
Chapter 2
Stationary Nonequilibrium

2.1 Thermostats and Infinite Models

The essential difference between equilibrium and nonequilibrium is that in the first
case time evolution is conservative and Hamiltonian while in the second case time
evolution takes place under the action of external agents which could be, for instance,
external nonconservative forces.

Nonconservative forces perform work and tend to increase the kinetic energy of
the constituent particles: therefore a system subject only to this kind of forces cannot
reach a stationary state. For this reason in nonequilibrium problems there must exist
other forces which have the effect of extracting energy from the system balancing,
in average, the work done or the energy injected on the system.

This is achieved in experiments as well as in theory by adding thermostats to the
system. Empirically a thermostat is a device (consisting also of particles, like atoms
or molecules) which maintains its own temperature constant while interacting with
the system of interest.

In an experimental apparatus thermostats usually consist of large systems whose
particles interact with those of the system of interest: so large that, for the duration
of the experiment, the heat that they receive from the system affects negligibly their
temperature.

However it is clear that locally near the boundary of separation between system
and thermostat there will be variations of temperature which will not increase indef-
initely, because heat will flow away towards the far boundaries of the thermostats
containers. But eventually the temperature of the thermostats will start changing and
the experiment will have to be interrupted: so it is necessary that the system reaches
a satisfactorily stationary state before the halt of the experiment. This is a situation
that can be achieved by suitably large thermostatting systems.

There are two ways to model thermostats. At first the simplest would seem to
imagine the system enclosed in a container C0 in contact, through separating walls,
with other containers Θ1,Θ2, . . . , Θn as illustrated in Fig. 2.1.
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24 2 Stationary Nonequilibrium

Fig. 2.1 C0 represents the system container andΘ j the thermostats containers whose temperatures
are denoted by Tj , j = 1, . . . , n. The thermostats are infinite systems of interacting (or free) particles
which at all time are supposed to be distributed, far away fromC0, according to a Gibbs’ distribution
at temperatures Tj . All containers have elastic walls and U j (X j ) are the potential energies of the
internal forces while U0, j (X0, X j ) is the interaction potential between the particles in C0 and those
in the infinite thermostats

The box C0 contains the “system of interest”, or “test system” to follow the
terminology of the pioneering work by Feynman and Vernon [1], consisting of N0
particles while the containers labeled Θ1, . . . , Θn are infinite and contain particles
with average densities �1, �2, . . . , �n and temperatures at infinity T1, T2, , . . . , Tn

which constitute the “thermostats”, or “interaction systems” to follow [1]. Positions
and velocities are denoted X0, X1, . . . , Xn , and Ẋ0, Ẋ1, . . . , Ẋn respectively, parti-
cles masses are m0, m1, . . . , mn . The E denote external, non conservative, forces.

The temperatures of the thermostats are defined by requiring that initially the par-
ticles in each thermostat have an initial distribution which is asymptotically a Gibbs
distribution with densities ρ1, . . . , ρn , with inverse temperatures (kB T1)−1, . . . ,

(kB Tn)
−1 and interaction potentials U j (X j ) generated by a short range pair poten-

tial ϕ with at least the usual stability properties, [2, Sect. 2.2] i.e. enjoying the lower
boundedness property

∑1,n
i< j ϕ(qi − q j ) ≥ −Bn,∀n, with B ≥ 0.

Likewise U0(X0) denotes the potential energy of the pair interactions of the par-
ticles in the test system and finally U0, j (X0, X j ) denotes the interaction energy
between particles in C0 and particles in the thermostat Θ j , also assumed to be gen-
erated by a pair potential (e.g. the same ϕ, for simplicity).

The interaction between thermostats and test system are supposed to be efficient
in the sense that the work done by the external forces and by the thermostats forces
will balance, in the average, and keep the test system within a bounded domain in
phase space or at least keep its distribution essentially concentrated on bounded phase
space domains with a probability which goes to one, as the radius of the phase space
domain tends to infinity, at a time independent rate, thus being compatible with the
realization of a stationary state.

The above model, first proposed in [1], in a quantum mechanical context, is a
typical model that seems to be accepted widely as a physically sound model for
thermostats.

However it is quite unsatisfactory; not because infinite systems are unphysical:
after all we are used to consider 1019 particles in a container of 1cm3 as essentially
an infinite system; but because it is very difficult to develop a theory of the motion of
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infinitely many particles distributed with positive density. So far the cases in which
the model has been pushed beyond the definition assume that the systems in the
thermostats are free systems, as done already in [1], (“free thermostats”).

A further problemwith this kind of thermostats that will be called “Newtonian” or
“conservative” is that, aside from the cases of free thermostats, they are not suited for
simulations. And it is a fact that in the last thirty years or so new ideas and progress
in nonequilibrium has come from the results of numerical simulations. However the
simulations are performed on systems interacting with finite thermostats.

Last but not least a realistic thermostat should be able to maintain a temperature
gradient because in a stationary state only the temperature at infinity can be exactly
constant: in infinite space this is impossible if the space dimension is 1 or 2.1

2.2 Finite Thermostats

The simplest finite thermostat models can be illustrated in a similar way to that used
in Fig. 2.1:

Thedifferencewith respect to the previousmodel is that the containersΘ1, . . . , Θn

are now finite, obtained by bounding the thermostats containers at distance � from
the origin, by adding a spherical elastic boundary Ω� of radius � (for definiteness),
and contain N1, . . . , Nn particles.

The condition that the thermostats temperatures should be fixed is imposed by
imagining that there is an extra force −α j Ẋ j acting on all particles of the j-th
thermostat and the multipliers α j are so defined that the kinetic energies K j =
m j
2 Ẋ2

j are exact constants ofmotionwith values K j
de f= 3

2 N j kB Tj , kB =Boltzmann’s

constant, j = 1, . . . , n. The multipliers α j are then found to be2:

α j = − (Q j + U̇ j )

3N j kB Tj
with Q j

de f= − Ẋ j · ∂X j U0, j (X0, X j ) (2.2.1)

where Q j , which is the work per unit time performed by the particles in the test
system upon those in the container Θ j , is naturally interpreted as the heat ceded per
unit time to the thermostat Θ j .

