
Chapter 2
More on ODE Integration

In Chap. 1, we considered through examples several numerical ODE integrators,
e.g., Euler, leap-frog, Heun, Runge Kutta, and BDF methods. As we might expect,
the development and use of ODE integrators is an extensive subject, and in this
introductory text, we will only try to gain some overall perspective. To this end, we
will first focus our attention to the MATLAB coding of a few basic integrators, i.e.,
a fixed-step Euler’s method, a variable-step (nonstiff) Runge–Kutta (RK) method
and a variable-step (stiff) Rosenbrock’s method, and then turn our attention to more
sophisticated library integrators. Typically, library integrators are written by experts
who have included features that make the integrators robust and reliable. However,
the coding of library integrators is generally long and relatively complicated, so that
they are often used without a detailed understanding of how they work. A popular
library is theMATLAB ODE SUITE developed by Shampine et al. [1]. Other options
are provided by the use of MATLAB MEX-files and of readily available integrators
originally written in FORTRAN or C/C++ language. On the other hand, SCILAB
provides a library of solvers based on ODEPACK [2] whereas OCTAVE includes
LSODE [3] and DASSL [4]. We will explore these several options and discuss a few
more ODE applications.

2.1 A Basic Fixed Step ODE Integrator

We considered previously the Euler’s method—see Eqs. (1.15) and (1.16). A function
that implements Euler’s method with a fixed or constant integration step is listed in
function Euler_solver.
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46 2 More on ODE Integration

function [tout ,xout ] = euler_solver (odefunction , t0 , tf , x0 , . . .
Dt , Dtplot )

% This function solves first−order differential equations using
% Euler ' s method .
% [tout ,xout ] = euler_solver (@f ,t0 ,tf ,x0 ,Dt ,Dtplot )
% integrates the system of differential equations xt=f (t ,x ) from
% t0 to tf with initial conditions x0 . f is a string containing
% the name of an ODE file . Function f (t ,x ) must return a column
% vector . Each row in solution array x corresponds to a value
% returned in column vector t .
%
% Argument list
%
% f − string containing the name of the user−supplied problem
% call : xt = problem_name (t ,x ) where f = 'problem_name '
% t − independent variable (scalar )
% x − solution vector
% xt − returned derivative vector ; xt (i ) = dx (i ) /dt
% t0 − initial value of t
% tf − final value of t
% x0 − initial value vector
% Dt − time step size
% Dtplot − plot interval
% tout − returned integration points (column−vector ) .
% xout − returned solution , one solution row−vector per tout−value
% Initialization
plotgap = round (Dtplot /Dt ) ; % number of computation

% steps within a plot interval
Dt = Dtplot /plotgap ;
nplots = round ( (tf−t0 ) /Dtplot ) ; % number of plots
t = t0 ; % initialize t
x = x0 ; % initialize x
tout = t0 ; % initialize output value
xout = x0 ' ; % initialize output value

% Implement Euler ' s method
for i = 1 : nplots

for j = 1 : plotgap
% Use MATLAB ' s feval function to access the function
% file , then take Euler step
xnew = x + feval (odefunction ,t ,x )*Dt ;
t = t + Dt ;
x = xnew ;

end
% Add latest result to the output arrays
tout = [tout ;t ] ;
xout = [xout ;x ' ] ;

end

Function Euler_solver Basic Euler integrator
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We can note the following points about this code:

1. The operation of function Euler_solver, and its input and output arguments
are generally explained and defined in a block of comments.

2. The number of computation steps within a plot (output) interval, plotgap, the
fixed-length Euler step, Dt, and the number of plot points (outputs), nplots,
are first computed to take the integration from the initial value t0 to the final
value tf.

3. The initial conditions corresponding to Eq. (1.13) are then stored. Note that t,
t0 and tout are scalars while x, x0 and xout are one-dimensional vectors.

4. nplotsplot (output) steps are then taken using an outer for loop, andplotgap
Euler steps are taken within each plot step using an inner for loop.

5. The solution is then advanced by Euler’s method (1.16). Note that a MATLAB
function can be evaluated using the utility feval. In the present case, the RHS
of (1.12) is coded in function odefunction. The solution is then updated for
the next Euler step. Finally, this code completes the inner for loop to give the
solution at a plot point after plotgap Euler steps.

6. The solution is then stored in the arrays tout and xout. Thus, tout becomes a
column vector and xout is a two-dimensional array with a column dimension the
same as tout and each row containing the dependent variable vector for the cor-
responding tout (note that the latest solution is transposed into a row of xout).

