of the particle is gradually
dissipated through the cavity over many lifetime cycles of its field, the overall diffu-
sion term sets the kinetic energy of the limiting velocity, which cannot be undercut in
the present slowing scheme. Current sources for molecules and nanoparticles, which
are used in matter-wave interferometry, are typically far above this limit. Assuming
a cavity linewidth of κ ∼ 1MHz, the cavity-slowing limit corresponds to motional
temperatures of the order of microkelvins.

29 The expression (2.112) ceases to be valid for large velocities and at Δ = 0, where the first-order
friction term (2.108) vanishes.
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2.2.3.4 Multimode Enhancement in Degenerate Resonator Configurations

Having studied the generic dissipation effect in the instructive case of a single
Fabry-Pérot cavity mode, I now turn to a more practical multimode configuration,
as sketched in Fig. 2.4. Each of the M > 1 empty cavity modes represents a dissipa-
tion channel which adds to the overall friction effect along the z-axis of the cavity.
The strong pump mode is directed along the y-direction and should overlap with the
cavity volume as much as possible to maximize the effective interaction region for
each passing particle.

An experimental realization may be feasible in a setup where a large manifold
of degenerate modes can be created in a confocal resonator configuration with two
circularly symmetric curved mirrors. If the distance d between the mirrors is exactly
the same as their radii of curvature, then, in principle, the resonator will support
an almost infinite spectrum of higher-order transverse modes that share the same
resonance frequency with a given fundamental standing-wave mode. These higher-
order modes exhibit a larger effective mode waist, and the mode spectrum is in
practice limited to a finite number M due to the finite aperture of real-life mirrors.
In addition, if the setup is not precisely confocal, the contribution of higher-order
modes to the friction force will decrease with shifting resonance frequency.

The controlled optical driving of one of the degenerate modes would require good
modematching, and it would lead to strong conservative dipole forcesmodulating the
motion of particles along the standing wave. Both the mode matching and the dipole
force can be avoided by shining a broad running-wave lasermode perpendicular to the
cavity axis. It acts as an optical pump mode where it overlaps with the cavity modes,
but it does not induce any significant dipole force along the cavity axis.Moreover, the
absorption-induced momentum diffusion along the z-axis is also suppressed. This
perpendicular pump configuration comes at the price of less available pump power.
It could be enhanced by means of another cavity, of course.

In the following I will discuss the enhancement of the cavity-induced friction by
the number M of accessible cavity modes. Once again, we restrict our view to the
z-motion along the cavity axis, omitting any influence on the transverse motion of
the particle. The resulting friction and diffusion terms still depend on the off-axis
xy-coordinates of the particle, and we can average them over the trajectory of a
particle traversing the cavity for an estimate of their mean effects.30

The modes of a confocal standing-wave resonator [28, 63–65] are characterized
by one longitudinal mode index n ∈ N and two transverse mode indices m, � ∈ N0.
From the boundary conditions at the curved mirror surfaces follow the respective
resonance frequencies [65]

ωn,m,� = πc

d

(

n + m + � + 1

2

)

, (2.114)

30 This corresponds to the experimental situation when a dilute beam of molecules or nanoparticles
crosses the cavity, such that there is on average only one particle inside the cavity at a given time.
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with d the mirror distance (and radius of curvature). A given fundamental mode
(n0, 0, 0) of wavelength λ = 2π/k shares the same resonance frequency with a
huge manifold of transverse modes (n < n0, m, �), since n0 = 2d/λ is typically a
large number.We can assign the effectivewaist parameterwn,m,� = w0

√
2m + � + 1

to each higher-order transverse mode [64, 65]; it describes the growingmode volume
with respect to the fundamentalmodeofwaistw0 = √

dλ/2π . If thewaist is aperture-
limited by wn,m,� � aw0, then both 2m and �+1 are restricted to values less or equal
to a2, which leads to a total number of supported modes M � a4/2. (The quantity
a measures the aperture in units of w0.)

The field distribution of each mode can be approximated by Laguerre-Gaussian
functions31 in the case of large-aperture mirrors [64], a2 � 1. We obtain the explicit
formof the three-dimensionalmode function [65] by assuming linear polarization and
omitting any off-axis corrections to the field polarization due to the transverse mode
profile (see Appendix A.2 for the specific case of a Gaussian mode, m = � = 0).
In cylindrical coordinates the full three-dimensional mode functions un,m,� (r) =
ε fm,� (r, φ, z) un,m,� (r, z) factorize into the on-axis standing-wave mode functions
un,m,�, the Laguerre-Gaussian transversemode profiles fm,�, and a fixed polarization
vector ε,

un,m,� (r, z) =
{
cos
sin

} [

kz

(

1 + 4r2

d2ξ2 (z)

)

− (2m + � + 1) Φ(z)

]

∀
{

n odd
n even

}

,

(2.115)

fm,� (r, φ, z) = cos (�φ)

ξ (z)

( √
2r

w0ξ (z)

)�

L�
m

(
2r2

w2
0ξ

2 (z)

)

exp

(
−r2

w2
0ξ

2 (z)

)

. (2.116)

Here, L�
m denotes the associated Laguerre polynomial [43], ξ (z) = √

1 + 4z2/d2,
and Φ(z) = arctan(2z/d). We obtain a simple expression for the mode volume in
the case of large apertures,

Vn,m,� = π

8
w2
0d (1 + δ�0)

(� + m)!
m! , (2.117)

if we approximate the on-axis function in the volume integral by an unmodified
standing wave,

∫ d/2
−d/2 dz u2

n,m,� (r, z) ≈ d/2.
I now assess the contribution of eachmode to the overall slowing effect in terms of

its friction coefficient (2.105). To keep things simple, I assume that all contributing
modes share the same linewidth κ and the optimal detuningΔ = κ/

√
3, and I confine

the analysis to the center of the cavity, |z| 
 d, where ξ (z) ≈ 1. Moreover, we can
safely omit the z-derivative of the orthogonally oriented pump mode. This leaves us
with the estimate for the friction coefficient,

31 Laguerre-Gaussian modes can only be used if the mirror system exhibits a cylindrical symmetry.
This symmetry may be violated in applications with birefringent mirrors. In this case one must use
the rectangular Hermite-Gaussian modes instead [64], which yield similar results as presented here.
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Fig. 2.7 Modulus of the overall friction coefficient of M confocal cavitymodes in units of the recoil
frequency and as a function of the on-axis position kz (reevaluated from [1]). The cavity mirrors are
d = 10mm apart. The dotted line represents the friction coefficient of the fundamental Gaussian
mode (20000, 0, 0) of wavelength λ = 2π/k = 1µm and waist w0 = 40µm. It is pumped by
a Gaussian wave of the same waist running along the y-axis. I assume an effective coupling of
|U0α| = 0.1κ between both modes, and a detuning of Δ = κ/

√
3. The contributions (2.118) of the

14 and 54 closest degenerate transverse modes are added to the fundamental mode for the dashed
and the solid lines, respectively. In all cases, the off-axis coordinates x and y are averaged over a
circle of radius 5w0.

β(n,m,�) (r, φ, z) ≈ − 3
√
3m!ωr |U0α|2

(� + m)! (1 + δ�0) κ2

∣
∣u0 (r, φ, z) fm,� (r, φ, 0)

∣
∣2

×
(

1 + 4r2

d2 − 4m + 2� + 2

kd

)2

×
{
sin2

cos2

} [

kz

(

1 + 4r2

d2 − 4m + 2� + 2

kd

)]

∀
{

n odd
n even

}

,

(2.118)

to first order in the recoil frequency ωr and in the parameters32 z/d and 1/kd. Here,
the term U0 is defined as the coupling rate between the pump mode and the funda-
mental Gaussian cavitymode (n0, 0, 0). The pumpmode shall be given by aGaussian
running wave of the same waist w0, |u0 (r, φ, z)| = exp

[− (
z2 + r2 cos2 φ

)
/w2

0

)
.

