
Chapter 2
Linear Discrete Dynamical Systems

Aims and Objectives

• To introduce recurrence relations for first- and second-order difference equations
• To introduce the theory of the Leslie model
• To apply the theory to modeling the population of a single species

On completion of this chapter, the reader should be able to

• solve first- and second-order homogeneous linear difference equations;
• find eigenvalues and eigenvectors of matrices;
• model a single population with different age classes;
• predict the long-term rate of growth/decline of the population;
• investigate how harvesting and culling policies affect the model.

This chapter deals with linear discrete dynamical systems, where time is mea-
sured by the number of iterations carried out and the dynamics are not continuous.
In applications this would imply that the solutions are observed at discrete time
intervals.

Recurrence relations can be used to construct mathematical models of discrete
systems. They are also used extensively to solve many differential equations which
do not have an analytic solution; the differential equations are represented by
recurrence relations (or difference equations) that can be solved numerically on a
computer. Of course one has to be careful when considering the accuracy of the
numerical solutions. Ordinary differential equations are used to model continuous
dynamical systems later in the book.

The bulk of this chapter is concerned with a linear discrete dynamical system that
can be used to model the population of a single species. As with continuous systems,
in applications to the real world, linear models generally produce good results over
only a limited range of time. The Leslie model introduced here is useful when
establishing harvesting and culling policies. Nonlinear discrete dynamical systems
will be discussed in the next chapter.
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16 2 Linear Discrete Dynamical Systems

The Poincaré maps introduced in Chap. 15, for example, illustrates how discrete
systems can be used to help in the understanding of how continuous systems behave.

2.1 Recurrence Relations

This section is intended to give the reader a brief introduction to difference equations
and illustrate the theory with some simple models.

First-Order Difference Equations

A recurrence relation can be defined by a difference equation of the form

xnC1 D f .xn/; (2.1)

where xnC1 is derived from xn and n D 0; 1; 2; 3; : : :. If one starts with an initial
value, say, x0, then iteration of (2.1) leads to a sequence of the form

fxi W i D 0 to 1g D fx0; x1; x2; : : : ; xn; xnC1; : : :g:
In applications, one would like to know how this sequence can be interpreted
in physical terms. Equations of the form (2.1) are called first-order difference
equations because the suffices differ by one. Consider the following simple example.

Example 1. The difference equation used to model the interest in a bank account
compounded once per year is given by

xnC1 D
�
1C 3

100

�
xn; n D 0; 1; 2; 3; : : : :

Find a general solution and determine the balance in the account after 5 years given
that the initial deposit is 10,000 dollars and the interest is compounded annually.

Solution. Using the recurrence relation

x1 D
�
1C 3

100

�
� 10; 000;

x2 D
�
1C 3

100

�
� x1 D

�
1C 3

100

�2
� 10; 000;

and, in general,

xn D
�
1C 3

100

�n
� 10; 000;

where n D 0; 1; 2; 3; : : :. Given that x0 D 10; 000 and n D 5, the balance after 5
years will be x5 D 11; 592:74 dollars.
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Theorem 1. The general solution of the first-order linear difference equation

xnC1 D mxn C c; n D 0; 1; 2; 3; : : : ; (2.2)

is given by

xn D mnx0 C
�
mn�1
m�1 c if m ¤ 1

nc if m D 1:

Proof. Applying the recurrence relation given in (2.2)

x1 D mx0 C c;

x2 D mx1 C c D m2x0 Cmc C c;

x3 D mx2 C c D m3x0 Cm2c Cmc C c;

and the pattern in general is

xn D mnx0 C .mn�1 Cmn�2 C : : :CmC 1/c:

Using geometric series,mn�1Cmn�2C : : :CmC 1 D mn�1
m�1 , provided thatm ¤ 1.