The energies U0, U j , U0, j , j > 0, should be imagined as generated by pair
potentials ϕ0, ϕ j , ϕ0, j short ranged, stable, smooth, or with a singularity like a hard
core or a high power of the inverse distance, and by external potentials generating
(or modeling) the containers walls.

1 Because heuristically it is tempting to suppose that temperature should be defined in a stationary
state and should tend to the value at infinity following a kind of heat equation: but the heat equation
does not have bounded solutions in an infinite domain, like an hyperboloid, with different values at
points tending to infinity in different directions if the dimension of the container is 1 or 2.
2 Simply multiplying the both sides of each equation in Fig. 2.2 by Ẋ j and imposing, for each
j = 1, . . . , n, that the r.h.s. vanishes.
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Fig. 2.2 Finite thermostats model (Gaussian thermostats): the containers Θ j are finite and contain
N j particles. The thermostatting effect is modeled by an extra force−α j Ẋ j so defined that the total

kinetic energies K j = m j /2Ẋ2
j are exact constants of motion with values K j

de f= 3/2N j kB Tj

One can also imagine that thermostat forces act in like manner within the system
in C0: i.e. there is an extra force −α0Ẋ0 which also keeps the kinetic energy K0

constant (K0
de f= N0

3
2kB T0), which could be called an “autothermostat” force on the

test system. This is relevant in several physically important problems: for instance
in electric conduction models the thermostatting is due to the interaction of the
electricity carriers with the oscillations (phonons) of an underlying lattice, and the
latter can be modeled (if the masses of the lattice atoms are much larger than those
of the carriers) [3] by a force keeping the total kinetic energy (i.e. temperature) of
the carriers constant. In this case the multiplier α0 would be defined by

α0 = (Q0 + U̇0)

3N0kB T0
with Q0

de f= −
∑

j>0

Ẋ0 · ∂X j U0, j (X0, X j ) (2.2.2)

Certainly there are other models of thermostats that can be envisioned: all, includ-
ing the above, were conceived in order to make possible numerical simulations. The
first ones have been the “Nosé-Hoover” thermostats, [4–6]. However they are not
really different from the above, or from the similar model in which the multipliers
α j are fixed so that the total energy K j + U j in each thermostat is a constant; in the
latter, for instance, Q j is defined as in Eq. (2.2.1)

α j = Q j

3N j kB Tj
, kB Tj

de f= 2

3

K j

N j
(2.2.3)

Such thermostats will be called Gaussian isokinetic if K j = const, j ≥ 1, (hence
α j = (Q j +U̇ j )/3N j kB Tj , Eq. (2.2.1) orGaussian isoenergetic if K j +U j = const
(hence α j = Q j/3N j kB Tj , Eq. (2.2.3).

It is interesting to keep in mind the reason for the attribute “Gaussian” to the
models. It is due to the interpretation of the constancy of the kinetic energies K j or
of the total energies K j + U j , respectively, as a non holonomic constraint imposed
on the particles. Gauss had proposed to call ideal the constraints realized by forces
satisfying his principle of least constraint and the forces −α j Ẋ j , Eq. (2.2.1) or
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(2.2.3), do satisfy the prescription. For completeness the principle is reminded in
Appendix E. Here I shall mainly concentrate the attention on the latter Newtonian
or Gaussian thermostats.

Remark It has also to be remarked that the Gaussian thermostats generate a reversible
dynamics: this is very important as it shows that Gaussian thermostats do not miss the
essential feature of Newtonian mechanics which is the time reversal symmetry. Time
reversal is a symmetry of nature and any model pretending to be close or equivalent
to a faithful representation of nature must enjoy the same symmetry.

Of course it will be important to focus on results and properties which

(1) Have a physical interpretation,
(2) Do not depend on the thermostat model, at least if the numbers of particles

N0, N1, . . . , Nn are large.

The above view of the thermostats and the idea that purely Hamiltonian (but
infinite) thermostats can be represented equivalently by finite Gaussian termostats
external to the system of interest is clearly stated in [7], which precedes the similar [8]

2.3 Examples of Nonequilibrium Problems

Some interesting concrete examples of nonequilibrium systems are illustrated in the
following figure (Fig. 2.3).

The multiplier α is α = E · ẋ/Nmẋ2 and this is an electric conduction model
of N charged particles (N = 2 in the figure) in a constant electric field E and
interactingwith a lattice of obstacles; it is “autotermostatted” (because the particles in
the container C0 do not have contact with any “external” thermostat). This is a model
that appeared since the early days (Drude 1899, [9, Vol. 2, Sect. 35]) in a slightly
different form (i.e. in dimension 3, with point particles and with the thermostatting
realized by replacing the −αẋ force with the prescription that after collision of a

particle with an obstacle its velocity is rescaled to |ẋ| =
√

3
m kB T ). The thermostat

Fig. 2.3 A model for electric conduction. The container C0 is a box with opposite sides identified
(periodic boundary). N particles, hard disks (N = 2 in the figure), collide elastically with each
other and with other fixed hard disks: the mobile particles represent electricity carriers subject
also to an electromotive force E ; the fixed disks model an underlying lattice whose phonons are
phenomenologically represented by the force −αẋ. This is an example of an autothermostatted
system in the sense of Sect. 2.2
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Fig. 2.4 Amodel for thermal conduction in a gas: particles in the central container C0 are N0 hard
disks and the particles in the two thermostats are also hard disks; collisions occur whenever the
centers of two disks are at distance equal to their diameters. Collisions with the separating walls or
bounding walls occur when the disks centers reach them. All collisions are elastic. Inside the two
thermostats act thermostatic forces modeled by −α j Ẋ j with the multipliers α j , j = 1, 2, such that

the total kinetic energies in the two boxes are constants of motion K j = N j
2 kB Tj . If a constant

force E acts in the vertical direction and the upper and lower walls of the central container are
identified, while the corresponding walls in the lateral boxes are reflecting (to break momentum
conservation), then this becomes a model for electric and thermal conduction in a gas

forces are a model of the effect of the interactions between the particle (electron)
and a background lattice (phonons). This model is remarkable because it is the first
nonequilibrium problem that has been treated with real mathematical attention and
for which the analog of Ohm’s law for electric conduction has been (recently) proved
if N = 1, [10]

Another example is a model of thermal conduction, Fig. 2.4:
In the model N0 hard disks interact by elastic collisions with each other and with

other hard disks (N1 = N2 in number) in the containers labeled by their temperatures
T1, T2: the latter are subject to elastic collisions between themselves and with the
disks in the central container C0; the separations reflect elastically the particles when
their centers touch them, thus allowing interactions between the thermostats and the
main container particles. Interactions with the thermostats take place only near the
separating walls.