The basic Euler integrator (see function Euler_solver) can now be called in
any new application, with the particular ODEs defined in a function. To illustrate
this approach, we consider the logistic equation which models population growth (N
represents the number of individuals):

dN

dt
= (a − bN)N = aN − bN2 (2.1)

first proposed by Verhulst in 1838 [5]. Equation (2.1) is a generalization of the ODE

dN

dt
= aN (2.2)

which for the Malthusian rate a > 0 gives unlimited exponential growth, i.e., the
solution to Eq. (2.2) is

N(t) = N0eat (2.3)

where N0 is an initial value of N for t = 0.
Since, realistically, unlimited growth is not possible in any physical process, we

now consider Eq. (2.1) as an extension of Eq. (2.2) to reflect limited growth. Thus,
instead of dN

dt → ∞ as N → ∞ according to Eq. (2.2), the solution now reaches the
equilibrium condition

dN

dt
= 0 = (a − bN)N

corresponding to N = a
b .
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The approach to this equilibrium can be understood by considering the RHS of
Eq. (2.1). At the beginning of the solution, for small t and N , the term aN dominates,
and the solution grows according to Eqs. (2.2) and (2.3). For large t, N increases
so that −bN2 begins to offset aN and eventually the two terms become equal (but
opposite in sign), at which point dN

dt = 0. Thus, the solution to Eq. (2.1) shows rapid
growth initially, then slower growth, to produce a S-shaped solution.

These features are demonstrated by the analytical solution to Eq. (2.1), which can
be derived as follows. First, separation of variables can be applied:

dN

(a − bN)N
= dt (2.4)

The LHS of Eq. (2.4) can then be expanded into two terms by partial fractions

dN

(a − bN)N
=

dN

a
N

+
bdN

a
a − bN

= dt (2.5)

Integration of Eq. (2.5) gives

1

a
ln (N) − b

a
ln (|a − bN |) = t + c (2.6)

where c is a constant of integration that can be evaluated from the initial condition

N(0) = N0 (2.7)

so that Eq. (2.6) can be rewritten as

1

a
ln (N) − 1

a
ln (|a − bN |) = t + 1

a
ln (N0) − b

a
ln (|a − bN0|)

or, since a − bN0 and a − bN have the same sign,

ln

(
N

N0

)
+ ln

(
a − bN0

a − bN

)
= at

and thus the analytical solution of Eq. (2.1) is

(
N

N0

)(
a − bN0

a − bN

)
= eat
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or solving for N

N =
a
b

1 +
(

a−bN0
bN0

)
e−at

= K

1 +
(

K
N0

− 1
)

e−at
, K = a

b
(2.8)

Note again from Eq. (2.8) that for a > 0, b > 0, we have that as t → ∞, N → a
b = K ,

where K is called the carrying capacity.
Equation (2.8) can be used to evaluate the numerical solution from function

Euler_solver. To do this, a function must be provided to define the ODE.

function Nt = logistic_ode (t ,N )

% Global variables
global a b K N0

% ODE
Nt = (a−b*N )*N ;

Function logistic_ode Function to define the ODE of the logistic equation (2.1)

The coding of function logistic_ode follows directly from Eq. (2.1). Note
that this ODE function must return the time derivative of the state variable (Nt in
this case). The ODE function is called by Euler_solver, which is called by the
main program Main_logistic.

clear all
close all

% Set global variables
global a b K N0

% Model parameters
a = 1 ;
b = 0 . 5e−4;
K = a /b ;

% Initial conditions
t0 = 0 ;
N0 = 1000;
tf = 15;
Dt = 0 . 1 ;
Dtplot = 0 . 5 ;

% Call to ODE solver
[tout ,xout ] = euler_solver (@logistic_ode ,t0 ,tf ,N0 ,Dt ,Dtplot ) ;

% Plot results
figure ( 1 )
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plot (tout ,xout , 'k ' ) ;
hold on
Nexact = logistic_exact (tout ) ;
plot (tout ,Nexact , ' : r ' )
xlabel ( 't ' ) ;
xlabel ( 'N (t ) ' ) ;
title ( 'Logistic equation ' ) ;

Script Main_logistic Main program that calls functions Euler_solver and logistic_ode

This program proceeds in several steps:

1. After clearing MATLAB for a new application (via clear and close), the initial
and final value of the independent variable, t, and the initial condition for N (N0)
are defined.