If m D 1, then the sum of the geometric sequence is n. This concludes the proof of
Theorem 1. Note that if jmj < 1, then xn ! c

1�m as n ! 1. ut

Second-Order Linear Difference Equations

Recurrence relations involving terms whose suffices differ by two are known as
second-order linear difference equations. The general form of these equations with
constant coefficients is

axnC2 D bxnC1 C cxn: (2.3)

Theorem 2. The general solution of the second-order recurrence relation (2.3) is

xn D k1�
n
1 C k2�

n
2;

where k1; k2 are constants and �1 ¤ �2 are the roots of the quadratic equation
a�2 � b� � c D 0. If �1 D �2, then the general solution is of the form

xn D .k3 C nk4/�
n
1:

Note that when �1 and �2 are complex, the general solution can be expressed as

xn D k1�
n
1 C k2�

n
2 D k1.re

i� /n C k2.re
�i� /n D rn .A cos.n�/C B sin.n�// ;

where A and B are constants. When the eigenvalues are complex, the solution
oscillates and is real.
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Proof. The solution of system (2.2) gives us a clue where to start. Assume that
xn D �nk is a solution, where � and k are to be found. Substituting, (2.3) becomes

a�nC2k D b�nC1k C c�nk

or

�nk.a�2 � b� � c/ D 0:

Assuming that �nk ¤ 0, this equation has solutions if

a�2 � b� � c D 0: (2.4)

Equation (2.4) is called the characteristic equation. The difference equation (2.3)
has two solutions, and because the equation is linear, a solution is given by

xn D k1�
n
1 C k2�

n
2;

where �1 ¤ �2 are the roots of the characteristic equation.
If �1 D �2, then the characteristic equation can be written as

a�2 � b� � c D a.� � �1/2 D a�2 � 2a�1�C a�21:

Therefore, b D 2a�1 and c D �a�21. Now assume that another solution is of the
form kn�n. Substituting, (2.3) becomes

axnC2 � bxnC1 � cxn D a.nC 2/k�nC2
1 � b.nC 1/k�nC1

1 � cnk�n1 ;

therefore

axnC2 � bxnC1 � cxn D kn�n1.a�
2
1 � b�1 � c/C k�1.2a�1 � b/;

which equates to zero from the above. This confirms that kn�n is a solution to (2.3).
Since the system is linear, the general solution is thus of the form

xn D .k3 C nk4/�
n
1:

ut
The values of kj can be determined if x0 and x1 are given. Consider the following
simple examples.

Example 2. Solve the following second-order linear difference equations:

(i) xnC2 D xnC1 C 6xn; n D 0; 1; 2; 3; : : :, given that x0 D 1 and x1 D 2;
(ii) xnC2 D 4xnC1 � 4xn; n D 0; 1; 2; 3; : : :, given that x0 D 1 and x1 D 3;

(iii) xnC2 D xnC1 � xn; n D 0; 1; 2; 3; : : :, given that x0 D 1 and x1 D 2.
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Solution. (i) The characteristic equation is

�2 � � � 6 D 0;

which has roots at �1 D 3 and �2 D �2. The general solution is therefore

xn D k13
n C k2.�2/n; n D 0; 1; 2; 3; : : : :

The constants k1 and k2 can be found by setting n D 0 and n D 1. The final
solution is

xn D 4

5
3n C 1

5
.�2/n; n D 0; 1; 2; 3; : : : :

(ii) The characteristic equation is

�2 � 4�C 4 D 0;

which has a repeated root at �1 D 2. The general solution is

xn D .k3 C k4n/2
n; n D 0; 1; 2; 3; : : : :

Substituting for x0 and x1, gives the solution

xn D
�
1C n

2

�
2n; n D 0; 1; 2; 3; : : : :

(iii) The characteristic equation is

�2 � �C 1 D 0;

which has complex roots �1 D 1
2

C i
p
3
2

D e
i�
3 and �2 D 1

2
� i

p
3
2

D e
�i�
3 .

The general solution is

xn D k1�
n
1 C k2�

n
2; n D 0; 1; 2; 3; : : : :

Substituting for �1 and �2 the general solution becomes

xn D .k1 C k2/ cos
�n�
3

�
C i.k1 � k2/ sin

�n�
3

�
; n D 0; 1; 2; 3; : : : :

Substituting for x0 and x1 gives k1 D 1
2

� i

2
p
3

and k2 D 1
2

C i

2
p
3
, and so

xn D cos
�n�
3

�
C p

3 sin
�n�
3

�
; n D 0; 1; 2; 3; : : : :
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Example 3. Suppose that the national income of a small country in year n is given
by In D Sn C Pn C Gn, where Sn, Pn, and Gn represent national spending by
the populous, private investment, and government spending, respectively. If the
national income increases from 1 year to the next, then assume that consumers
will spend more the following year; in this case, suppose that consumers spend
1
6

of the previous year’s income, then SnC1 D 1
6
In. An increase in consumer

spending should also lead to increased investment the following year; assume that
PnC1 D SnC1 � Sn. Substitution for Sn then gives PnC1 D 1

6
.In � In�1/. Finally,

assume that the government spending is kept constant. Simple manipulation then
leads to the following economic model

InC2 D 5

6
InC1 � 1

6
In CG; (2.5)

where In is the national income in year n and G is a constant. If the initial national
income is G dollars and 1 year later is 3

2
G dollars, determine

(i) a general solution to this model;
(ii) the national income after 5 years; and

(iii) the long-term state of the economy.