If one imagines that the upper and lowerwalls of the central container are identified
(realizing a periodic boundary condition)3 and that a constant field of intensity E
acts in the vertical direction then two forces conspire to keep it out of equilibrium,
and the parameters F = (T2 − T1, E) characterize their strength: matter and heat
currents flow.

The case T1 = T2 has been studied in simulations to check that the thermostats
are “efficient” at least in the few cases examined: i.e. that the simple interaction, via
collisions taking place across the boundary, is sufficient to allow the systems to reach
a stationary state, [11]. A mathematical proof of the above efficiency (at E �= 0),
however, seems very difficult (and desirable).

To insure that the system and thermostats can reach a stationary state a further
thermostat could be added −α0Ẋ0 that keeps the total kinetic energy K0 constant

3 Reflecting boundary conditions on all walls of the side thermostat boxes are imposed to avoid that
a current would be induced by the collisions of the “flowing” particles in the central container with
the thermostats particles.
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and equal to some 3
2 N0kB T0: this would model a situation in which the particles

in the central container exchange heat with a background at temperature T0. This
autothermotatted case has been considered in simulations in [3].

2.4 Initial Data

Any set of observations starts with a system in a state x in phase space prepared by
some well defined procedure. In nonequilibrium problems systems are always large,
because the thermostats and, often, the test system are always supposed to contain
many particles: therefore any physically realizable preparation procedure will not
produce, upon repetition, the same initial state.

It is a basic assumption that whatever physically realizable preparation procedure
is employed it will produce initial data which have a random probability distribution
which has a density in the region of phase space allowed by the external constraints.
This means, for instance, that in the finite model in Sect. 2.2 the initial data could be
selected randomly with a distribution of the form

μ0(dx) = �(x)

n∏

j=1

δ(K j , Tj )

n∏

j=0

dX j dẊ j (2.4.1)

where x = (X0, X1, . . . , Xn) and δ(K j , Tj ) = δ(K j − 3
2 N j kB Tj ) and� is a bounded

function on phase space.
If observations are performed at timed events, see Sect. 1.1, and are described by

a map S : Ξ → Ξ on a section Ξ of phase space then Eq. (2.4.1) is replaced by

μ0(dx) = �(x) δΞ (x)

n∏

j=1

δ(K j , Tj )

n∏

j=0

dX j dẊ j (2.4.2)

where δΞ (x) is the delta function imposing that the point x is a timing event, i.e.
x ∈ Ξ .

The assumption about the initial data is very important and should not be con-
sidered lightly. Mechanical systems as complex as systems of many point particles
interacting via short range pair potentials will, in general, admit uncountably many
probability distributionsμwhich are invariant, hence stationary, under time evolution
i.e. such that for all measurable sets V ⊂ Ξ ,

μ
(

S−1V
)

= μ(V ) (2.4.3)

where S is the evolution map and “measurable” means any set that can be obtained
by a countable number of operations of union, complementation and intersection
from the open sets, i.e. any reasonable set. In the continuous time representationΞ is

http://dx.doi.org/10.1007/978-3-319-06758-2_1
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replaced by the full phase space X and the invariance condition becomesμ(S−t W ) =
μ(W ) for all t > 0 and all measurable sets W .

In the case of infinite Newtonian thermostats the random choice with respect toμ0
in Eq. (2.4.1) will be with x being chosen with the Gibbs distribution μG,0 formally,
[2], given by

μG,0(dx) = const e
−∑n

j=0 β j

(
K j +U j

)

dx (2.4.4)

with β−1
j = kB Tj and some average densities � j assigned to the particles in the

thermostats: satisfying the initial condition of assigning to the configurations in each
thermostat the temperature Tj and the densities � j , but obviously not invariant.4

To compare the evolutions in infiniteNewtonian thermostats and in largeGaussian
thermostats it is natural to choose the initial data in a consistent way (i.e. coincident)
in the two cases. Hence in both cases (Newtonian and Gaussian) it will be natural to
choose the data with the same distribution μG,0(dx), Eq. (2.4.4), and imagine that
in the Gaussian case the particles outside the finite region, bounded by a reflecting
sphere Ω� of radius �, occupied by the thermostats the particles are “frozen” in the
initial positions and velocities of x .

In both cases the initial data can be said to have been chosen respecting the
constraints (at given densities and temperatures).

Assuming that physically interesting initial data are generated on phase space M
by the above probability distributions μG,0, Eq. (2.4.4), (or any distribution with
density with respect to μG,0) means that the invariant probability distributions μ

that we consider physically relevant and that can possibly describe the statistical
properties of stationary states are the ones that can be obtained as limits of time
averages of iterates of distributions μG,0. More precisely, in the continuous time
cases,

μ(F) = lim
τ→∞

1

τ

τ∫

0

dt
∫

M

μG,0(dx)F(St x) (2.4.5)

or, in the discrete time cases:

μ(F) = lim
k→∞

1

k

k−1∑

q=0

∫

Ξ

δΞ(x)μG,0(dx)F(Sq x) (2.4.6)

4 Not even if β j = β for all j = 0, 1, . . . , n because the interaction between the thermostats and
the test system are ignored. In other words the initial data are chosen as independently distributed in
the various thermostats and in the test system with a canonical distribution in the finite test system
and a Gibbs distribution in the infinite reservoirs case. Of course any distribution with a density
with respect to μG,0 will be equivalent to it, for our purposes.
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for all continuous observables F on the test system,5 where possibly the limits ought
to be considered over subsequences (which do not depend on F).

It is convenient to formalize the above analysis, to underline the specificity of the
assumption on the initial data, into the following:

Initial data hypothesis In a finite mechanical system the stationary states corre-
spond to invariant probability distributions μ which are time averages of probability
distributions which have a density on the part of phase space compatible with the
constraints.

