
Chapter 2
Distance

Metric spaces can be thought of as very basic spaces, with only a few axioms, where
the ideas of convergence and continuity exist. The fundamental ingredient that is
needed to make these concepts rigorous is that of a distance, also called a metric,
which is a measure of how close elements are to each other.

Definition 2.1

A distance (or metric) on a metric space X is a function

d : X2 → R
+

(x, y) �→ d(x, y)

such that the following properties (called axioms) hold for all x, y, z ∈ X ,

(i) d(x, y) � d(x, z) + d(z, y) (Triangle Inequality),

(ii) d(y, x) = d(x, y), (Symmetry)

(iii) d(x, y) = 0 ⇔ x = y. x

z
y

A metric space is not just a set, in which the elements have no relation to each
other, but a set X equipped with a particular structure, its distance function d. One
can emphasize this by denoting the metric space by the pair (X, d), although it is
more convenient to denote different metric spaces by different symbols such as X, Y ,
etc.

In what follows, X will denote an abstract set with a distance, not necessarily R

or R
N , although these are of the most immediate interest. We still call its elements

“points”, whether they are in reality geometric points, sequences, or functions. What
matters, as far as metric spaces are concerned, is not the internal structure of its
points, but their outward relation to other points.
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Maurice Fréchet (1878–1973) studied under Hadamard (who
had proved the prime number theorem and had succeeded
Poincaré) and Borel at the University of Paris (École Normale
Supérieure); his 1906 thesis developed “abstract analysis”, an
axiomatic approach to abstract functions that allows the Eu-
clidean concepts of convergence and distance, as well as the
usual algebraic operations, to be applied to functions. Many
terms, such as metric space, completeness, compactness etc.,
are due to him.

Fig. 2.1 Fréchet

Although most distance functions treated in this book are of the type d(x, y) =
|x − y|, as for R, the point of studying metric spaces in more generality is not only
that there are some exceptions that don’t fit this type, but also to emphasize that
addition/subtraction is not essential, as well as to prepare the groundwork for even
more general spaces, called topological spaces, in which pure convergence is studied
without reference to distances (but which are not covered in this book).

There are two additional axioms satisfied by some metric spaces that merit par-
ticular attention: complete metrics, which guarantee that their Cauchy sequences
converge, and separable metric spaces whose elements can be handled by approx-
imations. Both properties are possessed by compact metric spaces, which is what
is often meant when the term “finite” is applied in a geometric sense. These are
considered in later sections.

Easy Consequences

1. d(x, z) � |d(x, y) − d(z, y)|.
2. If x1, . . . , xn are points in X , then by induction on n,

d(x1, xn) � d(x1, x2) + · · · + d(xn−1, xn).

Examples 2.2

1. The spaces N, Z, Q, R, and C have the standard distance d(a, b) := |a − b|. Check
that the three axioms for a distance are satisfied, making use of the in/equalities
|s + t | � |s| + |t |, |−s| = |s|, and |s| = 0 ⇔ s = 0.

2. � The vector spaces R
N and C

N have the standard Euclidean distance defined by

d(x, y) :=
√∑N

i=1 |ai − bi |2 for x = (a1, . . . , aN ), y = (b1, . . . , bN ) (prove
this for N = 2).

3. One can define distances on other more general spaces, e.g. we will later show
that the space of real continuous functions f with domain [0, 1] has a distance
defined by d( f, g) := maxx∈[0,1] | f (x) − g(x)|.

4. ♦ The space of ‘shapes’ in R
2 (roughly speaking, subsets that have an area) have

a metric d(A, B) defined as the area of (A ∪ B)�(A ∩ B).
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5. � Any subset of a metric space is itself a metric space (with the ‘inherited’ or
‘induced’ distance). (The three axioms are such that they remain valid for points
in a subset of a metric space.)

6. � The product of two metric spaces, X × Y , can be given several distances, none
of which have a natural preference. Two of them are the following

D1
((x1

y1

)
,
(x2

y2

)) := dX (x1, x2) + dY (y1, y2),

D∞
((x1

y1

)
,
(x2

y2

)) := max(dX (x1, x2), dY (y1, y2)).

For convenience, we choose D1 as our standard metric for X × Y , except for R
N

and C
N , for which we take the Euclidean one.