Solution. (i) The characteristic equation is given by

�2 � 5

6
�C 1

6
D 0;

which has solutions �1 D 1
2

and �2 D 1
3
. Equation (2.5) also has a constant

term G. Assume that the solution involves a constant term also; try In D k3G,
then from (2.5)

k3G D 5

6
k3G � 1

6
k3G CG;

and so k3 D 1

1� 5
6C 1

6

D 3. Therefore, a general solution is of the form

In D k1�
n
1 C k2�

n
2 C 3G:

(ii) Given that I0 D G and I1 D 3
2
G, simple algebra gives k1 D �5 and k2 D 3.

When n D 5, I5 D 2:856G, to three decimal places.
(iii) As n ! 1, In ! 3G, since j�1j < 1 and j�2j < 1. Therefore, the economy

stabilizes in the long term to a constant value of 3G. This is obviously a very
crude model.

A general n-dimensional linear discrete population model is discussed in the
following sections using matrix algebra.
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2.2 The Leslie Model

The Leslie model was developed around 1940 to describe the population dynamics
of the female portion of a species. For most species the number of females is
equal to the number of males, and this assumption is made here. The model can be
applied to human populations, insect populations, and animal and fish populations.
The model is an example of a discrete dynamical system. As explained throughout
the text, we live in a nonlinear world and universe; since this model is linear, one
would expect the results to be inaccurate in the long term. However, the model can
give some interesting results, and it incorporates some features not discussed in
later chapters. The following characteristics are ignored—diseases, environmental
effects, and seasonal effects. The book [8] provides an extension of the Leslie model,
investigated in this chapter and most of the [1–7] cited here, where individuals
exhibit migration characteristics. A nonlinear Leslie matrix model for predicting
the dynamics of biological populations in polluted environments is discussed in [7].

Assumptions: The females are divided into n age classes; thus, if N is the
theoretical maximum age attainable by a female of the species, then each age class
will span a period of N

n
equally spaced, days, weeks, months, years, etc. The

population is observed at regular discrete time intervals which are each equal to
the length of one age class. Thus, the kth time period will be given by tk D kN

n
.

Define x.k/i to be the number of females in the i th age class after the kth time period.
Let bi denote the number of female offspring born to one female during the i th age
class, and let ci be the proportion of females which continue to survive from the i th
to the .i C 1/st age class.

In order for this to be a realistic model the following conditions must be satisfied:

.i/ bi � 0; 1 � i � nI
.ii/ 0 < ci � 1; 1 � i < n:

Obviously, some bi have to be positive in order to ensure that some births do occur
and no ci are zero; otherwise, there would be no females in the .i C 1/st age class.

Working with the female population as a whole, the following sets of linear
equations can be derived. The number of females in the first age class after the kth
time period is equal to the number of females born to females in all n age classes
between the time tk�1 and tk ; thus,

x
.k/
1 D b1x

.k�1/
1 C b2x

.k�1/
2 C : : :C bnx

.k�1/
n :

The number of females in the .i C 1/st age class at time tk is equal to the number of
females in the i th age class at time tk�1 who continue to survive to enter the .iC1/st
age class; hence,

x
.k/
iC1 D cix

.k�1/
i :
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Equations of the above form can be written in matrix form, and so

0
BBBBBB@

x
.k/
1

x
.k/
2

x
.k/
3
:::

x
.k/
n

1
CCCCCCA

D

0
BBBBB@

b1 b2 b3 � � � bn�1 bn
c1 0 0 � � � 0 0

0 c2 0 � � � 0 0
:::
:::
:::
: : :

:::
:::

0 0 0 � � � cn�1 0

1
CCCCCA

0
BBBBBB@

x
.k�1/
1

x
.k�2/
2

x
.k�1/
3
:::

x
.k�1/
n

1
CCCCCCA
;

or

X.k/ D LX.k�1/; k D 1; 2; : : : ;

where X 2 <n and the matrix L is called the Leslie matrix.
Suppose that X.0/ is a vector giving the initial number of females in each of the

n age classes, then

X.1/ D LX.0/;

X.2/ D LX.1/ D L2X.0/;

:::

X.k/ D LX.k�1/ D LkX.0/:

Therefore, given the initial age distribution and the Leslie matrix L, it is possible to
determine the female age distribution at any later time interval.

