
Chapter 1
Introduction

1.1 Materials

Rubbers are chemically crosslinked linear polymers.Theirmost notable characteristic
is their mechanical behavior, i.e. they can withstand large strains and can be loaded
multiple times while recovering their initial shape—apart from a small permanent
set—upon unloading. Due to the permanent nature of the chemical bonds between
the polymer chains, rubbers distinguish themselves from thermoplastic polymers
in that they cannot be melted, which implies different processing routes.1 Com-
pared to thermoset resins, rubbers feature a lower crosslinking density and a higher
molecular weight, providing for the lower modulus and higher strain at break.

Historically, the first type of rubber known to mankind was natural rubber. More
than 3,000 years ago, native tribes inCentralAmerica used rubber balls obtained from
the latex of the hevea plant for their now-famous ball games [1]. The next big step
in the history of rubber is due to Charles Goodyear, who discovered the process of
sulfur vulcanization in 1839. This made rubber products suitable for a wide variety of
applications, which were previously excluded from the use of unvulcanized rubber
due to the poor mechanical performance and stability. The first synthetic rubbers
were developed in the 1930s and became available on an industrial scale in the
1940s, when the supply of natural rubber was limited due to the Second World War.
Nowadays, numerous types of rubbers are available on the market, each serving
certain purposes. Rubbers are widely used in applications such as tires, dampers,
tubes, seals, belts, cable coatings, footwear, textiles, and others.

1 Sometimes thermoplastic elastomers are also classified as rubbers. These materials are melt-
processable and are physically crosslinked rather than chemically.
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(a) (b)

Fig. 1.1 Chemical structures of a isoprene and cis-1,4-polyisoprene; b styrene, butadiene and its
types of appearance in SBR

(a) (b)

Fig. 1.2 Sketch of network structure of natural rubber: a undeformed, b stretched beyond SIC
onset (Adapted with permission from Ref. [4], copyright 2013 American Chemical Society)

1.1.1 Rubber Types

Natural rubber is obtained from the latex of the rubber treeHevea brasiliensis.2 After
the latex has been harvested from the bark of the tree, it is purified and pressed. The
drying process takes place either in air or in smoke. The smoking process conserves
the rubber and serves as a protection against fungi.While the smoked version is more
relevant on an industrial scale, the air dried version is preferred in science due to its
purity (e.g. pale crepe grade, Fig.A.6).

Chemically, natural rubber consists mainly of cis-1,4-polyisoprene (Fig. 1.1a).
The perfect stereoregularity (100% cis) renders NR crystallizable, either by cooling
in the quiescent state or by stretching. Besides the polyisoprene, NR contains around
6% impurities, among which the biggest percentage share the lipids, proteins and
other low molecular weight carbohydrates [2]. The polyisoprene chains in NR are
linear, but end-functionalized, producing a three-dimensional network with proteins
and lipids acting as crosslinkers (Fig. 1.2) [3, 4]. This networkgives the comparatively
high strength to the unvulcanized rubber, the so called green strength.

In contrast to NR, synthetic isoprene rubber (IR) is not perfectly stereoregular,
having a trans content of at least 1.5% [5, 6]. The irregularity impedes crystallization,
shifting the onset strain of SIC to larger strains as compared to NR [7–9]. This is
reflected in inferior tensile properties and a reduced tear resistance [10]. Due to the
absence of a network in the unvulcanized (green) IR, the green strength is lower by a

2 Other sources, like dandelion and guayule (Parthenium argentatum), have been explored, but are
not significant in practice.
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factor of 60 [5]. IR is mainly used as a processing aid to facilitate mixing of NR [6].
The yearly consumption of IR is around 20 times less compared to NR [11].

The third type of rubber studied in this work is styrene-butadiene rubber (SBR).
Chemically, it is a statistical copolymer of styrene (commonly around 25%) and buta-
diene (around 75%) (Fig. 1.1b). The polymerization is carried out either anionically
in solution or radically in emulsion. The first gives solution SBR (S-SBR), the latter
emulsion SBR (E-SBR). The type of polymerization determines the vinyl content,3

which is higher in S-SBR. SBR has almost the same tensile strength as NR, and
this at much lower cost. Therefore, it has replaced NR in some applications, notably
in passenger car tires. Both S-SBR and E-SBR are used in tires. However, the tear
resistance of SBR is inferior to NR, since SBR does not strain-crystallize.

Other rubber types include, amongst others, polybutadiene, polychloroprene,
ethylene-propylene rubber and butyl rubber. They find use due to specific properties
regarding mechanical hysteresis, gas permeability, chemical stability, oil resistance,
heat resistance, ozone aging, flame retardance, glass transition temperature or adhe-
sion [6].

1.1.2 Vulcanization

In the vulcanization process, the chemical crosslinking reaction takes place and the
rubber part obtains its final shape. Two types of crosslinking systems are relevant,
and both have been used in this work:

• sulfur vulcanization
• peroxide vulcanization.

Industrially, the sulfur vulcanization ismorewidely used. Sulfur is added in elemental
form during the mixing process. Upon curing, it attacks the unsaturated bonds in the
backbone or at side groups of the polymer chain and forms sulfide bridges.Depending
on the vulcanization system, various types of sulfide bridges with different lengths
can be formed. Without the proper use of additives, this crosslinking reaction would
take several hours [12].4 Zinc oxide and stearic acid are usually added as activators,
and organic compounds, bearing a N=C–S2 functionality, serve as accelerators [13].
The precise role of these chemicals in the crosslinking mechanism is still subject to
research [14]. The commonunderstanding is that stearic acid aids in the solubilization
of the zinc oxide, which then forms a complex with the accelerators and activates
the sulfur [15].

Industrial rubber recipes often contain several accelerators or boosters. Retarders
are added to extend the scorch time to avoid premature curing during processing.

3 Vinyl groups result from the 1,2-polymerization of butadiene, in contrast to the more common
1,4-polymerization.
4 Own tests showed that a standard formulation of natural rubber, including 1phr sulfur, 1phr stearic
acid and 1.5phr CBS (accelerator, N-cyclohexyl-2-benzothiazole-sulfenamide), but not containing
any zinc oxide, would not vulcanize within 1h at 160 ◦C.
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Fig. 1.3 a Photograph of the vulcameter dies, between which the sample is placed for analysis.
b Vulcameter curves (torque over time) at 160 ◦C from NR compounds with various crosslinking
densities (based on #2 (see list of materials in Sect.A.6), keeping the sulfur-CBS ratio constant)

Peroxide vulcanization, on the other hand, is mainly used in a scientific context
in model compounds. The chemistry is simpler and no addition of particulate addi-
tives like zinc oxide is required. The peroxide decomposes into two radicals at the
vulcanization temperature and abstracts a hydrogen from a saturated carbon–carbon
bond. The resulting polymer radicals combine to form a direct crosslink without a
bridge inbetween [12].

The crosslinking reaction is usually carried out at temperatures between 120
and 180 ◦C. Following the Arrhenius equation, the curing process is accelerated by
increasing the temperature, but care must be taken to avoid thermal degradation.
The vulcanization time is measured by a vulcameter, also called rubber process
analyzer (Fig. 1.3a). A green rubber sample is placed between two dies, which have
been heated to the vulcanization temperature. The dies are firmly pressed together to
avoid wall slip and one of the dies starts a sinusoidal rotating motion, subjecting the
rubber sample to a shear stress. The torque required to apply a certain shear strain
amplitude is taken to be proportional to the crosslinking density, following the simple
relation G = NkT 5 [16]. After some time, the vulcanization process is complete
and the torque reaches a plateau. The time it takes to reach 90% of the plateau level
is commonly referred to as t90 and taken as vulcanization time. Depending on the
geometry of the mold and the thickness of the rubber part, some additional time
might be added to this value.

1.1.3 Fillers

In order to meet the requirements imposed by numerous applications, almost all
rubber parts consist of filled rubbers, i.e. they are a composite of the vulcanized

5 G is the shear modulus; N is the number of chains per unit volume; k is the Boltzmann constant;
T is the absolute temperature.
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Table 1.1 Typical tire tread
compounds for passenger car
and truck tires. Additives are
not listed. The values are
given in phr. Adapted
from [17]

Passenger car tire tread Truck tire tread

E-SBR 65
BR 35
NR 100
Carbon black 70 50
Processing oil 40 10

rubber matrix and a filler. The reason for the addition of a filler can be twofold: either
a reduction of the product cost, or an improvement in the (mechanical) properties.
The first group is called non-reinforcing fillers, or extenders (e.g. calcium carbonate
and other micron-size particulate fillers), the latter reinforcing fillers [12]. The most
important reinforcing fillers are carbon black and precipitated silica. They enhance
the modulus, increase the tensile strength by a factor of up to 10, and also benefit the
abrasion, tear and damping behavior [6].

In rubber technology, the filler content is specified in parts per hundred rubber
(phr) by weight, i.e. the rubber matrix constitutes 100phr by definition. In a blend
of different elastomers, the sum of all elastomer matrix components adds up to
100phr [17]. Typical recipes for passenger car and truck tire treads are listed in
Table1.1. The carbon black loading is between 40 and 90phr. In passenger car tires,
SBR is preferred over NR due to its lower price. In truck tires, however, due to the
high loads acting on the tire and due to the requirement for increased mileage, NR
is preferred over SBR, e.g. to avoid failure by so-called chipping and chunking.

Over the last two decades, carbon black has increasingly been replaced by silica
in passenger car tires, especially winter tires. In truck tires, hybrid filler systems,
featuring silica and carbon black, have been introduced.

Processing oil is added to facilitate the processing by lowering the viscosity. It
also serves to adjust the hardness and to compensate for high carbon black loadings.

