
Chapter 2
Dissipation and Kullback–Leibler Divergence

In this chapter, we introduce the theoretical framework of the first part of our work,
in which we study of the relationship between dissipation and irreversibility quanti-
tatively in microscopic systems in the stationary state.

The relationship between entropy production (dissipation) and irreversibility
forms the core of thermodynamics and statistical mechanics. The first studies in
dissipation and irreversibility in nonequilibrium processes were done in the context
of linear irreversible thermodynamics [16]. In linear regime, the entropy production
is linear with the force that drives the system out of equilibrium. However, this rela-
tion holds only in linear regime and does not provide a quantitative description of
entropy production in terms of the microscopic properties of the system.

With the introduction of fluctuation theorems (see Sect. 1.5), it is possible to derive
exact relationships that connect the entropy production of a microscopic system in
the NESS with its microscopic properties and, moreover, provide a quantitative tool
to measure the time irreversibility of the process. Our work is devoted to clarify
this relation and to provide tools to estimate time irreversibility in the NESS from a
single stationary trajectory [18, 24, 25]. In this chapter, we describe the theoretical
framework of our approach, whereas the estimation techniques and applications to
simulations and experimental data are described in further chapters.

This chapter is organized as follows: In Sect. 2.1 we define the notion of time
irreversibility in stochastic processes. In Sect. 2.2 we review the notion of dissipation
in irreversible processes from the approach of linear irreversible thermodynamics
to the new insights provided by fluctuation theorems. In Sect. 2.3 we introduce the
concept of relative entropy or Kullback–Leibler divergence and show how it is related
to the arrow of time. In Sect. 2.4 we show how dissipation and time irreversibility
are quantitatively connected in the NESS. In Sect. 2.5 we study discrete systems and
obtain exact expressions for the Kullback–Leibler divergence and the dissipation for
two specific stochastic processes.
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2.1 What Is Time Irreversibility?

Time irreversibility is the ability to distinguish between a process and its time reversal.
In irreversible processes, one can ascertain from the observation of the process if the
time is running forward or backwards. The fingerprint of an irreversible processes is
therefore the ability to guess the direction of the arrow of time.

In the macroscopic world, time irreversibility occurs in different scenarios. One
example is a magnetic hysteresis cycle. In such a cycle, the system does not recover
its original demagnetized state after a periodic change of the external field. Another
example is a glass falling to the ground and smashing into pieces, where the time-
reversal process is never observed.

In the microscopic world, the arrow of time is blurred because of thermal fluctu-
ations. Guessing if a process is time reversible or not from a single realization of the
process is challenging: an irreversible process can look time reversible when sampled
at different frequencies or using insufficient statistics. However, because of the fast
relaxation times in the microscale, one can measure the probability to observe a path
or its time reversal from the statistics of different trials. This probability can be used
to quantify the time irreversibility of a process.

To quantify time irreversibility in the microscopic world one therefore needs
a metric to compare the probability distributions of forward and backward trajec-
tories. Such metric is the Kullback–Leibler divergence or relative entropy. In this
chapter we show how one can quantify the time irreversibility using the Kullback–
Leibler divergence and how this quantification is related to the dissipation of the
process.

2.2 Average Dissipation in Irreversible Processes

In nonequilibrium processes, an irreversible process is accompanied by a positive
entropy production. In linear regime, entropy production in macroscopic systems is
a bilinear quadratic form on the macroscopic flows or currents of the systems.

At small scales, an analogous relation between entropy production and currents
is found for systems obeying an overdamped equation as shown in Sect. 1.4.3. Using
novel results derived in the context of fluctuation theorems, it is possible to measure
the entropy production of microscopic systems that are driven arbitrarily far from
equilibrium under an arbitrary external protocol.

2.2.1 Linear Irreversible Thermodynamics

Linear irreversible thermodynamics studies systems that are driven not far from
equilibrium in the context of linear response theory [16]. Close to equilibrium,
entropy production can be expressed as a linear combination of all the different
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thermodynamic forces or gradients Fi that are exerted on the system. In this limit,
the entropy production per unit volume, σ , equals to

σ =
∑

i

Fi Ji , (2.1)

where i runs over all the different forces on the system and Ji is the flux associated
to the force Fi . One example is the heat flux JQ , which is produced by a force that
is proportional to the gradient of temperature, FQ ∝ ∇ 1

T . Another example is the
electric current Je = I that is driven by an electric field E , Fe ∝ E . In linear regime,
the forces are proportional to the fluxes

Fj =
∑

k

L jk Jk, (2.2)

where L jk are the phenomenological coefficients. The above relation expresses that,
for example, it is possible to induce a heat flow from an electric current, or vice versa.
Taking into account (2.2), entropy production per unit volume equals to

σ =
∑

i,k

Lik Ji Jk . (2.3)

We notice that in linear response, entropy production is a positively defined quadratic
form of the currents and it is therefore related to the presence of macroscopically
observable flows, and since if J > 0, then σ > 0. This formulation however does not
connect the entropy production with the microscopic properties of the system. Using
fluctuation theorems, it is possible to obtain a formula that expresses the entropy
production for microscopic systems driven arbitrarily far from equilibrium and do a
connection between the work dissipated and the microscopic properties of the system.

2.2.2 Entropy Production in Microscopic Systems

As we showed in Sect. 1.4.3, the definition of the entropy associated to a trajectory
of a microscopic system allows one to introduce the notion of entropy production
in the case of a Brownian particle obeying an overdamped Langevin equation. The
following expression relating the ensemble average of the entropy production and
the probability flux was derived by Seifert [26],

〈Ṡprod(t)〉 = k
∫

dx
j (x, t)2

Dρ(x, t)
≥ 0. (2.4)

Notice that this expresion was also obtained for Brownian chemical motors described
by Langevin equation [21]. We notice that (2.4) expresses a relationship between
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entropy production and the probability current, j (x, t). According to (2.4), the
entropy production a Brownian particle vanishes if j (x, t) does, which means that
irreversibility for these kind of systems is revealed in the flows of the system. More-
over, the entropy production depends on the current as j2, which is in accordance
with linear response theory, as shown in (2.3).

2.2.3 KPB Theorem

Recently, a quantitative relationship between dissipation and irreversibility in non-
equilibrium processes for microscopic systems has been derived. The introduc-
tion of fluctuation theorems has allowed to express the entropy production of an
isolated microscopic system in terms of the microscopic properties of the sys-
tem [11, 15, 22]. The main result was derived by Kawai et al. [15] and it is known
in literature as the KPB (Kawai, Parrondo and van den Broeck) theorem, which we
now discuss.