Proof for D1: Positivity of D1 and axiom (ii) are obvious. To prove axiom (iii),
D1(x1, x2) = 0 implies dX (x1, x2) = 0 = dY (y1, y2), so x1 = x2, y1 = y2, and
x1 = (x1

y1

) = (x2
y2

) = x2. As for the triangle inequality,

D1(x1, x2) = dX (x1, x2) + dY (y1, y2)

� dX (x1, x3) + dX (x3, x2) + dY (y1, y3) + dY (y3, y2)

= D1(x1, x3) + D1(x3, x2).

Exercises 2.3

1. Show that if d(x, z) > d(z, y) then x 
= y.

2. Write in mathematical language,

(a) The subsets A, B are close to within 2 distance units;

(b) A and B are arbitrarily close.

3. The set of bytes, i.e., sequences of 0s and 1s (bits) of length 8 (or any length),
has a “Hamming distance” defined as the number of bits where two bytes differ;
e.g. the Hamming distance between 10010111 and 11001101 is 4.

4. Any non-empty set can be given a distance function. The simplest is the discrete

metric d(x, y) :=
{

1 x 
= y
0 x = y

. Indeed, there are infinitely many other metrics

on the same set (except when there is only one point!); for example, if d is a
distance function then so are 2d and d/(1 + d).
(* Not every function of d will do though! The function d2 is not generally a
metric; what properties does f : im d → R

+ need to have in order that f ◦ d
also be a metric?)

5. A set may have several distances defined on it, but each has to be considered as
a different metric space. For example, the set of positive natural numbers has a
distance defined by d(m, n) := |1/m −1/n| (prove!); the metric space associated
with it has very different properties from N with the standard Euclidean distance.
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For example, in this space one can find distinct natural numbers that are arbitrarily
close to each other.

6. Let n = ±2k3r · · · be the prime decomposition of any n ∈ Z and define |n|2 :=
1/2k , |0|2 := 0. Show that | · |2 satisfies the same properties as the standard
absolute value and hence that d(m, n) := |m − n|2 is a distance on Z (called the
2-adic metric).

7. * Given the distances between n points in R
N , can their positions be recovered?

Can their relative positions be recovered?

2.1 Balls and Open Sets

The distance function provides an idea of the “surroundings” of a point. Given a
point a and a number r > 0, we can distinguish between those points ‘near’ to it,
satisfying d(x, a) < r , and those that are not.

Definition 2.4

An (open) ball, with center a and radius r > 0, is the set

Br (a) := { x ∈ X : d(x, a) < r }.

Despite the name, we should lay aside any preconception we may have of it being
“round” or symmetric. We are now ready for our first, simple, proposition:

Proposition 2.5

Distinct points of a metric space can be separated by disjoint balls,

x 
= y ⇒ ∃r > 0 Br (x) ∩ Br (y) = ∅.

Proof If x 
= y then d(x, y) > 0 by axiom (iii). Letting r := d(x, y)/2, then Br (x)

is disjoint from Br (y) else we get a contradiction,

z ∈ Br (x) ∩ Br (y) ⇒ d(x, z) < r and d(y, z) < r
⇒ d(x, y) � d(x, z) + d(y, z)

< 2r = d(x, y). ��
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Examples 2.6

1. In R, every ball is an open interval

Br (a) = { x ∈ R : |x − a| < r } = ]a − r, a + r [.

Conversely, any open interval of the type ]a, b[ is a ball in R, namely
B|b−a|/2(

a+b
2 ).

2. In R
2, the ball Br (a) is the disk with center a and radius r without the circular

perimeter.

3. In Z, B1/2(m) = { n ∈ Z : |n−m| < 1
2 } = { m } and B2(m) = { m−1, m, m+1 }.

4. It is clear that balls differ depending on the context of the metric space; thus
B1/2(0) = ]− 1

2 , 1
2 [ in R, but B1/2(0) = { 0 } in Z.

Open Sets

We can use balls to explore the relation between a point x and a given set A. As the
radius of the ball Br (x) is increased, one is certain to include some points which
are in A and some points which are not, unless A = X or A = ∅. So it is more
interesting to investigate what can happen when the radius is small. There are three
possibilities as r is decreased: either Br (x) contains (i) only points of A, or (ii) only
points in its complement Ac, or (iii) points of both A and Ac, no matter how small
we take r .

Definition 2.7

A point x of a set A is called an interior point of A when it can be “surrounded
completely” by points of A, i.e.,

∃r > 0, Br (x) ⊆ A.