The total friction coefficient of the cavity is the sum over the terms (2.118) of all
degenerate modes that are accessible by the pump laser. The overall cavity-induced
slowing rate is amplified by the number of transverse modes supported by the cavity.
This is demonstrated in Fig. 2.7 for a set of exemplary parameters. There, the friction
rate is averaged over the off-axis coordinates33 and plotted as a function of z close
to the center of the resonator. The plot compares the contribution of the fundamental

32 Second order terms of the form z2/d2, 1/k2d2 and z/kd2 are dropped. The inverse tangent is
linearized as arctan (2z/d) ≈ 2z/d.
33 The average friction rate depends on the size of the averaging area.A larger area coversmore space
outside the cavity where the friction effect is zero. Nevertheless, the average value is a meaningful
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Fig. 2.8 Position-averaged friction coefficient of a confocal resonator as a function of the number
M of degenerate modes that are taken into account. All the settings of Fig. 2.7 are used, and the
results are additionally averaged over the range of z-coordinates depicted there. The data points are
given in proportion to the average friction rate of the fundamental mode (mean value of the dotted
curve in Fig. 2.7).

mode (dotted curve) to the collective friction rate of M = 15 (dashed) and M = 55
(solid) degenerate modes. Notice that, besides the overall multimode enhancement,
the standing-wave modulation of the friction rate is also reduced. This is due to
the equal contribution of both sine and cosine standing-wave modes in the confocal
configuration. Hence, there is a nonzero slowing effect everywhere on the standing-
wave axis.

In a real-life experiment the number of supported higher-order modes can be
much higher, depending on the quality and aperture of the cavity mirrors. In Fig. 2.8
I plot the position-averaged friction rate of the resonator versus the number M of
degenerate modes that were taken into account in the computation. The plotted
data are normalized to the single-mode value. The rightmost point corresponds to
M = 406 indicating an amplification of the single-mode friction effect by almost
two orders of magnitude. The increase per mode gets diminished with growing mode
volume due to the decreased overlap with the pump mode.

Let me close this section on the cavity-induced slowing of a PPP in the weak
coupling regimewith a few remarks. I have developed a rigorous quantumdescription
of the dissipative motion of a particle in the presence of pump field and cavity
by means of an effective (non-Markovian) master equation. It has led us to the
understanding of the emergent friction and diffusion effects using a semiclassical
phase-space approach. After studying the basic phenomena in an idealized single-
mode configuration, I have provided a detailed assessment of the multimode case. At
this point we should note that not only the friction force is enhanced by the presence
of many modes, but also the accompanying momentum diffusion effect. While the
former determines the effective rate at which the motion of the particle is damped,

(Footnote 33 continued)
quantity to assess the net slowing of particles that are trapped in or passing the chosen region in a
given amount of time.



60 2 Interaction of Polarizable Particles with Light

the latter raises the ultimate cooling limit. In other words, more modes imply a larger
limiting kinetic energy value, down towhich the particle can be damped by the cavity.
Absorption and Rayleigh scattering contribute to this limit as well.

In many potential laboratory applications with molecules and clusters, one must
often deal with particle ensembles whose initial temperature is far above this limit. In
practice, it would be much more important to boost the effective damping rate from
the unsuitably lowvalues, as implied by the parameters listed inTable 2.1, to a feasible
regime. This requires one to leave the weak coupling regime by increasing the pump
field strength or by using even larger particles, as I will discuss in the next section.
Another option is to increase the number of particles that interact with the cavity at
the same time. In Appendix A.4 I show how to generalize our quantum treatment and
the effective master equation to N > 1 particles in M driven or empty modes. There,
however, the validity of the resulting friction and diffusion terms is restricted to an
even more rigid weak-coupling limit. This is because the individual field fluctuations
induced by each particlemay add up. By breaking theweak-coupling limit withmany
particles one may benefit from strong cavity-mediated inter-particle correlations and
from collective phenomena such as self-organisation [66, 67].

2.3 Mechanics of Spherical Particles in Coherent Light Fields

So far I have discussed the (off-resonant) light-matter interaction, and its mechanical
action on matter-waves, in terms of point-like particles characterized by a scalar
complex dipole polarizability χ . Whereas this is a good approximation for many
molecules and clusters,which are by orders ofmagnitude smaller than thewavelength
of the light they interact with, it ceases to be valid for nano- and microparticles of
the same size as the wavelength or larger. The light scattering properties get more
complex as higher-order multipole components take over, and a rigorous quantum
description of both the light and the matter degrees of freedom is a difficult task due
to several reasons:

• The quantization of the center-of-mass motion of the particle depends on explicit
expressions for the force and the optical potential induced by the light field. How-
ever, we will see below that the force on extended particles cannot be reduced
to a simple analytical expression anymore, but must be evaluated numerically
in practice. Moreover, the result contains both the conservative light force and
the radiation pressure force due to light absorption and Rayleigh scattering. Con-
sequently, the optical potential cannot be directly deduced. We can avoid these
difficulties in the effectively one-dimensional situation of matter-wave diffraction
at optical standing-wave gratings in Sect. 2.3.2.

• If a large particle couples strongly to a high-finesse cavity field, it may change the
spatial mode structure of the resonator. This is intuitively clear since the particle
becomes a semitransparent mirror for the cavity field if it is large enough.Whereas
one may benefit from the strong coupling when trying to observe cavity-induced



2.3 Mechanics of Spherical Particles in Coherent Light Fields 61

slowing of large particles, the theoretical modelling requires a proper treatment of
the modified boundary conditions. I will present an approximate solution when I
discuss the classical slowing of spherical particles in Sect. 2.3.3.

• A rigorous quantum description of the dynamics of both the light field and the par-
ticle requires an elaborate model for light scattering at extended material objects.
This is a matter of current research [68], and it has gained interest with the
upcoming of proposals to observe the ground-state motion of optically trapped
microspheres [69, 70]. One possible model treats the extended object as an assem-
bly of point-like scatterers at which single photons can scatter along multiple
paths [68]. The resulting master equation gives proper account to the scattering-
induced decoherence and diffusion effects, provided that the local fields are cor-
rectly described for each scatterer. Another possibility is to model the particle
as a dielectric medium, which then requires the canonical quantization of the
macroscopic field inside this medium [71]. However, this approach requires one
to determine the precise momentum carried by the radiation field inside the dielec-
tric medium when trying to assess the force density acting on the material—an old
and controversial issue [6, 72].

• Apart from the center-of-mass effect, an extended dielectric object may also expe-
rience elastic stress due to light-induced bending and shearing forces. This may, in
turn, deform the particle and modify its response to the light field depending on its
stiffness properties [73]. Here, I avoid this additional complication by assuming
rigid atomic clusters. Nevertheless, we must keep in mind that this might be an
issue when dealing with hot or fluid particles, such as nanodroplets.

In this thesis I focus on generally hot and fast ensembles of particles far above the
quantum limit of motion, which interact with strong coherent light fields. In the
effective description of such particles, we may therefore avoid many of the afore-
mentioned difficulties by assuming a stationary mode configuration and ignoring the
full quantum nature of the photon field dynamics.

Moreover, I restrict the considerations to homogeneous dielectric spheres,34 which
is a good representation of many heavy clusters consisting of N � 1 atoms [31].
We can employ the Mie theory of light scattering at spherical objects [2, 3, 8, 74]
to understand the light-matter interaction, as outlined in Appendix A.6. The idea is
to start with a given light field E0 in the absence of the sphere, and to expand it in
the basis of spherical vector harmonics, that is, multipole components which respect
the spherical symmetry of the problem. The origin of the coordinate system must be
shifted to the center of the sphere r0, accordingly. The spherical wave expansion is
outlined in Appendix A.5.