Carbon blacks for reinforcing purposes are produced in the so-called furnace
process: Aromatic oil is injected into a fast streamof hot (1200–1900 ◦C) combustion
gases (from the combustion of other carbohydrates), and subsequently quenchedwith
water. Afterwards it is filtered, pelletized and dried. Between the injection and the
quenching a partial oxidation takes place due to the controlled presence of oxygen,
which is adjusted to substoichiometric concentrations [18]. Within milliseconds, the
primary particles are formed from nuclei of solid reaction products, which then fuse
together to form aggregates. Besides growth by collision of primary particles, also a
gradual deposition of other carbonaceous reaction products on the surface of primary
particles and aggregates takes place, acting like a glue between the primary particles
and increasing the stability and compactness of the aggregates [19, 20]. Aggregates
typically consist of 8–60 primary particles [21–25]. These aggregates cannot be
broken up in subsequent processing steps (e.g. rubber compounding). Adjustments
in the reaction temperature, reaction time and flow turbulence determine the particle
size and aggregate structure [18].
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Fig. 1.4 Schematic representation of the hierarchical structure in a carbon black filled rubber
(Adapted from Schneider [27])

Carbon black is available in numerous grades for specific purposes, classified by
surface area and structure. The standard classification follows theNabc nomenclature
according to ASTMD-24 [17]. N stands for Normal curing.6 The first digit, a, refers
to the diameter of the primary particles, which is, as a rule of thumb, 10 a, measured
in nm, i.e. an N300 grade has a primary particle diameter around 30nm. The other
two digits, b and c, are assigned based on the structure and surface area. The packing
density and the degree of branching within an aggregate determine its structure,
which is characterized by dibutylphthalate absorption,7 while the surface area is
analyzed by nitrogen, iodine or CTAB8 adsorption [17, 18]. Depending on the size
of the probing substance, it penetrates into pores and other smaller entities, thus
lending the method a sensitivity in a certain size range [26].

The architecture of carbon black is schematically shown in Fig. 1.4. Typically
during the processing of the rubber composite, aggregates cluster together to form
agglomerates,which aremore loosely bound.Onan even larger length scale, provided
the filler content is sufficiently high, a network superstructure can be established.

The description of the complex carbon black structure in mathematical terms is
rather daunting. The most widely used concept is the fractal theory. The founda-
tions for this theory were laid by Benoit Mandelbrot in 1975, describing self-similar
geometries. A geometry is self-similar, when each part of it is constituted by a geo-
metric reduction of the whole [28, 29]. This implies scaling laws for geometric
properties like the volume (mass) and surface area. Following fractal theory, the area
of a rough surface depends on the length r of the yardstick that one uses to measure
the area S:

S(r) = r2−Ds . (1.1)

A smooth surface has a fractal dimension Ds of 2, whereas for an infinitely rough
surface Ds = 3.

Applying the fractal concept to three dimensions, the relation for mass fractals
reads:

M(r) = r Dm . (1.2)

6 Nowadays, all industrially relevant standard carbon blacks for mechanical reinforcement are of N
type, but historically other grades were common.
7 OAN: oil absorption number.
8 Cetyltrimethyl ammonium bromide.
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Accordingly, a space-filling solid body has a mass fractal dimension Dm of 3, and
with increasing pore volume the mass fractal dimension decreases.

Theoretically, the self-similarity and thus the scaling laws 1.1 and 1.2 extend over
all size ranges. In practice, there are upper and lower limits. For instance, in the case
of fractal aggregates, the scaling holds only for r0 < r < R, where r0 is the size
of a primary particle and R is the size of the aggregate. The fractal dimension of
aggregates can actually be predicted by theories. Depending on the growth mecha-
nism, whether it is diffusion-limited or reaction-limited, whether growth takes place
by the addition of primary particles to the aggregates or by the clustering of existing
aggregates, different fractal dimensions Dm are obtained. They range from 1.75 to
2.2 [29]. As pointed out above, the reality is not as simple as the theory. Due to the
inhomogeneity of the reaction conditions along the gas jet in a furnace reactor, sev-
eral growth mechanisms might occur. The addition of carbonaceous material even
smaller than the primary particles adds to the complexity of the growth mechanism.
This is further exacerbated by the polydispersity. While the polydispersity of the pri-
mary particles is quite low, the aggregate sizes cover a rather broad range, obscuring
a clear cutoff size of the scaling region. Not only are the aggregates polydisperse,
they have also been observed to be constituted of a rather small number of primary
particles. This restricts the scaling law to a rather small region, which rarely covers
even a single decade.

In fact, even though fractal theory is themostwidely used approach for the descrip-
tion of carbon black geometries, it is not undisputed in the research community. The
popularity of the fractal concept in the field of carbon black rather seems to stem
from the simplicity of the fractal concept and from the lack of alternative theories
rather than from its ability to precisely account for the experimental observations.
This conflict is nicely expressed by Huber and Vilgis, who in one of their papers,
dealing with carbon black aggregates, use the fractal theory “[. . .] only to describe
the structure, rather than to suggest that the structure is fractal” [30].

The beauty of the fractal concept is that it is easily applicable to scattering data,
which is one of the favorite methods to characterize carbon blacks. Due to the sizes
involved, scattering takes place in the SAXS and USAXS regimes. Bale and Schmidt
derived a power law relation between the scattering intensity I and the scattering
vector q (Sect. 1.2.2) [31, 32]. For mass fractals, the fractal dimension Dm can be
obtained directly from the negative slope of a double logarithmic scattering plot,
which is obtained from a slice of a two-dimensional isotropic scattering pattern:

I (q) = q−Dm . (1.3)

Equation1.3 holds in the region 1/R � q � 1/r0. For surface fractals, the following
relation holds in the region q � 1/r0:

I (q) = q6−Ds . (1.4)

In the field of scattering, the polydispersity problem is aggravated by the fact
that the small angle scattering intensity does not represent the number average of
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scatterers, but rather the seventh moment of the number density distribution, i.e.
larger scatterers contribute very significantly [33]. Martin showed that if the poly-
dispersity follows a power law distribution, which is a well-founded assumption, the
dependence of the scattering intensity of the surface fractal dimension vanishes [34].
This was later confirmed by Beaucage and Hjelm [35, 36]. Both argue that the sur-
face fractal regime is only apparent, but in reality is caused by polydispersity. Ruland
backs up this claim, listing numerous published electronmicroscopy studies, proving
that the surface of carbon black is smooth [37], while Beaucage points out that differ-
ent electron microscopic methods yield different surface roughnesses [26]. Heinrich
and Klüppel developed a model to describe the structure of carbon black based on
its formation [38].

Beaucage developed a unified model, incorporating several scattering regimes
into one equation. The contributions from the Guinier regimes and fractal regimes
(Sect. 1.2.3) are weighted by physically motivated scalars and are superimposed
using a set of empirical error functions, which secure that each scattering term only
contributes to the corresponding regime [39].While the unifiedmodel removes some
of the ambiguity in the rather arbitrary individual fitting of the power law regions
and crossovers, it provides only limited novel physical insights due to the partially
empirical nature of the equation.

It should be mentioned, however, that independent methods also suggest a fractal
structure. Klüppel demonstrated that the number of adsorbed gas molecules on a
carbon black surface relates to the adsorption cross section of the molecule following
apower lawscaling [40].Assuming amonolayer adsorptionmechanism, this suggests
a fractally rough surface in the probed size range. Schröder showed that the adsorption
not only depends on the surface topography, but also on the distribution of adsorption
sites of various energy levels [41].

A dependence between aggregate mass fractal dimension and filler loading is to
be expected due to the presence of agglomerates [42], introducing crossterms in the
scattering relation. This has indeed been observed [43]. On the contrary, a change in
surface fractal dimension with filler loading, as observed by Fröhlich et al. [44], is
beyond what is expected by theory. Also the broad ranges of values and the lack of
agreement between different publications confirm the impression that current theory
is insufficient to precisely describe the reality. Some of the experimentally obtained
fractal dimensions even lie out of the physically possible range, e.g. mass fractal
dimension less than unity are not physically sound [43].

For instance, the mass fractal dimensions Dm of N330 obtained through SAXS
by different groups vary over a broad range between less than unity and 2.0 [43, 44].
TEM (transmission electron microscopy) measurements of the same carbon black
grade yield Dm = 2.4 [45]. Theoretically, assuming a cluster-cluster aggregation
process for the formation of aggregates in the furnace reactor, carbonblack aggregates
should have a mass fractal dimension Dm of 1.78 [40, 46].

The situation is further complicated by the fact that the classical fractal concept
solely describes isotropic structures. Despite the presence of anisometric carbon
black aggregates (e.g. ellipsoidal or linear [45, 47]), the isotropy of the scattering
patterns seems to suggest the applicability of fractal theory. However, the isotropy
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only stems from the non-preferential orientational distribution of anisometric objects.
Therefore, the application of isometric concepts on length scales of the aggregates
can only serve as a rather coarse and simplified characterization of the real structure.
This limitation becomes obvious when the black-filled rubber is deformed. Aniso-
metric objects orient along the principal strain axis, and thus the scattering patterns
become anisotropic. The classical fractal theory is not applicable under these condi-
tions. Instead of using self-similar concepts, self-affinity can now be postulated, i.e.
each part is a linear geometric reduction of the whole but with ratios depending on
direction [29]. In other words, a self-affine fractal becomes self-similar, when it is
scaled with a constant along at least one of the dimensions. This defines a self-affine
mass fractal as follows:

M(ax1, ax2, aH x3) = aDm M(x1, x2, x3), (1.5)

where M is themass, xi are the spatial dimensions,a is an arbitrary scalar, and H is the
Hurst exponent [27]. Other definitions exist. Self-similarity is a special case of self-
affinity (H = 1). Several authors pointed out that, due to the introduction of theHurst
exponent H , the fractal dimension of a self-affine fractal is not uniquely defined.
In fact, very different self-affine structures can have the same fractal dimension
[48, 49].

