
Chapter 2
Multithreaded PSS-SQL for Searching
Databases of Secondary Structures

...; life was no longer considered to be a result of mysterious and
vague phenomena acting on organisms, but instead the
consequence of numerous chemical processes made possible
thanks to proteins.

Amit Kessel, Nir Ben-Tal, 2010 [13]

Abstract Protein secondary structure (PSS), as an organizational level, provides
important information regarding protein construction and regular spatial shapes, in-
cluding alpha-helices, beta-strands, and loops, which protein amino acid chain can
adopt in some of its regions. The relevance of this information and the scope of its
practical applications cause the requirement for its effective storage and processing.
In this chapter, we will see how PSSs can be stored in the relational database and
processed with the use of the protein secondary structure-structured query language
(PSS-SQL). The PSS-SQL is an extension to the SQL language. It allows formula-
tion of queries against a relational database in order to find proteins having secondary
structures similar to the structural pattern specified by a user. In this chapter, we will
see how this process can be accelerated by parallel implementation of the alignment
using multiple threads working on multiple-core CPUs.

Keywords Proteins · Secondary structure · Query language · SQL · Relational
database · Multithreading · Parallel computing · Alignment

2.1 Introduction

Secondary structures are a kind of intermediate organizational level of protein struc-
tures, a level between the simple amino acid sequence and complex 3D structure.
The analysis of protein structures on the basis of the secondary structures is very
supportive for many processes that are important from the viewpoint of biomedicine
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and pharmaceutical industry, e.g., drug design. Algorithms comparing protein 3D
structures and looking for structural similarities quite oftenmake use of the secondary
structure representation at the beginning as one of the features distinguishing one
protein from the other. Secondary structures are taken into account in algorithms,
such as VAST [8], LOCK2 [20], CTSS [5], CASSERT [16]. Also in protein 3D
structure prediction by comparative modeling [12, 28], particular regions of protein
structures aremodeled through the adoption of particular secondary structure types of
proteins that structure is already determined and deposited in a database. Secondary
structure organizational level also shows what types of secondary structure a protein
molecule is composed of, what is their arrangement—whether they are segregated or
alternating each other. Based on the information proteins are classified by systems,
such as CATH [19] and SCOP [18]. All these examples show how important the
description by means of secondary structures is.

For scientists studying structures and functions of proteins, it is very important to
collect data describing protein construction in one place and have the ability to search
particular structures that satisfy given searching criteria. Consequently, this needs
an appropriate representation of protein structures allowing for effective storage
and searching. The problem is particularly important in the face of dynamically
growing amount of biological and biomedical data in databases, such as PDB [4] or
Swiss-Prot [3].

At the current stage of development of IT technologies, awell-established position
in terms of collecting andmanaging various types of data reached relational databases
[6]. Relational databases collect data in tables (describing part of reality) where
data are arranged in columns and rows. Modern relational databases also provide
a declarative query language—SQL that allows retrieving and processing collected
data. The SQL language gained a great power in processing regular data hiding details
of the processing under a quite simple SELECT statement. However, processing
biological data, such as protein secondary structures (PSSs), by means of relational
databases are hindered by several factors:

• Data describing protein structures have to be managed by database management
systems (DBMSs), which work excellent in commercial uses, but they are not
dedicated for storing and processing biological data. They do not provide the
native support for processing biological data with the use of the SQL language,
which is a fundamental, declarative way of data manipulation in most modern
relational database systems.

• Processing of biological data must be performed by external tools and software
applications, forming an additional layer in the IT system architecture, which is a
disadvantage.

• Currently, results of data processing are returned in different formats, like: table-
form datasets, TXT, HTML, or XML files, and users must adopt them in their
software applications.

• Secondary processing of the data is difficult and requires additional external tools.

In other words, modern relational databases require some enhancements in order
to deal with the data on secondary structures of proteins. The possibility of collecting
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Fig. 2.1 Exploration of protein secondary structures in relational databases using PSS-SQL
language. Secondary structure description of protein molecules is stored in relational database. The
databasemanagement system (DBMS) has the PSS-SQL extension that interprets queries submitted
by users. Users can connect to the database from various tools, desktop software applications, and
Web applications. They obtain results of their queries in a table-like format or as an XML document

protein structural data in appropriate manner and processing the data by submitting
simple queries to a database simplifies a work of many researchers working in the
area of protein bioinformatics. Actually, the problem of storing biological data de-
scribing biopolymer structures of proteins and DNA/RNAmolecules and possessing
appropriate query language allowing processing the data has been noticed in the last
decade and reported in several papers. There are only a few initiatives in the world
reporting this kind of solutions.

For example, theODMBLAST [23] is a successful implementation of theBLAST
family of methods in the commercial Oracle database management system. ODM
BLAST extends the SQL language by providing appropriate functions for local align-
ment and similarity searching ofDNA/RNAand protein amino acid sequences. ODM
BLAST works fast, but in terms of protein molecules it is limited only to the primary
structure. In [9], authors describe their extension to the SQL language, which allows
searching on the secondary structures of protein sequences. The extension was devel-
oped in Periscope (dedicated engine) and in Oracle (commercial database system).
In the solution, secondary structures are represented by segments of different types
of secondary structure elements (SSEs), e.g., hhhllleee. In [24], authors show the
Periscope/SQ extension of the Periscope system. Periscope/SQ is a declarative tool
for querying primary and secondary structures. To this purpose authors introduced
new language PiQL, new data types, and algebraic operators according to the de-
fined query algebra PiOA. The PiQL language has many possibilities. In this paper
[25], the authors present their extensions to the object-oriented database (OODB)
by adding the Protein-QL query language and the Protein-OODB middle layer for
requests submitted to the OODB. Protein-QL allows to formulate simple queries that
operate on the primary, secondary, and tertiary level.