Example 4. Consider a species of bird that can be split into three age groupings:
those aged 0–1 year, those aged 1–2 years, and those aged 2–3 years. The population
is observed once a year. Given that the Leslie matrix is equal to

L D
0
@
0 3 1

0:3 0 0

0 0:5 0

1
A ;

and the initial population distribution of females is x.0/1 D 1000, x.0/2 D 2000, and

x
.0/
3 D 3000, compute the number of females in each age group after

(a) 10 years;
(b) 20 years;
(c) 50 years.
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Solution. Using the above,

.a/ X.10/ D L10X.0/ D
0
@
5383

2177

712

1
A ;

.b/ X.20/ D L20X.0/ D
0
@
7740

2388

1097

1
A ;

.c/ X.50/ D L50X.0/ D
0
@
15695

4603

2249

1
A :

The numbers are rounded down to whole numbers since it is not possible to have
a fraction of a living bird. Obviously, the populations cannot keep on growing
indefinitely. However, the model does give useful results for some species when
the time periods are relatively short.

In order to investigate the limiting behavior of the system it is necessary to
consider the eigenvalues and eigenvectors of the matrix L. These can be used to
determine the eventual population distribution with respect to the age classes.

Theorem 3. Let the Leslie matrix L be as defined above and assume that

(a) bi � 0 for 1 � i � n;
(b) at least two successive bi are strictly positive; and
(c) 0 < ci � 1 for 1 � i < n.

Then,

(i) matrix L has a unique positive eigenvalue, say, �1;
(ii) �1 is simple or has algebraic multiplicity one;

(iii) the eigenvector—X1, say—corresponding to �1 has positive components;
(iv) any other eigenvalue, �i ¤ �1, of L satisfies

j�i j < �1;

and the positive eigenvalue �1 is called strictly dominant.

The reader will be asked to prove part (i) in the exercises at the end of the chapter.
If the Leslie matrix L has a unique positive strictly dominant eigenvalue, then an
eigenvector corresponding to �1 is a nonzero vector solution of

LX D �1X:
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Assume that x1 D 1, then a possible eigenvector corresponding to �1 is given by

X1 D

0
BBBBBBB@

1
c1
�1
c1c2
�21
:::

c1c2:::cn�1
�n�1
1

1
CCCCCCCA
:

Assume that L has n linearly independent eigenvectors, say, X1;X2; : : : ; Xn.
Therefore, L is diagonizable. If the initial population distribution is given by
X.0/ D X0, then there exist constants b1; b2; : : : ; bn, such that

X0 D b1X1 C b2X2 C : : :C bnXn:

Since

X.k/ D LkX0 and LkXi D �ki Xi ;

then

X.k/ D Lk.b1X1 C b2X2 C : : :C bnXn/ D b1�
k
1X1 C b2�

k
2X2 C : : :C bn�

k
nXn:

Therefore,

X.k/ D �k1

 
b1X1 C b2

�
�2

�1

�k
X2 C : : :C bn

�
�n

�1

�k
Xn

!
:

Since �1 is dominant,
ˇ̌
ˇ �i�1
ˇ̌
ˇ < 1 for �i ¤ �1, and

�
�i
�1

�k ! 0 as k ! 1. Thus, for

large k,

X.k/ � b1�
k
1X1:

In the long run, the age distribution stabilizes and is proportional to the vector X1.
Each age group will change by a factor of �1 in each time period. The vectorX1 can
be normalized so that its components sum to one, the normalized vector then gives
the eventual proportions of females in each of the n age groupings.

Note that if �1 > 1, the population eventually increases; if �1 D 1, the population
stabilizes and if �1 < 1, the population eventually decreases.

Example 5. Determine the eventual distribution of the age classes for Example 4.

Solution. The characteristic equation is given by

det.L � �I/ D
ˇ̌
ˇ̌
ˇ̌
�� 3 1

0:3 �� 0

0 0:5 ��

ˇ̌
ˇ̌
ˇ̌ D ��3 C 0:9�C 0:15 D 0:
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The roots of the characteristic equation are:

�1 D 1:023; �2 D �0:851; and �3 D �0:172;
to three decimal places. Note that �1 is the dominant eigenvalue.