1.1.4 Reinforcement Mechanisms

In general terms, reinforcement is the improvement of material properties. More
specifically, rubber materials can be reinforced in order to exhibit an increased stiff-
ness,modulus, rupture energy, tear strength, tensile strength, fatigue resistance and/or
abrasion resistance [50]. The reinforcing mechanism in filled rubbers is still not fully
understood [19, 51, 52], but numerous literature is available pointing at the contri-
butions of several factors.

Examples for the enhanced tensile properties by filler reinforcement are shown
in Fig. 1.5. Payne showed, that the small-strain storage modulus of butyl rubbers can
be enhanced by as much as 200 times by the addition of carbon black [53, 54].

The filler effect is less pronounced in strain-crystallizing rubbers, such as natural
rubber, due to the inherent self-reinforcement (Fig. 1.5b).

In the following, the three main factors of filler reinforcement are briefly summa-
rized.

1.1.4.1 Hydrodynamic Strain Amplification

Thebasic concept of strain amplification is that due to the rigidity of thefiller phase (in
contrast to the soft rubber matrix), the rubber matrix undergoes larger deformations
than the external deformation would suggest. Gehman expressed this nicely: “[In
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(a) (b)

Fig. 1.5 Stress-strain curves for a SBR [#40, #41, #42, #43] and b NR [#2, #3, #4, #5] compounds
with various filler loadings. The reinforcing effect is clearly visible (For sample nomenclature, see
Sect.A.6)

filled rubbers,] rubber works at a higher point on its stress-strain curve” [55]. In the
context of a viscous particle suspension, the physics behind this effect have been
worked out by Einstein more than 100years ago. He proposed an equation relating
the viscosity of the suspension η to the amount of filler volume content φ [56]. For
spherical particles, the equation reads

η = η0 (1 + 2.5φ) , (1.6)

where η0 is the viscosity of the unfilled fluid. Equation1.6 is only valid for non-
interacting spheres, i.e. the filler content must be sufficiently low. Einstein’s relation
was applied to the modulus E of filled rubbers by Guth and Gold and extended for
a correctional quadratic term, taking care of the filler interaction in concentrated
systems:

E = E0

(
1 + 2.5φ + 14.1φ2

)
. (1.7)

The quadratic term is empirical and other factors have frequently been suggested
[52, 56]. The equations for hydrodynamic strain amplification can only serve as a
rough approximation of the reinforcement due to neglecting effects like strain rate
and strain history [57].

Medalia quantitatively introduced the concept of an effective filler volume [55,
58]. The effective filler volume includes not only the filler itself, but also the passive
rubber fraction, i.e. the part of the rubber that is occluded in the aggregate pores and is
trapped in the agglomerate structure and thus does not undergo the same deformation
as the rubber chains in the bulk phase of the composite. The effective filler volume
depends on the structure of the carbon black and its dispersion [20, 26, 40, 59].
Typical values for the ratio of the effective filler volume to the nominal filler volume
range from 1.3 to 2.0.

Asmentioned above, the strain amplificationwas originally applied to themodulus
of the material, i.e. to the small strain region, which can be approximated by linear
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elasticity. It is also applicable to the strain in general. According to Bueche and
Smallwood, the strain is amplified by a factor of 1

1−φn , where the exponent n depends
on the geometry of the filler particles [56, 60, 61].

Even though the concept of strain amplification is widely accepted, the direct
proof by experimental measurement of the matrix strain is difficult. Approaches
include mechanical tests [62, 63], NMR (nuclear magnetic resonance spectroscopy)
[60, 64], SANS (small angle neutron scattering) [59, 65–67] and WAXD [68, 69].
The underlying assumption is that a unique relation between themeasured quantityψ
(e.g. stress, crystallinity, orientation) and strain ε exists, which applies to the unfilled
material as well as to the matrix of the filled material [63, 68]:

Aψ,filled(ε) = εunfilled

εfilled

∣∣∣∣
ψ

= εmatrix

εfilled

∣∣∣∣
ψ

, (1.8)

where Aψ,filled is the strain amplification factor of the filled material for the quantity
ψ. For instance, let the strain in a filled rubber be half of the strain in an unfilled
reference at the same stress, then the mechanical strain amplification factor is two.
The concept of the mechanical strain amplification has proven to be useful as long
as the reinforcing capability of the filler is high, such as in carbon black filled sys-
tems [63], and the strain is larger than the Payne regime, i.e., above 20%, but below
the SIC onset [64]. Given that hydrodynamic effects are not the only source of
reinforcement, and also numerous other mechanisms like filler–filler networks and
adsorption of polymer at the filler surface (immobilized layer of bound rubber, filler
particles as additional network crosslinks) have to be considered, quantitative devi-
ations from a constant strain amplification are to be expected and have indeed been
observed [60, 64].

In general, the strain amplification factors obtained by different methods do not
agree, because the methods are sensitive to different characteristics. Furthermore, it
is often overlooked that the concept of strain amplification is not applicable at high
carbon black loadings, since above the overlap concentration of the agglomerates,
other reinforcing mechanisms set in (Sect. 1.1.4.2) [20]. Some SANS studies did not
find any overstrain in the matrix [66, 67].

1.1.4.2 Filler–Filler Interaction

At filler loadings below the overlap concentration, no filler network exists and the
load transfer takes place through the rubber matrix, implying the strain amplification
as pointed out in the previous section. On the contrary, above the overlap concen-
tration, a filler network is established, and the stresses are transferred directly via
the agglomerates. Since the modulus of this network is much larger than that of the
rubber, the filler network is the dominating element in this regime [20]. The existence
of the filler network is the reason why aggregated structures have better reinforcing
properties than completely dispersed fillers [70].
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1.1.4.3 Filler Surface and Interphase

The processes at the interface between the rubber chains and the carbon black filler
surface is still subject to current research, even though the notion seems to prevail
that the interaction is mainly physical in nature, i.e. physisorption andVan-der-Waals
interaction dominate over chemical bonding [51, 71]. Applying themacroscopic con-
cept of surface tension and internal pressure to the particle interface, adhesive failure
at the filler surface is hindered by these factors alone as long as the particles are
sufficiently small, i.e. below 50nm [51]. Indeed, it is observed that the reinforcing
effect increases with decreasing particle size, and that above a certain particle size
the reinforcing effect vanishes. The minor role of chemical interaction was con-
firmed by placing different amounts of reactive groups along the polymer chains.
Despite the presence of more reactive groups, the polymer-filler interaction was not
enhanced [51]. The idea of physical interaction implies that chains are able to slide
along the filler surface, causing hysteresis [51].

Due to the physical adsorption of the polymer chains on the carbon black surface,
their mobility is restricted, resulting in an immobile layer, also called glassy layer.
The presence of this layer is suggested by DEA (dielectric analysis) [40, 72], DMA
(dynamic mechanical analysis) [50], NMR [73], chemical extraction [74] and 3D
TEM [75, 76], even though direct evidence is still lacking [67, 71]. The restriction
of the polymer mobility on the filler surface is seen in analogy to thin films deposited
on substrates, where an increase in the glass transition temperature Tg of the order
of 100K is observed [54]. A more detailed model describes the immobile layer in
terms of a gradual transition from a highly immobilized state directly at the surface to
bulk-like mobility further away from the surface [77]. The thickness of this transition
region is said to range between 1 and 10nm.

The role of the interphase becomes increasingly important as the particle size is
reduced and the specific surface is increased. It further contributes to the superior
reinforcing ability of smaller particles. While semi-reinforcing carbon blacks have a
specific surface of less than45m2/g, reinforcingfillers have around65–140m2/g [17].

1.1.4.4 Self-Reinforcement by Strain-Induced Crystallization

Amatrix-inherent reinforcementmechanism is the strain-induced crystallization [78].
Strain-crystallizing elastomers partly crystallize if the exerted strain exceeds a certain
threshold. This process is governed by the reduction of enthalpy, which depends on
the molecular architecture of the polymer chain. A critical prerequisite for the ability
to crystallize is the absence of large sidegroups. A high stereoregularity (cis/trans)
is required if the backbone contains double bonds (cf. tacticity effects in vinyl ther-
moplastics). Natural rubber is the most prominent elastomer that exhibits SIC. Other
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Fig. 1.6 Stress–strain curves for NR and SBR. The stress upturn of NR can be assigned to the rein-
forcing effect of strain-induced crystallization. The detailed recipes are listed in Sect.A.6 [#2, #40]

strain-crystallizing elastomers include isoprene rubber (IR) [5, 10],9 chloroprene
rubber (CR) [78, 80–83], butyl rubber [84] and butadiene rubber [84].

Crystallites can be thought of as additional crosslinking points or as rigid rein-
forcing particles, strengthening the otherwise amorphous rubber [85, 86]. Thanks
to SIC, the strength at break and the crack propagation behavior of NR are superior
to those of non-crystallizing synthetic rubbers (Fig. 1.6).10 The beauty of the self-
reinforcement is that the crystallization process occurs only in those regions which
are subjected to large strains, while the rest of the product maintains its elastic prop-
erties. Upon removal of the load, the crystallization is reversible. The drawback is
the complex relationship between SIC and temperature, time and multiaxial strain
fields. At elevated temperatures and on very short time scales SIC is reduced. This
makes an implementation of SIC into constitutive models difficult [87, 88].