In Refs. [15, 22], the dissipation of microscopic isolated systems that are are
brought from an initial equilibrium state at temperature T to a final equilibrium state
at the same temperature is investigated. An expression relating the average dissipation
(or entropy production) in such processes with the distinguishability between the
process and its time reversal is found.

Consider an isolated physical system described by a Hamiltonian H(q, p; λ),
where (q, p) denotes a point in phase space, and λ is a parameter of the system
controlled by an external agent. The system is initially in a canonical equilibrium
state at temperature T . Then the system is disconnected from the thermal bath and
driven out of equilibrium according to a protocol in which the external agent modifies
λ from λ(0) = λA to λ(τ) = λB , following a protocol {λ(t)}τt=0. At t = τ the system
is weakly coupled to a thermal bath and relaxes to a canonical state at temperature T .

The dissipation of the process described above (which we call forward process)
is related to the distinguishability between phase space densities of the forward
process and its time reversal (or backward process). In the backward process, the
system is initially in a canonical equilibrium state at temperature T and driven by
the time-reversed protocol {λ̃(t)}τt=0 = {λ(τ − t)}τt=0. For a given trajectory in the
forward process that starts in (q0, p0; 0) and ends in (q1, p1; τ), the correspond-
ing time reversed trajectory is obtained by reversing the position and changing the
sign of the momenta, i.e., the time reversed trajectory starts in (q1,−p1; τ) and
ends in (q0,−p0; 0) (see Fig. 2.1). Notice that the time t is taken in the forward
process.

The KPB theorem relates the average dissipation in the forward process, 〈Wdiss〉,
with the distinguishability between the forward and the backward phase space den-
sities measured at the same but arbitrary time during the process, t ∈ [0, τ ],

〈Wdiss〉 = 〈W 〉 − �F = kT
∫

dqdp ρ(q, p; t) ln
ρ(q, p; t)

ρ̃(q,−p; t)
. (2.5)
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Fig. 2.1 Forward and
backward trajectories in phase
space. Picture taken from [15]
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This result shows that the dissipation of a nonequilibrium process is revealed in the
phase space. The right hand side is often called relative entropy or Kullback–Leibler
divergence (KLD) [4, 17] between the probability distributions ρ(q, p; t) and
ρ̃(q,−p; t), which is denoted by the letter D,

〈Wdiss〉 = kT D[ρ(q, p; t)||ρ̃(q,−p; t)]. (2.6)

The right hand side of (2.6) measures the difficulty to distinguish whether the
microstate of the system at any time is generated from the forward or the back-
ward experiment. Equation (2.6) links directly the average dissipation with the time
irreversibility of the process, which can be quantified using the KLD. As we will
show in Sect. 2.3, the value of the KLD increases when the two probability distribu-
tions are more different each other, indicating that the more different are the forward
and reverse process the more work is dissipated. The KLD is positive, which ensures
that the second law of thermodynamic holds in average, 〈Wdiss〉 = kT D[ρ||ρ̃] ≥ 0.
The dissipation of microscopic systems is revealed in the phase space and one can get
tighter bounds to the dissipation than in the macroscopic case, where 〈Wdiss〉 ≥ 0.

The KPB theorem can be extended to more general initial (equilibrium) condi-
tions. In Ref. [22] it is proved that the change of the entropy in the system plus the
bath averaged over many realizations of the process is equal to

〈Sprod〉 = k D[ρ(q, p; t)||ρ̃(q,−p; t)]. (2.7)

Equation (2.7) is valid for a variety of initial equilibrium conditions, as shown in
Ref. [22]: canonical, multi-canonical (several uncoupled systems at different tem-
peratures), and grand-canonical distributions, as well as for different types of baths
equilibrating the system at the end of the process. In all these cases, the formula
holds when the evolution is isolated and the control parameter follows any arbitrary
nonequilibrium protocol. In particular, for canonical initial conditions in the forward
and in the backward processes, both at the same temperature T , entropy production
equals the average dissipated work 〈Wdiss〉 = 〈W 〉−�F divided by the temperature
T and (2.7) becomes (2.6), 〈Wdiss〉 = kT D[ρ(q, p; t)||ρ̃(q,−p; t)].

We now reproduce the proof of Eq. (2.7) for the case where both initial conditions
of the forward and backward processes are canonical at temperature T . We use the
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notation z = (q, p) to denote all the variables in phase space, z̃ = (q,−p) being
the corresponding microstate obtained by changing the sign of all the momenta. We
first consider that the KLD D[ρ(z; t)||ρ̃(z̃; t)] can be rewritten as

D[ρ(z; t)||ρ̃(̃z; t)] =
∫

dz ρ(z; t) ln ρ(z; t) −
∫

dz ρ(z; t) ln ρ̃(̃z; t). (2.8)

Secondly, since the system is isolated during its evolution, the phase space density
evolves according to Liouville’s equation [cf. Eq. (1.28)]

∂ρ(z; t)

∂t
= Lρ(z; t). (2.9)

In addition, the backward phase space density ρ̃(̃z; t) obeys the same Liouville
equation considering the derivative with respect to the forward time t [22],

∂ρ̃(̃z; t)

∂t
= Lρ̃(̃z; t). (2.10)

The fact that both ρ and ρ̃ obey the same Liouville equation implies that the two
terms in Eq. (2.8) are invariant in time, which can be proved by using both Liouville’s
equations and partial integration. A proof of the time invariance of the first term in
Eq. (2.8) can be found in Appendix B.1, and the proof for the invariance of the second
term is analogous. Consequently, we express (2.8) by evaluating the two terms at any
time t , in particular,

D[ρ(z; t)||ρ̃(̃z; t)] =
∫

dz ρ(z; 0) ln ρ(z; 0) −
∫

dz ρ(z; τ) ln ρ̃(̃z; τ). (2.11)

The first term in (2.11) corresponds to (minus) the system entropy in the beginning
of the process, in k units. The second term in (2.11) can be interpreted as the system
entropy at the end of the process plus the change in the entropy of the environment,
as we shall see. We notice the difference between ρ(z; τ), which is the phase space
density at the end of the forward process, which is not at equilibrium, and ρ̃(̃z; τ),
which is the initial (equilibrium) distribution of the backward process.