Finally in 2010, me and a group of researchers from my university (Silesian
University of Technology in Gliwice, Poland) developed the PSS-SQL [15, 17, 26,
27], which is an extension to the Transact-SQL language and Microsoft SQL Server
DBMS allowing for searching protein similarities on the secondary structure level
(Fig. 2.1).
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I had the opportunity to be the manager and supervisor of the project, and I have
never stopped thinking on its improvement in the following years. New versions of
the PSS-SQL consists of many improvements leading to the significant growth of
the efficiency of PSS-SQL queries, including:

• parallel and multithreaded execution of the alignment procedure used in the
searching process,

• reduction of the computational complexity of the alignment algorithm by using
gap penalty matrices, and

• indexing of sequences of SSEs.

The PSS-SQL language containing these improvements will be described in this
chapter. In the chapter, wewill also see results of performance tests for sample queries
in PSS-SQL language and how to return query results as table-like result sets and as
XML documents.

2.2 Storing and Processing Secondary Structures in a Relational
Database

Searching for protein similarities on secondary structures by formulating queries
in PSS-SQL requires that data describing secondary structures should be stored
in a database in an appropriate format. The format should guarantee an efficient
processing of the data. In PSS-SQL the search process is carried out in two phases, by:

1. Multiple scanning of a dedicated Segment Index for secondary structures.
2. Alignment of found segments in order to return k-best solutions.

All these steps, including data preparation, creating and scanning the Segment
Index, and alignment will be discussed in the following sections.

2.2.1 Data Preparation and Storing

The PSS-SQLuses a specific representation of PSSswhile storing them in a database.
Let us assume,we have a protein P described by the amino acid sequence (primary

structure):
P = {pi |i = 1, 2, . . . , n ∧ pi ∈ Π ∧ n ∈ N}, (2.1)

where n is the length of protein amino acid chain, i.e., the number of amino acids,
and Π is a set of 20 common types of amino acids.

Secondary structure of protein P can be then described as a sequence of SSEs
related to amino acids in the protein chain:

S = {si |i = 1, 2, . . . , n ∧ si ∈ Σ ∧ n ∈ N}, (2.2)
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Fig. 2.2 Sample amino acid sequence of Zinc transport system ATP-binding protein adcC in the
Streptococcus pneumoniae with the corresponding sequence of secondary structure elements

Fig. 2.3 Sample relational table storing sequences of secondary structure elements (SSEs) (sec-
ondary field), amino acid sequences (primary field), and additional information of proteins from
the Swiss-Prot database. The table (called ProteinTbl) will be used in sample queries presented in
next sections. Secondary structures were predicted from amino acid sequences using the Predator
program [7]

where each element si corresponds to a single element pi , andΣ is a set of secondary
structure types. The set Σ may be defined in various ways. A widely accepted defin-
ition of the set provides DSSP [10, 11]. The DSSP code distinguishes the following
secondary structure types:

• H = alpha helix,
• B = residue in isolated beta-bridge,
• E = extended strand, participates in beta ladder,
• G = 3-helix (3/10 helix),
• I = 5 helix (pi helix),
• T = hydrogen bonded turn, and
• S = bend.

In practice, the set is often reduced to the three general types [7]:

• H = alpha helix,
• E = beta strand (or beta sheet), and
• C = loop, turn or coil.

An example of such a representation of protein structure is shown in Fig. 2.2, where
we can see primary and secondary structures of a sample protein recorded as se-
quences. In such a way both sequences can be effectively stored in a relational
database, as it is shown in Fig. 2.3.
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Fig. 2.4 Part of the segment
table

2.2.2 Indexing of Secondary Structures

At the level of DBMS, the PSS-SQL uses additional data structures and indexing in
order to accelerate the similarity searching. A dedicated segment table is created for
the table field storing sequences of secondary structures elements. The segment table
consists of secondary structures and their lengths extracted from the sequences of
SSEs, together with locations of the particular secondary structure in the molecule
(identified by the residue number, Fig. 2.4). Then, additional Segment Index is created
for the segment table. The Segment Index is a B-Tree clustered index holding on the
leaf level data pages from the additional segment table. The idea of using the segment
table and segment index is adopted from the work [9]. The Segment Index supports
preliminary filtering of protein structures that are not similar to the query pattern.
During the filtering, the PSS-SQL extension extracts the most characteristic features
of the query pattern and, on the basis of the information in the index, eliminates
proteins that do not meet the search criteria. Afterward, proteins that pass the filtering
process are aligned to the query pattern.

If we take a closer look at the segment table, we will see that it stores secondary
structures in the form that has been described in Sect. 1.3.2. During the scanning
of the Segment Index the search engine of the PSS-SQL tries to match segments
distinguished in the given query pattern to segments of the index.