1.1.5 Mechanical Behavior

Since rubber is mainly used as a structural material, its mechanical properties are
of utmost importance. While the basic elastic behavior can be traced back to simple

9 Only IR grades with high cis-content can undergo SIC. Furthermore, IR crystallizes only in the
crosslinked state [79].
10 Of course, the comparison should not be taken too quantitatively. NR and SBR are chemi-
cally different, and moreover NR has an inherent network resulting from its natural impurities and
endgroup functionalization. However, from a practical point of view, reinforced SBR can often
replace reinforced NR in less demanding applications.
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entropy elasticity, the problem becomes somewhat more involved when dealing with
filled rubbers or strain-crystallizing rubbers.

1.1.5.1 Origin of Rubber Elasticity

As opposed to metals, the elasticity of rubbers is driven by entropy and not by
enthalpy. In a stretched rubber, the chain segments can assume fewer conformations,
reducing the entropy, and thus increasing the free energy. In other words, the larger
the distance between the chain ends, the fewer paths are available to connect the
ends by a given number of segments. The increase in free energy is balanced by the
work caused by the external force acting on the rubber. For a single freely jointed
chain, following Gaussian chain statistics, the relation between the magnitude of the
end-to-end vector R and the force f reads as follows:

f = 3kT

nb2
R, (1.9)

where n is the number of statistical chain segments and b is the chain segment
length [89].

Extending the concept from a single chain to N chains per unit volume in three
dimensions, the change in the free energy �F upon uniaxial elongation is, under the
assumption of incompressibility [90]:

�F = N RT

2

(
α2 + 2

α
− 3

)
. (1.10)

Here, α is the stretch ratio.11 At constant temperature, the free energy�F equals the
work w done on the system. The work is stored as elastic strain energy, following
the definition of a hyperelastic material model. Equation1.10 represents one of the
simplest constitutive equations for the mechanics of elastomers. With N RT = C1,
C1 being an empirical constant, it can be identified as the so-calledNeo-Hookean law.
It is a special case of the more general Mooney-Rivlin constitutive law. Nowadays,
numerous constitutive models are available and are an essential basis for any finite
element code [91].

The derivative of the strain energy density w with respect to the displacement
gives the stress σ:

σ = N RT

(
α − 1

α2

)
. (1.11)

11 The stretch ratio α is defined as α = l
l0
, where l0 is the undeformed length and l is the deformed

length. The relation between the stretch ratio α and the strain ε is α = 1 + ε.
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1.1.5.2 Mullins Effect

The Mullins effect describes the history dependence of the large strain mechanical
behavior of filled and unfilled elastomers [92]. This stress softening effect is more
pronounced in filled rubbers. When stretching a rubber for the first time above the
previous maximum strain, filler–filler bonds break and rubber chains slide along the
filler surface [51]. In the consecutive stretching cycles, the stress at a given strain
level below the previous maximum strain will be reduced (Figs. 1.7a and 4.5). In
addition to the filler, viscousmatrix effects also play a role. TheMullins effect ismost
pronounced during the first three loading cycles and vanishes after ten cycles. After
very long waiting time, preferentially at elevated temperature, the Mullins effect is
reversible [51, 93]. TheMullins effect should be taken into accountwhendealingwith
the reproducibility of mechanical experiments. In order to exclude undesired effects
in the study of bulk materials, multiple cyclic loading to the maximum investigated
strain prior to the experiment is advisable (so-called demullinization). In contrast to
this, in the context of static crack growth and tear fatigue, the material in front of the
crack tip usually was not subjected to excessively large strains before being reached
by the crack front.

1.1.5.3 Payne Effect

Apeculiar effect in filled rubbers in the low strain regime is the Payne effect. It nicely
connects the filler structure with the dynamic mechanical behavior. The Payne effect
is expressed as a drop in storage modulus G ′ as a function of strain amplitude in
a strain sweep DMA experiment (Fig. 1.7b) [53]. Between 0.1 and 15% strain, G ′
drops by roughly a factor of ten. The magnitude of the drop depends on the filler
structure and on the temperature. The underlying physical reason is the breakdown of
filler–filler interactions [71]. Sotta et al. postulated the breakdown of glassy bridges
between agglomerates [54]. The Payne effect is not found in unfilled rubbers, but
it occurs in carbon black-filled liquids [40, 94]. The fact that the Payne effect is
less pronounced at high temperatures hints at the temperature sensitivity of the filler
bridges; thus supporting the idea of overlapping glassy layers serving as bridges to
establish a network [26, 50]. In terms of strain amplification, the Payne effect can be
interpreted in that upon the destruction of thefiller network, previously trapped rubber
rejoins the deformedphase and thus the effective filler volume is decreased [26].After
a sufficiently long waiting time, the material can recover from the Payne effect [95].
The Payne effect has been implemented into models [40, 61].

1.1.5.4 Fracture and Tear Fatigue of Elastomers

Besides the small-strain dynamic properties, the tear and rupture properties of rubbers
are highly relevant for the material performance in various applications. In some
cases, tear fatigue is the lifetime-limiting failure mechanism. The beginnings of

http://dx.doi.org/10.1007/978-3-319-06907-4_4
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(a) (b)

Fig. 1.7 a Illustration of the Mullins effect, exemplified on E-SBR with 80phr N339. (Adapted
with permission from Ref. [40], copyright 2003 Springer.) b Illustration of the Payne effect in
filled natural rubbers with 50phr of various filler grades. The more reinforcing the filler, the more
pronounced the drop in the storage modulus E ′. The experiments were performed at 1Hz with
−10% static predeformation at 25 ◦C (Adapted with permission from Ref. [94], copyright 2002
Springer)

tear fatigue investigations in elastomers can be traced back to the 1940s with the
introduction of synthetic rubbers [96, 97]. By definition, the prediction of fatigue
life involves the steps of crack nucleation and growth [98, 99]. In the case of rubbers,
the common assumption is that cracks propagate from inherently existing defects like
filler agglomerates, additives like zinc oxide, impurities occurring naturally in the
raw elastomer, and imperfections in mold surfaces [100]. For instance, it was found
by SEM that the majority of the cavities contained a zinc oxide granule [101]. Mars
even argued that crack nucleation in a narrow sense does not occur due to the presence
of flaws [100].

In the early days of rubber fracture research, the Griffith criterion was used for
brittle elastic materials, relating the strain energy stored in a notched material to
the surface energy γ required to advance the crack. However, this simple concept is
not applicable to rubbers, since the stored strain energy cannot be fully converted
to surface energy due to dissipation effects [102]. In the 1950s, Rivlin and Thomas
extended the energy-based Griffith criterion to elastomers [103, 104]. They intro-
duced the critical energy release rate,which has become themostwidely used concept
in fracture mechanics of rubbers [104]. They showed that the critical energy release
rate, above which the crack propagates, is independent of the sample geometry under
certain conditions [97]. In the field of rubber technology, the term tearing energy is
commonly used for the fracture mechanics expression energy release rate [97].

The energetic approach to fracture mechanics can be applied on a global and on a
local scale [105]. Applying it globally, the calculation of the tearing energy depends
on the geometry of the rubber specimen. Nowadays, the most popular geometry is
the so-called pure shear sample,12 because it gives the most accurate results due
to inherently better statistics [106]. Other geometries, like the single edge notched

12 The term pure shear might be somewhat misleading. Simply speaking, the pure shear specimen
is a tensile specimen with one of its dimensions transversal to the tensile direction being much
larger than its extension along the tensile direction, such that transversal strains are restricted to one
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Fig. 1.8 Illustration of a tear
fatigue experiment in pure
shear geometry. Zone A is
stress-free, zone B is in pure
shear state, zones C and D
are in complex states of stress
due to crack tip and boundary
effects. The arrows indicate
the tensile direction. Adapted
from Ref. [103]

A

c

C B D h
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tensile (SENT) sample or the trousers sample, are mainly of historical interest [97,
102, 106]. For a pure shear geometry, the tearing energy can easily be calculated
from a global energy balance (Fig. 1.8) [103]. If we let the crack propagate by the
distance dc perpendicular to the tensile direction, then the zone C expands in length
by dc and zone B shrinks by dc, assuming a self-similar shift of the crack tip. As a
first approximation, no change in displacement occurs during the crack growth, i.e.
the process is static. Then the energy W transferred from zone B to zone C is

W = h t wel dc = t T dc, (1.12)

where h and t are the height and the thickness, respectively, of the specimen; and
wel is the elastic strain energy density in the homogeneously deformed zone C. T as
the tearing energy follows as

T = h wel. (1.13)

The elastic strain energy density wel can be obtained from the area under the equi-
librium stress-strain curve (which more closely resembles the unloading curve than
the loading curve) of an unnotched pure shear sample, possibly with some correction
for boundary effects in the D zones. Alternatively, wel is obtained from the strain in
connection with a constitutive model. Strictly speaking, Eq.1.13 is only valid under
static conditions, i.e. no work is done on the sample while the crack propagates.
To a good approximation, this is fulfilled in quasistatic tear tests, where the sample
is stretched continuously and the crack growth is observed. However, these kinds
of rupture tests can hardly represent the fatigue loading conditions which are typi-
cally encountered in rubber products. Moreover, performing quasistatic tear tests is
meaningless for strain-crystallizing rubbers since catastrophic failure occurs once
the crystalline zone, acting like a wall, has been overcome [6, 103, 107].

Besides the global approach, a local approach, based on the J -integral, is avail-
able. In simple words, this concept, proposed independently by Rice and Cherepanov
[108, 109], performs a local energy balance around the crack tip. In analogy to

(Footnote 12 continued)
dimension. The name results from the fact that this deformation field can theoretically be obtained
by exerting shear forces on the edges of the sample, along with a rotation of the sample [16].
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Green’s theorem, the energy components acting on and crossing an arbitrary closed
path around the crack tip are summed up to obtain the energy source term within this
area, which corresponds to the creation of new crack surfaces and energy dissipation.
If dissipation occurs only in the crack tip near field, the J -integral approach becomes
path-independent, provided it encircles the crack tip near field.When taking the sam-
ple contour as integration path, the J -integral reduces to Eq.1.13 [110]. If dissipation
is not limited to the crack tip near field, the J -integral becomes path-dependent. The
analysis of crack propagation in dissipative materials of arbitrary geometry is subject
to current research [111].