Putting the sphere into the game introduces a different field Eint inside the dielec-
tric medium, and it modifies the external field by adding a scattering component,
E0 → Eext = E0 + Esca. The expansion coefficients of the new field components

34 Nonspherical particles scatter light in different patterns, that is, the multipole composition of the
scattered field deviates from the spherical case. The basic consequences of leaving the subwave-
length size regime are similar to the spherical case, with the additional complication of coupling to
the rotation of the object.
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Eint and Esca are obtained from the boundary conditions at the sphere surface. I have
done this explicitly for plane running and standing waves, and for Gaussian modes in
Appendix A.6. In the following, let me discuss the consequences for the mechanical
action of light onto the particle.

2.3.1 Light Extinction and Light-Induced Forces

Mie theory provides uswith the field configurationwhen a dielectric sphere of relative
permittivity ε is placed into an electromagnetic field {E0, H0} at the position r0.
Following Appendix A.6, the field outside of the sphere is then complemented by
the scattering component

Esca =
∞∑

�=1

�∑

m=−�

[

α�C (M)
�,m h� (kr) X�,m (θ, φ) + β�C (E)

�,m

k
∇ × h� (kr) X�,m (θ, φ)

]

,

(2.119)
with h�X�,m and ∇ × X�,mh� the partial-wave multipole solutions (see Appendix
A.5). The terms C (M,E)

�,m are the multipole expansion coefficients of the original field
E0, which depend on the position r0 of the sphere. The coordinates r = (r, θ, φ) are
defined relative to r0. The scattered field differs from the original field mainly by the
scattering coefficients α� and β�. They read as

α� = j�
(√

εk R
)
∂R [R j� (k R)] − j� (k R) ∂R

[
R j�

(√
εk R

)]

h� (k R) ∂R
[
R j�

(√
εk R

)] − j�
(√

εk R
)
∂R [Rh� (k R)]

, (2.120)

β� = ε j�
(√

εk R
)
∂R [R j� (k R)] − j� (k R) ∂R

[
R j�

(√
εk R

)]

h� (k R) ∂R
[
R j�

(√
εk R

)] − ε j�
(√

εk R
)
∂R [Rh� (k R)]

, (2.121)

for a dielectric sphere of radius R, as given in the Appendix. (There I also present the
case of a hollow sphere, which leads to more cumbersome expressions.) Note that
the coefficients are independent of the chosen mode structure of the light field, as
given by the C (M,E)

�,m . They are the same in a running wave as in a standing wave. In
the case of a point-like particle, k R 
 1, we find that the lowest-order contribution
is given by35 β1 ≈ 2i (k R)3 (ε − 1) /3 (ε + 2). All other coefficients are of higher
order in k R and thus negligible. One can convince oneself, using the identities and
relations of Appendix A.5, that this yields the scattering field of the induced dipole
χE0 (r = 0), with the complex polarizability of a subwavelength sphere [31],

χ ≈ 4πε0R3 ε − 1

ε + 2
if k R 
 1. (2.122)

35 I use that the spherical Bessel functions can be approximated by j� (x) ≈
x�/ [1 · 3 · . . . · (2� + 1)] and y� (x) ≈ − [1 · 3 · . . . · (2� − 1)] /x�+1 to lowest order in x 
 1,
while the spherical Hankel function becomes h� (x) ≈ iy� (x).
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Hence, the point-particle limit is properly reproduced by the Mie expansion. Having
the Mie expression (2.119) at hand, we are now able to study the light extinction
properties of the sphere, as well as the light-induced force acting on it. I will focus
on standing-wave light modes, as opposed to running waves, since they are the basis
of the optical diffraction gratings and the two-mirror cavities studied here.

2.3.1.1 The Poynting Vector and the Extinction Power of the Sphere

Scattering and absorption of light by finite geometries can be treated formally by
means of the Poynting vector S = Re {E} × Re {H}. It has the dimension W/m2

and describes the net energy flux per unit surface |S| into the direction S/ |S| in
vacuum36 [7, 8, 75]. That is, the time-averaged field energy flowing through a small
surface element dA = r2dΩ at position r into direction n per unit time is given by
Pn (r) = 〈n · S〉t = −r2dΩRe

{
E (r) · [

n × H∗ (r)
]}

/2. From this it is intuitively
clear how to obtain the total field energy per time scattered or absorbed by the sphere.

In order to assess the scattered power (2.123) we must take the outward-directed
Poynting vector corresponding to the scattering field Esca and integrate it over the
sphere surface [3, 8]. The absorbed power (2.124) is given by the net energy flux into
the sphere, that is, by the integrated inward-directed Poynting vector corresponding
to the total external field Eext = E0 + Esca. The extinction power (2.125) is defined
as the sum of both contributions.

Psca = − R2

2

∫
dΩ Re

{
Esca (Rn) · [

n × H∗
sca (Rn)

]}
(2.123)

Pabs = R2

2

∫
dΩ Re

{
Eext (Rn) · [

n × H∗
ext (Rn)

]}
(2.124)

Pext = R2

2

∫
dΩ Re

{
E0 (Rn) · [

n × H∗
sca (Rn)

] + Esca (Rn) · [
n × H∗

0 (Rn)
]}

(2.125)

A straightforward calculation using the orthogonality properties of the multipole
expansion given in Appendix A.5 leads to the explicit forms

Psca = cε0
2k2

∑

�,m

[∣
∣
∣α�C (M)

�,m

∣
∣
∣
2 +

∣
∣
∣β�C (E)

�,m

∣
∣
∣
2
]

,

Pext = − cε0
2k2

∑

�,m

[

Re {α�}
∣
∣
∣C (M)

�,m

∣
∣
∣
2 + Re {β�}

∣
∣
∣C (E)

�,m

∣
∣
∣
2
]

, (2.126)

36 All the calculations can be done in the vacuum surrounding the sphere, thus avoiding the discus-
sion [72] which form of the Poynting vector to choose inside the medium.
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and Pabs = Pext − Psca. If the medium is non-absorptive, that is, if the refractive
index

√
ε is real, then one can easily check that Pabs = 0 and |α�|2 = −Re {α�},

|β�|2 = −Re {β�}. We observe that the extinction power is a sum over the indepen-
dent contributions of electric (E) and magnetic (M) multipole components.

The expressions simplify further in the case of a cosine-type standing wave,

Psca,ext (z0) = π I0
k2

[
Π

(+)
sca,ext + Π

(−)
sca,ext cos 2kz0

]
, (2.127)

with z0 the z-coordinate of the sphere center and I0 = cε0 |E0|2 /2 the field intensity
at the antinodes. The offset factors (+) and the modulation factors (−) read as

Π(±)
sca =

∑

�

(2� + 1) (±)�
[
|α�|2 ± |β�|2

]
,

Π
(±)
ext = −

∑

�

(2� + 1) (±)� [Re {α�} ± Re {β�}] . (2.128)

It is once again easy to verify that the dipolar values (2.7) and (2.8) for the absorbed
and scattered power are assumed in the limit k R 
 1, with the polarizability given
by (2.122).

Similar expressions hold in the case of a Gaussian standing-wave mode. The
multipole expansion in (2.126) then includes corrections due to the finite Gaussian
waist w, as listed in Appendix A.5. In many practical situations, however, one is
only interested in the standing-wave modulation of the scattering and absorption
power as a function of the on-axis coordinate z0. If we neglect corrections of the
order of 1/kw, then formula (2.127) applies also to the Gaussian mode; we must
simply append the Gaussian mode profile to the field intensity, I0 → I (x0, y0) =
cε0 |E0|2 exp

[−2
(
x20 + y20

)
/w2

]
/2.