2.2.3 Alignment Algorithm

The alignment implemented in the PSS-SQL is inspired by the Smith–Waterman
method [21]. The method allows to align two biopolymer sequences, originally
DNA/RNA sequences or amino acid sequences of proteins. When scanning a data-
base the alignment is performed for each pair of sequences—query sequence given
by a user and a successive, qualified sequence from a database. In PSS-SQL, af-
ter performing multiple scanning of the Segment Index (MSSI), a database protein
structure SD of the length d residues is represented as a sequence of segments (see
also formulas 1.14 and 1.15), which can be expanded to the following form:

SD = SSE D
1 L1, SSE D

2 L2, . . . , SSE D
n Ln, (2.3)

http://dx.doi.org/10.1007/978-3-319-06971-5_1
http://dx.doi.org/10.1007/978-3-319-06971-5_1
http://dx.doi.org/10.1007/978-3-319-06971-5_1
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where SSE D
i ∈ Σ describes the type of secondary structure (as defined in

Sect. 2.2.1), n is the number of segments (secondary structures) in a database protein,
Li ≤ d is the length of the i th segment of a database protein SD .

Query protein structure SQ , given by a user in a form of string pattern, is rep-
resented by ranges, which gives more flexibility in defining search criteria against
proteins in a database:

SQ = SSE Q
1 (L1; U1), SSE Q

2 (L2; U2), . . . , SSE Q
m (Lm; Um), (2.4)

where SSE Q
j ∈ Σ describes the type of secondary structure (as defined in

Sect. 2.2.1), L j ≤ U j ≤ q are lower and upper limits for the number of successive
SSEs of the same type, q is the length of the query protein SQ measured in residues,
which is the maximal length of the string query pattern resulting from expanding the
ranges of the pattern, m is the number of segments in the query pattern.

Additionally, the SSE Q
j canbe replacedby thewildcard symbol ‘?’,whichdenotes

any type of SSE from Σ , and the value of the U j can be replaced by the wildcard
symbol ‘*’, which denotes U j = +∞.

The advantage of the used alignment method is that it finds local, optimal align-
ments with possible gaps between corresponding elements. A big drawback is that it
is computationally costly, which negatively affects efficiency of the search process
carried out against the whole database. The computational complexity of the original
algorithm is O(n ∗ m(n + m)) when allowing for gaps calculated in a traditional
way. However, in the PSS-SQL we have modified the way how gap penalties are
calculated, which results in better efficiency.

While aligning two protein structures SQ and SD , the search engine of the PSS-
SQL calculates the similarity matrix D according to the following formulas.

Di,0 = 0 for i ∈ [0, q], (2.5)

and
D0, j = 0 for j ∈ [0, d], (2.6)

and

Di, j = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0

Di−1, j−1 + di, j

Ei, j

Fi, j

, (2.7)

for i ∈ [1, q], j ∈ [1, d], where q, d are lengths of proteins SQ and SD , and di, j is the

matching degree between elements SSE D
i Li and SSE Q

j (L j ; U j ) of both structures
calculated using the following formula:
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di, j =
{

ω+ if SSE D
i = SSE Q

j ∧ Li ≥ L j ∧ Li ≤ U j

ω− otherwise
, (2.8)

where ω+ is the matching award, and ω− is the mismatch penalty. If the element
SSE Q

j is equal to ‘?’, then the matching procedure ignores the condition SSE D
i =

SSE Q
j . Similarly, if we assign the ‘*’ symbol for the U j , the procedure ignores the

condition Li ≤ U j .
Auxiliary matrices E and F , called gap penalty matrices, allow to calculate hori-

zontal andvertical gap penaltieswith the O(1) computational complexity (as opposed
to the original method, where it was possible with the O(n) computational complex-
ity for each direction). In the first version of the PSS-SQL, the calculation of the
current element of the matrix D required an inspection of all previously calculated
elements in the same row (for a horizontal gap) and all previously calculated elements
in the same column (for a vertical gap). By using gap penalty matrices we need only
to check one previous element in a row and one previous element in a column. Such
an improvement gives a significant acceleration of the alignment method, and the
acceleration is greater for longer sequences of SSEs and greater similarity matrices
D. Elements of the gap penalty matrices E and F are calculated according to the
following equations:

Ei, j = max

{
Ei−1, j − δ

Di−1, j − σ
, (2.9)

and

Fi, j = max

{
Fi, j−1 − δ

Di, j−1 − σ
, (2.10)

where σ is the penalty for opening a gap in the alignment, and δ is the penalty for
extending the gap, and:

Ei,0 = 0 for i ∈ [0, q], Fi,0 = 0 for i ∈ [0, q], (2.11)

E0, j = 0 for j ∈ [0, d], F0, j = 0 for j ∈ [0, d]. (2.12)

The PSS-SQL uses the following values for matching award ω+ = 4, mismatch
penalty ω− = −1, gap open penalty σ = −1, and gap extension penalty δ = −0.5.

Filled similarity matrix D consists of many possible paths how two sequences of
SSEs can be aligned. Backtracking from the highest scoring matrix cell and going
along until a cell with score 0 is encountered allows to find the highest scoring
alignment path. However, in the version of the alignment method that is implemented
in the PSS-SQL, the search engine finds k-best alignments by searching consecutive
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maxima in the similarity matrix D. This is necessary, since the pattern is usually not
defined precisely, contains ranges of SSEs or undefined elements. Therefore, there
can bemany regions in a protein structure that fit the pattern. In the process of finding
alternative alignment paths, the alignment method follows the value of the internal
parameter M P E (minimum path end), which defines the stop criterion. The search
engine finds alignment paths until the next maximum in the similarity matrix D is
lower than the value of the M P E parameter. The value of the M P E depends on the
specified pattern, according to the following formula.