In practice, cyclic fatigue crack growth experiments are preferred over static tear
tests, because they resemble more closely real-life loading conditions. In these so-
called tear fatigue tests, the notched rubber specimen is subjected to a cyclic load at a
frequency of roughly 1Hz (pulsed or harmonic) and the crack growth over the number
of cycles is observed (Fig. 1.9a).13 While at small strain amplitudes the growth is
dominated byozone attack (regime1 inFig. 1.9b) and at large amplitudes catastrophic
failure occurs (regime 3), the region inbetween (regime 2) is characterized by a power
law relation between the crack growth per cycle dc

dN and the tearing energy T to the
power of m:

dc

dN
∝ T m (1.14)

The Paris law (Eq.1.14) was originally established for metals [97]. m is an empir-
ical parameter and is between 3 and 4 for NR and SBR, respectively [6, 112]. There
are several limitations which are not captured by the Paris law. First, the fatigue life
not only depends on the load amplitude, but also on the load frequency and load
history. Under pulse load, resembling more closely the loading scenario in a tire, the
lifetime can be considerably reduced as compared to sine load [113]. The extent of
lifetime reduction depends on the compound, such that the material rankings from
a sine and a pulse test can be completely different [114]. Also, the introduction
of dwell periods or variable amplitude loading histories can drastically change the
lifetime by up to factor of ten [115]. Literature does not give an unequivocal pic-
ture about the influence of the strain rate and frequency. While Andrews [116] and
Gent [6] showed, somewhat counterintuitively, a negligible effect of frequency on
crack growth in NR, recent results [113], varying only the strain rate and not the
frequency, suggest a decrease in tear resistance with increasing strain rate. However,
this could also be related to the inherent variation in dwell time when changing the
strain rate at a constant frequency, which was shown to have a large effect [115, 117].

The most influential parameter besides amplitude and frequency is the R-ratio,
defined as the ratio of minimum to maximum strain or strain energy in a fatigue
cycle [104].While in amorphous elastomers the R-ratio has a negligible effect [117],
in strain-crystallizing NR the crack growth rate can decrease by as much as two
orders of magnitude when the R-ratio is increased from 0 to 0.06 [99]. This is nicely

13 In the framework of the FOR 597 research group, tear fatigue experiment were carried out on a
Coesfeld machine at TU Chemnitz.
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(a) (b)

Fig. 1.9 Tear fatigue analysis: a Scheme of a tear fatigue analyzer for parallel testing of pure shear
and SENT samples (image courtesy of R. Stoček, TU Chemnitz); b Illustration of fracture regimes
in tear fatigue. 1 minimal crack growth due to ozone attack, 2 power law regime, 3 catastrophic
failure (Adapted with permission from Ref. [118], copyright 2012 Springer)

Fig. 1.10 Haigh diagram of filled natural rubber (23phr carbon black) subjected to harmonic strain
at 1Hz. The criterion for the number of cycles listed in the graph is the presence of a crack larger
than 1mm. The characteristic of natural rubber is the increase of the isolines with increasing positive
mean stresses (Adapted from Refs. [121] and [122])

reflected in the Haigh diagram (Fig. 1.10), plotting the stress range of a cycle, �σ,
over the average stress per cycle, σ, which shows a characteristic increase in the
isolines for constant lifetime [119], i.e. cycling around a larger strain increases the
lifetime despite the higher strain energy density involved, which should theoretically
release more energy and favor crack propagation. The reason behind this apparent
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paradoxon is the strain-induced crystallization, which can develop its reinforcing
abilities only when the material is kept above a certain strain for sufficient time. The
relation between strain-induced crystallization and tear resistance was first pointed
out by Busse in 1934 [120].

The role of SIC in crack growth is also apparent from the topographies of the crack
contour and crack surface. In non-crystallizing rubbers or if SIC is suppressed (e.g.
due to high strain rates), the crack surface is rather smooth [6]. The more prominent
the role of SIC, themorewrinkled the surface becomes.Knotty tearing [123, 124] and
characteristic striations [107, 116] result from the reinforcing crystalline zone at the
crack tip and the anisotropy of the material in that region, forcing the crack to make
a detour. Thus, on top of the large hysteresis associated with strain-crystallizing
materials, the real crack surface is much larger than what a simple crack length
measurement would suggest, effectively enhancing the apparent tearing energy, e.g.
obtained from a pure shear tear fatigue test. Under certain circumstances, even crack
rotation and bifurcation are observed in NR [62, 125], effectively increasing the
crack tip radius and thus elevating the energy release rate [126]. A more detailed
description of the role of SIC and its time dependency follows in Sect. 1.3.2.

The tear fatigue tests outlined above have in common that their loading conditions
are limited to uniaxial cases, which contrasts real-life scenarios, frequently exhibit-
ing multiaxiality [127]. Typically, the cracking plane is observed to be normal to
maximum principal strain direction [100]. Various multiaxial equivalence fatigue
criteria relate the tearing energy obtained from a uniaxial test to the actual strain
and stress field under multiaxial conditions [98, 128]. This field is subject to current
research [129].

Other factors affecting the fatigue lifetime include the crosslinking type and den-
sity [99, 130, 131], and the sample thickness [97, 132, 133].

1.2 X-Ray Scattering

X-ray scattering is a powerful non-destructive analytical technique to probe the
nano- and microstructure of materials. Employed in transmission geometry14 it is
bulk-sensitive and, depending on the setup, provides local information or averages
over a large volume to yield representative results. X-ray scattering can have high
time-resolution in the millisecond range, but can also follow slow processes. X-ray
scattering can be done with ease in rather flexible sample environments, e.g. in-situ
heating, cooling or mechanical experiments can be implemented.

The data obtained are strictly quantitative, however its interpretation is the main
difficulty and drawback of this method. Scattering data represents information in
reciprocal space, which is hardly accessible to common human perception, and there-
fore either a conversion into real space, whether direct or bymodeling, has to be done,
or, on the assumption of certain geometries, a direct extraction of information from
reciprocal space can be performed.

14 As opposed to grazing incidence geometry.
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1.2.1 Nature and Sources of X-Rays

X-rays are electromagnetic radiation, which are located at the high energy end of
the electromagnetic spectrum. Their wavelength λ ranges from 0.01 to 10nm, corre-
sponding to energies between roughly 100 and 0.1keV. X-rays were discovered in
1895 by Wilhelm Conrad Röntgen.

The most widely used source of X-rays is the X-ray tube, which emits X-rays
from a target (typically copper), that is bombarded with electrons. The electrons are
emitted from a cathode wire and are being accelerated by an electric voltage. Besides
the Bremsstrahlung background, an X-ray tube emits radiation of a few characteristic
wavelengths, which result from electrons from distinct outer shells falling down into
the vacancies in the inner shell caused by the electron bombardment (fluorescence).
For instance, the most frequently used type of radiation in X-ray scattering, Cu Kα
radiation, is caused by a transition of electrons from the L-shell to the K-Shell and
has a wavelength of 0.154nm.

The major disadvantage of the X-ray tube is the low efficiency, which is mainly
due to the isotropic emission of X-rays from the target. Because a defined beam is
required for scattering purposes, only a small portion of the radiation can be used.
The low photon flux leads to long exposure times to yield a sufficient signal to noise
ratio. This renders time-resolved experiments and high-throughput measurements
impossible.

A more powerful alternative is the synchrotron light source (Fig. 1.11). In a
synchrotron, electromagnetic radiation is generated from the deflection of charged
particles (electrons or positrons) moving at relativistic speeds. The first of these
large-scale facilities were built in the 1960s to perform particle physics experiments,
and the electromagnetic radiation was only a byproduct. Nowadays, with the third
generation of synchrotron sources being available, they are purposefully designed to
deliver high brilliance15 X-ray radiation.

In a synchrotron source, electrons or positrons are accelerated by a linear accel-
erator and booster and then fed into a storage ring, typically of a few hundred meters
in diameter. The particles circulate in the storage ring at relativistic speeds. Being at
energies around 5–8GeV, 1− v

c ≈ 10−5 (with v being the particle speed and c being
the speed of light). In the storage ring, bending magnets force the electrons to move
in a circle. The deflection of charged particles causes radiation loss, which is emitted
as X-rays. The loss of energy is compensated by acceleration cavities. Besides the
bending magnets, other devices (wigglers and undulators) are purposefully inserted
into the storage ring to generate more brilliant radiation. Wigglers can be regarded
as periodic arrays of n bending magnets, such that the brilliance is n

2 ≈ 100 times
higher than that of a bending magnet. Undulators, employed in 3rd generation syn-
chrotrons, are designed similarly as wigglers, but take advantage of amplification
effects by interferences between the emitted X-rays from individual magnets, such
that their brilliance is again enhanced by two to three orders of magnitude.

15 The brilliance is the photon flux (i.e. photons per time and per beam cross sectional area) normal-
ized by solid angle (cf. beam divergence or collimation) and 0.1% bandwidth (cf. monochromacity).
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Fig. 1.11 Aerial view of the
Petra III storage ring and the
Max-von-Laue experimental
hall (blue) at DESY, Ham-
burg. It houses the MiNaXS
beamline, at which most of
the experiments for this work
were carried out (Repro-
duced with permission from
Ref. [134], copyright DESY,
Reimo Schaaf)

After the X-ray beam has left the storage ring in tangential direction, it passes
through some optical devices, which focus the beam (by means of a Göbel mirror or
by slits) and confine the wavelength spread of the beam (only waves within a certain
wavelength window fulfill the diffraction conditions of the monochromator crystals)
and finally arrive at the experimental hutch of the beamline.