To find the eigenvector corresponding to �1, solve
0
@

�1:023 3 1

0:3 �1:023 0

0 0:5 �1:023

1
A
0
@
x1
x2
x3

1
A D

0
@
0

0

0

1
A :

One solution is x1 D 2:929; x2 D 0:855, and x3 D 0:420. Divide each term by the
sum to obtain the normalized eigenvectors

OX1 D
0
@
0:696

0:204

0:1

1
A :

Hence, after a number of years, the population will increase by approximately 2:3%
every year. The percentage of females aged 0–1 year will be 69:6%, aged 1–2 years
will be 20:4%, and aged 2–3 years will be 10%.

2.3 Harvesting and Culling Policies

This section will be concerned with insect and fish populations only since they tend
to be very large. The model has applications when considering insect species which
survive on crops, for example. An insect population can be culled each year by
applying either an insecticide or a predator species. Harvesting of fish populations
is particularly important nowadays; certain policies have to be employed to avoid
depletion and extinction of the fish species. Harvesting indiscriminately could cause
extinction of certain species of fish from our oceans.

A harvesting or culling policy should only be used if the population is increasing.

Definition 1. A harvesting or culling policy is said to be sustainable if the number
of fish, or insects, killed and the age distribution of the population remaining are the
same after each time period.

Assume that the fish or insects are killed in short sharp bursts at the end of each
time period. Let X be the population distribution vector for the species just before
the harvesting or culling is applied. Suppose that a fraction of the females about to
enter the .i C 1/st class are killed, giving a matrix

D D

0
BBBBB@

d1 0 0 � � � 0
0 d2 0 � � � 0
0 0 d3 � � � 0
:::
:::
:::
: : :

:::

0 0 0 � � � dn

1
CCCCCA
:
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By definition, 0 � di � 1, where 1 � i � n. The numbers killed will be given by
DLX and the population distribution of those remaining will be

LX �DLX D .I �D/LX:

In order for the policy to be sustainable one must have

.I �D/LX D X: (2.6)

If the dominant eigenvalue of .I � D/L is one, then X will be an eigenvector for
this eigenvalue and the population will stabilize. This will impose certain conditions
on the matrixD. Hence

I �D D

0
BBBBB@

.1 � d1/ 0 0 � � � 0

0 .1 � d2/ 0 � � � 0

0 0 .1 � d3/ � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � .1 � dn/

1
CCCCCA

and the matrix, say, M D .I � D/L, is easily computed. The matrix M is also a
Leslie matrix and hence has an eigenvalue �1 D 1 if and only if

.1 � d1/.b1 C b2c1.1 � d1/C b3c1c2.1 � d2/.1 � d3/

C : : :C bnc1 : : : cn�1.1 � d1/ : : : .1 � dn// D 1: (2.7)

Only values of 0 � di � 1, which satisfy (2.7) can produce a sustainable policy.
A possible eigenvector corresponding to �1 D 1 is given by

X1 D

0
BBBBB@

1

.1 � d2/c1

.1 � d2/.1 � d3/c1c2
:::

.1 � d2/ : : : .1 � dn/c1c2 : : : cn�1

1
CCCCCA
:

The sustainable population will be C1X1, where C1 is a constant. Consider the
following policies

Sustainable Uniform Harvesting or Culling. Let d D d1 D d2 D : : : D dn, then
(2.6) becomes

.1 � d/LX D X;
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which means that �1 D 1
1�d . Hence a possible eigenvector corresponding to �1 is

given by

X1 D

0
BBBBBBB@

1
c1
�1
c1c2
�21
:::

c1c2:::cn�1

�n�1
1

1
CCCCCCCA
:

Sustainable Harvesting or Culling of the Youngest Class. Let d1 D d and d2 D
d3 D : : : D dn D 0; therefore, (2.7) becomes

.1 � d/.b1 C b2c1 C b3c1c2 C : : :C bnc1c2 : : : cn�1/ D 1;

or, equivalently,

.1 � d/R D 1;

where R is known as the net reproduction rate. Harvesting or culling is only viable
if R > 1, unless you wish to eliminate an insect species. The age distribution after
each harvest or cull is then given by

X1 D

0
BBBBB@

1

c1

c1c2
:::

c1c2 : : : cn�1

1
CCCCCA
:

Definition 2. An optimal sustainable harvesting or culling policy is one in which
either one or two age classes are killed. If two classes are killed, then the older age
class is completely killed.