Let us consider a process where a system that is initially in contact with a thermal
bath at temperature T is disconnected from the bath and driven out of equilibrium by
an external agent following a protocol {λ(t)}τt=0 from λ(0) = λA to λ(τ) = λB . After
the process, the system is put in contact with a thermal bath at temperature T ′ and
let relax to an equilibrium state. We assume that during the nonequilibrium driving,
the Hamiltonian of the system is H(z, λ). In this case, the initial distributions of the
forward and backward processes are

ρ(z; 0) = e−βH(z;λA)

Z(T, λA)
, ρ̃(̃z; τ) = e−βH (̃z;λB )

Z(T ′, λB)
, (2.12)
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Fig. 2.2 KPB theorem in an example. A system described by a single degree of freedom x is driven
by an external agent following a protocol in which a control parameter is changed linearly from
λ(0) = λA to λ(τ) = λB . a Protocol (black line), and the value of x in the forward (blue) and
backward process (red) when the total time of the process is much larger to the relaxation time
of the system τ 	 τr . The dynamics is reversible and the phase space densities of forward and
backward processes coincide at any time. b Same graphs when the time of the process is much
smaller than the relaxation time of the system, τ 
 τr . The dynamics is irreversible and the phase
space densities of forward and backward processes do not coincide at every time. In this case, at
time t indicated in green in the figure, ρ(x, t) �= ρ̃(x, t) and we can measure the average dissipation
of the forward process with 〈Wdiss〉 = kT D[ρ(x, t)||ρ̃(x, t)]

where Z(t, λ) = ∫
dze−H(z;λ)/kT . By replacing the above distributions in (2.11) and

taking into account that F(T, λ) = −kT ln Z(T, λ),

k D[ρ(z; t)||ρ̃(̃z; t)] = −S(0) + 〈H〉τ − F(T ′, λB)

T ′ . (2.13)

Here 〈H〉τ is an average over ρ(z, τ ), which does not coincide with the average
energy on the initial (equilibrium) state of the backward process, 〈H〉eq,τ . On the
other hand, when the system relaxes to equilibrium after it is connected to the thermal
bath at temperature T ′ at time t = τ , the system transfers a heat to the environment
Qenv = 〈H〉τ − 〈H〉eq,τ . Taking into account this, Eq. (2.13) can be rewritten as

k D[ρ(z; t)||ρ̃(̃z; t)] = −S(0) + 〈H〉eq,τ − F(T ′, λB)

T ′ + Qenv

T ′
= −S(0) + S(τ ) + �Sbath = Sprod, (2.14)

which proves Eq. (2.7) for the case of initial and final canonical equilibrium states at
any temperatures T and T ′. In particular, for the case of initial and final conditions
at the same temperature T , we recover the expession relating work dissipation and
irreversibility (2.6).

In Fig. 2.2 we show an illustrative example of the applicability of KPB theorem.
A system is initially in equilibrium at temperature T with an externally-controlled
control parameter λ fixed at value λA. Then the system is disconnected from the ther-
mal bath and the control parameter is kept constant and equal to λA for a time longer
than the relaxation time of the system, τr . Then the control parameter is changed from
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λA to λB linearly during a time τ in isolated conditions. In the end of the process,
the control parameter is held fixed at λB for a time longer than τr and the system is
let to relax by putting the system in contact with a thermal bath of temperature T . If
the relaxation time of the system τr is very small compared to τ , τr 
 τ , the system
relaxes to the equilibrium state at any time t and the process is done reversibly. In this
case, the forward and reverse trajectories are indistinguishable and ρ(x; t) � ρ̃(x; t)
at any time t along the process. If the process is done much faster than the characteris-
tic time scale of the system, τr 	 τ then the system does not relax tho the equilibrium
state during the process as shown in Fig. 2.2b. In this case, forward and backward
trajectories are distinguishable, and in general ρ(x; t) �= ρ̃(x; t). The KLD between
these two distributions is an estimation of the dissipation of the process.

We remark that the formulas (2.7) and (2.6) connecting dissipation and irre-
versibility in the microscopic scale were first proved for the case of systems driven
out of equilibrium in isolated conditions. The relationship can be extended to any
system immersed in a thermal bath at temperature T , described by the overdamped
Langevin equation. When such a system is in contact with a thermal bath at tem-
perature T , the system plus the bath can be viewed as an isolated “super system”.
The KPB theorem implies that the average dissipation of the system plus the bath
equals to 〈Wdiss〉 = kT D(ρ||ρ̃) where D(ρ||ρ̃) is calculated in the full phase space
(system plus bath) [13]. This relation was tested experimentally using a Brownian
particle dragged by an optical tweezer at constant speed and with an electric circuit
with an imposed mean current [1, 3]. Notice that both the position of the Brownian
particle and the charge inside the resistor of the circuit obey an overdamped Langevin
equation with different physical parameters [1].

The KPB theorem can be generalized to other stochastic processes in the
microscopic scale using previous results obtained in the framework of fluctua-
tion theorems—which are valid not only in isolated conditions—such as Crooks’s
theorem [6]. The connection between fluctuation theorems and the KPB theorem, as
well as its generalization to other stochastic processes such as nonequilibrium steady
states was done in [11]. The relation between irreversibility and entropy production
in a generic nonequilibrium steady state is of particular interest in this work, and it
is discussed in the next sections.

2.3 Kullback–Leibler Divergence and Irreversibility

The Kullback–Leibler divergence (KLD), or relative entropy, measures the distin-
guishability of two probability distributions or two random processes [4]. Let us
consider a random variable X and let p and q be two different probability distribu-
tions of the random variable X . We denote by p(x) and q(x) the probability of the
variable X to take the value x when it is distributed according to p and q, respectively.
The KLD between the probability distributions p and q is defined as [17]

D[p(x)||q(x)] =
∫

dx p(x) ln
p(x)

q(x)
. (2.15)
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Fig. 2.3 Dice and lottery example of the KLD. Left probability density function of a random
variable X that can take the values 2, 3, . . . , 12 with equal probability as if it were drawn from a
lottery. Right probability distribution of a random variable whose value is obtained as the sum of
the outcome of two dice. One can measure the KLD between these discrete distributions D(p||q) =∑

i pi ln(pi /qi ), where i runs from 2 to 12. The KLD between the two distributions is not symmetric,
since D(pdice(x)||plottery(x)) = 0.128 and D(plottery(x)||pdice(x)) = 0.152

The KLD is always positive, D[p(x)||q(x)] ≥ 0, and vanishes if and only if
p(x) = q(x) for all x . Therefore, D follows two of the main properties of a mathe-
matical distance. However, D is not symmetric with respect to a change of arguments,
D[p(x)||q(x)] �= D[q(x)||p(x)] as it can be seen in the simple example of Fig. 2.3.