2. The fixed integration step and plot (output) intervals are then defined. Thus, func-
tion Euler_solver will take (15 − 0)/0.1 = 150 Euler steps and the solution
will be plotted (15−0)/0.5+1 = 31 times (counting the initial condition). Within
each Dtplot step (outer for loop), Euler_solver will take 0.5/0.1 = 5
Euler steps (inner for loop).

3. Function Euler_solver is then called with the preceding parameters and the
solution returned as the one-dimensional column vector tout and the matrix
xout (one-dimensional with the number of rows equal to the number of ele-
ments of tout, and in each row, the corresponding value of x). Note that the name
of the function that defines the ODE, i.e., function logistic_ode, in the call to
Euler_solver, does not have to be the same as in function Euler_solver,
i.e., odefunction; rather, the name of the ODE function is specified in the call
to Euler_solver as @logistic_ode where @ specifies an argument that
is a function. This is an important detail since it means that the user of the script
Main_logistic can select any convenient name for the function that defines
the ODEs.

In order to evaluate the numerical solution from Euler_solver, the analytical
solution (2.8) is evaluated in the function logistic_exact.

function N = logistic_exact (t )

% Global variables
global a b K N0

% Analytical solution
N = K . / ( 1 + (K /N0−1)*exp(−a*t ) ) ;

Function logistic_exact Function to compute the analytical solution of the logistic equation.

The plot produced from the preceding program Main_logistic is shown in
Fig. 2.1.
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Fig. 2.1 Plot of the numerical
and analytical solutions from
Main_logistic
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Note that there is a small difference between the numerical solution (dotted line)
and the analytical solution (2.8) (solid line). This difference is due principally to
the limited accuracy of the Euler’s method and to the small number of Euler steps
taken during each output interval (5 steps). Thus, to improve the accuracy of the
numerical solution, we could use a more accurate (higher-order) integration algorithm
(p refinement discussed in Chap. 1) and/or more integration steps between each
output value. We will next consider a higher-order algorithm that generally gives
good accuracy with a modest number of integration steps.

2.2 A Basic Variable-Step Nonstiff ODE Integrator

The preceding example illustrates the use of an ODE integrator that proceeds along
the solution with a fixed step (constant h). Although this worked satisfactorily for
the modest example of Eq. (2.1) (particularly if we used more than five Euler steps
in each output interval), we can envision situations where varying the integration
step would be advantageous, e.g., the integration step might be relatively small at the
beginning of the solution when it changes most rapidly, then increased as the solution
changes more slowly. In other words, the integration step will not be maintained at an
excessively small value chosen to maintain accuracy where the solution is changing
most rapidly, when we would like to use a larger step where the solution is changing
less rapidly. The central requirement will then be to vary the integration step so as
to maintain a given, specified accuracy.

It might, at first, seem impossible to vary the integration step to maintain a pre-
scribed accuracy since this implies we know the exact solution in order to determine
the integration error and thereby decide if the error is under control as the integration
step is changed. In other words, if we require the exact solution to determine the inte-
gration error, there is no reason to do a numerical integration, e.g., we can just use
the exact solution. However, we can use an estimated error to adjust the integration

http://dx.doi.org/10.1007/978-3-319-06790-2_1
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step that does not require knowledge of the exact solution, provided the estimated
error is accurate enough to serve as a basis for varying the integration step. Note
here the distinction between the exact integration error (generally unknown) and the
estimated integration error (generally known).

To investigate the use of an estimated error to adjust the integration step, we will
now consider RK methods. Representatives of this class of methods have already been
presented in Chap. 1, i.e., the Euler’s method, which is a first-order RK method, and
the modified Euler or Heun’s method, which is a second-order RK method. We are
now looking at higher-order schemes, which are based on Taylors series expansions
of the solution x(t) of Eq. (1.12), dx

dt = f (x, t), i.e.,

xk+1 = xk + h
dx

dt

∣∣∣∣
k
+ h2

2!
d2x

dt2

∣∣∣∣
k
+ · · · + hq

q!
dqx

dtq

∣∣∣∣
k
+ O

(
hq+1

)

= xk + hf (xk, tk) + h2

2!
df

dt

∣∣∣∣
k
+ · · · + hq

q!
dq−1f

dtq−1

∣∣∣∣
k
+ O

(
hq+1

)
(2.9)