Figure 2.9 illustrates the standing-wave light extinction as a function of the radius
for gold spheres at the UV wavelength λ = 157 nm (εAu = 0.9+ 3.2i is taken from
[29]). The solid line on the left panel represents the offset factor Π

(+)
ext , that is, the

z0-averaged extinction power (2.127) divided by π I0/k2, as a function of the radius
on a logarithmic scale. The dashed and the dotted line represent the offset factors of
the scattered power and the absorbed power, respectively. Themean absorption power
grows like the volume, in proportion to (k R)3, when the field fully penetrates the
sphere in the subwavelength regime, k R < 1. The Rayleigh scattering power, which
scales like (k R)6, is strongly suppressed in this regime. The scattering contribution
slowly takes over for larger radii, where the total extinction scales like the sphere
surface, in proportion to (k R)2. Absorption and reflection prevent the light field from
entering deeply into the large sphere. The varying power laws in k R are nicely visible
in the double-logarithmic plot.

The right panel in Fig. 2.9 shows the contrast of the z0-modulation, Π(−)/Π(+),
for the extinction power (solid), the scattering power (dashed), and the absorption
power (dotted). It starts at unity in the point-particle limit, decreases to smaller values
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Fig. 2.9 Mean value (left) and modulation (right) of the UV light extinction power of gold spheres
as a function of the sphere radius. We use the bulk permittivity of gold [29], εAu = 0.9+3.2i at λ =
157 nm. The solid, the dashed, and the dotted lines correspond to the extinction, the scattering, and
the absorption power, respectively. The mean value on the left diagram is plotted in dimensionless
unitsπ I0/k2 relative to the field intensity I0, as given by theΠ(+)-factors in (2.128). Themodulation
contrast on the right is given by the ratio of the modulation amplitude and the mean value

and oscillates finally between positive and negative values.We find that the standing-
wave modulation is strongly suppressed once the particle extends over more than a
single wavelength. Note that a negative value means that the sphere scatters more
light when it is centered at a node of the standing wave. This can be explained
by higher multipole (e.g. the quadrupole) components which are more dominantly
addressed at the field nodes.

2.3.1.2 Maxwell Stress Tensor and Optical Forces

The light-induced forces acting on a dielectric are related to theMaxwell stress tensor

T = ε0

[

Re {E} ◦ Re {E} − I

2
Re {E} · Re {E}

]

+ μ0

[

Re {H} ◦ Re {H} − I

2
Re {H} · Re {H}

]

, (2.129)

with (a ◦ b) jk = a j bk the dyadic product and I the three-dimensional identitymatrix.
In general, the change of the momentum carried by the field inside a finite volume
of free space is given by the corresponding surface integral of the stress tensor
[8, 75]. This implies that, if we take that the dielectric spheres to be rigid [73], the
time-averaged force acting on the center of mass reads as

F = R2

2

∫
dΩRe

{
ε0

[
(n · Eext) E∗

ext − n
2

|Eext|2
]

+ μ0

[
(n · Hext) H∗

ext − n
2

|Hext|2
]}

.

(2.130)
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Fig. 2.10 On-axis force on finite-size gold spheres in a vacuum-UV standing-wave field (λ =
157 nm, εAu = 0.9 + 3.2i), as predicted by the Mie expression (2.130). The left panel is a density
plot of the force versus the center position z0 (in units of λ) and the normalized radius k R = 2π R/λ

of the sphere. The right panel depicts the maximum force with respect to z0 as a function of the
radius. The solid line represents the result of the full Mie calculation, whereas the dotted line
corresponds to the point-particle approximation. The force data are plotted in natural units relative
to the field intensity, I0/ck2

The external fields in the integral are evaluated on the sphere surface, r = Rn.
The force is always proportional to the intensity parameter I0 = cε0 |E0|2 /2 of the
input light mode E0.

In the idealized case of a plane standing or running wave the force must point into
the z-direction, and it can only depend on the coordinate z0 of the sphere. Transverse
force components are excluded due to the symmetry under x0- and y0-translations.
The left panel in Fig. 2.10 shows a density plot of the standing-wave force Fz on gold
spheres as a function of z0 and of the normalized sphere radius k R. I evaluated the
integral (2.130) numerically, using the representation of the scattering field (2.119)
and the expansion coefficients of a standing wave given in Appendix A.5. The force
is given in proportion to the field intensity, that is, in units of I0/ck2. We observe
that the symmetry of the standing wave sets the z0-modulation of the force to be
Fz (z0) = −F0 sin 2kz0, irrespective of the sphere size. In particular, the force is
always zero at the nodes and antinodes of the field. At the same time, the radius
R does affect the force amplitude F0 significantly. The latter even flips its sign for
k R � 2, in clear contradiction to the behaviour of a polarizable point particle.

The disparate behaviour of point particles and extended spheres is more clearly
seen on the right panel, where I have plotted the force amplitude F0 = Fz (−λ/8)
versus the radius (solid line). I compare it to the maximum PPP force (dashed line),
FPPP = 2π I0k R3Re {(ε − 1) / (ε + 2)} /c, which would be obtained if the sphere
were approximated by a point-like particle with the polarizability (2.122). This
approximation ceases to be valid already for k R � 0.5. From this point on the
force does not grow with the sphere volume any longer. We observe quite a contrary
behaviour; the force term oscillates between positive and negative values. In other
words, the sphere may become an effective low-field seeker. An explanation for this
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Fig. 2.11 Sketch of the optical forces on a small and a large dielectric sphere in a standing-wave
field. Both sphere centers are between an antinode and a node of the field. The net force on the small
sphere points towards the high field since most of its volume is subject to the same field polarization
and dipole force. The large sphere experiences a net force towards the low field. Different parts of
the sphere experience are subject to opposite field polarizations and are drawn to opposite directions

remarkable size effect is illustrated in Fig. 2.11 depicting a small and a large sphere
placed in between a node and an antinode of the standing-wave field. Suppose that we
decompose each sphere into small volume elements, and assume that the individual
elements are subject to the local dipole force (We neglect both the modification of
the local field and the absorption inside the sphere). We arrive at the total force by
adding the individual contributions. This leads to a high-field seeking behaviour of
the small sphere because all constituents are drawn to the same antinode of the field.
The net force on the large sphere, on the other hand, points to the low field, because
different parts are drawn to opposite directions.

Let me now turn to the more realistic case of a Gaussian standing-wavemode with
finite waist w. Here we must distinguish between the force Fz along the standing-
wave axis and the non-vanishing off-axis forces Fx,y . Considering the former, we
shouldmerely expect small corrections to the ideal standing-wavemodulation studied
before. This follows by comparing themultipole expansion of the ideal standingwave
with the Gaussian one, as given in Appendix A.5. Corrections to the standing-wave
modulation are of the order of the waist parameter 1/kw 
 1, and we may neglect
them for most practical purposes.37 In this case we may again use the standing-wave
results after replacing the standing-wave intensity parameter I0 by the local intensity
I (x0, y0) in the Gaussian mode.

The same argument does not apply to the off-axis transverse forces Fx,y which are
by themselves terms of the order of 1/kw. A numerical evaluation of the transverse
forces reveals some peculiar size effects which become evident whenwe compare the

37 This argument holds as long as the sphere is not too far away from the focus of the Gaussian
mode. The reason is that the representation of the Gaussian TEM00 mode given in Appendix A.2
ceases to be valid for far-off center coordinates |r0| � w. This limit should hardly be of relevance
in any practical implementation.