The assumption, therefore, declares “unphysical” the invariant probability dis-
tributions that are not generated in the above described way. It puts very severe
restriction on which could possibly be the statistical properties of nonequilibrium or
equilibrium states.6

In general stationary states obtained from initial data chosen with distributions
which have a density as above are called SRB distributions. They are not necessarily
unique although they are unique in important cases, see Sect. 2.6.

The physical importance of the choice of the initial data in relation to the study
of stationary states has been proposed, stressed and formalized by Ruelle, [12–15].

For instance if a system is in equilibrium, i.e. no nonconservative forces act on
it and all thermostats are Gaussian and have equal temperatures, then the limits in
Eqs. (2.4.5), (2.4.6) are usually supposed to exist, to be � independent and to be
equivalent to the Gibbs distribution. Hence the distribution μ has to be

μ(dx) = 1

Z
e
−β

(
∑n

j=0 U j (X j )+∑n
j=1 W j (X0,X j )

)
n∏

j=1

δ(K j , T )

n∏

j=0

dX j dẊ j (2.4.7)

whereβ = 1/kB T , Tj ≡ T and δ(K j , T ) has been defined after Eq. (2.4.1), provided
μ is unique within the class of initial data considered.

In nonequilibrium systems there is the possibility that asymptotically motions
are controlled by several attracting sets, typically in a finite number, i.e. closed and
disjoint sets A such that points x close enough to A evolve at time t into x(t) with
distance of x(t) from A tending to 0 as t → ∞. Then the limits above are not
expected to be unique unless the densities � are concentrated close enough to one of
the attracting sets.

Finally a warning is necessary: in special cases the preparation of the initial data
is, out of purpose or of necessity, such that with probability 1 it produces data which
lie in a set of 0 phase space volume, hence of vanishing probability with respect to

5 i.e. depending only on the particles positions and momenta inside C0, or more generally, within a
finite ball centered at a point in C0.
6 In the case of Newtonian thermostats, i.e. infinite, the probability distributions to consider for the
choice of the initial data are naturally the above μG,0, Eq. (2.4.5) or distributions with density with
respect to them.
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μ0, Eq. (2.4.2), or to any probability distribution with density with respect to volume
of phase space. In this case, of course, the initial data hypothesis above does not
apply: the averages will still exist quite generally but the corresponding stationary
state will be different from the one associated with data chosen with a distribution
with density with respect to the volume. Examples are easy to construct as it will be
discussed in Sect. 3.9 below.

2.5 Finite or Infinite Thermostats? Equivalence?

In the following we shall choose to study finite thermostats.
It is clear that this can be of any interest only if the results can, in some convincing

way, be related to thermostats in which particles interact via Newtonian forces.
As said in Sect. 2.1 the only way to obtain thermostats of this type is to make

them infinite: because the work Q that the test system performs per unit time over
the thermostats (heat ceded to the thermostats) will change the kinetic energy of the
thermostats and the only way to avoid indefinite heating (or cooling) is that the heat
flows away towards (or from) infinity, hence the necessity of infinite thermostats.
Newtonian forces and finite thermostats will result eventually in an equilibrium state
in which all thermostats temperatures have become equal.

Therefore it becomes important to establish a relation between infinite New-
tonian thermostats with only conservative, short range and stable pair forces and
finite Gaussian thermostats with additional ad hoc forces, as the cases illustrated in
Sect. 2.2.

Probably the first objection is that a relation seems doubtful because the equations
of motion, and therefore the motions, are different in the two cases. Hence a first
step would be to show that instead in the two cases the motions of the particles are
very close at least if the particles are in, or close to, the test system and the finite
thermostats are large enough.

A heuristic argument is that the non Newtonian forces −αi Ẋ j , Eq. (2.2.1), are
proportional to the inverse of the number of particles N j while the other factors (i.e
Q j and U̇ j ) are expected to be of order O(1) being proportional to the number of
particles present in a layer of size twice the interparticle interaction range: hence in
large systems their effect should be small (and zero in the limits N j → ∞ of infinite
thermostats). This has been discussed, in the case of a single self-thermostatted test
system, in [16], and more generally in [7], accompanied by simulations.

It is possible to go quite beyond a theoretical heuristic argument. However this
requires first establishing existence and properties of the dynamics of systems of
infinitely many particles. This can be done as described below.

The best that can be hoped is that initial data Ẋ, X chosen randomly with a
distribution μ0,G , Eq. (2.4.5), which is a Gibbs distribution with given temperatures
and density for the infinitely many particles in each thermostat and with any density
for the finitely many particles in the test system, will generate a solution of the
equations inFig. 2.1with the addedprescription of elastic reflection by the boundaries
(of the test system and of the thermostats), i.e. a Ẋ(t), X(t) for which both sides of

http://dx.doi.org/10.1007/978-3-319-06758-2_3
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the equation make sense and are equal for all times t ≥ 0, with the exception of a set
of initial data which has 0 μ0,G-probability.

At least in the case in which the interaction potentials are smooth, repulsive and
short range such a result can be proved, [17–19] in the geometry of Fig. 2.1 in
space dimension 2 and in at least one special case of the same geometry in space
dimension 3.

If initial data x = (
Ẋ(0), X(0)

)
are chosen randomly with the probability μG,0

the equation in Fig. 2.1 admits a solution x(t), with coordinates of each particle
smooth functions of t .

Furthermore, in the same references considered, the finite Gaussian thermostats
model, either isokinetic or isoenergetic, is realized in the geometry of Fig. 2.2 by
terminating the thermostats containers within a spherical surface Ω� of radius � =
2k R, with R being the linear size of the test system and k ≥ 1 integer.

Imagining the particles external to the ball Ω� to keep positions and velocities
“frozen” in time, the evolution of the particles inside Ω� will be defined adding
to the interparticle forces elastic reflections on the spherical boundaries of Ω� and
the other boundaries of the thermostats and of the test system. It will therefore
follow a finite number of ordinary differential equations and at time t the initial
data x = ( ˙X(0), X(0)), if chosen randomly with respect to the distribution μG,0 in
Eq. (2.4.5), will be transformed into Ẋ[k](t), X[k](t) (depending on the regularization
parameter � = 2k R and on the isokinetic or isoenergetic nature of the thermostatting
forces). Then it is possible to prove the property:

Theorem Fixed arbitrarily a time t0 > 0 there exist two constants C, c > 0 (t0
–dependent) such that the isokinetic or isoenergetic motions x [k]

j (t) are related as:

|x j (t) − x [k]
j (t)| ≤ Ce−c2k

, if |x j (0)| < 2k−1R (2.5.1)

for all t ≤ t0, j , with μ0-probability 1 with respect to the choice of the initial data.

