
Chapter 2
Theoretical Considerations for Laser
Spectroscopy

2.1 Hyperfine Structure

The coupling of the electronic angular momentum with the nuclear angular
momentum leads to a substructure of the energy levels of the electronic orbitals,
known as the hyperfine structure. For the case of 221Fr, the hyperfine structure aris-
ing from the coupling of its nuclear spin I=5/2− with the electronic orbitals 7p 2S1/2
and 8p 2P3/2 is shown in Fig. 2.1.

The electron has two components of angularmomentum: the spin angularmomen-
tum, S, and the orbital angular momentum, L . In light atoms (usually Z<30), these
couple (known as L S coupling) to give the total electronic angular momentum J ,

J = L + S, (2.1)

where
L =

∑

i

li and S =
∑

i

si . (2.2)

In heavier atoms such a lead, bismuth and polonium, the individual orbital angu-
lar momentum, li , and spin angular momentum, si , combine to form a individual
total angular momentum, ji . These couple to form the total orbital angular momen-
tum, J . This is known as j j coupling,

J =
∑

i

ji =
∑

i

(li + si ). (2.3)

The coupling of the different projections of the spin and orbital angular momenta
gives rise to the fine structure of the electronic orbitals. The total electronic angular
momentum, J , in turn couples to the nuclear spin angular momentum, I , to give the
total angular momentum, F ,

F = I + J. (2.4)
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Fig. 2.1 Schematic illustration of the hyperfine structure of 221Fr, where I=5/2−

When both I and J are greater then zero, degenerate hyperfine substates of the
electronic orbitals are produced. The presence of the nuclearmagnetic dipolemoment
or electric quadrupole moment raises the degeneracy of these substates, giving rise
to a different energy for each level.

The perturbation of the hyperfine energy levels is given by [1, 2]

�E

h
= K

2
A + 3K (K + 1) − 4I (I + 1)J (J + 1)

8I (2I − 1)J (2J − 1)
B, (2.5)

where K = F(F + 1) − I (I + 1) − J (J + 1). The hyperfine factors A and B are
defined as

A = μI Be

I J
, (2.6)

and

B = eQs

〈∂2Ve

∂z2

〉
, (2.7)

with μI the magnetic dipole moment of the nucleus, Be the magnetic field of the
electrons at the nucleus, Qs the electric quadrupole moment, and 〈∂2Ve/∂z2〉 the
electric field gradient produced by the electrons.

The frequency, γ, at which the atomic transition between an upper and lower J
level (Ju and Jl respectively) occurs is given by

γ = ν + αupper Aupper + βupper Bupper − αlower Alower − βlower Blower . (2.8)

Here, α and β are functions of the nuclear and atomic spin, as defined by

α = K

2
, (2.9)

and

β = 3K (K + 1) − 4I (I + 1)J (J + 1)

8I (2I − 1)J (2J − 1)
. (2.10)
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Fig. 2.2 Simulated hyperfine structure scan of 221Fr. The lower 7p 2S1/2 state splitting is∼18GHz
whereas the upper state splitting of 8p 2P3/2 is significantly smaller at ∼200MHz

By fitting the hyperfine structure spectrum (such as one akin to Fig. 2.2) with
a numerical routine such as χ2-minimisation, the centroid frequency, ν, and the
hyperfine factors Aupper,lower and Bupper,lower can be evaluated.

2.1.1 Nuclear Spin

For well resolved hyperfine structures, the nuclear spin of the isotope under investi-
gation can often be determined from the relative frequencies of the atomic transitions,
according to Eq.2.5 if Jupper,lower ≤ 1/2. In some cases, a spin can be immediately
discounted due to the number of peaks present in the spectrum. For J=1/2 to 1/2
or 0 to 1 transitions, the hyperfine structure does not provide enough information to
determine the spin. For all other possible spins, χ2 can be minimized and compared.
The relative hyperfine-peak intensities determined by the weak-field angular cou-
pling distribution can lead to a more significant difference in χ2-minimisation [3].
However, careful experimental monitoring is required [4, 5].