68 2 Interaction of Polarizable Particles with Light

0

sp
he

re
 r

ad
iu

s 
 k

R

× 10−3

0 0.2 0.4 0.6 0.8

1

2

3

4

5

0

5

10

15

20
sphere radius  kR

0 0.2 0.4 0.6 0.8

1

2

3

4

0

1 1

Fig. 2.12 Density plot of the transverse forces on gold spheres in a Gaussian standing-wave mode
versus the sphere radius and the on-axis position. The left and the right panel correspond to the force
components Fx,y in the direction of and perpendicular to the electric field polarization, respectively.
They are obtained from a Mie-theory calculation (λ = 157 nm, εAu = 0.9+ 3.2i) and evaluated in
units of I0/ck2 at the sphere coordinates x0 = y0 = w/2. I use the same axes and color scaling for
better comparison, and so the right panel is restricted to appropriate axis boundaries

numerical results with the subwavelength approximation based on the polarizability
expression (2.122),

(
F (PPP)

x (r0)
F (PPP)

y (r0)

)

= −
(

x0
y0

)
4π R3 I0

cw2 Re

{
ε − 1

ε + 2

}

e−2
(
x20+y20

)
/w2

(1 + cos 2kz0)

= −2FPPP

kw2 e−2
(
x20+y20

)
/w2

[(
x0
y0

)

+
(

x0
y0

)

cos 2kz0

]

. (2.131)

At first one might think that, if one took the average of the transverse force over
one period of the standing wave, the point-particle approximation would be still
valid for particles that are larger than the wavelength, and yet smaller than the waist.
This would be a wrong assertion, as demonstrated in Fig. 2.12, once again for the
exemplary case of gold spheres in vacuum-UV light. Here I plot the x-force (left)
and the y-force (right) at x0 = y0 = w/2, as obtained from the full Mie calculation,
versus the sphere radius R and the on-axis coordinate z0. The forces are again plotted
in units of I0/ck2. I have assumed a realistic waist of w = 100 λ. Judging from
an extensive numerical analysis and from the plotted data, I have found a similar
functional dependence of the two components Fx,y of the Mie force (2.130) on r0 as
in the point-particle approximation,

(
Fx (r0)
Fy (r0)

)

= − 2

kw2 e−2
(
x20+y20

)
/w2

[(
x0F (+)

x

y0F (+)
y

)

+
(

x0F (−)
x

y0F (−)
y

)

cos 2kz0

]

. (2.132)
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Fig. 2.13 Offset factors F (+)
x,y (solid lines) and modulation factors F (−)

x,y (dotted lines) of the trans-
verse forces (2.132) as a function of the normalized radius k R of gold spheres in a Gaussian
standing-wave mode (λ = 157 nm, εAu = 0.9 + 3.2i). The data were computed with help of the
Mie expression (2.130) and plotted in units of I0/ck2. The dark green curves correspond to the
x-direction, which is also the main polarization direction of the electric field. The light orange
curves represent the y-direction. The two modulation factors (dashed) are almost identical, except
for small numerical uncertainties

Figure 2.12 shows that the force components differ significantly from a point-particle
behaviour at sphere radii k R � 1. At smaller radii, the average force is negative
(i.e. pointing inwards the center of the Gaussian mode) and exhibits a pronounced
standing-wave modulation. Then, however, the modulation dies off quickly, and we
notice a non-recurring inversion of the sign once the sphere diameter approaches
the wavelength, k R � π . The gold spheres turn into low-field seekers; they are
effectively pushed away from the center of the Gaussian mode profile, although their
radii are still much smaller than the mode waist. Moreover, we observe that the
cylindrical symmetry breaks down, since the x- and the y-components are no longer
the same.

We see this more clearly in Fig. 2.13, where the four terms F (±)
x,y extracted from

a numerical evaluation of (2.132) are plotted as a function of R. The differences
between the two transverse directions indicate the presence of non-conservative
forces. If the two transverse components were identical, F (±)

x = F (±)
y , and if the

modulation factors matched the on-axis force factor, F (−) = F0, then the force
could be written as the gradient of the potential V (r0) = − exp

[−2
(
x20 + y20

)
/w2

]
(
F (+) + F (−) cos 2kz0

)
/2k. Evidently, no such potential exists for (sufficiently

large) gold spheres in the Gaussian mode. The non-conservativity is related to the
radiation pressure induced by the absorption and free-space scattering of light, and
it leads to notable asymmetries and a low-field seeking behaviour at large radii, as
shown in the diagram.

One important practical consequence is the following: One cannot deduce the
optical potential of wavelength-sized particles coupled to Gaussian modes from the
electromagnetic force alone. We must find a different method to extract the position-
dependent coupling energy between such a particle and a high-finesse cavity mode
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in order to assess cavity-induced dissipation effects. I will deal with this issue in
Sect. 2.3.3. Before that, let me briefly discuss the effect of optical standing-wave
gratings on extended spherical particles.

2.3.2 Optical Standing-Wave Gratings

With the extensive discussion of Mie theory in the preceding section at hand, I will
now generalize the model of optical standing-wave gratings developed in Sect. 2.1.4.
There I discussed how a coherent standing-wave field can act as a diffraction grating
for matter-wave states of polarizable point particles in the limit of short interaction
times. Two separate processes can contribute to the diffraction effect: The periodic
phase modulation of the matter-wave due to the action accumulated in the optical
dipole potential and the amplitude modulation that occurs if the absorption of single
photons depletes the matter-wave state.

In the following, I will generalize both effects to dielectric spheres of finite
radius. We will see that the effective grating modulation becomes less effective with
growing particle size. A more detailed analysis of the consequences for mater-wave
interferometry will be given in Chap.3.

Note that the grating modulation acts along the standing-wave axis, and we are
only concerned with the reduced one-dimensional z-state of the matter-waves. The
latter are assumed to interact sufficiently shortly with the light field such that any
transverse forces and corrections due to the finite mode waist can be safely omitted.
Wecan therefore reduce ourMie-theory considerations to the case of an ideal standing
wave with a Gaussian intensity profile.

2.3.2.1 Phase Modulation Effect

The phase modulation is described by the eikonal phase factor (2.36) for a point
particle. If we neglect any z-motion during interaction time we arrive at the
standing-wave expression (2.37). It is equivalent to the transformation rule 〈z|ψ〉 
→
exp [i (φ0/2) cos 2kz] 〈z|ψ〉 for a given matter-wave state |ψ〉 up to a constant global
phase. The term φ0 denotes the eikonal phase collected at the antinodes of the
standing-wave field.

Fortunately, the transformation rule can be adopted to the case of dielectric spheres
of larger radii without further trouble. The reason is that, according to Sect. 2.3.1.2,
the on-axis force on a dielectric sphere is always of the form Fz (z) = −F0 sin 2kz, if
higher-order corrections by the Gaussian mode profile are neglected. Since there are
no transverse forces to be considered either, we are left in a one-dimensional situation
with no non-conservative corrections. The force can be integrated to obtain an expres-
sion for the optical potential (up to an arbitrary constant),V (z) = − (F0/2k) cos 2kz.
The force factor F0 must be computed by means of the Mie formula (2.130); it will
be proportional to the standing-wave intensity I0 = cε0 |E0|2 /2 at the antinodes.

http://dx.doi.org/10.1007/978-3-319-07097-1_3
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Comparing this to the point-particle model in Sect. 2.1.4.1, we must simply sub-
stitute

Re {χ} 
→ 4F0

k |E0|2
=: 2cε0

k
f0 (2.133)

in all the eikonal phase terms φ0 to generalize from point particles to finite-size
spheres. Here I have removed the field intensity using the convenient notation F0 =
f0 I0 in terms of the factor f0.

2.3.2.2 Amplitude Modulation Effect

Standing-wavegratings canmodulate the amplitudeofmatter-waves byoptical deple-
tion if the absorption of one or a few photons ionizes, fragments, or removes a particle
by other means from the matter-wave ensemble. I have discussed in Sect. 2.1.4.2 that
the corresponding transmission probability can be obtained in a Poissonian model
from the mean number of absorbed photons. For point particles, this quantity can be
written as n (z) = (n0/2) (1 + cos 2kz), where n0 ∝ σabs I0. The offset factor and
the z-modulation factor are the same in this expression, and no photons are absorbed
in the field nodes.