In other words the Newtonian motion and the Gaussian thermostatted motions
become rapidly indistinguishable, up to a prefixed time t0, if the thermostats are
large (k large) and if we look at particles initially located within a ball half the size of
the confining sphere of radius � = 2k R, where the spherical thermostats boundaries
are located, i.e. within the ball of radius 2k−1R.

This theorem is only a beginning, although in the right direction, as one would
really like to prove that the evolution of the initial distribution μ0 lead to a stationary
distribution in both cases and that the stationary distributions for the Newtonian and
the Gaussian thermostats coincide in the “thermodynamic limit” k → ∞.

At this point a key observation has to be made: it is to be expected that in the
thermodynamic limit once a stationary state is reached starting from μG,0 the ther-
mostats temperature (to be suitably defined) should appear varying smoothly toward
a value at infinity, in each thermostatΘ j , equal to the initially prescribed temperature
(appearing in the random selection of the initial data with the given distributionμG,0,
Eq. 2.4.5).
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Hence the temperature variation should be described, at least approximately, by
a solution of the heat equation ΔT (q) = 0 and T (q) not constant, bounded, with
Neumann’s boundary condition ∂nT = 0 on the lateral boundary of the container
Ω∞ = lim�→∞ Ω� and tending to Tj as q ∈ Θ j , q → ∞. However if the space
dimension is 1 or 2 there is no such harmonic function.

Therefore the systems considered should be expected to behave as our three dimen-
sional intuition commands only if the space dimension is 3 (or more): it can be
expected that the stationary states of the two thermostats models become equal in
the thermodynamic limit only if the space dimension is 3.

It is interesting that if really equivalence between the Newtonian and Gaussian
thermostats could be shown then the average of the mechanical observable∑n

j=1 3N jα j , naturally interpreted in the Gaussian case in Eq. (2.2.1), (2.2.3) as
entropy production rate, would make sense as an observable also in the Newtonian
case7 with no reference to the thermostats and will have the same average: so that
the equivalence makes clear that it is possible that a Newtonian evolution produces
entropy. I.e. entropy production is compatible with the time reversibility of Newton’s
equations [7].

2.6 SRB Distributions

The limit probability distributions in Eqs. (2.4.5), (2.4.6) are called SRB distribu-
tions, from Sinai, Ruelle, Bowen who investigated, and solved in important cases,
[20–22], the more difficult question of finding conditions under which, for motions
in continuous time on a manifold M , the following limits

lim
τ→∞

1

τ

t∫

0

F(St x) dt =
∫

X

F(y)μ(dy) (2.6.1)

exist for all continuous observables F , and for all x ∈ M chosen randomly accord-
ing to the initial data hypothesis (Sect. 2.4).8 A question that in timed observations
becomes finding conditions under which, for all continuous observables F , the fol-
lowing limits

lim
τ→∞

1

k

k−1∑

q=0

F(Sk x) dt =
∫

Ξ

F(y)μ(dy) (2.6.2)

7 Because the r.h.s. in the quoted formulae are expressed in terms of mechanical quantities Q j , U̇ j
and the temperatures at infinity Tj .
8 i.e. except possibly for a set V0 of data x which have zero probability in a distribution with density
with respect to the volume and concentrated close enough to an attracting set.
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exist for all x ∈ Ξ chosen randomly according to the initial data hypothesis and
close enough to an attracting set.

The Eqs. (2.6.1), (2.6.2) express properties stronger than those in the above
Eqs. (2.4.5), (2.4.6): no subsequences and no average over the initial data.

Existence of the limits above, outside a set of 0 volume, can be established for
systems which are smooth, hyperbolic and transitive, also called Anosov systems or
systems with the Anosov property. In the case of discrete time evolution map the
property is:

Definition (Anosov map) Phase space Ξ is a smooth bounded (“compact”) Rie-
mannian manifold and evolution is given by a smooth map S with the properties that
an infinitesimal displacement dx of a point x ∈ Ξ

(1) Can be decomposed as sum dxs + dxu of its components along two transverse
planes V s(x) and V u(x) which depend continuously on x

(2) V α(x), α = u, s, are covariant under time evolution, in the sense that
(∂S)(x)V α(x) = V α(Sx), with ∂S(x) the linearization at x of S (“Jacobian
matrix”)

(3) Under iteration of the evolution map the vectors dxs contract exponentially fast
in timewhile the vectors dxu expand exponentially: in the sense that |∂Sk(x)dxs |
≤ Ce−λk |dxs | and |∂S−k(x)dxu | ≤ Ce−λk |dxu |, k ≥ 0, for some x-
independent C,λ > 0.

(4) There is a point x with a dense trajectory (“transitivity”).

Here ∂Sk denoted the Jacobian matrix ∂Sk (x)i
∂x j

of the map Sk at x . Thus ∂Sk(x)dx

is an infinitesimal displacement of Sn x and the lengths |dxα| and |∂Sk(x)dxα|,
α = s, u, are evaluated through the metric of the manifold Ξ at the points x and Sk x
respectively.

Anosov maps have many properties which will be discussed in the following and
that make the evolutions associated with such maps a paradigm of chaotic motions.
For the moment we just mention a remarkable property, namely

Theorem (SRB)9 If S is a Anosov map on a manifold then there exists a unique
probability distribution μ on phase space Ξ such that for all choices of the density
�(x) defined on Ξ the limits in Eq. (2.6.2) exist for all continuous observables F
and for all x outside a zero volume set.

Given the assumption on the initial data it follows that in Anosov systems the
probability distributions that give the statistical properties of the stationary states are
uniquely determined as functions of the parameters on which S depends.