The interpretation of the KLD as a measure of distinguishability is a consequence
of Chernoff-Stein lemma [4]: the probability of incorrectly guessing (via hypothe-
sis testing) that a sequence of n data is distributed according to p when the true
distribution is q is asymptotically equal to e−nD[p(x)||q(x)]. Therefore, when p and
q are similar—in the sense that they overlap significantly—the likelihood of incor-
rectly guessing the distribution, p or q, is large [4]. In the example of Fig. 2.3,
D(pdice||plottery) < D(plottery||pdice), meaning that it is easier to incorrectly guess—
or equivalently harder to distinguish between distributions—that a sequence is gen-
erated from the dice, when true origin is the lottery. In other words, the smaller is
the KLD, the more similar are the two distributions and it is harder to distinguish
between them using hypothesis testing.

Chernoff-Stein lemma implies that the KLD in (2.6) and (2.7) can be considered
as a measure of the arrow of time, since it measures the difficulty to distinguish
whether the state (q, p) of the system at time t was generated in the forward on
backward experiment [22]. Mathematically speaking, the relative entropy in KPB
theorem (2.6),

D[ρ(q, p; t)||ρ̃(q,−p; t)] =
∫

dqdp ρ(q, p; t) ln
ρ(q, p; t)

ρ̃(q,−p; t)
, (2.16)
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has to be understood as a relative entropy between two probability distributions of
the same random variables (q, p) at time t : ρ(q, p; t), and a second distribution
σ(q, p; t).

D[ρ(q, p; t)||σ(q, p; t)] =
∫

dqdp ρ(q, p; t) ln
ρ(q, p; t)

σ (q, p; t)
, (2.17)

such that the value of σ(q, p; t) for (q, p) satisfies σ(q, p; t) = ρ̃(q,−p; t).
Let us recall a property of the KLD that we use throughout our work [4]. If we

have two random variables X, Y and two joint probability distributions p(x, y) and
q(x, y), then the chain rule holds (see Appendix B.2),

D[p(x, y)||q(x, y)] = D[p(x)||q(x)] + D[p(y|x)||q(y|x)]
≥ D[p(x)||q(x)]. (2.18)

The inequality in Eq. (2.18) implies that it is harder to distinguish between p and
q when we consider only the marginal distributions, p(x) and q(x), instead of the
full joint distributions, p(x, y) and q(x, y). If X, Y describe the state of a physical
system, Eq. (2.18) indicates that the KLD is smaller when calculated using a partial
description of the system, given by the variable X , than when using full information
(X and Y ). The bound in (2.18) is an equality when the variable Y carries redundant
information with respect to the variable X , for example, when Y is obtained as a
function of X , Y = f (X) for any function f .

When not all the degrees of freedom of the system can be sampled, we say that
partial information of the physical system is available. Let x be any collection of m
position and n momenta of the system x = (q1, . . . , qm; p1, . . . , pn), where m and
n can be different and 3n+3m is smaller than the total number of degrees of freedom
of the system. Since x describes in general only a part of the physical system we say
that x contains partial information of the system. Because of the chain rule, when
the state of the system is described with partial information given by x , the KPB
theorem (2.6) turns into an inequality

〈Wdiss〉 ≥ kT D[ρ(x; t)||ρ̃(x̃; t)], (2.19)

where x̃ = (q1, . . . , qm;−p1, . . . ,−pn). We notice that even ignoring the full infor-
mation of phase space (2.19) D[ρ(x; t)||ρ̃(x̃; t)] still gives at least a lower bound
to the average dissipation that is in accordance with the second law of thermody-
namics, 〈Wdiss〉 ≥ kT D[ρ(x; t)||ρ̃(x̃; t)] ≥ 0. Consequently, when the system is
described using only a reduced set of variables of the phase space, the KLD in (2.19)
provides a lower bound to the dissipation.1

1 However, a recent work shows that, if the neglected information contains an external driving,
the entropy production estimated in the coarse grained system can be bigger than the real entropy
production [8].
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A particular set of redundant variables do not provide any statistical information
about the direction of the arrow of time of the process, and the value of the KLD
remains the same if these variables are not sampled [11, 24, 25]. There are two groups
of variables that provide redundant information to measure the irreversibility with
the KLD. First, variables which are time reversible whose distribution is the same in
the forward and backward processes. Second, system variables that are obtained as
a function of other variables.

Now suppose that at every time t , we cannot measure the microstate (q, p; t) of
the system but we can only detect that the system is in a specific subset of the phase
space. In this situation, the state of the system can be described using a coarse-
grained random variable X that indicates in which subset the system is at every
time t . For example, the position of a Brownian particle in one dimension x can
be coarse-grained by introducing a new variable α that indicates if the value of the
position is positive or negative, for example α = 0 if x ≤ 0 and α = 1 if x > 0. If we
phase space is partitioned in K non overlapping subsets {X j }K

j=1 the coarse-grained
forward and backward phase space densities are

ρ j (t) =
∫

X j

dqdp ρ(q, p; t); ρ̃ j (t) =
∫

X̃ j

dqdp ρ̃(q,−p; t), (2.20)

where ρ̃ j is identical to ρ j except a change of sign in all the momenta. These dis-
tributions measure the probability of the system to be in the region j of the phase
space. At an arbitrary time t during the nonequilibrium process, the KLD between
the forward and backward coarse-grained distributions is

D[ρ(t)||ρ̃(t)] =
K∑

j=1

ρ j (t) ln
ρ j (t)

ρ̃ j (t)
, (2.21)

Since the coarse-grained description of the state of the system is a partial description
of its microstate, the KLD in Eq. (2.21) bound from below the KLD using full
information of the phase space, by virtue of the chain rule. Therefore using a coarse-
grained description of the microstate of the system, we can only bound from below
the average dissipation [15],

〈Wdiss〉 ≥ kT D[ρ(t)||ρ̃(t)]. (2.22)