In this case, A is also said to be a neighborhood of x .
A point x (not in A) is an exterior point of A when

∃r > 0, Br (x) ⊆ X�A.

All other points are called boundary points of A.
Accordingly, the set X is partitioned into three parts: its interior A◦, its

exterior ( Ā)c, and its boundary ∂ A. The set of interior and boundary points of
A is called the closure of A and denoted by Ā := A◦ ∪ ∂ A.

A set A is open in X when all its points are interior points of it, i.e., A = A◦
(Fig. 2.2).
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A small enough ball around an exterior point

Any ball around a boundary point

A small enough ball around an interior point

Fig. 2.2 The distinction between interior, boundary, and exterior points

Examples 2.8

1. In R, the intervals ]a, b[, [a, b[, ]a, b], and [a, b] have the same interior ]a, b[,
exterior, and boundary { a, b }; their closure is ]a, b[ = [a, b].
Proof For any a < x < b, let 0 < ε < min(x − a, b − x), then a < x − ε <

x + ε < b, that is Bε(x) ⊂ ]a, b[; this makes x an interior point of the interval.

For x < a, there is an ε < a − x such that x ∈ Bε(x) ⊂ ]−∞, a[ ⊂ R�[a, b].
Similarly, any x > b is an exterior point of the interval.

For x = a, any small interval Bε(a) contains points such as a + ε/2, that are
inside Bε(a), and points outside it, such as a − ε/2, making a (and similarly b)
a boundary point.

2. � The following sets are open in any metric space X :

(a) X�{ x } for any point x . The reason is that any other point y 
= x is separated
from x by disjoint balls (our first proposition); this makes y an interior point
of X�{ x }.

(b) The empty set is open by default, because it does not contain any point. The
whole space X is also open because Br (x) ⊆ X for any r > 0 and x ∈ X .

a

x
y

B r (a)

B (x )

(c) Balls are open sets in any metric space.

Proof Let x ∈ Br (a) be any point in the
given ball, meaning d(x, a) < r . Let ε :=
r−d(x, a) > 0; then Bε(x) ⊆ Br (a) since
for any y ∈ Bε(x),

d(y, a) � d(y, x) + d(x, a) < ε + d(x, a) = r.

3. � The least upper bound of a set A in R is a boundary point of it.

Proof Let α be the least upper bound of A. For any ε > 0, α + ε/2 is an upper
bound of A but does not belong to it (else α would not be an upper bound).
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Even if α 
∈ A, then the interval ]α − ε/2, α[ cannot be devoid of elements of
A, otherwise α would not be the least upper bound. So the neighborhood Bε(α)

contains elements of both A and Ac.

Proposition 2.9

The set of interior points A◦ is the largest open set inside A.

Proof If B ⊆ A then the interior points of B are
obviously interior points of A, so B◦ ⊆ A◦. In
particular every open subset of A lies inside A◦
(because B = B◦), and every (open) ball in A
lies in A◦. This implies that if Br (x) ⊆ A then
Br (x) ⊆ A◦, so that every interior point of A
is surrounded by other interior points, and A◦ is
open. ��

A

B

Proposition 2.10

A set A is open ⇔ A is the union of balls.

Proof Let A be an open set. Then every point of it is interior, and can be covered by
a ball Br(x)(x) ⊆ A. Taking the union of all the points of A gives

A =
⋃

x∈A

{ x } ⊆
⋃

x∈A

Br(x)(x) ⊆ A,

forcing A = ⋃
x∈A Br(x)(x), a union of balls.

Now let A := ⋃
i Bri (ai ) be a union of balls, and let x be any point in A.

Then x is in at least one of these balls, say, Br (a). But balls are open and hence
x ∈ Bε(x) ⊆ Br (a) ⊆ A. Therefore A consists of interior points and so is open. ��

The early years of research in metric spaces have shown that most of the basic
theorems about metric spaces can be deduced from the following characteristic prop-
erties of open sets:

Theorem 2.11

Any union of open sets is open.
The finite intersection of open sets is open.
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Proof (i) Consider the union of open sets,
⋃

i Ai . Any x ∈ ⋃
i Ai must lie in at least

one of the open sets, say A j . Therefore,

x ∈ Br (x) ⊆ A j ⊆
⋃

i

Ai

shows that it must be an interior point of the union.