This is different in the case of larger spheres. Here we must distinguish between
the offset and the standing-wave modulation. We must replace the PPP-absorption
power σabs I0 by the Mie expression Pabs (z) = Pext (z) − Psca (z), as obtained from
(2.127).We arrive at the form n (z) = n++n− cos 2kz with two different coefficients
n±. The transformation n0/2 
→ n± from the PPP-expressions given in Sect. 2.1.4.2
to the generalized form for finite spheres is done by substituting the absorption
cross section, σabs 
→ 2πΠ

(±)
abs /k2. The absorption terms Π

(±)
abs = Π

(±)
ext − Π

(±)
sca are

determined by the Mie expressions (2.128).
Putting everything together, the following grating modulation parameters must be

used for spherical particles passing a thin standing-wave beam of input laser power
PL and waist wy at the velocity v:

φ̃0 = 8 f0PL√
2π�kvwy

, n± = 4
√
2πΠ

(±)
abs PL

�ck3vwy
. (2.134)

If the grating is realized by a short laser pulse of energy EL and spot area aL , we
find

φ̃0 = 4 f0EL

�kaL
, n± = 4πΠ

(±)
abs EL

�ck3aL
. (2.135)

I will mostly refer to the case of single-photon depletion, where the absorption
of one photon already removes the particle from the ensemble. Then the grating
transmission function (2.41), which describes the matter-wave state transformation
〈z|ψ〉 
→ t (z) 〈z|ψ〉, reads as
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t (z) = exp

[

−n+ +
(

i
φ̃0

2
− n−

)

cos 2kz

]

. (2.136)

We notice here a general complication for wavelength-sized spheres: While the
position-averaged overall transmission probability decreases exponentially with the
term n+, the modulation contrast between the nodes and the antinodes of the grat-
ing depends on n−. As seen for the exemplary case of gold spheres in vacuum-UV
gratings in Fig. 2.9, the ratio n−/n+ = Π

(−)
abs /Π

(+)
abs is strongly suppressed for large

spheres. That is to say, a pronounced optical grating mask goes along with a massive
loss of matter-wave signal in the case of wavelength-large spheres. This will impose
a hard mass limitation of optical matter-wave interferometry, as will be discussed in
Chap.3.

Another limitationmight arise from the decoherence associatedwith the increased
scattering38 of photons at large dielectric spheres. This side effect does not generalize
in a straightforward manner from the point-particle case discussed in Sect. 2.1.4.3
to large spheres. The reason is that we cannot adopt the local field coupling model,
which describes the momentum transfer by scattering and absorption in terms of
Lindblad master equations Lsca,abs, if the coupling extends over a large volume.
A proper description of decoherence would, for instance, require a rigorous multi-
path scattering model of light at an extended dielectric object, as presented in [68].
This goes beyond the scope of the present work. As I will show later, the proposed
scheme of high-massmatter-wave interferometry [41, 76] studied in the present work
is already more or less confined to the subwavelength regime due to the above men-
tioned tradeoff between transmission and modulation at optical depletion gratings.

2.3.3 Slowing and Trapping of Microspheres by a Cavity

Let me conclude the present chapter with a final glance at the cavity-induced slowing
of polarizable particles. I have started from a classical one-dimensional model of the
mechanical action of a driven cavity mode on a polarizable particle in Sect. 2.1.3.
There I could simulate the slowing and trapping of a strongly coupled particle in a
high-finesse standing-wave cavity, as plotted in Fig. 2.2. Later I reassessed the effect
in a more realistic scenario with molecules and nanoclusters, which exhibit a much
weaker coupling strength and slowing rate. This led to the rigorous weak-coupling
quantum model in Sect. 2.2.

We are now in a position to be able to reconsider the strong-coupling situation.
Mie theory offers us the means to describe the optical properties of realistic particles
that are sufficiently extended to couple strongly enough to be eventually trapped by a
cavity. Let me show that it is indeed feasible in a realistic setting to trap wavelength-
sized dielectric spheres crossing a strongly pumped cavity mode. The corresponding

38 Decoherence by absorption becomes relevant, too, but only if the optical depletion effect requires
more than one photon to be triggered.

http://dx.doi.org/10.1007/978-3-319-07097-1_3
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experiments are prepared and conducted in the labs of my group in Vienna and
elsewhere [77].

I resort to the exemplary case of silicon spheres (�Si = 2,300 kg/m3) at the
IR telecommunications wavelength λ = 1,560 nm. The reason is that the silicon
material is highly refractive and almost perfectly transparent at this wavelength. No
heating losses or absorption-induced diffusion need to be taken into account. I will
estimate the sphere permittivity by the bulk value εSi = 12.1 [29]. Moreover, I will
consider the following demanding but feasible resonator configuration for the cavity
[27]: Two 25mm-curved high-reflectivity mirrors shall be placed at 1mm distance,
constituting a resonator with a narrow linewidth κ = 1MHz. The TEM00 standing-
wave resonator mode shall have the waist w = 40µm, which results in the mode
volume V = 0.0013mm3. (See Appendix A.2 for details on the Gaussian mode.) It
is driven by a laser with several Watts of continuous-wave input power.

For a preliminary assessment of the coupling let us assume that the silicon spheres
of radius R are described by the subwavelength polarizability (2.122). Then both
the cavity resonance shift and the optical dipole force depend on a single coupling
rate parameter, U0 = −2πω

(
R3/V

)
(εSi − 1) / (εSi + 2). A coupling rate of, say,

U0 = −κ would correspond to R = 59 nm. The subwavelength approximation may
still seem reasonable in this case, which represents the bottom end of the strong-
coupling regime. Larger spheres should also be taken into consideration. Hence,
before we can continue solving the classical cavity-particle equations of motion, we
must address a yet omitted issue: The effect of the particle on the cavity field.

2.3.3.1 Cavity Resonance Shift Induced by Microspheres

Throughout the preceding sections I applied Mie theory to study the optical forces
and the light extinction properties of large spherical particles. The Mie ansatz is
based on a stationary scattering situation: One starts from a given field configuration
{E0, H0} in the absence of the scatterer, which is, in principle, determined by some
asymptotic boundary conditions at infinite distance. Parts of these fields are scattered
off the sphere in the form of outgoing multipolar waves {Esca, Hsca}, which do not
involve the asymptotic boundary conditions.

This iswhere theMie ansatz runs into problems.By construction, it cannot account
for the modified boundary conditions in a finite-size resonator due to the presence
of the sphere. On the other hand, we know that small refractive modifications within
the resonator configuration amplify to a substantial change of the intra-cavity light
that cycles many times between the mirrors. We did not run into these difficulties in
the point-particle limit, since the optical dipole potential was there responsible for
both the light-induced forces and the cavity resonance shift. In the present case, the
optical potential cannot be deduced from the light force anymore.

One way to resolve this issue, at least to a reasonable degree of approximation,
is to invoke the principles of cavity perturbation theory [78]. Let us assume that
the presence of the dielectric sphere leads to a small shift of the cavity resonance
frequency, |δω| 
 ω, whichmodifies theMaxwell equations in the resonator volume,
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∇ ×
{

E0
H0

}

= iω

{
μ0E0

−ε0H0

}

→ ∇ ×
{

E
H

}

= i (ω + δω)

{
μ0E0

−ε (r) ε0H0

}

.