The chain rule allows one to rewrite the KPB theorem using the KLD between the
forward and reverse distributions of trajectories in phase space. For isolated sys-
tems, the evolution is deterministic, except for the last stage where the system is
connected to the bath, and the point z = (q, p) at time t determines the whole
trajectory of the system {z(t)}τt=0. Then z(t) and {z(t)}τt=0 carry the same infor-
mation and the KLD of their respective probability densities are equal by virtue of
the chain rule. Equation (2.6) can be rewritten in terms of path probabilities. Let
P({z(t)}τt=0) be the probability to observe a trajectory {z(t)}τt=0 = {q(t), p(t); t}τt=0
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in the forward process. The corresponding time-reversed path in the backward process
starts in (q(τ ),−p(τ ); τ) and ends in (q(0),−p(0); 0) as shown in Fig. 2.1. In a
more compact notation, the time-reversed trajectory is defined as {z̃(τ − t)}τt=0 =
{q(τ − t),−p(τ − t); τ − t}τt=0. The probability to observe such a trajectory in the
backward process is denoted by P̃({z̃(τ − t)}τt=0). The KLD between forward and
backward trajectory distributions equals to the KLD between phase space densities
at every time t during the process,

D[ρ(z; t)||ρ̃(z̃; t)] = D[P({z(t)}τt=0)||P̃({z̃(τ − t)}τt=0)]. (2.23)

Because of this, the dissipation in isolated microscopic systems can be expressed in
terms of the distinguishability between the trajectory distributions of forward and
backward processes. Equation (2.6) can be rewritten as [11, 24, 25]

〈Wdiss〉 = kT D[P({z(t)}τt=0)||P̃({z̃(τ − t)}τt=0)]. (2.24)

The above KLD has to be understood as a KLD between two distributions of a
stochastic process [cf. (B.18) in Appendix B.2]. As noticed before in (2.17), the right
hand side in (2.24) is a KLD between P and a different trajectory distribution Q,

〈Wdiss〉 = kT
∫

D({z(t)}τt=0)P({z(t)}τt=0) ln
P({z(t)}τt=0)

Q({z(t)}τt=0)
, (2.25)

where Q is such that Q({z(t)}τt=0) = P({z̃(τ − t)}τt=0).
We now recall that using Crooks’s fluctuation theorem, we can arrive to an expres-

sion of the average dissipative work in terms of the forward and backward work dis-
tributions. Integrating Crooks’s theorem (1.70), W − �F = ln ρ(W )

ρ̃(−W )
, where ρ(W )

[ρ̃(W )] is the probability density of the work done on the system along the forward
(backward) process [6, 11], one immediately gets

〈Wdiss〉 = kT D[ρ(W )||ρ̃(−W )]. (2.26)

Notice that the work W is a functional of the trajectory {z(t)}τt=0 [see (1.59)] contain-
ing less information than the trajectory itself. As indicated by the chain rule (2.18),
the KLD of work distributions should in principle be smaller than the KLD of trajec-
tory distributions, and therefore bound the dissipation from below. On the contrary,
the KLD is the same, indicating that all the irreversibility of the process is captured
by the dissipative work [11]. Equation (2.26) indicates that the irreversibility in the
work reveals the entropy production.

If the microstate of the system is not known are every time t but only a trajec-
tory containing the evolution of a subset of variables of the phase space, {x(t)}τt=0,
the KLD between forward and backward trajectories yields a lower bound to the
dissipation,

〈Wdiss〉 ≥ kT D[P({x(t)}τt=0)||P̃({x̃(τ − t)}τt=0)]. (2.27)

http://dx.doi.org/10.1007/978-3-319-07079-7_1
http://dx.doi.org/10.1007/978-3-319-07079-7_1
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The bound saturates when the variables that are sampled capture the same information
about the irreversibility as the work. The information of the irreversibility is contained
in the variables that interact with the work-performing device which are the footprints
of irreversibility [11].

When the state of the system cannot be sampled at every time t along the process
but only every finite time interval, �t , the sampled trajectory contains less infor-
mation than the path of the system along the process (which coincides with the
limit �t → 0). In this case, even if the microstate of the system (q(t), p(t); t)
is known every �t , the KLD gives a lower bound to the dissipation. In Ref. [10],
Gomez-Marin et al. studied the dynamics of an overdamped Brownian particle that
moves in one dimension dragged by a harmonic potential that moves at constant
velocity. They measured the KLD between trajectories of the position of the particle
{x(t + i�t)}τ/�t

i=0 in the forward process and the backward process, the latter con-
sisting in moving the trap at the opposite velocity as in the forward process. When
reducing the sampling time �t , the KLD approaches asymptotically to the entropy
production in the system.

In summary, when considering the KLD between forward and backward distrib-
utions of trajectories, the irreversibility is partially captured by the KLD when one
or more of the following phenomena occur:

• Coarse graining: Only a coarse-grained description of the system is available, that
is, we only know in which of an ensemble of phase space subsets the system is.

• Partial information: Not all the variables of phase space can be sampled but only
a subset of variables in phase space.

• Finite time sampling: The trajectory cannot be sampled at any time but only at a
finite sampling frequency.

When the information about the system is not full in the sense that one of the three
above mentioned shortcomings occur, the KLD between forward and backward tra-
jectories is a lower bound to the average entropy production in the system. In Fig. 2.4
we show an illustrative example where the three types of lack of information can
occur.

In the majority of experimental contexts, only system variables are measur-
able, neglecting the variables of the bath and therefore using partial information
of the system. In this case, the KLD yields a lower bound to the dissipation
〈Wdiss〉 ≥ kT D(ρF ||ρB). In [13], this result is illustrated with an overdamped
Brownian particle in a dragged harmonic trap immersed in a thermal bath at temper-
ature T . It is shown that in isothermal conditions, a lower bound to the dissipation
is obtained using the KLD 〈Wdiss〉 ≥ kT D(ρF ||ρB). The bound is tighter when
decreasing the friction coefficient γ , and therefore the when the coupling between
the Brownian particle and the reservoir is weaker. When γ → 0, the system is
uncoupled to the bath and therefore isolated, and the equality is met.
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Fig. 2.4 Illustrative example of possible information shortcomings. In the top panel, we show the
trajectory of a microscopic system that reaches a limit cycle in the xy plane. In the bottom panels we
show the trajectory of the system when using partial descriptions of the microstate of the system:
measuring the quadrant in which the system is at any time (bottom left panel), measuring only the
variable x at any time (bottom center panel) and sampling the trajectory in xy plane every 20 data
(bottom right panel)

2.4 Dissipation and Irreversibility in the Nonequilibrium
Stationary State

The main goal of our work is to explore the existing quantitative relation between
dissipation and irreversibility for microscopic systems for the case of nonequilibrium
processes that reach a nonequilibrium stationary state (NESS). As we revised in
Sect. 1.5.3, a fluid under a constant shear, a gas in a piston that is moved sinusoidally
or a molecular motor driven by the ATP hydrolysis are only a few examples of
nonequilibrium processes that reach a NESS.