2.1.2 Magnetic Dipole Moment

The magnetic dipole moment of the nucleus, μI , arises when the nuclear spin, I ,
is greater than zero. However, the magnitude of the magnetic moment when I >0
can be vanishingly small, resulting in an A factor that leads to a hyperfine structure
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that is smaller than the natural line width of the state [6]. As shown in Eq.2.6, the
magnetic moment of the nucleus can be extracted from the hyperfine A factor. To
the first order, the magnetic field at the nucleus due to the electrons is uniform along
an isotopic chain, in the same way the electronic angular momentum, J , is. For
a discussion on higher order corrections, see Sect. 2.1.4. This allows the magnetic
moment of the isotope under investigation to be extracted from the known moment
of another isotope of the element, using the ratio

μ = μre f
I A

Ire f Are f
. (2.11)

2.1.3 Electric Quadrupole Moment

The electric quadrupole moment, Qs , can be determined in a similar fashion, for
nuclei with I > 1/2 and J > 1/2. This is a result of the electric field gradient
〈∂2Ve/∂z2〉 produced by the electrons remaining constant along an isotopic chain.
The quadrupole moment can be extracted from the magnetic moment and hyperfine
B factor of a reference isotope, using the ratio

Qs = Qs,re f
B

Bre f
. (2.12)

2.1.4 Hyperfine Anomaly

TheBohr-Weisskopf effect (BW) corrects the assumption that the nuclearmagnetiza-
tion is point-like [7]. For the S1/2 and P1/2 atomic states, the hyperfine interaction is
affected by the non-uniformity of the magnetic field over the nuclear volume. For all
other states, this effect is zero since there is virtually no overlap with the nucleus [8].
For heavy nuclei, the BW-effect is small, of the order of 1% of the hyperfine A
factor [9].

In addition, the Breit-Rosenthal effect (BR) corrects for the charge volume of the
nucleus [10]. This effect is small for light nuclei but much larger for heavier nuclei,
of the order of 20% for Z=90 [9]. These two corrections reduce the hyperfine A
factor to

A = Apoint−like(1 − εBW )(1 + εB R). (2.13)

This leads to a modified expression for the magnetic moment,

μ = μre f
I A

Ire f Are f
(1 + �), (2.14)
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with,

� = A gre f

Are f g
− 1 ≈ ε − εre f , (2.15)

and the magnetic hyperfine anomaly defined as ε [11]. This can be calculated for
nuclei whose nuclear gyromagnetic (g-) factors have been measured independent
of laser spectroscopy, for example with nuclear magnetic resonance (NMR) spec-
troscopy [12].

The hyperfine anomaly can range from 10−5 to 1% depending on the location of
the isotope in the nuclear chart. For the francium isotopes, it is generally considered
to be of the order of 1% and is included as a contribution to the error [13].

2.2 Isotope Shift

The centre of gravity of the hyperfine structure (the centroid frequency) of one isotope
relative to another, is shifted due to the difference in the structure of the two nuclei:
their volume, shape, mass and charge radii. The isotopes shift, the shift of transition
frequency of isotope A′ compared to isotope A, can be written as

δν A,A′
I S = ν A′ − ν A. (2.16)

The isotope shift can be evaluated as a linear combination of the mass shift and
the field shift [14]

δν A,A′
I S = δν A,A′

M S + δν A,A′
F S . (2.17)

It arises (in part) due to the change in the mean-square charge radii between
isotopes, associated with volume and shape changes.

2.2.1 Mass Shift

The mass shift component of the isotope shift originates from the recoil kinetic
energy of a nucleus that has a finite mass. This shift can be calculated by

δν A,A′
M S = M

A′ − A

AA′ . (2.18)

The M term, the mass factor, is dependent of the measured transition. For light
nuclei, the mass shift is the significant contributing component of the isotope shift
due to the 1/A2 dependence: the addition of a single neutron to a light nucleus has a
much larger effect than adding one neutron to a heavy nucleus. The mass shift of an
isomeric state relative to its ground state is zero as these nuclei have the same nuclear
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composition but are in a different nuclear state. However, with respect to the overall
trend, the mass shift for isomers needs to be included. The remaining field shift is
renamed the isomer shift, and gives the difference in centroid frequency between the
ground state and the isomeric state.