M P E = (M P L × ω+) + (NoI S × ω−), (2.13)

where M P L is the minimum pattern length, NoI S is the number of imprecise seg-
ments, i.e., segments, for which L j �= U j . For example, for the structural pattern
h(10;20), e(1;10), c(5), e(5;20) containing α-helix of the length 10–20 elements,
β-strand of the length 1–10 elements, loop of the length 5 elements, and β-strand of
the length 5–20 elements, the M P L = 21 (10 elements of the type h, 1 element of
the type e, 5 elements of the type c, and 5 elements of the type e), the NoI S = 3
(first, second, and fourth segment), and therefore, M P E = 81.

2.2.4 Multithreaded Implementation

In the original PSS-SQL [17], the calculation of the similarity matrix D was per-
formed by a single thread. This negatively affected performance of PSS-SQL queries
or, at least, this left a kind of computational reserve in the era of multicore CPUs. In
the new version of the PSS-SQL we have reimplemented procedures and functions
in order to use all processor cores that are available on the computer hosting the
database with the PSS-SQL extension. A part of the work was carried out by B.
Socha [22], my associate in this project.

However, the multithreaded implementation required different approach while
calculating values of particular cells of the similarity matrix D. Successive cells
cannot be calculated one by one, as in the original version, but calculations are
carried out for cells located on successive diagonals, as it is shown in Fig. 2.5. This
is because, according to Eqs. (2.7), (2.9), and (2.10) each cell Di, j can be calculated
only if there are calculated cells Di−1, j−1, Di−1, j and Di, j−1. Such an approach to
the calculation of the similarity matrix is called a wavefront [2, 14].

Moreover, in order to avoid too many synchronizations between running threads
(which may lead to significant delays), the entire similarity matrix is divided to so-
called areas (Fig. 2.6a). These areas are parts of the similarity matrix that have a
smaller size q ′ × d ′. Assuming that the entire similarity matrix has the size of q × d,
where q and d are lengths of two compared sequences of SSEs, the number of areas
that must be calculated is equal to:
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Fig. 2.5 Calculation of cells in the similaritymatrix D by using thewavefront approach.Calculation
is performed for cells at diagonals, since their values depend on previously calculated cells. Arrows
show dependences of particular cells and the direction of value derivation

Fig. 2.6 Division of the
similarity matrix D into areas
(left)—arrows show mutual
dependencies between areas
during calculation of the
matrix. (right) An order in
which areas will be calculated
in a sample similarity matrix

n A =
⌈

q

q ′

⌉

×
⌈

d

d ′

⌉

. (2.14)

For example, for the matrix D of the size 382× 108 and size of the area q ′ = 10
and d ′ = 10, the n A = ⌈ 382

10

⌉ × ⌈ 108
10

⌉ = 39 × 11 = 429. Areas are assigned to
threadsworking in the system. Each thread is assigned to one area, which is an atomic
portion of calculation for the thread. Areas can be calculated according to the same
wavefront paradigm. The area Az,v can be calculated, if there have been calculated
areas Az−1,v and Az,v−1 for z > 0 and v > 0, which implies an earlier calculation
of the area Az−1,v−1. The area A0,0 is calculated as a first one, since there are no
restrictions for calculation of the area.

In order to synchronize calculations, each area has a semaphore assigned to it.
Semaphores guarantee that an area will not be calculated until the areas that it de-
pends on have not been calculated. When all cells of an area have been calculated,
the semaphore is being unlocked. Therefore, each area waits for unlocking two
semaphores—for areas Az−1,v and Az,v−1 for z > 0 and v > 0. While calculat-
ing an area each thread realizes the algorithm, which pseudocode is presented in
Algorithm 1.
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In Algorithm 1, after initialization of variables (lines 2–4), the thread enters the
critical section marked with the lock keyword (line 5). Entering the critical section
means that a thread obtains the mutual-exclusion lock for a given object. The thread
executes some statements, and finally releases the lock. In our case, the thread obtains
an exclusive access to the coordinates (z, v) of the area, which should be calculated
by calling GetAreaZ() and GetAreaV () methods (lines 6–7). In the critical section,
the thread also triggers the calculation of the (z, v) coordinates of the next area that
should be calculated by another thread (line 8). Lines 9–11 determine whether this
will be the last area that is calculated by any thread. Upon leaving the critical section,
the current thread waits until areas Az−1,v and Az,v−1 are unlocked (lines 13–14).
Then, based on coordinates (z, v) and the area size in both dimensions, the thread
determines absolute coordinates (i, j) of the first cell of the area (lines 15–16). These
coordinates are used inside the following two for loops in order to establish absolute
coordinates (i, j) of the current cell of the area. Figure 2.7 helps to interpret the
variables used in the algorithm. The value of the current cell is calculated in line 21,
according to formulas (2.5)–(2.7). When the thread completes the calculation of the
current area, it unlocks the area (line 24) and asks for another area (lines 25–27).