We now proceed to apply the above results to stationary trajectories. Consider a
long process where a microscopic system reaches a nonequilibrium stationary state
(NESS) after a possible initial transient. In the NESS, the external parameter is held
fixed, λ(t) = λ or it is time-symmetric; the system is kept out of equilibrium due
to the existence of baths at different temperatures (a possibility that is included in
the hypothesis used in [22] to prove (2.7)) or different chemical potentials, external
constant forces, etc. In the steady state, the protocol and its time reversal are identical
λ(t) = λ̃(t) = λ. For simplicity, we will denote by P the trajectory probability

http://dx.doi.org/10.1007/978-3-319-07079-7_1
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density in the stationary state. In the long time limit, τ → ∞, we can neglect the
contribution of the transient to the entropy production and rewrite (2.7) for the entropy
production per unit of time Ṡprod in the NESS [20] as

〈Ṡprod〉 = k lim
τ→∞

1

τ
D

[P ({z(t)}τt=0

)∣∣ ∣∣P ({z̃(τ − t)}τt=0

)]
. (2.28)

As we showed in Sect. 1.5.3, a similar expression can be obtained from the steady
state fluctuation theorem, which holds in the long time limit (1.75),

〈Ṡprod〉 = k lim
τ→∞

1

τ

〈
ln

ρτ (S)

ρτ (−S)

〉
, (2.29)

= k lim
τ→∞

1

τ
D[ρτ (S)||ρτ (−S)]. (2.30)

where pτ (S) is the probability to observe an entropy production Sprod = S in the
interval [0, τ ]. Notice that the average in (2.29) is done over all possible values of
the entropy production by averaging with ρτ (S), which yields the KLD in (2.30).
Comparing (2.28) and (2.30) we arrive at

D
[P ({z(t)}τt=0

)∣∣ ∣∣P ({z̃(τ − t)}τt=0

)] = D[ρτ (S)||ρτ (−S)], (2.31)

for τ → ∞. Consequently, although S is another observable that is obtained as a
function of the microstate of the system, the KLD calculated with S yields the same
value as the one calculated with full information of the system. Therefore entropy
production captures all the information about the time irreversibility of the NESS.

When one does not observe the entire microscopic trajectory {z(t)}τt=0 in (2.28)
but the trajectory followed by one or several observables of the system x(t), the KLD
only provides a lower bound to the entropy production, as we discussed in Sect. 2.3.
Equation (2.31) indicates that the equality is recovered if the observables determine
in a unique way the entropy production or the dissipated work.

We are interested in exploring this formula in simulations and experiments where
a microscopic system reaches a NESS and we are given a single stationary trajectory
or time series produced by the system. In an experimental context, the observables
are usually sampled at a finite frequency. The output is then a time series of data or
discrete trajectory, x = (x̂1, x̂2, . . . , x̂n), where x̂i can be the value of a single or
several observables of the system. In this case, we are interested in estimating the
entropy production per data produced by the underlying physical process, which we
denote by 〈Ṡprod〉 in the rest of the chapter. Entropy production per data is related to
the KLD rate per data, which we define below.

For the sake of simplicity, we now consider random discrete processes, but the dis-
cussion below holds also for continuous random processes. Given an infinitely long
realization or time series sampled from a random discrete process Xi (i = 1, 2, . . .),
which can be multi-dimensional, we define by p(xm

1 ) the probability that a given
sequence of m consecutive data is equal to xm

1 = (x1, x2, . . . , xm). We define

http://dx.doi.org/10.1007/978-3-319-07079-7_1
http://dx.doi.org/10.1007/978-3-319-07079-7_1
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the m−th order KLD for this random process Xi by the distinguishability (KLD)
between p(xm

1 ) and the probability p(x1
m) to observe the reverse sequence of data

x1
m = (xm, xm−1, . . . , x1).

DX
m = D[p(xm

1 )||p(x1
m)] =

∑

x1,...,xm

p(xm
1 ) ln

p(xm
1 )

p(x1
m)

. (2.32)

The KLD rate for the process Xi is defined as the growth rate of DX
m with the number

of data,

d X = lim
m→∞

DX
m

m
. (2.33)

Because of the finite time sampling and given that x may not contain the information
of the entropy production (2.31), the chain rule (2.18) implies that the KLD rates
bounds from below the entropy production per data

〈Ṡprod〉
k

≥ d X . (2.34)

The above bound is saturated if the random variable is the microstate of the system
X = {q, p} and the sampling rate is infinite or X determines uniquely the entropy
production in the process.

Equation (2.34) is our basic result. It reveals a striking connection between physics
and the statistics of a time series. The left-hand side, 〈Ṡprod〉/k, is a purely physical
quantity, whereas the right-hand side, d X , is a statistical magnitude depending solely
on the observed data, but not on the physical mechanism generating the data. This
means that if we are given a stationary time series of any random variable X produced
by a microscopic system we can bound from below the average entropy production
rate in the physical mechanism that generated the data. In particular (2.34) can be
used to study the minimum amount of entropy produced in a symmetry restore such
as the erasure of a bit, which yields Landauer’s principle relating entropy produc-
tion and logical irreversibility in computing machines [2, 15, 19] as we will see in
Chap. 6. Equation (2.34) extends this principle and suggests that we can determine
the average dissipation of an arbitrary NESS, even ignoring any physical detail of
the system.

2.5 Discrete Systems

We first study the bound to the entropy production provided by the KLD in discrete
nonequilibrium stationary processes, namely in Markov chains satisfying detailed
balance condition and in Hidden Markov models.

http://dx.doi.org/10.1007/978-3-319-07079-7_6
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2.5.1 Markov Chains Obeying Local Detailed Balance

We first analyze how the bound (2.34) is expressed for Markovian time series that
obey the detailed balance condition by deriving analytical expressions for both
entropy production and the KLD rate.