The difference in brilliance between a rotating anode lab source and the latest
synchrotron sources is more than ten orders of magnitude. This high brilliance is
especially useful for USAXS and SAXS. Considering that for WAXD the intensity
itself is more relevant, still the exposure times at a synchrotron are reduced by a factor
of 105 as compared to lab experiments, opening up new methods to study processes
on previously inaccessible short time scales.

1.2.2 Scattering and Diffraction

This section deals with X-ray scattering and diffraction as analytical techniques in
materials science to probe the nano- andmicrostructure of polymers. It intends to give
a moderately detailed introduction into the theoretical fundamentals of the method,
sufficient to understand and interpret experimental and literature data. The section
should not be seen as attempt to comprehensively cover the theory of electromagnetic
fields or quantum mechanics to deduce scattering theory from first principles.

Along these lines we start with the experimental setup and from there illustrate the
physical relations. The theory laid out in the following is based on the classical books
by Guinier [136], Feigin and Svergun [137], Glatter and Kratky [138] and a recent
publication by Lindner and Zemb [139]. Figure1.12 shows a sketch of a scattering
experiment. Let us assume the incoming beam is a monochromatic planar wave,
linearly polarized in the plane of the paper, i.e. the electric field vector points out of the
plane of the paper. The electric field of the photon produces an oscillation of electric
charges in the sample. As a good approximation, we can neglect the interaction
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(a) (b) (c)

Fig. 1.12 a Schematic representation of a scattering experiment. b Graphical definition of the
scattering vector q. c Illustration of the scattering cross section dσ(q)

d� (Adapted from Ref. [135])

between X-ray photons and protons due to their large mass.16 An oscillating electron
emits an electromagnetic wave. Assuming elastic scattering (λ2 = λ1), the relation
between the scattered wave E2 and the incoming wave E1 is

E2 = E1
e02

m0c2r
exp (−iqr), (1.15)

where r0 = e02

m0c2
is the electron radius, r is the position of the electron and q is the

scattering vector q = k2 − k1 (Fig. 1.12a, b).17 The magnitude of the scattering
vector is, with |k1| = k1 = 2π

λ ,

q = 2k1 sin(�) = 4π

λ
sin(�). (1.16)

The amplitude of the scattered beam relates to the amplitude of the incoming wave
via the electron radius r0, which is the scattering length of a single free electron.

X-ray detectors can only detect the intensity of photons (in terms of counts per
time and area, within a certain energy range), not their phase. The relation between
amplitude E and intensity I is in the far-field approximation (i.e. the scattered spher-
ical wave is approximated as a plane wave)

I (q) = ε0c

2
E(q)E∗(q) ∝ E2(q), (1.17)

where ε0 is the dielectric constant and E∗ is the complex conjugate of the ampli-
tude E. This brings us to the definition of the differential scattering cross section
(Fig. 1.12c) dσ(q)

d� :

16 Following Eq.1.15, the amplitude of a wave scattered by a proton is
(

m p
m0

)2 = 3.37× 106 times

less than the amplitude of a wave scattered by an electron.
17 For a detailed derivation of Eq.1.15, the reader is referred to Berne and Pecora [140].
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I1dσ(q) = I2(q)l2 d�, (1.18)

with � being the solid angle and l being the distance between the scatterer and the
detector (detecting a wave of intensity I2).

So far we considered scattering from a single free electron. In the context of
scattering, an atom can be viewed as an assembly of electrons. For classic scattering
experiments, anomalous effects (i.e. inelastic interactions due to the energy levels
of the binding electrons) and multiple scattering events can be neglected. Then the
scattering intensity of an atom, called the atom form factor, Fatom, is approximately
proportional to its atomic number, Z :

Fatom(q) =
∫

atom
ρ(r) exp (−iqr) dr ∝ Z , (1.19)

whereρ(r) is the electron density distributionwithin the atom.18 Equation1.19 shows
that the atom form factor is the Fourier transform of the electron density distribution.
Combining Eqs. 1.15, 1.17 and 1.19, we obtain for the scattering intensity I (q) of a
hypothetical sample consisting of N uncorrelated atoms:

I (q) ∝ N Fatom
2(q). (1.20)

1.2.3 Small-Angle X-Ray Scattering

Small angle scattering comprises scattering at angles 2� well below 10◦, i.e. struc-
tures in the range of 1–500nm are analyzed, corresponding to scattering vectors
0.01 nm−1 < q < 5 nm−1. The low scattering angle end of this range is commonly
referred to as USAXS (ultra ~), and the large-angle side at the boundary to WAXS
is sometimes called MAXS (medium ~) [33, 139]. In other words, SAXS is sen-
sitive to inhomogeneities in the scattering length density on the size scale of tens
of nanometers. Thus we are not concerned about the electron density distribution
within atoms, but rather about the distribution of phases or components of different
electron density within the sample.

In analogy to the atom form factor, one can define particle form factors as the
Fourier transform of the electron density distribution within the particulate structure.
For instance, the form factor of a homogeneous sphere of radius R reads [139]:

fsphere = 3
sin(q R) − q R cos(q R)

(q R)3
. (1.21)

18 Other definitions exist in literature, taking the form factor as the square of the definition in
Eq.1.19.
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Fig. 1.13 Form factors of a monodisperse (σ = 0) and polydisperse (σ = 0.1) sets of spheres of
radius R. A normal distribution with mean q R = 1 and standard deviation σ was assumed. The
computed range is 0.05 < q R < 2.0. With increasing polydispersity, the oscillations are blurred
out. The Guinier and Porod laws are shown to hold at low and high q R, respectively

A computed scattering curve for a dilute system of spheres is shown in Fig. 1.13. For
a number of other geometrically simple particles, the form factors can be computed
numerically.

In a dilute solution of particles, interaction between the particles is negligible, and
the scattering intensity is simply the sum of the scattering intensities of the individual
particles.19 If, however, the particles interact, i.e. the average interparticle distance
is of the same order of magnitude as the particle size, crossterms arise and give way
to the introduction of a structure factor S(q):

I (q) ∝ VpF(q)2S(q), (1.22)

with Vp being the particle volume fraction. Consequently, for dilute systems, the
structure factor S(q) reduces to unity.

While the interpretation of scattering patterns in terms of form and structure
factors requires an a priori model of the particle shape and interaction, model-free
approaches are available. Considering that the scattering intensity is proportional to
the square of the Fourier transform of the real-space electron density distribution
(Eq.1.20), one can go in the reverse direction and go from scattering space (also
called s-space or reciprocal space) to real space by performing an inverse Fourier
transform. Due to the phase problem, the recovery of the electron density distribution
is impossible.20 Instead, one obtains the correlation function γ(r):

19 Dispersions with a particle volume fraction below 1% are typically considered dilute [139].
20 Theoretically, the complete real space information can be restored under certain conditions if
the coherence time of the incident beam is long relative to the exposure time. This is part of the
motivation behind the development of X-ray free electron lasers (XFEL).
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γ(r) = F−1(I (q)). (1.23)

One also arrives at the correlation function by inserting Eq.1.15 into Eq.1.17:

I (q) ∝
∫

V
ρ(r1) exp (−iqr1) dr1

∫

V
ρ(r2) exp (iqr2) dr2 (1.24)

With r = r1 − r2, it follows:

I (q) ∝
∫

V

∫

V
ρ(r1)ρ(r1 − r) exp (−iqr) dr1 dr, (1.25)

where the correlation function γ(r) can be identified as the autocorrelation of the
electron density distribution:

γ(r) =
∫

V
ρ(r1)ρ(r1 − r) dr1. (1.26)

Instructive illustrations regarding the interpretation of the correlation function can
be found e.g. in Refs. [33] and [141].

Other functions have been derived from the correlation function γ, following the
principle of edge enhancement. The interface distribution function (IDF) is the
second derivative of the one-dimensional correlation function; and the chord distri-
bution function (CDF) is the three-dimensional equivalent of the IDF, mainly useful
for anisotropic materials, obtained from the Laplacian of the three-dimensional cor-
relation function [33]. These model-free approaches have certain limitations. First,
to perform a Fourier transform, the experimental data is required to cover the com-
plete reciprocal space. This of course is not feasible in practice. Scattering data for
q → 0 has to be extrapolated. Merging data from different detector distances is
advisable to cover a broader q-range. Because a SAXS pattern only represents a
slice of the reciprocal space, the reciprocal space in all three dimension can only
be reconstructed under certain conditions. Either the sample fulfills fiber symmetry
around an axis perpendicular to the X-ray beam, or the sample has to be rotated,
which then requires a computationally expensive postprocessing of the data. The
interpretation of a SAXS pattern, either directly or in real space representation, is
greatly exacerbated by polydispersity and diffuse boundaries, i.e. gradual changes
in electron density. Both issues are present in the systems studied in this work. The
Magic Square gives a nice overview of the relations between real and reciprocal
space (Fig. 1.14) [33].

An alternative approach is to postulate a structure in real space, based on direct
interpretations of the scattering data, or based on the model-free approaches outlined
above, or following other assumptions. Since the transformation from real space
to reciprocal space is unequivocal, the scattering patterns can either be computed
numerically or even analytically (in the case of simple geometries, cf. Eq.1.21).
Then the computed pattern is compared to the experimental one and the process
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Fig. 1.14 Magic square to illustrate the relations between real space and reciprocal space functions
(Adapted from Ref. [33])

is iterated until sufficient agreement is achieved. However, the obtained real-space
structure is not unique.

For the special case ofmass and surface fractals, the relations outlined inSect. 1.1.3
hold.