(2.137)
Here I denote by {E, H} the intra-cavity fields in the presence of the sphere. The
permittivity ε (r) is piecewise constant; it assumes εSi inside the sphere and unity
outside. By making use of the vector identity ∇ · (a × b) = b · (∇ × a)− a · (∇ × b)

we can combine the above four equations to obtain the two mixed identities

∇ · (
H × E∗

0

) = −i (ω + δω) ε (r) ε0E∗
0 · E + iωμ0H∗

0 · H, (2.138)

∇ · (
H∗

0 × E
) = iωε0E∗

0 · E − iωμ0H∗
0 · H. (2.139)

These, in turn, can be combined to

− i∇ · (
H × E∗

0 + H∗
0 × E

) = ωε0 [1 − ε (r)]E∗
0 · E − δω

[
ε (r) ε0E∗

0 · E + μ0H∗
0 · H

]
.

(2.140)
At this point we can explicitly use the cavity boundary conditions by integrating the
expression over the resonator volume V . It follows from Gauss’ theorem that the
left hand side must vanish due to the vanishing boundary conditions at the mirror
surfaces. We are left with an equation that determines the shift δω from the fields,

δω

ω
= −ε0

∫
r<R d3r Re

{
(εSi − 1) Eint · E∗

0

}

∫
V d3r Re

{
ε (r) ε0E · E∗

0 + μ0H · H∗
0

} , (2.141)

where I have taken the real part to arrive at physical expressions in the end.
The integral in the numerator extends merely over the polarization density P =
ε0 (εSi − 1) Eint inside the sphere. The denominator can be rewritten as

4Hf +
∫

V

d3r Re
{
ε0 [εE − E0] · E∗

0 + μ0 [H − H0] · H∗
0

}
, (2.142)

with Hf = �ω |α|2 the free energy of the unmodified cavity field. We are still not
able to compute δω in practice since we must know the exact form of the modified
fields {E, H}, which depend on the frequency shift, too. If we regard the sphere as a
small perturbation, however, we should not only expect that the relative shift δω/ω

is small, but also that the fields are hardly modified in most of the resonator volume.
We can therefore neglect the addition to the field energy term in the denominator,
and we can insert the Mie expression for the internal field Eint from Appendix A.6,
to obtain the approximate formula

δω

ω
= − ε0

4Hf

∫

r<R

d3r Re
{
(εSi − 1) Eint · E∗

0

}
. (2.143)
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A tedious but straightforward calculation using the multipole expansion properties
from Appendix A.5, and a few additional integration steps,39yield the expansion

δω = −ω

2k3V |E0|2
∑

�,m

[

Im {β�}
∣
∣
∣C (E)

�,m

∣
∣
∣
2 + Im {α�}

∣
∣
∣C (M)

�,m

∣
∣
∣
2
]

. (2.144)

Here I have used that εSi is real. If we focus again on the standing-wave modulation
of the resonance shift, then we can neglect higher-order corrections in the waist w of
the Gaussian mode profile. The resonance shift reduces to the simple form

δω (r0) = 1

2
e−2

(
x20+y20

)
/w2

[
U (+) + U (−) cos 2kz0

]
,

U (±) = − πω

k3V

∞∑

�=1

(±)� (2� + 1) Im {α� ± β�} , (2.145)

with r0 the position of the sphere center. The form is very similar to the expression
(2.127) for the extinction power in a standing wave. It is easily checked that the
two coupling rates U (±) reduce to the point-particle value in the limit of small radii,
U (±) ≈ U0 = −2π R3ω (εSi − 1) / (εSi + 2) V .

Similar effective coupling rates can be defined for the on-axis z-force,

Fz (r0) = �kUz |α|2 exp
[

−2
x20 + y20

w2

]

sin 2kz0, (2.146)

as well as for the transverse forces Fx,y (r0). In the latter case, the coupling rates

are determined from (2.12) by the terms F (±)
x,y = −�k |α|2 U (±)

x,y . All the various

coupling rates U (±), Uz, U (±)
x,y reduce to U0 in the limit R → 0. Any substantial

difference from U0 indicates a breakdown of the point-particle approximation. I list
the coupling rates of various silicon sphere sizes in Table 2.2, which was generated
from a Mie calculation based on the given cavity parameters. We observe that the
point-particle breakdown occurs already at relatively small radii compared to the
wavelength. This is due to the large refractive index of silicon. The table also contains

39 The following integral identities for spherical Bessel functions must be used [43]:

X∫

0

dx x2 j� (x) j� (nx) = X2

1 − n2

[
j�+1 (X) j� (nX) − nj� (X) j�+1 (nX)

]

X∫

0

dx
{
� (� + 1) j� (x) j� (nx) + [x j� (x)]′ [x j� (nx)]′

} = nX2

1 − n2

[
nj�+1 (X) j� (nX) − j� (X) j�+1 (nX)

]

+ (� + 1) X j� (X) j� (nX)
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Table 2.2 Table of light coupling and extinction parameters for silicon spheres of different radii
(εSi = 12.1) in a standing-wave cavity at the IR wavelength λ = 1,560 nm

Radius 30nm 60nm 150nm 200nm 250nm

m (amu) 1.57 × 108 1.25 × 109 1.96 × 1010 4.64 × 1010 9.07 × 1010

ωr (mHz) 3.29 0.411 0.0263 0.0111 5.68 × 10−3

U (+) (MHz) −0.130 −1.09 −23.7 −103 −24.0
U (−) (MHz) −0.128 −1.02 −13.5 10.2 −122
Uz (MHz) −0.128 −1.02 −13.5 12.0 −79.1

U (+)
x (MHz) −0.130 −1.09 −23.7 −105 −75.5

U (−)
x (MHz) −0.128 −1.02 −13.5 12.0 −79.1

U (+)
y (MHz) −0.130 −1.09 −23.8 −101 16.9

U (−)
y (MHz) −0.128 −1.02 −13.5 12.0 −79.1

γ
(+)
ext (MHz) 2.41 × 10−3 0.0160 5.36 56.1 208

γ
(−)
ext (MHz) 2.41 × 10−3 0.0160 4.74 −2.18 94.5

We assume a Gaussian mode of waist w = 40µm and volume V = 0.0013mm3

the light extinction rate parameters γ
(±)
ext = 2πcΠ(±)

ext /k2V , as determined by theMie
expressions (2.127) and (2.128).

We notice that the point-particle limit already fails at R = 60 nm. At the same
time, however, all the offset terms (+) and modulation terms (−) of the coupling
rates are practically identical for spheres smaller than R = 200 nm; the cylindrical
symmetry remains valid. In this quasi-conservative size regime the cavity resonance
shift and themechanical action of the light field on the spheres are fully characterized
by the effective optical potential

V (r0) = 1

2
� |α|2 exp

[

−2
x20 + y20

w2

]
(

U (+) + U (−) cos 2kz0
)

. (2.147)

2.3.3.2 Classical Simulation of Slowing and Trapping

With the relevant parameters at hand we can finally draw our attention to the cavity-
induced slowing effect in a realistic strong-coupling scenario with silicon spheres.
The effect will be studied in the classical regime, far above the quantum limit
of motion. Hence, I will not account for any kind of diffusion or other quantum
corrections, and I base my considerations on the coupled classical equations of
motion for the center-of-mass r0 (t) of the particle and the intra-cavity field α (t).
I have derived a set of equations for the one-dimensional point-particle case in
Sect. 2.1.3. Using the results from Mie theory, the Eqs. (2.30) and (2.31) can be
readily generalized to the case of silicon spheres of mass m = 4π�SiR3/3 in three
dimensions,
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∂tα = η − (iΔ + κ) α

− 1

2
g

(√
x20 + y20

) [

iU (+) + γ
(+)
ext

2
+

(

iU (−) + γ
(−)
ext

2

)

cos 2kz0

]

α,

(2.148)

∂2t

(
x0
y0

)

= 2�

mw2
|α|2 g

(√
x20 + y20

) [(
x0U (+)

x

y0U (+)
y

)

+
(

x0U (−)
x

y0U (−)
y

)

cos 2kz0

]

,

(2.149)

∂2t z0 = �k

m
Uz |α|2 g

(√
x20 + y20

)

sin 2kz0. (2.150)

Here, the Gaussian profile is denoted by g (r0) = exp
(−2r20/w2

)
. Note that the light

extinction effect merely adds to the cavity loss channel since I neglect its contribution
to momentum diffusion. The driving term η = √

2κ Pin/�ω is related to the power
Pin of the driving laser. In the following, I shall fix the cavity-pump detuning to
Δ = κ , which is where the Lorentzian intra-cavity intensity is most sensitive to the
refractive index change induced by the particle.