Among all the stochastic processes, Markov processes are the most important
ones in physics, chemistry and biology [27]. Let us consider a stochastic process of a
random (discrete or continuous) variable X . Such a process is said to be Markovian
if the probability to observe any sequence of n data xn

1 at times tn
1 = (t1, t2, . . . , tn)

satisfies the following property,

ρ(xn+1, tn+1|x1, t1, . . . , xn, tn) = ρ(xn+1, tn+1|xn, tn), (2.35)

where the bar | denotes conditioned probability. Therefore, in a Markov process, the
probability to observe a value of the process at a given time tn+1 only depends on
the state of the process one step before, at time tn . In order to know the probability to
observe a sequence xn

1 , we only need to know p(x1, t1) and the transition probability
p(x2, t2|x1, t1) for successive times t1, t2 and any value of x1, x2, since the following
property derives from (2.35)

ρ(x1, t1; . . . ; xn, tn) = p(x1, t1) · p(x2, t2|x1, t1) · · · p(xn, tn|xn−1, tn−1). (2.36)

Nuclei decay, the voltage in an RC circuit, or the motion of a molecular motor
in a microtubule can be described by Markov processes. Concerning microscopic
physics, the position of a Brownian particle described by the overdamped Langevin
equation can be considered as a Markov process [27]. The probability a random
discrete variable X to take the value xi at time t , pi = pi (t) obeys the Master
equation,

ṗi =
∑

j

k j→i p j − ki→ j pi , (2.37)

where ki→ j is the rate from state i to state j , i.e., the number of times that the
transition i → j occurs per unit of time. Therefore, ki→ j ≥ 0 for all i, j . The
Master equation (2.37) can be seen as a gain-loss equation for state i . The term
k j→i p j accounts for the net incoming probability from any state j to state i and
the term −ki→ j pi accounts for the losses from state i to any other state j . The net
change of pi due to an exchange with state j is defined as the current

J j→i = k j→i p j − ki→ j pi , (2.38)

which allows one to write the master equation as a balance equation

ṗi =
∑

j

J j→i . (2.39)
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A Markov process reaches a stationary state when the probability to be at any state
i does not change in time, and reaches a stationary value, pss

i . Equivalently, in the
stationary state, ṗi = 0, which implies by (2.37) the balance condition

∑
j J j→i = 0

for all i . If the following (stronger) condition called detailed balance condition is
satisfied for every pair of states i and j ,

ki→ j

k j→i
= pss

j

pss
i

, (2.40)

the system also reaches a stationary state. Notice however that detailed balance
condition on the transition rates ki→ j does not ensure that the stationary state is
an equilibrium state. For a physical system that is in contact with a thermal bath at
temperature T during the process, and where the potential energy of the state i is Vi ,
detailed balance condition is written as

ki→ j

k j→i
= exp

(
− Vj − Vi

kT

)
, (2.41)

and it has to be satisfied for every i, j in order to reach a stationary equilibrium
state. Equation (2.41) is compatible with stationary probabilities that are weighed by
the Boltzmann factor, pss

i = peq
i ∝ exp(−βVi/kT ). In fact, local detailed balance

condition is derived by imposing equilibrium stationary probabilities in detailed
balance condition (2.40).

When both the state xn
1 and the times tn

1 are discrete, the Markov process is called
a Markov chain [27]. A simple example of a three-state Markov chain is shown in
Fig. 2.5. A physical system jumps at discrete times t = 0, �t, 2�t, . . . between
three states labeled by an index s = 1, 2, 3. The transition rates ki→ j and the balance
equation for the probability to stay in one of the three states are illustrated in Fig. 2.5.

Let us now consider a Markov chain Xi where the random variable can only
take discrete values and we can only sample the value of the random variable at
a finite frequency. For a Markov chain, the probability distribution to observe a
sequence xm

1 , p(xm
1 ), factorizes as p(xm

1 ) = p(x1)p(x2|x1) · · · p(xm |xm−1), which
also holds if we reverse the arguments, i.e., for p(x1

m). Substituting these expressions
into equation (2.33), we get

d X =
∑

x1,x2

p(x1, x2) ln
p(x2|x1)

p(x1|x2)
= DX

2 − DX
1 = DX

2 , (2.42)

since DX
1 = 0 when comparing a trajectory and its reverse. Therefore, d X only

depends on transition probabilities if X is a random Markovian process. This expres-
sion was also derived for Markov chains in [9].

We now relate d X in Eq. (2.42) with the entropy production when the system
reaches a NESS, because it is in contact with several thermal baths. In this situation,
the local detailed balance condition is satisfied. We call V (xi ) is the energy of the
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k2→1

k2→3

k2→3
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+k1→2p1 + k3→2p3 −k2→1p2 − k2→3p2ṗ2 =

k1→3

k3→1

Fig. 2.5 Example of a Markov chain. A system can jump randomly between three states labeled
by 1, 2 and 3. When the system is at state i , its state in the next step is j �= i . The transition rates
are indicated in the top figure. In the bottom figure, the incoming and outgoing contributions for
the time derivative of p2 are illustrated (solid lines for incoming and dashed for outgoing). In the
bottom line the Master equation for the probability to be in state 2 is written

state xi , and Tx1,x2 is the temperature of the bath that activates the transitions x1 → x2
and x2 → x1. The local detailed balance condition reads in this case

p(x2|x1)

p(x1|x2)
= exp

(
− V (x2) − V (x1)

k Tx1,x2

)
. (2.43)

Inserting (2.43) into (2.42),

d X =
∑

x1,x2

p(x1, x2)
V (x1) − V (x2)

k Tx1,x2

=
∑

x1,x2

p(x1, x2)
Qx1,x2

k Tx1,x2

= 〈Ṡprod〉
k

, (2.44)

where Qx1,x2 = V (x1) − V (x2) is the heat dissipated to the corresponding thermal
bath in the jump x1 → x2, and Ṡprod is the total entropy production per data. There-
fore, Eq. (2.34) is reproduced, with equality, in the case of a physical system obeying
local detailed balance, if we have access to all the variables describing the system.
The same conclusion is reached if we induce the NESS by means of non-conservative
constant forces.

Equation (2.42) can be explored further by means of the current from the state x1 to
the state x2 as the net probability flow from x1 to x2, Jx1→x2 = p(x1, x2)− p(x2, x1).
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Fig. 2.6 Example of a Hidden
Markov chain. The state of a
system s changes in discrete
time steps according to the
Markovian process described
in Fig. 2.5. At every time, the
observed state o is obtained
according to the following
rule: If si = 1, then oi = 0,
else oi = 1. The sequence
of observations o1, o2, o3, . . .

does not form a Markov chain
while the (hidden) state does

1 2 31

0 0

s1 s2 s3 s4

o1 o2 o3 o4

State

Observation

1 1

If the system is not far from equilibrium the current tends to zero, and the following
condition is satisfied Jx1→x2 
 p(x1, x2), yielding

〈Ṡprod〉
k

= d X = DX
2 �

∑

x1,x2

(Jx1→x2)
2

2p(x1, x2)
. (2.45)

This expression is well known from linear irreversible thermodynamics [cf.
Eq. (2.4)]. Equation (2.45) implies that the time asymmetry of a Markovian process
not far from equilibrium is revealed by the currents or probability flows that can be
observed. In other words, a Markovian process without flows is time reversible. This
is not the case for non-Markovian time series, where irreversibility can show up even
in the absence of currents, as shown in the next section.