Algorithm 1 The algorithm for the calculation of an area by a thread
1: procedure CalculateArea
2: z ← 0
3: v ← 0
4: bool Finish ← true
5: lock � starts critical section
6: z ← Get AreaZ()

7: v ← Get AreaV ()

8: Calculate (z, v) coordinates of the next area
9: if calculation successful (i.e., exists next area) then
10: bool Finish ← f alse
11: end if
12: endlock
13: Wait for unlocking the area Az−1,v
14: Wait for unlocking the area Az,v−1
15: absStart_i ← z ∗ areaSizeZ
16: absStart_ j ← v ∗ areaSizeV
17: for rel_i ← 0 to areaSizeZ − 1 do
18: for rel_ j ← 0 to areaSizeV − 1 do
19: i ← absStart_i + rel_i
20: j ← absStart_ j + rel_ j
21: Calculate cell Di, j according to formulas 2.5-2.7
22: end for
23: end for
24: Unlock area Az,v
25: if ¬bool Finish then
26: Apply for the next area (enqueue for execution)
27: end if
28: end procedure
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Fig. 2.7 Interpretation of variables used in the Algorithm 1 for the calculated area

The order in which areas are calculated is provided by a scheduling algorithm
dispatching areas to threads. For example, the order of calculation particular areas in
similarity matrix of the size 5× 5 areas is shown in Fig. 2.6b. Such a division of the
similarity matrix into areas reduces the number of tasks related to initialization of
semaphores needed for synchronization purposes and reduces the synchronization
time itself, which increases the efficiency of the alignment algorithm. For the PSS-
SQL, the size of the area was set to 3×7 elements (3 for query protein, 7 for database
protein) on the basis of experiments conducted by Socha [22].

2.3 SQL as the Interface Between User and the Database

PSS-SQL extends the standard syntax of the SQL language by providing additional
functions that allow to search protein similarities on secondary structures. SQL lan-
guage becomes a user interface (UI) between the user, who is a data consumer,
and DBMS hosting secondary structures of proteins. PSS-SQL discloses three im-
portant functions for scanning PSSs: containSequence, sequencePosition, and se-
quenceMatch; all will be described in this chapter. PSS-SQL covers also a series
of supplementary procedures and functions, which are used implicitly, e.g., for ex-
tracting segments of particular types of SSEs, building additional segment tables,
indexing SSEs sequences, processing these sequences, aligning the target structures
from a database to the query pattern, validating patterns, and many other operations.
PSS-SQL extension was developed in the C# programming language. All procedures
were assembled in the ProteinLibrary DLL file and registered for the Microsoft SQL
Server 2008R2/2012 (Fig. 2.8).
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Fig. 2.8 General architecture of the system with the PSS-SQL extension. The PSS-SQL extension
is registered in theMicrosoft SQLServer DBMS.When the user submits a query invoking PSS-SQL
functions (actually, Transact-SQL functions) the DBMS redirects the call to the PSS-SQL exten-
sion, which invokes appropriate functions assembled in the ProteinLibrary DLL library, passing
appropriate parameters

2.3.1 Pattern Representation in PSS-SQL Queries

While searching protein similarities on secondary structures, we need to pass the
query structure (query pattern) as a parameter of the search procedure. In PSS-SQL
queries the pattern is represented as in the formula (2.4). Such a representation allows
users to formulate a large number of various query types with different degrees
of complexity. Moreover, we assumed that query patterns should be as simple as
possible and should not cause any syntax difficulties. Therefore, we have defined the
corresponding grammar in order to help constructing the query pattern.

In simple words, in PSS-SQL queries, the pattern is represented by blocks of
segments. Each segment is determined by its type and length. The segment length
can be represented precisely or as an interval. It is possible to define segments, for
which the type is not important or undefined (wildcard symbol ‘?’), and for which
the upper limit of the interval is not defined (wildcard symbol ‘*’). The grammar
for defining patterns written in the Chomsky notation has the following form. The
grammar is formally defined as the ordered quad-tuple:

G pss = 〈Npss,Σpss, Ppss, Spss〉, (2.15)
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where the symbols respectively mean: Npss—a finite set of nonterminal symbols,
Σpss—afinite set of terminal symbols, Ppss—afinite set of production rules, Spss—a
distinguished symbol S ∈ Npss that is the start symbol.

Assumption: <begin> ≤ <end>

The following terms are compliant with the defined grammar G pss :

• h(1;10)—representing an α-helix of the length 1–10 elements;
• e(2;5),h(10;*),c(1;20)—representing a β-strand of the length 2–5 elements,
followed by an α-helix of the length at least 10 elements, and a loop of the length
1–20 elements;

• e(10;15),?(5;20),h(35)—representing a β-strand of the length 10–15 ele-
ments, followed by any element of the length 5–20, and an α-helix of the exact
length 35 elements.

With such a representation of the query pattern, we can start the search process
using one of the functions disclosed by PSS-SQL extension.

2.3.2 Sample Queries in PSS-SQL

The PSS-SQL extension provides a set of functions and procedures for processing
PSSs. Three of the functions can be effectively invoked from the SQL commands,
usually the SELECT statement.

The containSequence function verifies if a particular protein or a set of database
proteins contain the structural pattern specified as a query pattern. This function
returns the Boolean value 1 (true), if the database protein contains specified pattern,
or 0 (false), if the protein does not include the pattern.

Sample invocation of the function is shown in Listing 2.1.
1 SELECT protID, protAC
2 FROM ProteinTbl
3 WHERE name LIKE ’%Escherichia coli%’ AND
4 dbo.containSequence(id, ’secondary’, ’h(5;15),c(3),?(6),c(1;5)’)=1

Listing 2.1 Sample query invoking containSequence function and returning identifiers of proteins
from Escherichia coli containing the given secondary structure pattern.

The sample query returns identifiers and accession numbers of proteins from
Escherichia coli having the structural region containing an α-helix of the length
5–15 elements, 3-element loop, any structure of the length 6 elements, and a loop of
the length up to 5 elements (pattern h(5;15),c(3),?(6),c(1;5)).