A

B(ii) It is enough, using induction (show!), to con-
sider the intersection of two open sets A ∩ B. Let
x ∈ A ∩ B, meaning x ∈ A and x ∈ B, with
both sets being open. Therefore there are open balls
Br1(x) ⊆ A and Br2(x) ⊆ B. The smaller of these
two balls, with radius r := min(r1, r2), must lie in
A ∩ B,

x ∈ Br (x) = Br1(x) ∩ Br2(x) ⊆ A ∩ B.

��
Examples 2.12

1. � The exterior ( Ā)c = (Ac)◦ of a subset A is open in X .

2. A◦ = A�∂ A. So a set is open ⇔ it does not contain any boundary points.

3. Let Y ⊆ X inherit X ’s distance. Then A is open in Y if, and only if, A = U ∩ Y
for some subset U open in X .

Proof Care must be taken to distinguish balls in Y from those in X : BY
r (x) =

B X
r (x) ∩ Y . If A is open in Y , then by Proposition 2.10,

A =
⋃

a∈A

BY
r(a)(a) =

⋃

a∈A

B X
r(a)(a) ∩ Y = U ∩ Y.

For the converse, interior points of U ⊆ X which happen to be in Y are interior
points of A as a subset of Y ,

y ∈ B X
r (y) ⊆ U ⇒ y ∈ B X

r (y) ∩ Y ⊆ U ∩ Y = A.

Limit Points

It may happen that a point a of a set A is surrounded by points not in A, that is, there
is a ball Br (a) which contains no points of A other than a itself. We call such points
isolated points. The property that a point cannot be isolated from the rest of A is
captured by the following definition:
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Definition 2.13

A point b (not necessarily in A) is a limit point of a set A when every ball
around it contains other points of A,

∀ε > 0, ∃a 
= b, a ∈ A ∩ Bε(b).

Thus every point of Ā is either a limit point or an isolated point of A.

Exercises 2.14

1. In R, the set { a } has no interior points, a single boundary point a, and all other
points are exterior. It is not an open set in R. There are ever smaller open sets
that contain a, but there is no smallest one.

2. In R, { 1/n : n ∈ N } = { 1/n : n ∈ N } ∪ { 0 }.
3. The set Q, and also its complement, the set of irrational numbers Q

c, do not
have interior (or exterior) points in R. Every real number is a boundary point of
Q.
Similarly every complex number is a boundary point of Q + iQ.

4. The set { m } in Z does not have any boundary points; it is an open set in Z

(B1/2(m) = { m }).
� Notice that whether a point is in the interior (or boundary, or exterior) of a set
depends on the metric space under consideration. For example, { m } is open in N

but not open in R; the interval ]a, b[ is open in R, but not open when considered
as a subset of the x-axis in R

2. We thus need to specify that a set A is open in X .

5. Describe the interior, boundary and exterior of the sets

{ (x, y) ∈ R
2 : |x | + |y| � 1 }, { (x, y) ∈ R

2 : 1
2 < max(|x |, |y|) � 1 }.

6. Of the proper intervals in R, only ]a, b[, ]a,∞[, and ]−∞, a[ are open.

7. In R
2, the half-plane { (x, y) ∈ R

2 : y > 0 } and the rectangles ]a, b[×]c, d[ :=
{ (x, y) ∈ R

2 : a < x < b, c < y < d } are open sets.

8. � Ac has the same boundary as A; its interior is the exterior of A, that is,
( Ā)c = (Ac)◦ (and Ā = Ac◦c); so ∂ A = Ā ∩ Ac.

9. Find an open subset of R, apart from R itself, without an exterior.
So, the exterior of the exterior of A need not be the interior of A. Similarly, the
boundary of Ā or A◦ need not equal the boundary of A.

10. � An infinite intersection of open sets need not be open. For example, in R, the
open intervals ]−1/n, 1/n[ are nested one inside another. Their intersection is
the non-open set { 0 } (prove!). Find another example in R

2.



22 2 Distance

11. Deduce from the theorem that if every { x } is open in X , then every subset of X
is open in X . This ‘extreme’ property is satisfied by N, and also by any discrete
metric space.

12. Any point x with d(x, a) > r is in the exterior of the open ball Br (a). But the
boundary of Br (a) need not be the set { x : d(x, a) = r }. Find a counterexample
in Z.

13. * Every open set in R is a countable disjoint union of open intervals. (Hint: An
open set in R is the disjoint union of open intervals; take a rational interior point
for each.)
In contrast to this simple case, the open sets in R

2, say, can be much more
complicated—there is no simple characterization of them, apart from the defin-
ition.