Example 6. A certain species of fish can be divided into three 6-month age classes
and has Leslie matrix

L D
0
@
0 4 3

0:5 0 0

0 0:25 0

1
A :

The species of fish is to be harvested by fishermen using one of four different
policies which are uniform harvesting or harvesting one of the three age classes,
respectively. Which of these four policies are sustainable? Decide which of the
sustainable policies the fishermen should use.
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Solution. The characteristic equation is given by

det.L � �I/ D
ˇ̌
ˇ̌
ˇ̌
�� 4 3

0:5 �� 0

0 0:25 ��

ˇ̌
ˇ̌
ˇ̌ D ��3 C 2�C 0:375 D 0:

The eigenvalues are given by �1 D 1:5, �2 D �0:191, and �3 D �1:309, to three
decimal places. The eigenvalue �1 is dominant and the population will eventually
increase by 50% every 6 months. The normalized eigenvector corresponding to �1
is given by

OX1 D
0
@
0:529

0:177

0:294

1
A :

So, after a number of years there will be 52:9% of females aged 0–6 months, 17:7%
of females aged 6–12 months, and 29:4% of females aged 12–18 months.

If the harvesting policy is to be sustainable, then (2.7) becomes

.1 � d1/.b1 C b2c1.1 � d2/C b3c1c2.1 � d2/.1 � d3// D 1:

Suppose that hi D .1 � di /, then

h1h2.2C 0:375h3/ D 1: (2.8)

Consider the four policies separately.

(i) Uniform harvesting: let h D .h; h; h/. Equation (2.8) becomes

h2.2C 0:375h/ D 1;

which has solutions h D 0:667 and d D 0:333. The normalized eigenvector is
given by

OXU D
0
@
0:720

0:240

0:040

1
A :

(ii) Harvesting the youngest age class: let h D .h1; 1; 1/. Equation (2.8) becomes

h1.2C 0:375/ D 1;

which has solutions h1 D 0:421 and d1 D 0:579. The normalized eigenvector
is given by

OXA1 D
0
@
0:615

0:308

0:077

1
A :
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(iii) Harvesting the middle age class: let h D .1; h2; 1/. Equation (2.8) becomes

h2.2C 0:375/ D 1;

which has solutions h2 D 0:421 and d2 D 0:579. The normalized eigenvector
is given by

OXA2 D
0
@
0:791

0:167

0:042

1
A :

(iv) Harvesting the oldest age class: let h D .1; 1; h3/. Equation (2.8) becomes

1.2C 0:375h3/ D 1;

which has no solutions if 0 � h3 � 1.

Therefore, harvesting policies (i)–(iii) are sustainable and policy (iv) is not. The
long-term distributions of the populations of fish are determined by the normalized
eigenvectors OXU ; OXA1 , and OXA2 , given above. If, for example, the fishermen wanted
to leave as many fish as possible in the youngest age class, then the policy which
should be adopted is the second age class harvesting. Then 79:1% of the females
would be in the youngest age class after a number of years.

2.4 MATLAB Commands

% Program 2a: Recurrence relations.
% Solving a first order recurrence relation (Example 1).
% Call a MuPAD command using the evalin command.
% Commands are short enough for the Command Window.
xn=solve(rec(x(n+1)=(1+(3/(100)))*x(n),x(n),{x(0) = 10000}))
n=5
savings=vpa(eval(xn),7)
%Solving a second order recurrence relation (Example 2(i)).
clear
xn=solve(rec(x(n+2)-x(n+1)=6*x(n),x(n),{x(0)=1,x(1)=2}))
% Solving a characteristic equation (Example 2(iii)).
syms lambda
CE=lambda^2-lambda+1
lambda=solve(CE)

% Program 2b: Leslie matrix.
% Define a 3x3 Leslie Matrix (Example 4).
L=[0 3 1; 0.3 0 0; 0 0.5 0]
% Set initial conditions.
X0=[1000;2000;3000]
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% After 10 years the population distribution will be:
X10=L^10*X0
% Find the eigenvectors and eigenvalues of L (Example 5).
[v,d]=eig(L)

2.5 Exercises

1. The difference equation used to model the length of a carpet, say, ln, rolled n
times is given by

lnC1 D ln C �.4C 2cn/; n D 0; 1; 2; 3; : : : ;

where c is the thickness of the carpet. Solve this recurrence relation.
2. Solve the following second-order linear difference equations:

(a) xnC2 D 5xnC1 � 6xn, n D 0; 1; 2; 3; : : :, if x0 D 1; x1 D 4;
(b) xnC2 D xnC1 � 1

4
xn, n D 0; 1; 2; 3; : : :, if x0 D 1; x1 D 2;

(c) xnC2 D 2xnC1 � 2xn, n D 0; 1; 2; 3; : : :, if x0 D 1; x1 D 2;
(d) FnC2 D FnC1CFn, n D 0; 1; 2; 3; : : :, if F1 D 1 and F2 D 1 (the sequence

of numbers is known as the Fibonacci sequence);
(e) xnC2 D xnC1 C 2xn �f .n/, n D 0; 1; 2; : : :, given that x0 D 2 and x1 D 3,

when (i) f .n/ D 2, (ii) f .n/ D 2n and (iii) f .n/ D en (use MATLAB for
part (iii) only).

3. Consider a human population that is divided into three age classes: those aged
0–15 years, those aged 15–30 years, and those aged 30–45 years. The Leslie
matrix for the female population is given by

L D
0
@
0 1 0:5

0:9 0 0

0 0:8 0

1
A :

Given that the initial population distribution of females is x.0/1 D 10; 000, x.0/2 D
15; 000, and x.0/3 D 8; 000, compute the number of females in each of these
groupings after

(a) 225 years;
(b) 750 years;
(c) 1,500 years.

4. Consider the following Leslie matrix used to model the female portion of a
species

L D
0
@
0 0 6
1
2
0 0

0 1
3
0

1
A :
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Determine the eigenvalues and eigenvectors of L. Show that there is no
dominant eigenvalue and describe how the population would develop in the
long term.

5. Consider a human population that is divided into five age classes: those aged
0–15 years, those aged 15–30 years, those aged 30–45 years, those aged 45–60
years, and those aged 60–75 years. The Leslie matrix for the female population
is given by

L D

0
BBBBB@

0 1 1:5 0 0

0:9 0 0 0 0

0 0:8 0 0 0

0 0 0:7 0 0

0 0 0 0:5 0

1
CCCCCA
:

Determine the eigenvalues and eigenvectors of L and describe how the popula-
tion distribution develops.

6. Given that

L D

0
BBBBB@

b1 b2 b3 � � � bn�1 bn
c1 0 0 � � � 0 0

0 c2 0 � � � 0 0
:::
:::
:::
: : :

:::
:::

0 0 0 � � � cn�1 0

1
CCCCCA
;

where bi � 0, 0 < ci � 1, and at least two successive bi are strictly positive,
prove that p.�/ D 1, if � is an eigenvalue of L, where

p.�/ D b1

�
C b2c1

�2
C : : :C bnc1c2 : : : cn�1

�n
:

Show the following:

(a) p.�/ is strictly decreasing;
(b) p.�/ has a vertical asymptote at � D 0;
(c) p.�/ ! 0 as � ! 1.

Prove that a general Leslie matrix has a unique positive eigenvalue.
7. A certain species of insect can be divided into three age classes: 0–6 months,

6–12 months, and 12–18 months. A Leslie matrix for the female population is
given by

L D
0
@
0 4 10

0:4 0 0

0 0:2 0

1
A :

Determine the long-term distribution of the insect population. An insecticide is
applied which kills off 50% of the youngest age class. Determine the long-term
distribution if the insecticide is applied every 6 months.
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8. Assuming the same model for the insects as in Exercise 7, determine the
long-term distribution if an insecticide is applied every 6 months which kills
10% of the youngest age class, 40% of the middle age class, and 60% of the
oldest age class.

9. In a fishery, a certain species of fish can be divided into three age groups each 1
year long. The Leslie matrix for the female portion of the population is given by

L D
0
@
0 3 36
1
3
0 0

0 1
2
0

1
A :

Show that without harvesting, the fish population would double each year.
Describe the long-term behavior of the system if the following policies are
applied:

(a) harvest 50% from each age class;
(b) harvest the youngest fish only, using a sustainable policy;
(c) harvest 50% of the youngest fish;
(d) harvest 50% of the whole population from the youngest class only;
(e) harvest 50% of the oldest fish.

10. Determine an optimal sustainable harvesting policy for the system given in
Exercise 9 if the youngest age class is left untouched.
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