Partial results of the query from Listing 2.1 are shown below.

protID protAC
------------ --------
ACTP_ECOUT Q1R3J9
ADD_ECOLC B1IQD2
ADD_ECOLI P22333
ADEC_ECO24 A7ZTM0
ADEC_ECO57 Q7A9L5
...
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The containSequence function can be used in the SELECT and the WHERE
phrase of the SQL SELECT statement. It is also possible to use the function in
the WHERE clause of other DML statements, including UPDATE and DELETE, if
needed. Detailed description of input arguments of the containSequence function is
given in Table 2.1.

The sequencePosition and sequenceMatch functions allow to match the specified
pattern to the structure of a protein or a group of database proteins. Pattern searching
and matching is performed by multiple scanning of the segment index built on the
segment table, followed by the alignment of the found segments. Both functions re-
turn a table containing information about the location of query pattern in the structure
of each database protein. Both functions differ in the way how they are invoked in
PSS-SQL queries.

Sample queries invoking both functions are shown in Listing 2.2. The function
accepts the same arguments according to the list presented in Table 2.1. Since they
return a table of values, they are nested in the FROM clause of SQL statements
(mainly SELECTs, but also possible in some variants of UPDATE and DELETE
statements). The use of the CROSS APPLY operator, instead of traditional JOIN,
allows to avoid specifying the join condition, shortens the query syntax and,what even
more important, improve performance, in the case of complex filtering conditions in
the WHERE clause.

1 − invoking sequenceMatch and CROSS APPLY
2 SELECT p.protAC AS AC,p.name, s.startPos, s.endPos, p.[primary],
3 s.matchingSeq, p.secondary
4 FROM ProteinTbl AS p CROSS APPLY dbo.sequenceMatch(p.id, ’secondary’,
5 ’e(1;10),c(0;5),h(5;6),c(0;5),e(1;10),c(5)’) AS s
6 WHERE p.name LIKE ’%Staphylococcus aureus%’ AND p.length > 150
7 ORDER BY AC, s.startPos
8
9 − invoking sequencePosition and standard JOIN
10 SELECT p.protAC AS AC, p.name, s.startPos, s.endPos, p.[primary],
11 s.matchingSeq, p.secondary
12 FROM ProteinTbl AS p JOIN dbo.sequencePosition(’secondary’,
13 ’e(1;10),c(0;5),h(5;6),c(0;5),e(1;10),c(5)’,
14 ’p.name LIKE ’’%Staphylococcus aureus%’’ AND p.length > 150’) AS s
15 ON p.id=s.proteinId
16 ORDER BY AC, s.startPos

Listing 2.2 Sample query invoking sequenceMatch and sequencePosition table functions and
returning information on proteins from Staphylococcus aureus having the length greater than 150
residues and containing the given secondary structure pattern.

These sample queries return Accession Numbers (AC) and names of proteins
from Staphylococcus aureus having the length greater than 150 residues and struc-
tural region containing β-strand of the length from 1 to 10 elements, optional loop
up to 5 elements, an α-helix of the length 5–6 elements, optional loop up to 5
elements, a β-strand of the length 1–10 elements and a 5 element loop—pattern
e(1;10),c(0;5),h(5;6),c(0;5),e(1;10),c(5).

Partial results of the query from Listing 2.2 are shown in Fig. 2.9. Detailed
description of the output fields of the sequenceMatch and sequencePosition func-
tions is given in Table 2.2.
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Table 2.1 Input arguments of PSS-SQL functions

Argument Description

@proteinIda Unique identifier of a protein in the database table that contains sequences of
SSEs (e.g. id field in case of the ProteinTbl)

@columnSSeq Database field containing sequences of SSEs of proteins (e.g. secondary)
@pattern Query pattern represented by a set of segments, e.g., h(2;10), c(1;5),?(2;*)
@predicateb An optional, simple, or complex filtering criteria that allow to limit the list of

proteins that will be processed during the search, e.g.,: length < 150
aexcept sequencePosition
bonly sequencePosition

Fig. 2.9 Partial results of the sample queries from Listing 2.2 returned as a relational table, re-
turned fields: AC—accession number, name—molecule name, startPos, endPos—position, where
the pattern starts and ends in the target protein from a database, primary—amino acid sequence of
the database protein, matchingSeq—exact sequence of SSEs, which matches to the pattern defined
in the query, secondary—sequence of secondary structure elements SSEs of the database protein

Table 2.2 Output table of sequenceMatch and sequencePosition functions

Field Description

proteinId Unique identifier of the protein that contains the specified pattern
startPos Position, where the pattern starts in the target protein from a database
endPos Position, where the pattern ends in the target protein from a database
length Length of the segment that matches to the given pattern
matchingSeq Exact sequence of SSEs, which matches to the pattern defined in the query

Results of the PSS-SQLqueries are originally returned in a tabular form.However,
by adding an extra FOR XML clause at the end of the SELECT statement, like in
the example in Listing 2.3, produces results in the XML format that can be easily
transformed to the HTML web page by using appropriate XSLT transformation file,
and finally, published in the Internet. Partial results of the query from Listing 2.3
are shown in Fig. 2.10. An additional function—superimpose—that was used in the
presented query (Listing 2.3) visualizes the alignment of the matched sequence and
the database sequence of SSEs.
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Fig. 2.10 Partial results of
the query from Listing 2.3

1 SELECT p.protAC AS AC, p.name, s.startPos, s.endPos, s.matchingSeq, p .[primary], dbo.superimpose
(s.matchingSeq, p.secondary) AS alignment

2 FROM ProteinTbl AS p CROSS APPLY dbo.sequenceMatch(p.id, ’secondary’,
3 ’e(1;10),c(0;5),h(5;6),c(0;5),e(1;10),c(5)’) AS s
4 WHERE p.name LIKE ’%Staphylococcus aureus%’
5 AND p.length > 150
6 ORDER BY AC, s.startPos
7 FOR XML RAW (’protein’), ROOT(’proteins’), ELEMENTS

Listing 2.3 Sample query invoking sequenceMatch table function and returning results as an XML
document by using the FOR XML clause.