Table 2.2 shows that the strong-coupling condition is already fulfilled for relatively
small spheres. We may restrict our considerations to the quasi-conservative size
regime,where the forces are symmetric and the angularmomentum L = x0 py−y0 px

is conserved. This reduces the Eqs. (2.149) and (2.150) to two equations of motion
for the radius r0 (t) and the axial position z0 (t) in cylindrical coordinates, r0 =
(r0, ϕ0, z0). They evolve under the forces resulting from the effective radial potential

Veff (r0, z0) = � |α|2
2

g (r0)
(

U (+) + U (−) cos 2kz0
)

+ L2

2mr20
(2.151)

The angular coordinate follows ∂tϕ0 = L/mr20 . The centrifugal barrier in the effec-
tive potential prevents particles from reaching the center of focus if they impinge on
the cavity mode with a finite impact parameter. Let us, for the moment, assume that
the cavity adjusts instantaneously to the presence of the particle, so that we may set
α = η/Ω (r0, z0), with Ω the curly-bracketed term in (2.148). We are left with a
strictly conservative motion in the adiabatic potential

Vad (r0, z0) = �η2g (r0)

2 |Ω (r0, z0)|2
(

U (+) + U (−) cos 2kz0
)

+ L2

2mr20
, (2.152)

and no dissipation effect can occur. The potential is positive for sufficiently large or
small r0, where the centrifugal term dominates. In between itmay assume aminimum
at negative values, depending on the light coupling parameters.

The adiabatic potential proves useful when discussing the conditions for radial
slowing and trapping, in addition to the conventional standing-wave slowing of the
z0-coordinate which we have found in Sect. 2.1.3. A trapping of both r0 and z0 means
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Fig. 2.14 Simulated trajectory of a silicon sphere of 60 nm radius that is captured and trapped by a
Gaussian standing-wave cavity mode. All parameters are taken from Table 2.2; the initial conditions
are given in the text. The xy-projection of the trajectory is plotted on the left, where the background
shading indicates the Gaussian intensity profile of the mode. The z-component is plotted on the
right versus time. The full simulation based on the coupled cavity-particle dynamics (solid line) is
compared with a hypothetical trajectory (dotted line), where the cavity is assumed to react without
delay to the particle. The simulation was run up to t = 50µs

that the particle is captured in the Gaussian mode and that it orbits around the center
of focus r0 = 0 with a constant angular momentum, while it oscillates around a
field antinode along the z-direction. If we assume that the z-coordinate is already
trapped then the radial coordinate evolves approximately under the one-dimensional
potential Vad (r0, 0). In the purely conservative case, a particle would be accelerated
towards the center, r0 = 0, until it hits the centrifugal barrier and gets reflected. The
particle would pass the cavity on a deflected trajectory in the xy-plane.

The delayed cavity reaction modifies this adiabatic trajectory and may dissipate
kinetic energy from the radial motion. For trapping to occur the parameters must be
chosen such that Vad exhibits a pronounced local minimum close to the centrifugal
barrier into which the particle could be captured. This happens if the particle has lost
enough kinetic energy to remain bounded after it has been reflected at the centrifugal
barrier.

In Fig. 2.14 I plot a simulated trapping trajectory for the 60 nm silicon sphere
from Table 2.2. The particle approaches the cavity with the initial velocity v0 (0) =
(10, 0, 1)m/s starting from the point r0 (0) = (−200, 30, 0) µm. The cavity is
pumpedwith an input power of Pin = 1W,which amounts to a steady-state number of
about 8×1012 intra-cavity photons in the absence of the particle. This value is almost
doubled as the particle gets trapped and shifts the cavity closer to resonance. The
solid line in the left panel of Fig. 2.14 represents the xy-projection of the particle
trajectory. (The shading of the background mimics the Gaussian intensity profile
g (r0).) We find that the particle is at first deflected and then eventually trapped in a
stable orbit precessing around the central cavity axis.

Notice that the centrifugal barrier keeps the particle away from the center, which
explains the empty spot in the middle of the bound orbit. For comparison I have also
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Fig. 2.15 Energy and field intensity diagrams for the simulated trajectory of Fig. 2.14. In the left
panel we plot the total (kinetic plus potential) energy of the particle versus its off-axis distance

r0 =
√

x20 + y20 in units of its initial kinetic energy E0. The dashed line represents the adiabatic

potential Vad (r0, 0), as defined in the text. On the right we plot the intra-cavity photon number |α|2
versus time. It is normalized to the maximum possible value (η/κ)2 on resonance

plotted the strictly conservative trajectory (dotted line), which would be obtained if
the particle moved under the influence of the adiabatic potential (2.152). No dissi-
pation can occur in this case. The particle is merely deflected on its passage through
the cavity. The z-component of both trajectories is plotted as a function of time on
the right panel. Also here the trapping effect appears only in the simulated trajectory
that includes dissipation (solid line).

The cavity-induced slowing cycles are clearly seen in Fig. 2.15. On the right panel,
the above trajectory is depicted in an energy diagram. The total energy of the sphere
is given by the sum of kinetic and potential energy, E = mv20/2 + Veff (r0, z0).
It is plotted relative to the initial value E0 = E (0) = m |v0 (0)|2 /2 versus the
radial coordinate r0. We notice that the energy is dissipated over many slowing
cycles while the particle orbits around the central cavity axis. The particle gets
deeper and deeper trapped in a potential well approximately given by the adiabatic
potential Vad (r0, 0) (dashed line). At the same time, the cavity is shifted more and
more towards resonance, which increases the photon number |α|2 towards the on-
resonance value (η/κ)2. The ratio between the photon number and the on-resonance
value is plotted against time in the right panel. It starts at the steady-state value 0.5
corresponding to the initial detuning Δ = κ in the absence of the sphere.

With this I have demonstrated that the strong coupling and radial trapping of
subwavelength nanospheres by a standing-wave cavity is feasible in a realistic setup.
I should remark, however, that the exemplary trapping behaviour shown here does
not necessarily improve when going to even larger particles with coupling rates way
beyond the cavity decay rate κ . Coupling rates of the order of 100κ imply that the
particle is able to shift the cavity resonance by 100 linewidths, and the initial cavity-
pump detuning Δ would have to be adjusted accordingly. Otherwise the particle
would simply kick the cavity out of resonance and switch off the field immediately
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upon entrance. A more serious obstruction is related to the large light extinction rate
that comes with the coupling. Recall that the dissipation effect can only be achieved
with high-finesse resonator modes, which exhibit a long lifetime on the scale 1/κ
of the intra-cavity field. This prerequisite becomes obsolete, and the cavity will
effectively loose finesse, when the particle directly extincts the cavity field at a much
faster rate. As a result, the particle effectively depletes the cavity by its presence.

Here ends the first part of this thesis, which contains a detailed overview of
the principles and consequences of the linear coupling between polarizable objects
and light. The possibility to cool and trap dielectric nanoparticles by cavity light
represents one of the key results regarding potential applications in the lab. (It is in
fact being implemented in the Vienna group as I write these lines.) The other key
topic of this chapter, optical diffraction gratings for molecules and nanoparticles,
will be applied in the next chapter on high-mass matter-wave interference methods.
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