For evolutions on a smooth bounded manifold M developing in continuous time
there is an analogous definition of “Anosov flow”. For obvious reasons the infinitesi-
mal displacements dx pointing in the flow direction cannot expand nor contract with
time: hence the generic dx will be covariantly decomposed as a sum dxs +dxu +dx0

with dxs, dxu exponentially contracting under St : in the sense that for some C,λ

9 SRB stands for Sinai-Ruelle-Bowen [14].
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it is |∂St dxs | ≤ Ce−λt |dxs | and |∂S−t dxu | ≤ Ce−λt |dxu | as t → +∞, while (of
course) |∂St dx0| ≤ C |dx0| as t → ±∞; furthermore there is a dense orbit and there
is no τ such that the map Sn

τ admits a non trivial constant of motion.10 Then the
above theorem holds without change replacing in its text Eq. (2.6.2) by Eq. (2.6.1),
[22–24].

2.7 Chaotic Hypothesis

The latter mathematical results on Anosov maps and flows suggest a daring assump-
tion inspired by the certainly daring assumption that all motions are periodic, used
by Boltzmann and Clausius to discover the relation between the action principle and
the second principle of thermodynamics, see Sect. 1.3.

The assumption is an interpretation of a similar proposal advanced by Ruelle,
[12], in the context of the theory of turbulence. It has been proposed in [25] and
called “chaotic hypothesis”. For empirically chaotic evolutions, given by a map S
on a phase space Ξ , or for continuous time flows St on a manifold M , it can be
formulated as

Chaotic hypothesis The evolution map S restricted to an attracting set A ⊂ Ξ can
be regarded as an Anosov map for the purpose of studying statistical properties of
the evolution in the stationary states.

This means that attracting sets A can be considered “for practical purposes” as
smooth surfaces on which the evolution map S or flow St has the properties that
characterize the Anosov maps. It follows that

Theorem Under the chaotic hypothesis initial data chosen with a probability distri-
bution with a density � on phase space concentrated near an attracting set A evolve
so that the limit in Eqs. (2.6.1) or (2.6.2) exists for all initial data x aside a set of zero
probability and for all smooth F and are given by the integrals of F with respect to
a unique invariant probability distribution μ defined on A.

This still holds under much weaker assumptions which, however, will not be dis-
cussed given the purely heuristic role that will be played by the chaotic hypothesis.11

As the ergodic hypothesis is used to justify using the distributions of the micro-
canonical ensemble to compute the statistical properties of the equilibrium states
and to realize the mechanical interpretation of the heat theorem (i.e. existence of the

10 The last condition excludes evolutions like St (x, ϕ) = (Sx, ϕ + t), or reducible to this form after
a change of variables, with S an Anosov map and ϕ ∈ [0, 2π ] and angle, i.e. the most naive flows
for which the condition does not hold are also the only cases in which the theorem statement would
fail.
11 For instance if the attracting set satisfies the property “Axiom A”, [14, 26], the above theorem
holds as well as the key results, presented in the following, on existence ofMarkov partitions, coarse
graining and fluctuation theorem which are what is really wanted for our purposes, see Sects. 3.3,
3.7, 4.6. The heroic efforts mentioned in the footnote2 of the preface reflect a misunderstanding of
the physical meaning of the chaotic hypothesis.

http://dx.doi.org/10.1007/978-3-319-06758-2_1
http://dx.doi.org/10.1007/978-3-319-06758-2_3
http://dx.doi.org/10.1007/978-3-319-06758-2_3
http://dx.doi.org/10.1007/978-3-319-06758-2_4
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entropy function), likewise the chaotic hypothesis will be used to infer the nature
of the probability distributions that describe the statistical properties of the more
general stationary nonequilibrium states.

This is a nontrivial task as it will be soon realized, see next section, that in general
in nonequilibrium the probability distribution μ will have to be concentrated on a
set of zero volume in phase space, even when the attracting sets coincide with the
whole phase space.

In the case inwhich the volume is conserved, e.g. in theHamiltonianAnosov case,
the chaotic hypothesis implies the ergodic hypothesis: which is important because
this shows that assuming the new hypothesis cannot lead to a contradiction between
equilibrium and nonequilibrium statistical mechanics. The hypothesis name has been
chosen precisely because of its assonance with the ergodic hypothesis of which it is
regarded here as an extension.

2.8 Phase Space Contraction in Continuous Time

Understanding why the stationary distributions for systems in nonequilibrium are
concentrated on sets of zero volume is the same as realizing that the volume (gener-
ically) contracts under non Hamiltonian time evolution.

If we consider the measure dx = ∏n
j=0 dX j dẊ j on phase space then, under

the time evolution in continuous time, the volume element dx is changed into St dx
and the rate of change at t = 0 of the volume dx per unit time is given by the
divergence of the equations of motion, which we denote−σ(x). Given the equations
of motion the divergence can be computed: for instance in the model in Fig. 2.2, i.e.

an isoenergetic Gaussian thermostats model, and K j
de f= 1/2Ẋ2

j is the total kinetic

energy in the j-th thermostat, it is (Eq. 2.2.3)12:

σ(x) =
∑

j>0

Q j

kB Tj
, Q j = −∂X j W j (X0, X j ) · Ẋ j , N j kB Tj

de f= 2

3
K j (2.8.1)

The expression of σ , that will be called the phase space contraction rate of the
Liouville volume, has the interesting feature that Q j can be naturally interpreted as
the heat that the reservoirs receive per unit time, therefore the phase space contraction
contains a contribution that can be identified as the entropy production per unit time.13

12 Here a factor (1 − 2/N j ) is dropped from each addend. Keeping it would cause only notational
difficulties and eventually it would have to be dropped on the grounds that the number of particles
N j is very large.
13 In the Gaussian isokinetic thermostats Q j has to be replaced by Q j + U̇ j , Eq. (2.2.1). Notice
that this is true (always neglecting a factor O(1/N ) as in the previous footnote) in spite of the fact
that the kinetic energy K j is not constant in this case: this can be checked by direct calculation or
by remarking that α j is a homogeneous function of degree −1 in the velocities.
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Note that the name is justified without any need to extend the notion of entropy to
nonequilibrium situations: the thermostats keep the same temperature all along and
are regarded as systems in equilibrium (in which entropy is a well defined notion).

In the isokinetic thermostat case σ may contain a further term equal to d
dt

∑
j>0

U j/kB Tj which forbids us to give the naive interpretation of entropy production rate
to the phase space contraction. To proceed it has to be remarked that the above σ is
not really unambiguously defined.