14. Can a set not have limit points? Can an infinite set not have limit points?

15. In R, the set of integers Z has no limit points, but all real numbers are limit points
of Q.

16. (a) 1 is an interior isolated point of { 1, 2 } in Z;

(b) 1 is a boundary isolated point of { 1, 2 } in R;

(c) 1 is an interior limit point of [0, 2] in R;

(d) 1 is a boundary limit point of [0, 1] in R.

17. In R and Q, an isolated point of a subset must be a boundary point, or, equiva-
lently, an interior point is a limit point.

2.2 Closed Sets

Definition 2.15

A set F is closed in a space X when X�F is open in X .

Proposition 2.16

A set F is closed ⇔ F contains its boundary ⇔ F̄ = F .

Proof We have already seen that the boundary of a set F and of its complement Fc

are the same (because the interior of Fc is the exterior of F). So F is closed, and
Fc open, precisely when this common boundary does not belong to Fc, but belongs
instead to Fcc = F . ��
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Examples 2.17

1. In R, the set [a, b] is closed, since R�[a, b] = ]−∞, a[ ∪ ]b,∞[ is the union of
two open sets, hence itself open. Similarly [a,∞[ and ]−∞, a] are closed in R.

2. N and Z are closed in R, but Q is not.

3. � In any metric space X , the following sets are closed in X (by inspecting their
complements):

(a) the singleton sets { x },
(b) the ‘closed balls’ Br [a] := { x ∈ X : d(x, a) � r },
(c) X and ∅,

(d) the boundary of any set (the complement of ∂ A is A◦ ∪ (Ac)◦).

4. � The complement of an open set is closed. More generally, if U is an open set
and F a closed set in X , then U�F is open and F�U is closed. The reasons are
that U�F = U ∩ Fc and (F�U )c = Fc ∪ U .

Closed sets are complements of open ones, and their properties reflect this:

Proposition 2.18

The finite union of closed sets is closed.
Any intersection of closed sets is closed.

Proof These are the complementary results for open sets (Theorem 2.11). For F, G
closed sets in X , Fc, Gc are open, so the result follows from

(F ∪ G)c = Fc ∩ Gc,
( ⋂

i

Fi

)c =
⋃

i

Fc
i ,

and the definition that the complement of a closed set is open. ��
Theorem 2.19 Kuratowski’s closure ‘operator’

Ā is the smallest closed set containing A, called the closure of A.

A ⊆ B ⇒ Ā ⊆ B̄; ¯̄A = Ā; A ∪ B = Ā ∪ B̄.

Proof The complement of Ā is the exterior of A, which is an open set, so Ā is closed.

This implies ¯̄A = Ā Proposition 2.16.
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If A ⊆ B, then an exterior point of B is obviously an exterior point of A, that
is (B̄)c ⊆ ( Ā)c; so Ā ⊆ B̄. It follows that if F is any closed set that contains A,
then Ā ⊆ F̄ = F , and this shows that Ā is the smallest closed set containing A.
(Alternatively, Proposition 2.9 can be used: how?)

Of course, Ā ⊆ A ∪ B follows from A ⊆ A ∪ B; combined with B̄ ⊆ A ∪ B, it
gives Ā ∪ B̄ ⊆ A ∪ B. Moreover, Ā ∪ B̄ is a closed set which contains A ∪ B, and
so must contain its closure A ∪ B. ��
Exercises 2.20

1. It is easy to find sets in R which are neither open nor closed (so contain only
part of their boundary). Can you find any that are both open and closed?
The terms “open” and “closed” are misnomers, but they have stuck in the liter-
ature, being derived from the earlier use of “open/closed intervals”.

2. The set { x ∈ Q : x2 < 2 } is closed, and open, in Q.

3. In any metric space, a finite collection of points { a1, . . . , aN } is a closed set.

4. The following sets are closed in R: [0, 1] ∪ { 5 }, ⋃∞
n=0[n, n + 1

2 ].
5. The infinite union of closed sets may, but need not, be closed. For example, the

set
⋃∞

n=1{ 1/n } is not closed in R; which boundary point is not contained in it?

6. Find two disjoint closed sets (in R
2 or Q, say) that are arbitrarily close to each

other.