2.5.2 Hidden Markov Processes

In many experimental situations, a physical process is Markovian at a micro- or
mesoscopic level of description, but the observed time series only contain a subset
of the relevant observables, being non-Markovian in general. This is the case in
biological systems, where one can only register the behavior of some mechanical
and maybe a few chemical variables, while most of the relevant chemical variables
cannot be monitored. These kind of non-Markovian time series obtained from an
underlying Markov process are called Hidden Markov processes [23]. If the time
and the state of the system are both discrete, the process is called a Hidden Markov
chain. A simple example of a Hidden Markov chain is shown in Fig. 2.6.

We now show how to calculate the KLD rate between a specific case of hidden
Markov chains semi-analytically. We focus on a simple case where an underlying
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Markov process is described by two observables X and Y ; however we only observe
X whose evolution is described by a hidden Markov chain. The KLD rate for the
observable X is

d X = lim
m→∞

1

m

∑

xm
1

p(xm
1 ) ln

p(xm
1 )

p(x1
m)

= lim
m→∞

1

m

∑

xm
1

p(xm
1 ) ln

∑
ym

1
p(xm

1 , ym
1 )

∑
y1

m
p(x1

m, y1
m)

. (2.46)

where we have expressed the marginal distribution in X by summing the joint dis-
tribution in X, Y to all the possible values that Y can take, p(xn

1 ) = ∑
yn

1
p(xn

1 , yn
1 ).

The chain rule ensures that the KLD for the random variable X is smaller than the
KLD calculated with full information given by x and Y , d X ≤ d X,Y . To compute
d X analytically, it is convenient to write d X as a difference between two terms,

d X = h X
r − h X , (2.47)

where

h X = − lim
m→∞

1

m

∑

xm
1

p(xm
1 ) ln p(xm

1 ),

= − lim
m→∞

1

m

∑

xm
1

p(xm
1 ) ln

∑

ym
1

p(xm
1 , ym

1 ), (2.48)

is called Shannon entropy rate. On the other hand,

h X
r = − lim

m→∞
1

m

∑

xm
1

p(xm
1 ) ln p(x1

m),

= − lim
m→∞

1

m

∑

xm
1

p(xm
1 ) ln

∑

y1
m

p(x1
m, y1

m), (2.49)

is called the cross entropy rate. Since the underlying process is Markovian, the proba-
bility distribution in X, Y factorizes (2.36) p(xm

1 , ym
1 )=p(x1, y1)p(x2, y2|x1, y1) · · ·

p(xm, ym |xm−1, ym−1) and both Shannon and cross entropy can be expressed in terms
of the trace of a product of random transition matrices T [12, 14]. These are square
M × M random matrices, where M is the number of values that the variable y can
take on, and their entries are given by

T(x1, x2)y1 y2 = p(x2, y2|x1, y1). (2.50)

There are a total number of N 2 transition matrices, where N is the number of values
that x can take on. Note the different role played by each variable in this formalism:
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xi are parameters defining the matrix (making T a random matrix), whereas yi are
subindices of the matrix elements. The Shannon and cross entropy can be expressed
in terms of these matrices,

h X = − lim
m→∞

1

m

〈
ln Tr

[
m−1∏

i=1

T(xi , xi+1)

]〉
, (2.51)

h X
r = − lim

m→∞
1

m

〈
ln Tr

[
m−1∏

i=1

T(xm−i+1, xm−i )

]〉
, (2.52)

where 〈·〉 denotes the average over the random process Xi , which is weighted by
p(xm

1 ). For sufficiently large m, Eqs. (2.51) and (2.52) are self-averaging [12], mean-
ing that we do not need to calculate the average but just compute the trace for a single
stationary trajectory. For any sufficiently long time series x = (x̂1, x̂2, . . . , x̂n) with
n large, the following expressions converge to −h and −hr almost surely [12] 2

λ̂x = 1

n
ln

∥∥∥∥∥

n−1∏

i=1

T(x̂i , x̂i+1)

∥∥∥∥∥ � −h X , (2.53)

λ̂x̃ = 1

n
ln

∥∥∥∥∥

n−1∏

i=1

T(x̂n−i+1, x̂n−i )

∥∥∥∥∥ � −h X
r , (2.54)

where ‖ · ‖ is any matrix norm that satisfies ‖A · B‖ ≤ ‖A‖ ‖B‖. In particular, the
trace satisfies this condition for positive matrices. In the context of random matrix
theory, λ̂x and λ̂x̃ are known as maximum Lyapunov characteristic exponents [5] and
measure the asymptotic rate of growth of a random vector when being multiplied by
a random sequence of matrices. In practice, we can estimate d X semi-analytically as

d̂x = λ̂x − λ̂x̃. (2.55)

Here λ̂x and λ̂x̃ are estimated using (2.53) and (2.54) with a single time series x of
size n, following a numerical technique introduced in Ref. [5] to calculate Lyapunov
characteristic exponents:

1. We generate a random stationary time series x = {x̂n
1 } and compute the matrices

T analytically.
2. A random unitary vector is multiplied by those matrices in the order given

by (2.53) and normalized every l data, keeping track of the normalization factor.
3. The product of these factors divided by n yields λ̂x.
4. For λ̂x̃, the same procedure is repeated but using the reversed time series x̃ = {x̂1

n}.
5. The KLD is estimated using Eq. (2.55).

2 A sequence of a random variable X , given by X1, X2, . . ., is said to converge almost surely to x
when the probability that the sequence satisfies limn→∞ Xn = x is equal to 1.
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The technique is semi-analytical since the transition probabilities are known analyt-
ically but a single random stationary time series x is necessary to estimate d X with
the multiplication of n transition matrices that are chosen according to x.

Let us recall that the estimator d̂x cannot be applied to empirical time series unless
we know the Markov model generating the data. Consequently, it is not useful in prac-
tical situations. However, we will use it to test the performance of the estimators of
the KLD introduced in the next chapters. On the other hand, one can also analytically
estimate of Eqs. (2.51) and (2.52) by using the replica trick, in an analogous way as
done in Ref. [7]. The calculation is cumbersome and is explained in Appendix B.3.
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