2.4 Efficiency of the PSS-SQL

The efficiency of the PSS-SQLquery languagewas examined in various experiments.
Tests were performed on theMicrosoft SQL Server 2012 Enterprise Edition working
on nodes of the virtualized cluster controlled by the HyperV hypervisor hosted on
Microsoft Windows 2008 R2 Datacenter Edition 64-bit. The host server had the
following parameters: 2x Intel Xeon CPU E5620 2.40 GHz, RAM 32 GB, 3x HDD
1TB 7200 RPM. Cluster nodes were configured to use 4 CPU cores and 4GB RAM
per node, and worked under the Microsoft Windows 2008 R2 Enterprise Edition
64-bit operating system.

Most of the tests were performed on the database storing 6,360 protein structures.
However, in order to compare our language to one of the competitive solutions, some
tests were performed on the database storing 248,375 protein structures.

During the experiments, we measured execution times for various query patterns.
The query patterns were passed as a parameter of the sequencePosition function.
Tests were performed for queries containing the following sample patterns:

• SSE1: e(4;20),c(3;10),e(4;20),c(3;10),e(15),c(3;10),e(1;10)
• SSE2: h(30;40),c(1;5),?(50;60),c(5;10),h(29),c(1;5),h(20;25)
• SSE3: h(10;20),c(1;10),h(243),c(1;10),h(5;10),c(1;10),h(10;15)
• SSE4: e(1;10),c(1;5),e(27),h(1;10),e(1;10),c(1;10),e(5;20)
• SSE5: e(5;20),h(2;5),c(2;40),?(1;30),e(5;*)
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Fig. 2.11 Execution time
for various query patterns
SSE1–SSE4 and for three
variants of the PSS-SQL
language: without
multithreading (−MT),
with multithreading,
but without multiple
scanning of the Segment
Index (+MT−MSSI), with
multithreading
and with multiple
scanning of the Segment
Index (+MT+MSSI)
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Pattern SSE1 represents protein structure built only with β-strands connected
by loops. Pattern SSE2 consists of several α-helices connected by loops and one
undefined segment of SSEs (‘?’ wildcard symbol). Patterns SSE3 and SSE4 have
regions that are unique in the database, i.e., h(243) in pattern SSE3 and e(27)

in pattern SSE4. Pattern SSE5 has a wildcard symbol ‘*’ for undetermined length,
which slows down the search process.

In order to verify the influence of particular acceleration techniques on the exe-
cution times, tests were carried out for the PSS-SQL in three variants:

• without multithreading (−MT),
• with multithreading, but without MSSI (+MT–MSSI), and
• with multithreading and with MSSI (+MT+MSSI).

Results of the tests shown in Fig. 2.11 prove that the performance of +MT–MSSI
variant is higher, and in case of SSE1 and SSE2 even much higher, than −MT
variant (implemented in original PSS-SQL). For +MT+MSSI we can see additional
improvement of the performance. It is difficult to estimate the overall acceleration,
because it tightly depends on the uniqueness of the pattern. The more unique the
pattern is, the more proteins are filtered out based on the Segment Index, the fewer
proteins are aligned and the less time we need to obtain results. We can see it clearly
in Fig. 2.11 for patterns SSE3 and SSE4 that have precisely defined, unique regions
h(243) and e(27). For universal patterns, like SSE1 and SSE2, for which we can
find many fitting proteins or multiple alignments, we can observe longer execution
times. In such cases, the parallelization and MSSI start playing a more significant
role. In these cases, the length of the pattern influences the alignment time—for
longer patterns we experienced longer response times. We have not observed any
dependency between the type of the SSE and the response time.

However, specifying wildcards in the query pattern increases the waiting period,
which is visible for the pattern SSE5 (Fig. 2.12). In Fig. 2.12 for the pattern SSE5, we
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Fig. 2.12 Execution time for
query pattern SSE5 for three
variants of the PSS-SQL
language: without
multithreading (−MT),
with multithreading,
but without multiple
scanning of the Segment
Index (+MT−MSSI), with
multithreading and with
multiple scanning of the
Segment Index (+MT+MSSI)
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can also see how beneficial the use of the MSSI technique can be. In this particular
case, the execution time was reduced from 920s in −MT (original PSS-SQL), and
550s in +MT−MSSI, to 15 s in +MT+MSSI, which gives 61.33-times acceleration
over the −MT variant and 36.67-times acceleration over the +MT−MSSI variant.