7. Start with the closed interval [0, 1]; remove the
open middle interval ] 1

3 , 2
3 [ to get two closed

intervals [0, 1
3 ] ∪ [ 2

3 , 1]. Remove the middle
interval of each of these intervals to obtain four
closed intervals [0, 1

9 ]∪[ 2
9 , 1

3 ]∪[ 2
3 , 7

9 ]∪[ 8
9 , 1].

If we continue this process indefinitely we end
up with the Cantor set. Show it is a closed set.

8. Denote the decimal expansion of any number in [0,1] by 0.n1n2n3 . . .. Show
that

{ x ∈ [0, 1] : x = 0.n1n2n3 . . . ⇒ n1 + · · · + nk

k
� 5 ∀k }

is closed in R.

9. � One can define the “distance” between a point and a subset of a metric space
by d(x, A) := infa∈A d(x, a). Then x ∈ Ā exactly when d(x, A) = 0.

10. Let x be an exterior point of A, and let y ∈ Ā have the least distance between x
and Ā. Do you think that y is unique? or that it must be on the boundary of A?
Prove or disprove. For starters, take the metric space to be R

2.
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11. Show equality need not hold in A ∩ B ⊆ Ā ∩ B̄. Indeed two disjoint sets may
‘touch’ at a common boundary point.

12. Show the complementary results of the theorem: A◦∩B◦ = (A∩B)◦, A◦◦ = A◦.

13. If A ⊆ B̄, does it follow that A◦ ⊆ B?

Dense Subsets

We often need to approximate an element x ∈ X to within some small distance ε

by an element from some special subset A ⊆ X . The elements of A may be simpler
to describe, or more practical to work with, or may have nicer theoretical qualities.
For example, computers cannot handle arbitrary real numbers and must approximate
them by rational ones; polynomials are easier to work with than general continuous
functions. The property that elements of a set A can be used to approximate elements
of X to within any ε, namely,

∀x ∈ X, ∀ε > 0, ∃a ∈ A, d(x, a) < ε,

is equivalent to saying that any ball Bε(x) contains elements of A, in other words A
has no exterior points.

Definition 2.21

A set A is dense in X when Ā = X (so Ā contains all balls).
A set A is nowhere dense in X when Ā contains no balls.

Exercises 2.22

1. � Q is dense in R. (This is equivalent to the Archimedean property of R.) More
generally, a set A is dense in R when for any two distinct real numbers x < y,
there is an element a ∈ A between them x < a < y.

2. The intersection of two open dense sets is again open and dense.

3. A finite union of straight lines in R
2 is nowhere dense. Z and the Cantor set are

nowhere dense in R.

4. Nowhere dense sets have no interior points.

5. A is nowhere dense in X ⇔ X� Ā is dense in X ⇔ Ā is the boundary of an
open set.

6. * What are the nowhere dense sets in R? (Hint: Exercise 2.14(13))
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Remarks 2.23

1. If d(x, y) = 0 does not guarantee x = y, but d satisfies the other two axioms,
then it is called a pseudo-distance. In this case, let us say that points x and y
are indistinguishable when d(x, y) = 0 ( ⇔ ∀z, d(x, z) = d(y, z)). This is
an equivalence relation, which induces a partition of the space into equivalence
classes [x]. The function D([x], [y]) := d(x, y) is then a legitimate well-defined
metric.

In a similar vein, if d satisfies the triangle inequality, but is not symmetric, then
D(x, y) := d(x, y)+d(y, x) is symmetric and still satisfies the triangle inequal-
ity.

Positivity of d follows from axioms (i) and (ii), d(x, y) � |d(x, z) − d(y, z)| � 0.

2. The axioms for a distance can be re-phrased as axioms for balls:

(a) B0(x) = ∅,
⋂

r>0 Br (x) = { x }, ⋃
r>0 Br (x) = X ,

(b) { y : x ∈ Br (y) } = Br (x),

(c) Bs ◦ Br (x) ⊆ Br+s(x), i.e., if y ∈ Bs(z) where z ∈ Br (x) then y ∈ Br+s(x).

3. The concept of open sets is more basic than that of distance. One can give a set X
a collection of open sets satisfying the properties listed in Theorem 2.11 (taken
as axioms), and study them without any reference to distances. It is then called a
topological space; most theorems about metric spaces have generalizations that
hold for topological spaces. There are some important topological spaces that are
not metric spaces, e.g. the arbitrary product of metric spaces

∏
i Xi , and spaces

of functions XY := { f : Y → X }.
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