The mass factor can be approximated in terms of a linear combination of the
normal mass shift, KN M S , and the specific mass shift, KSM S ,

M = KN M S + KSM S . (2.19)

The normal mass shift (NMS) is the contribution expected for a two-body system:
the correction to the energy levels of the electrons relative to an infinitely heavy
nucleus. This is always positive for the heavier isotope [15]. The normal mass shift
is transition frequency, νexpt , dependent and can be expressed as

KN M S = νexpt

1,822.888
. (2.20)

The specific mass shift (SMS) is caused by the correlations between the electrons
and can cause both a positive or negative shift. Calculation of this shift is non-trivial
due to the evaluation of electron-correlation integrals. Ab initio calculations are only
possible for nuclei with up to three electrons [16]. Heavier systems rely on large-scale
many-body calculations, which are less accurate [17]. Alternatively, if experimental
data is available, the specific mass shift can be determined by use of a King plot
analysis [18]. This method is outlined in Sect. 2.2.4.

2.2.2 Field Shift

In heavy atoms, the isotope shift is dominated by the field shift: the shift in energy
caused by the change in nuclear charge distribution as the nuclear content changes.
This modifies the Coulomb interaction with the electrons. Over the nuclear volume,
constant electron density is assumed and the perturbation in the electronic energy
levels can be shown (to a first order approximation) to equal the mean-square charge
radius, given by

〈r2〉 =
∫ ∞
0 ρ(r)r2dV
∫ ∞
0 ρ(r)dV

, (2.21)

where ρ(r) is the nuclear density. The field shift is sensitive to the change in the
mean-square charge radius, as shown by relativistic calculations [19], thus the field
shift is given by

δν A,A′
F S = πa3

0

Z
�|ψ(0)|2 f (Z)δ〈r2〉A,A′

, (2.22)



2.2 Isotope Shift 13

where �|ψ(0)|2 is the change in the probability density function of the electrons at
the nucleus, a0 is the Bohr radius, and f (Z) a relativistic correction factor [20]. For
isotopes of the same element, the atomic transition between s and p electrons yield
the largest field shifts and are thusmore sensitive to the difference in themean-square
charge radius, δ〈r2〉A,A′

.

2.2.3 Total Isotope Shift

The isotope shift [21] can therefore be expressed as

δν A,A′ = M
A′ − A

AA′ + Fδ〈r2〉A,A′
. (2.23)

This separates the atomic and nuclear dependences: M and F are purely dependent
on the atomic transitions and by comparison, (A′ − A)/AA′ and δ〈r2〉A,A′

contain
only the nuclear properties information.

2.2.4 King Plot Analysis

The atomic factors F and M can be evaluated by way of a King plot [18] if data is
available for more than two stable isotopes whose charge radii were determined by
other techniques (muonic x-rays or electron scattering).When no experimental data is
available, the extraction of the atomic factors relies upon theoretical calculations, and
introduces atomic-model dependence. The King plot analysis compares the isotope
shifts of an element from two different atomic transitions. Equation2.23 is first
multiplied by the modification factor,

μA,A′ = AA′

A′ − A
, (2.24)

for the transitions i and j , giving,

μA,A′δν A,A′
i = Mi + μA,A′ Fiδ〈r2〉A,A′

, (2.25)

μA,A′δν A,A′
j = M j + μA,A′ Fjδ〈r2〉A,A′

.

After the elimination of μA,A′
δ〈r2〉, the linear fit of the data μA,A′

δν A,A′
j against

μA,A′
δν A,A′

i gives the straight line equation

μA,A′
δν A,A′

j = Fj

Fi
μA,A′

δν A,A′
i + M j − Fj

Fi
Mi . (2.26)
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This has a gradient of Fj/Fi and an intercept of M j − (Fj/Fi )Mi , whereby F
and M can be evaluated for the transition of interest.
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