2.5 Discussion

PSS-SQL language complements existing relational DBMSs, which are not designed
to process biological data, such as PSSs stored as sequences of SSEs. By extending
the standard SELECT, UPDATE, and DELETE statements of the SQL language,
it provides a declarative method for retrieving, modifying, and deleting records.
Records that satisfy the criteria given by a user can be returned in a table-like form
or as an XML document, which is easy to display as a Web page. In such a way, the
PSS-SQL extension to relational database management systems (RDBMS) provides
a kind of domain-specific language for processing PSSs. This is especially impor-
tant for relational database designers, wide group of biological data analysts, and
bioinformaticians.

The PSS-SQL language can be used for the fast classification of proteins based
on their secondary structures. For example, systems such as SCOP [18] and CATH
[19] make use of the secondary structure description of protein structures in order to
classify proteins into classes and families. PSS-SQL can be also supportive in protein
3D structure prediction by homology modeling, where appropriate structure profile
can be found based on primary and secondary structure and the secondary structure
can be superimposed on the protein of the unknown 3D structure before performing
a free energy minimization.
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Comparing the PSS-SQL to other languages presented in Sect. 2.1, we can no-
tice that all variants of the PSS-SQL extend the syntax of the SQL. This makes
the PSS-SQL similar to PiQL [24], rather than to ProteinQL [25]. ProteinQL was
developed for the OODB and relies on its own domain-specific database and ded-
icated ProteinQL interpreter and translator. As opposed to ProteinQL, both PiQL,
and PSS-SQL extend capabilities of RDBMS. They extend the syntax of the SQL
language by providing additional functions that can be nested in particular clauses
of the SQL commands. However, the form of queries provided by users is differ-
ent. PiQL accepts query patterns in a full form, like in BLAST [1]—a tool used for
fast local matching of biomolecular sequences of DNA and proteins. Query patterns
provided in PSS-SQL are similar to those presented by Hammel and Patel in [9].
The pattern defined in a query does not have to be specified strictly. Segments in the
pattern can be specified as intervals and they can have undefined lengths. Both lan-
guages allow specifying query patterns with undefined types of the SSE or patterns,
where some SSE segments may occur optionally. Therefore, the search process has
an approximate character, regarding various possible options for segment matching.
The possibility of defining patterns that include optional segments allows users to
specify gaps in a particular place.

The described version of the PSS-SQL also uses the method of scanning the
Segment Index in order to accelerate the search process. The method was adopted
from thework ofHammel and Patel [9]. However, aftermultiple scans of the Segment
Index Hammel and Patel used sort-merge join operations in order to join segments
from the same candidate proteins and decide, whether they meet specified query
conditions or not. The novelty of PSS-SQL is that it relies on the alignment of the
found segments. Alignment implemented in PSS-SQL gives the unique possibility
of finding many matches for the same database protein and returning k-best matches,
matches that in some particular cases can be separated by gaps. These are not the
gaps defined by a user and specified by an optional segment, but the gaps providing
better alignment of particular regions. This type of matching is typical for similarity
searching between biomolecular sequences, such as DNA/RNA sequences or amino
acid sequences. Presented approach extends the spectrumof searching andguarantees
the optimality of the results according to assumed scoring system.

Despite the fact that PSS-SQL uses the alignment procedure, which is computa-
tionally complex, it gained quite a good performance. We have compared the effi-
ciency of the PSS-SQL (+MT+MSSI variant) and language presented by Hammel
and Patel for single-predicate exact match queries with various selectivity (between
0.3 and 6%) using the database storing 248,375 proteins (515 MB for ProteinTbl,
254 MB for segment table storing 11,986,962 segments). The PSS-SQL was on
average 5.14 faster than Comm-Seg implementation, 3.28 faster than Comm-CSP
implementation, both implemented on a commercial ORDBMS, and 1.84 faster than
ISS-MISS(1) implementation on Periscope/SQ. This proves, that PSS-SQL compen-
sates the efficiency loss caused by alignment procedure by using the Segment Index.
In such away, the PSS-SQL joinswide capabilities of the alignment process (possible
gaps, mismatches, and many solutions), provides optimality and quality of results,
and guarantees efficiency of scanning databases of secondary structures.
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2.6 Summary

Integrating methods of PSS similarity searching with DBMSs provides an easy way
for manipulation of biological data without the necessity of using external data min-
ing applications. The PSS-SQL extension presented in this chapter is a successful
example of such integration. PSS-SQL is certainly a good option for biological and
biomedical data analysts who want to process their data on the server side. This has
many advantages that are typical for such a processing in the client-server archi-
tecture. Entire logic of data processing is performed on the database server, which
reduces the load on the user’s computer. Therefore, data exploration is performed
while retrieving data from a database. Moreover, the number of data returned to the
user, and the network traffic between the server and the user application, are much
reduced.

The use of multithreading allows to utilize the whole capable computing power
more efficiently. The PSS-SQL adapts to the number of processing units possessed by
the server hosting the DBMS and to the number of cores used by the database system.
This results in better performance of the language while scanning huge databases of
PSSs. For the latest information on the PSS-SQL, please visit the project home page:
http://zti.polsl.pl/dmrozek/science/pss-sql.htm.

Parallelization of calculations in bioinformatics brings tangible benefits and re-
duces the execution time of many algorithms. In this chapter, we could see one of
many examples of such parallelization. For readers that are interested in other ex-
amples I recommend the book Parallel Computing for Bioinformatics and Compu-
tational Biology by Zomaya [29] for further reading. In the next chapter, we will see
how a massive parallelization of the 3D structure similarity searching on many-core
CUDA-enabled GPU devices leads to reduction of the execution time of the process.
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