In fact the notion of phase space contraction depends on what we call volume: for
instance if we use as volume element

μ0(dx) = e
−β

(
K0+U0+∑n

j=1

(
U j +W j (X0,X j )

))
n∏

j=1

δ(K j , Tj )

n∏

j=0

dX j dẊ j (2.8.2)

with β = 1/kB T > 0, arbitrary, the variation rate −σ ′(x) of a volume element is
different; if we call −βH0(x) the argument of the exponential, the new contraction
rate is σ ′(x) = σ(x) + β Ḣ0(x) where Ḣ0 has to be evaluated via the equations of
motion so that Ḣ0 = −∑

α j Ẋ2
0 + E(X0) · Ẋ0 and therefore

σ ′(x) =
∑

j>0

Q j

kB Tj
+ d

dt
D(x) (2.8.3)

where D is a suitable observable (in the example D = βH0(x)).
The example shows a special case of the general property that if the volume is

measured using a different density or a different Riemannian metric on phase space
the new volume contracts at a rate differing form the original one by a time derivative
of some function on phase space.

In other words
∑

j>0 Q j/kB Tj does not depend, in the cases considered, on the
system of coordinates while D does but it has 0 time average.

An immediate consequence is that σ should be considered as defined up to a time
derivative and therefore only its time averages over long times can possibly have a
physical meaning: the limit as τ → ∞ of

〈σ 〉τ de f= 1

τ

τ∫

0

σ(St x)dt (2.8.4)

is independent of the metric and the density used to define the measure of the volume
elements; it might still depend on x .

In the timed evolution the time τ (x) between successive timing events x and
Sτ (x)x will have, under the chaotic hypothesis on S = Sτ (x), an average value τ (x-
independent except for a set of data x enclosed in a 0 volume set) and the phase space
contraction between two successive timing events will be exp− ∫ τ (x)

0 σ(St x)dt ≡
(det ∂S(x)/∂x)−1 so that



2.8 Phase Space Contraction in Continuous Time 39

σ+ = lim
n→+∞

−1

nτ
log

(
det

∂Sn(x)

∂x

)
= lim

n→+∞
−1

nτ

n∑

j=1

log det
∂S

∂x

(
S j x

)
(2.8.5)

which will be a constant σ+ for all points x close to an attracting set for S and outside
a set of zero volume. It has to be remarked that the value of the constant is a well
known quantity in the theory of dynamical systems being equal to

σ+ = 1

τ

∑

i

λi (2.8.6)

with λi being the SRB Lyapunov exponents of S on the attracting set for S.14

In the nonequilibrium models considered in Sect. 2.2 the value of σ(x) differs
from ε(x) = ∑

j>0 Q j/kB Tj by a time derivative so that, at least under the chaotic
hypothesis, the average phase space contraction equals the entropy production rate
of a stationary state, and σ+ ≡ ε+.

An important remark is that σ+ ≥ 0, [27], if the thermostats are efficient in the
sense that motions remain confined in phase space, see Sect. 2.1: the intuition is that
it is so because σ+ < 0 would mean that any volume in phase space will grow larger
and larger with time, thus revealing that the thermostats are not efficient (“it is not
possible to inflate a balloon inside a (small enough) safe”).

Furthermore if σ+ = 0 it can be shown, quite generally, that the phase space
contraction is the time derivative of an observable, [27, 28] and, by choosing con-
veniently the measures of the volume elements, a probability distribution will be
obtained which admits a density over phase space and which is invariant under time
evolution.

A special case is if it is even σ(x) ≡ 0: in this case the normalized volumemeasure
is an invariant distribution.

A more interesting example is the distribution Eq. (2.8.2) when Tj ≡ Ti
de f= T

and E = 0. It is a distribution which, for the particles in C0, is a Gibbs distribution
with special boundary conditions

μ0(dx) = e
−β

(
K0+U0+∑n

j=1

(
U j +W j (X0,X j )

))
n∏

j=1

δ(K j , T )

n∏

j=0

dX j dẊ j (2.8.7)

and therefore it provides an appropriate distribution for an equilibrium state, [6] and
[2, 8]. The more so because of the following consistency check, [6]:

Theorem If Ni is the number of particles in the i-th thermostat and its temperature
is kB Ti = β−1(1 − 1/3Ni ) then the distribution in Eq. 2.8.7 is stationary.

14 The Lyapunov exponents are associated with invariant probability distributions and therefore it
is necessary to specify that here the exponents considered are the ones associated with the SRB
distribution.
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To check: notice that a volume element dx = ∏n
j=0 dX j dẊ j is reached at time

t by a volume element that at time t − dt had size eσ(X,Ẋ)dt dx and had total energy
H(X − Ẋdt) = H(X, Ẋ) − d H . Then compute −βd H + σdt via the equations of
motion in Fig. (2.2) with the isokinetic constraints Eq. 2.2.3 for kB Ti = β−1(1 −
1/3Ni ) obtaining −βd H + σdt ≡ 0, i.e. proving the stationarity of Eq. 2.8.7.

This remarkable result suggests to define stationary nonequilibria as invariant
probability distributions for which σ+ > 0 and to extend the notion of equilibrium
states as invariant probability distributions for which σ+ = 0. In this way a state is
in stationary nonequilibrium if the entropy production rate σ+ > 0.

It should be remarked that (in systems satisfying the chaotic hypothesis), as a
consequence, the SRB probability distributions for nonequilibrium states are con-
centrated on attractors, defined as subsets B of the attracting setsA which have full
phase space volume, i.e. full area on the surface A, and minimal fractal dimension,
although the closure of B is the whole A (which in any event, under the chaotic
hypothesis is a smooth surface).15

In systems out of equilibrium it is convenient to introduce the dimensionless
entropy production rate and phase space contraction as ε(x)/ε+ and σ(x)/ε+ and,
since ε and σ differ by a time derivative of some function D(x), the finite time
averages

p = 1

τ

τ∫

0

ε(St x)

ε+
dt and p′ = 1

τ

τ∫

0

σ(St x)

σ+
dt (2.8.8)

will differ by D(Sτ x) − D(x)/τ which will tend to 0 as τ → ∞ (in Anosov systems
or under the chaotic hypothesis). Therefore for large τ the statistics of p and p′ in
the stationary state will be close, at least if the function D is bounded (as in Anosov
systems).