Even though they can rarely provide a quantitative and precise evaluation of
scattering data, some important very basic interpretations should be mentioned here.
Historically, the Guinier law and the Porod law are of great importance. They still
serve as a first rough guide in the visual interpretation of scattering curves. The
Guinier law (Guinier 1939) holds for small q (q � Rg,e) and represents the outcome
of the first term of a Taylor series expansion of the scattering intensity of isolated,
monodisperse, spherical particles21:

I (q) ∝ exp

(
−q2Rg,e

2

3

)
, (1.27)

where Rg,e is the electronic radius of gyration. In aGuinier plot, log (I ) is plotted over
q2 and Rg,e can be obtained from the slope of the curve. While the Guinier regime is
seen as a distinct knee in a classic log (I ) versus log (q) scattering curve (Fig. 1.13)
and the position of the knee allows first conclusions regarding Rg,e, this feature
is often blurred out by polydispersity or completely obscured due to concentration
effects [142, 143].

At large q (q � Rg,e, large in the context of small-angle scattering, i.e. inhomo-
geneities in the electron density on the scale of nanometers), the Porod law (Porod
1951) holds:

I (q) ∝ SV

q4 , (1.28)

21 For a derivation, see e.g. Guinier [136].
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with SV being the specific surface. Porod’s law holds for well-defined smooth sur-
faces. If the density changes gradually or the surface is rough, the exponent deviates
from 4 (cf. Sect. 1.1.3).

As pointed out above, scattering is the result of inhomogeneities in the electron
density. Not only the shape of the scattering curve deserves interpretation, but also
the absolute intensity of the scattering signal allows conclusions with respect to the
structure. The better the contrast between the phases (i.e. the larger the difference
in electron density), the higher the absolute scattering intensity Q. Owing to the
fact that this quantity is independent of the shape of the scatterers, it is also termed
scattering invariant. For a two-phase system, it reads

Q =
∫ ∫ ∫ q′→∞

q′→0
I (q) dq ∝ �1�2 (ρ1 − ρ2)

2 . (1.29)

�1 and �2 are the volume fractions of phases 1 and 2, respectively, and ρ1 and
ρ1 are their electron densities. The fact that Q is insensitive to the inversion of
the volume fractions is called Babinet’s principle. Since the detector plane only
provides a slice through the reciprocal space, the missing third dimension has to
be taken from symmetry considerations or from rotating the sample to explore the
complete reciprocal space. For systems with three or more phases, the equation
becomes increasingly complex [144, 145].

1.2.4 Wide-Angle X-Ray Diffraction

Wide-angle X-ray diffraction follows the same physical phenomena detailed in
Sect. 1.2.1. However, the regular periodic order of scatterers gives rise to interfer-
ence peaks, called diffraction.22 The regular order on the size scale probed byWAXD
(� > 10◦) corresponds to the lattice spacing d in crystalline polymers. In order to
observe constructive interference between scattered waves, the phase shift between
the two incoming wavelets in Fig. 1.15 must be multiples of the wavelength [147]:

mλ = 2d sin (�) , (1.30)

wherem is the order of diffraction.23 Equation1.30 is calledBragg’s law. It simplifies
the scattering problem to a planar case. For the three-dimensional case it is instructive
to think in reciprocal space. In the special case of an orthorhombic crystal structure,
like in NR, the base vectors of a unit cell of the reciprocal lattice are collinear with
the lattice unit vectors in real space. Only their lengths are inverted. In order to fulfill
the diffraction condition for a given crystallographic plane, the scattering vector

22 For an overview of diffraction theories, see e.g. Ewald [146].
23 In polymer science, higher order diffraction peaks are frequently concealed due to imperfections
and finite size effects.
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Fig. 1.15 Illustration of the diffraction condition. The red lines represent the crystal lattice; the
black lines represent theX-ray photon paths. To fulfill Bragg’s law, the blue linemust be of lengthmλ

q must be equal to the corresponding reciprocal lattice vector. This mathematical
relation is geometrically expressed in the Ewald sphere construction. In line with
Fig. 1.15, diffraction occurs when a lattice point lies on the Ewald sphere, which is
defined by its center O being at k1 and its radius |k1| = 2π

λ (Fig. 1.16). For a detailed
derivation of the Ewald sphere construction see e.g. Ref. [148].

In numerous scattering and diffraction experiments in polymer science, advantage
is taken of the fiber symmetry of the sample. This means that the sample structure
is symmetric to a rotational axis. In particular, in a unixial tensile experiment, the
symmetry axis coincides with the tensile axis, as long as the two transversal dimen-
sions of the sample are similar. When fiber symmetry is fulfilled, we can replace the
reciprocal lattice by an infinite number of lattices sharing the rotational axis, which
is the c-axis in the case of NR. Or, if we stick with one lattice, the reciprocal lattice
point does not need to lie on the Ewald sphere any more; instead, it is sufficient if
the distance of the reciprocal lattice point from the axis of fiber symmetry equals k1.

As opposed tometals, crystallizing polymers never become completely crystalline
due to steric hindrance and due to entropy reasons [149]. Common degrees of crys-
tallinity for semicrystalline polymers range between 10 and 70% maximum. The
remainder stays amorphous, which gives rise to the so-called amorphous halo in the
wide-angle regime. The degree of crystallinity is reflected in the diffractogram as
the ratio of the intensity of the crystalline diffraction peaks to the intensity of the
amorphous halo [33, 150–152]. However, this methods only yields a relative number
for the crystallinity, such that a normalization with independent measurements (DSC
or dilatometry) is required. Alternatively, one can evaluate the decrease in the amor-
phous halo for itself [86, 153, 154]. An overview of methods for the determination
of crystallinity is listed in Ref. [155].
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Fig. 1.16 Construction of the Ewald sphere (sphere of reflection) and the limiting sphere, exem-
plified for diffraction of the (0l2) crystal plane. View along the b-axis (Adapted from Ref. [148])

Besides the degree and orientation of the crystallites, aWAXD diffractogram also
reveals information about the size of the crystallites. Following Bragg’s equation,
the diffraction peaks should come out as infinitely sharp point-like peaks (Dirac
deltas). However, in reality the peaks are observed to have a certain width. Besides
instrumental broadening, the reasons for this can be imperfections in the crystalline
stacking (e.g. due to strains) or a finite size of the crystallites [148]. The Scherrer
equation relates the width of the crystalline peak �� to the size of the crystallite
normal Lhkl to the scattering plane (hkl):

Lhkl = Bλ

�� cos (�)
. (1.31)

B is a constant of the order of 1. Equation1.31 can be readily derived from geo-
metrical considerations regarding the limiting cases allowing constructive interfer-
ence of the two crystallographic planes lying at opposite surfaces of the crystallite.
In terms of Fourier space, the peak broadening can be seen as the convolution of
the crystalline Dirac peak with the Fourier transform of the correlation function of
the crystallites [33]. Theoretically, the contributions from finite crystallite size and
lattice deformations can be separated by evaluating higher order peaks. But since
higher order peaks are rarely seen in strain-crystallized NR and the crystallites are
assumed to be polydisperse and in different states of deformation, a separation is
almost impossible.
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Fig. 1.17 Number of publications per year assigned to the topic of (a) natural rubber crystallization
according to the Web of Knowledge. Given that the total number of publications per year increases
continuously in almost all fields, only a careful look at the slope of the increase can identify
research fields gaining importance. Thus, for comparison, the search for the keywords (b) rubber
and (c) crystallization is shown. All data is normalized with respect to the 2012 figures. Total
number of papers for (a) is 401, for (b) is 48347, for (c) is 128696. The rise in (a) since 2000 is very
prominent and is not observed in (b) and (c). As of May 14, 2013

1.3 Crystallization in Natural Rubber

1.3.1 General Aspects of Crystallization in Natural Rubber

The earliest studies of structural changes in rubbers under strain date back to the
1920s, when Katz published his report on strain-induced crystallization24 in natural
rubber observed by WAXD [156]. Even though the fundaments of macromolecular
chemistry were still lacking at that time, he concluded that highly stretched natural
rubber consists of two phases and that the phase transition is reversible when the
strain is removed. Since the early 2000s, the number of papers dealing with SIC
has been increasing owing to the availability of more powerful synchrotron sources
(Fig. 1.17). SICattracts somuchattention in the research community because itmakes
a big contribution to the outstanding properties of NR (Sect. 1.1.4.4). Natural rubber
crystallizes in an orthorhombic25 unit cell with lattice dimensions a = 1.24 nm,
b = 0.88 nm, c = 0.82 nm [157–161]. A unit cell, containing two mers of cis-1,4
polyisoprene, is shown in Fig. 1.18.

Considering crystallization in natural rubber, one has to distinguish strain-induced
crystallization (SIC) and thermal (quiescent) crystallization (TIC) [162]. Unde-

24 Katz called it fibering what is now termed strain-induced crystallization.
25 Some dispute exists in literature about the precise value of the β angle, taking values up to 93◦,
suggesting a monoclinic unit cell.
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Fig. 1.18 Unit cell of crystalline natural rubber.aviewalong thea-axis on thebc plane;bviewalong
the c-axis on the ab plane (Adapted with permission from Ref. [158], copyright 2005 American
Chemical Society)

formed natural rubber undergoes significant thermal crystallization at temperatures
below 0 ◦Cwith a maximum crystallization rate around−28 ◦C [16, 163]. The ther-
modynamic melting point lies considerably above 0 ◦C [80, 164]. With increasing
strain, the melting temperature increases [60]. At room temperature, SIC sets in at
a strain of roughly 300% in unfilled natural rubber [165]. Above 70 ◦C, no SIC is
observed [60]. It should be noted that, despite having the same crystal structure, the
morphologies of thermally induced crystallites and strain induced crystallites are
completely different [166, 167]. Quiescent crystallization forms spherulites [168,
169], whereas SIC promotes the formation of highly oriented fibrillar structures
(Fig. 1.19) [167, 170]. In spherulites, folded-chain lamellae are arranged isotropi-
cally, giving rise to an unoriented WAXD pattern [171]. The periodic spacing (long
period) of the lamellae can be inferred from the long period ring position in a SAXS
pattern [169, 172]. The long period is in the range of 20nm, depending on tempera-
ture [169]. In contrast to TIC, strain-crystallizedNR contains semicrystalline strands,
highly oriented along the stretching direction. These strands are made up of small
extended chain crystallites, interrupted by amorphous segments due to entanglements
and crosslinks, which cannot be transformed to the crystalline state. The strands
are roughly 10–25nm in diameter [173]. Historically, these crystallites were called
γ-fibrils by Andrews, and are now generally referred to as shish [162, 174, 175].
Cooling of strain-crystallized NR can produce intermediate structures, depending on
the strain and temperature. In this case, the shish serves as a backbone for lamel-
lar overgrowth, forming folded-chain α-crystallites (or kebab) perpendicular to the
backbone [174].