2.9 Phase Space Contraction in Timed Observations

In the case of discrete time systems (not necessarily arising from timed observations
of a continuous time evolution) the phase space contraction (per timing interval) can
be naturally defined as

σ+ = lim
n→+∞ −1

n

n∑

j=1

log | det ∂S

∂x
(S j x)| (2.9.1)

as suggested by Eq. (2.8.5).

15 An attracting setA is a closed set such that all data x close enough toA evolve so that the distance
of Sn x to A tends to 0 as n → ∞. A set B ⊂ A with full SRB measure is called an attractor if it
has minimal Hausdorff dimension, [14]. Typically B is in general a fractal set whether or not A is
a smooth manifold.
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There are several interesting interaction models in which the pair potential is
unbounded above: like models in which the molecules interact via a Lennard-Jones
potential. As mentioned in Sect. 1.1 this is a case in which observations timed to
suitable events become particularly useful.

In the case of unbounded potentials (and finite thermostats) a convenient tim-
ing could be when the minimum distance between pairs of particles reaches, while
decreasing, a prefixed small value r0; the next event will bewhen all pairs of particles,
after separating from each other by more than r0, come back again with a minimum
distance equal to r0 and decreasing. This defines a timing events surface Ξ in the
phase space M .

An alternative Poincaré’s section could be the set Ξ ⊂ M of configurations in
which the total potential energy W = ∑n

j=1 W j (X0, X j ) becomes larger than a

prefixed bound W with a derivative Ẇ > 0.
Let τ (x), x ∈ Ξ be the time interval from the realization of the event x to

the realization of the next one x ′ = Sτ (x)x . The phase space contraction is then

exp
∫ τ (x)

0 σ(St x)dt , in the sense that the volume element dsx in the point x ∈ Ξ

where the phase space velocity component orthogonal to Ξ is vx becomes in the
time τ (x) a volume element around x ′ = Sτ (x)x with

dsx ′ = vx

vx ′
e− ∫ τ (x)

0 σ(St x)dt dsx (2.9.2)

Therefore if, as in several cases and in most simulations of the models in Sect. 2.2:

(1) vx is bounded above and below away from infinity and zero
(2) σ(x) = ε(x) + Ḋ(x) with D(x) bounded on Ξ (but possibly unbounded on the

full phase space M)
(3) τ (x) is bounded and (for x outside a zero volume set) has average τ > 0

setting ε̃(x) = ∫ τ (x)

0 ε(St x)dt it follows that the entropy production rate and the
phase space contraction have the same average ε+ = σ+ and likewise

p = 1

m

m−1∑

k=0

ε̃(Sk x)

ε̃+
and p′ = 1

m

m−1∑

k=0

σ̃ (Sk x)

σ̃+
(2.9.3)

will differ by 1/m
(
D

(
Sm x

) − D(x) + log vSm x − log vx
) −−−−→m→∞ 0.

This shows that in cases in which D(x) is unbounded in phase space but there is a
timing section Ξ on which it is bounded and which has the properties (1)–(3) above
it is more reasonable to suppose the chaotic hypothesis for the evolution S timed
on Ξ rather than trying to extend the chaotic hypothesis to evolutions in continuous
time for the evolution St on the full phase space.

http://dx.doi.org/10.1007/978-3-319-06758-2_1
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2.10 Conclusions

Nonequilibrium systems like the ones modeled in Sect. 2.2 undergo, in gen-
eral, motions which are empirically chaotic at the microscopic level. The chaotic
hypothesis means that we may as well assume that the chaos is maximal, i.e. it arises
because the (timed) evolution has the Anosov property.

The evolution is studied through timing events and is therefore described by a
map S on a “Poincaré’s section” Ξ in the phase space M .

It is well known that in systems with few degrees of freedom the attracting sets
are in general fractal sets: the chaotic hypothesis implies that instead one can neglect
the fractality (at least if the number of degrees of freedom is not very small) and
consider the attracting sets as smooth surfaces on which motion is strongly chaotic
in the sense of Anosov.

The hypothesis implies (therefore) that the statistical properties of the stationary
states are those exhibited by motions;

(1) That follow initial data randomly chosen with a distribution with density over
phase space

(2) Strongly chaotic as in the chaotic hypothesis

and the stationary states of the system are described by the SRB distributions μ

which are uniquely associated with each attracting set.
Systems in equilibrium (which in our models means that neither nonconservative

forces nor thermostats act) satisfying the chaotic hypothesis can have no attracting
set other than the whole phase space, which generically is the energy surface,16 and
have as unique SRB distribution the Liouville distribution, i.e. the chaotic hypoth-
esis implies for such systems that the equilibrium states are described by micro-
canonical distributions. This means that nonequilibrium statistical mechanics based
on the chaotic hypothesis cannot enter into conflict with the equilibrium statistical
mechanics based on the ergodic hypothesis.

The main difficulty of a theory of nonequilibrium is that whatever model is con-
sidered, e.g. any of the models in Sect. 2.2, there will be dissipation which manifests
itself through the non vanishing divergence of the equations of motion: this means
that volume is not conserved no matter which metric we use for it, unless the time
average σ+ of the phase space contraction vanishes. Introduction of non Newtonian
forces can only be avoided by considering infinite thermostats.

Since the average σ+ cannot be negative in stationary nonequilibrium systems
its positivity is identified with the signature of a genuine nonequilibrium, while the
cases in which σ+ = 0 are equilibrium systems, possibly “in disguise”. If σ+ > 0
there cannot be any stationary distribution which has a density on phase space: the
stationary states give probability 1 to a set of configurations which have 0 volume
in phase space (yet they may be dense in phase space, and often are such, if σ+ is
small).

16 Excluding, for instance, specially symmetric cases, like spherical containers with elastic
boundary.
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Therefore any stationary distribution describing a nonequlibrium state cannot be
described by a suitable density on phase space or on the attracting set, thus obliging
us to develop methods to study such singular distributions.

If the chaotic hypothesis is found too strong, one has to rethink the foundations:
the approach that Boltzmann used in his discretized view of space and time, started
in [29, p. 5] and developed in detail in [30, p. 42], could be a guide.
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