In the following, only SIC is considered.
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(a) (b)

Fig. 1.19 Crystal morphologies in semicrystalline NR. a Shish structure resulting from strain-
induced crystallization. Stretching direction is vertical. b Spherulitic morphology from thermal
quiescent crystallization. For simplification, the chains are drawn with adjacent re-entry. In both
cases, entanglements and crosslinks are restricted to the amorphous phase

While SIC can be analyzed by a range of methods, e.g. DSC [176, 177], NMR
[60, 175], IR spectroscopy [175] and dilatometry [176], themostwidely usedmethod
is WAXD. The relations between strain, temperature and crystallinity have been
studied extensively [178].

At first sight, the fact that in unfilled rubber the SIC sets in at strains as large as
300%, suggests that SICmight be of little relevance in real-life loading conditions of
most rubber products. However, in reality the local strain often considerably exceeds
the nominal strain. In filled rubbers, due to the rigidity of the filler phase, the matrix
phase has to bear the complete deformation, such that thematrix strain is considerably
larger than the external strain, especially when the rubber is highly filled. This effect
is referred to as strain amplification (Sect. 1.1.4). Thus, in filled rubbers, the SIC onset
strain can be reduced to around 150% strain. Second, certain geometries give rise to
local strain concentration, e.g. around a crack tip. Theoretically, when approaching a
crack tip, one encounters a strain singularity. In reality, the local strain concentration
leads to a crystalline zone around the crack tip which locally reinforces the material
and thus slows down the crack growth.

1.3.2 Kinetics of Crystallization

Besides the effects of strain and temperature, the time-dependency of SIC should
not be overlooked. Since most rubber products, especially tires, are subjected to
dynamic loads, the structure under realistic loading conditions can considerably
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Fig. 1.20 Stress distribution
in an idealized tire in contact
with a rigid surface. The
color index represents the
magnitude of the first Piola-
Kirchhoff stress tensor. In a
rolling tire, a given material
voxel experiences a pulse-like
stress history (Adapted with
permission from Ref. [183],
copyright 2011 Elsevier)

deviate from what is suggested by quasistatic experiments (Fig. 1.20). This is due to
the finite crystallization kinetics and was shown for the first time in 1932 by Acken
et al., who utilized a stroboscopic technique to accumulate WAXD diffractograms
over several deformation cycles to reach sufficient exposure [179]. They found that
the crystallinity in the dynamically stretched rubber was considerably suppressed
as compared to quasistatic experiments. This type of setup was later optimized by
Kawai et al. [180, 181]. Using a variable phase shift between the stroboscope and
the dynamic stretching device, the complete crystallinity versus strain curve could
be reconstructed. Recently, Candau et al. extracted a crystallinity versus time curve
from stroboscopic dynamic experiments [182]. They defined the characteristic time
as the time period between the onset of crystallization and the time atmaximum strain
in a cyclic experiment. By varying the stretching frequency, they constructed a crys-
tallinity versus characteristic time plot, which was fitted with a stretched exponential
function. They obtained a characteristic crystallization time of 20ms.

The alternative approach to cyclic loading is to apply a steplike loading and then
to follow the crystallization over time. The pioneering work in this respect was done
by Dunning and Pennells in 1967, who took advantage of a continuous steplike
strain when a rubber band is passed over two rolls rotating at different speeds [184].
They reported incubation times between 5ms and 18s, depending on the strain level.
However, the fact that the initial scattered intensity in the region of the diffraction
spots increases with strain, suggests that crystallization might have set in even at
times shorter than the experimental time scale.

Mitchell and Meier performed experiments on a high-speed tensile tester. They
utilized the enthalpy of crystallization and employed thermal techniques to measure
the crystallinity after a steplike loading [185]. This method relies on several assump-
tions in order to separate crystallization enthalpy from the work of deformation. The
crystallinity versus time behavior was fitted with a first order rate law with a half
time of 45ms.

Only in the last fewyears, owing to the availability ofmore powerful synchrotrons,
did the directmeasurement of crystallinity after a step strain become possible. Tosaka
et al. performedWAXD experiments with a pattern acquisition rate of approximately
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12Hz [8, 186, 187]. Despite relatively slow steplike loading (usually 10 s−1), they
reported that the crystallization process only begins after the loading step is finished,
following a two-step kinetic law. After roughly 10s the crystallinity was found to
approach a steady state.

To date, the understanding of the molecular processes and mechanism behind
the crystallization kinetics is still very limited. An interpretation of strain-induced
crystallization on the molecular level, e.g. in analogy to the well-known nucleation
and growth models for quiescent crystallization, is still lacking [188]. In that sense,
the SIC theory lags behind the TIC theory by several decades. DeGennes put forward
the idea of an instantaneous coil-stretch transition [189]. Later Hsiao et al. proposed
to apply this transition to chain segments between crosslinks [190], considering that
the crystallites are much smaller than the typical distance between crosslinks or
entanglements, which is of the order of 20–150nm [10, 191, 192].

In the context of thermal crystallization, the most famous kinetic equation is the
Avrami equation [193]. It has been modified and extended since its introduction in
the 1940s. However, it only considers the superstructure of the crystallites on the
level of the ordering of lamellae into spherulites and the growth of the spherulites.
It does not address the transition from the random coil state to lamellae. Therefore,
it is not applicable to SIC.

1.4 Cavitation

It is commonly accepted that the presence of cavities26 in deformed rubber interferes
with themechanical behavior of thematerial. On the one hand, the energy dissipation
involved in the formation of cavities toughens thematerial.On the other hand, cavities
can impair the mechanical properties and the growth of cavities is considered to play
a major role in the early stages of crack propagation [101, 194–197]. Due to its
long history and due to the importance of the subject, it has been reviewed several
times [194, 198, 199].

The most widely used method to detect cavitation is dilatometry during defor-
mation [163, 176, 200–203]. It was pointed out that due to the diffusion properties
of rubber, gas dilatometers cannot be used to determine cavitation [176]. Also the
superposition of volume changes by cavitation and strain-induced crystallization has
to be accounted for. SIC leads to a decrease in volume by up to 2.7% [163]. Another
popular method is scattering [144, 145, 204, 205], either from X-rays or light. Due
to the large difference in electron density between the cavities and the surrounding
matrix, cavitation is reflected in a strong increase in total scattering intensity. The
presence of elongated cavities is observed as a streak in the scattering pattern. The
disadvantage of scattering methods is that they can only detect cavities within a
certain narrow size range. Recently, optical methods gained popularity as a method

26 The terms cavitation and void formation are often used interchangeably, however some authors
prefer to use voids to describe stable hollow regions in thermoplastics and other glassy materials,
whereas cavities is used in the context of elastomers for hollow regions growing in an unstable
manner [194].
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Fig. 1.21 Literature overview of volume changes in elastomers under strain, measured by various
methods and on different materials. Le Cam 2008 [208], Le Cam 2009 [207], Ramier and Chenal
2007 [205, 213], Kumar 2007 [218], Penn 1970 [201], Christensen and Hoeve 1970 [200]

for volume measurement [206–208]. Furthermore, cavitation was studied by SEM
[101, 209], tomography [210], acoustic emission analysis [211] and NMR [197].

Despite the multitude of investigations, no clear picture about the quantity of
cavitation could be obtained so far (Fig. 1.21). However, most reports agree that in
unfilled rubber, cavitation is negligible [200–202, 205, 212]. Few authors reported
a significant volume increase in unfilled rubber [207, 208, 213], which might be
ascribed to the high zinc oxide content in the unfilled27 samples under study.
For filled rubbers, most studies reported volume increases between 1 and 5%
[176, 200, 202, 205, 213], whereas LeCam found a volume increase by as much
as 25%.28 The results suggest that cavitation is more prominent when filler load-
ings are high, the adhesion between filler and matrix is low and the strain is large
[205, 209, 214].

The mechanical criteria for cavitation are still subject to discussion. The most
famous approach is due to Gent (1958), who argued that the critical stress is 5

6 E , with
E being the tensile modulus [215]. Despite the good agreement with experimental
results, he later noted that this simple relation only holds for a certain limited particle
size range [144, 199, 216, 217]. A different approach follows the Griffith criterion
in the derivation of a cavitation criterion [194]. It supports experimental evidence
that a certain minimum initial flaw size is required in order to expand the flaw to a
cavity. It is commonly assumed that defects of a size larger than 100nm exist in any
rubber material, such that the cavitation problem can be reduced to the growth of
these defects.

27 Unfilled typically specifies materials without reinforcing filler. Recipes containing additives like
zinc oxide are thus classified as unfilled.
28 It should be noted that the rubbers studied by LeCam contained the unusually high amount of
10phr of zinc oxide, which possibly stimulates cavitation.
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