The idea behind the RK methods is to evaluate the terms involving higher-order
derivatives in (2.9), without actually differentiating the ODEs, but using q inter-
mediate function evaluations f (xk, tk) (also called stages) between f (xk, tk) and
f (xk+1, tk+1), and selecting coefficients wi so as to match the Taylor series expansion
(2.9) with

xk+1 = xk + h
q∑

i=1

wif (xk,i, tk,i) + O
(

hq+1
)

= xk + h
q∑

i=1

wiki + O
(

hq+1
)

(2.10)

The intermediate stages can generally be expressed as:

tk,i = tk + hαi, xk,i = xk + h
q∑

j=1

βi,jkj (2.11)

so that

ki = f

⎛
⎝xk + h

q∑
j=1

βi,jkj, tk + hαi

⎞
⎠ (2.12)

with α1 = 0 and βi,j = 0 ∀j ≥ i an explicit RK method is derived (otherwise, the
solution of a nonlinear system of Eq. (2.12) is required to get the values of ki, yielding
an implicit RK method).

Note that RK methods are single-step methods, i.e., xk+1 is given in terms of xk
only (in contrast to multi-step methods, such as the BDF formulas (1.37), which give

http://dx.doi.org/10.1007/978-3-319-06790-2_1
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Table 2.1 Maximum order pmax that can be obtained with a q-stage explicit RK method

q 1 2 3 4 5 6 7 8 9
p 1 2 3 4 4 5 6 6 7

xk+1 in terms of xk, . . . , xk−m). They are also called self starting, in the sense that
only the initial condition x0 is required to compute x1.

As a specific example of derivation, consider the explicit, second-order RK meth-
ods (q = 2), for which Eqs. (2.10)–(2.12) reduce to

xk+1 = xk + h
(
w1f (xk, tk) + w2f (xk + hβ2,1f (xk, tk), tk + hα2)

)

= xk + hw1f (xk, tk) + hw2

(
f (xk, tk) + hα2

∂f

∂t

∣∣∣∣
k
+ hβ2,1

∂f

∂x

∣∣∣∣
k

)
+ O

(
h3
)

= xk + h(w1 + w2)f (xk, tk) + h2w2α2
∂f

∂t

∣∣∣∣
k

+ h2w2β2,1
∂f

∂x

∣∣∣∣
k

f (xk, tk) + O
(

h3
)

(2.13)

Upon comparison with the truncated Taylor series expansion

xk+1 = xk + hf (xk, tk) + h2

2!
df

dt

∣∣∣∣
k
+ O

(
h3
)

= xk + hf (xk, tk) + h2

2!
∂f

∂t

∣∣∣∣
k
+ h2

2!
∂f

∂x

∣∣∣∣
k

f (xk, tk) + O
(

h3
)

(2.14)

we obtain

w1 + w2 = 1, w2α2 = 1

2
, w2β2,1 = 1

2
(2.15)

This is a system of three equations and four unknowns which, solved for w2 = λ,
gives a one-parameter family of explicit methods

xk+1 = xk + h

(
(1 − λ)f (xk, tk) + λf

(
xk + h

2λ
f (xk, tk), tk + h

2λ

))
(2.16)

For λ = 0, we find back the first-order Euler’s method (1.16), and for λ = 1/2, the
second-order modified Euler or Heun’s method (1.26)–(1.27).

Deriving higher-order RK methods following the same line of thoughts would
however require laborious algebraic manipulations. Another approach, based on
graph theory (rooted tree theory), has been proposed by Butcher [6] among others
[7, 8]. This approach enables a systematic and an efficient derivation of higher-order
explicit and implicit methods. The maximum order pmax that can be obtained with a

http://dx.doi.org/10.1007/978-3-319-06790-2_1
http://dx.doi.org/10.1007/978-3-319-06790-2_1
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q-stage explicit RK method is given in Table 2.1. For a q-stage implicit RK method,
pmax = 2q. Among the family of fourth- and fifth-order methods, a classical embed-
ded pair of explicit RK formulas is given by

xk+1,4 = xk + 25

216
k1 + 1408

2565
k3 + 2197

4104
k4 − 1

5
k5 (2.17)

xk+1,5 = xk + 16

135
k1 + 6656

12825
k3 + 28561

56430
k4 − 9

50
k5 + 2

55
k6 (2.18)

These formulas are said embedded as they share the same stages ki, i = 1, . . . , 5.
Such stages can be computed as follows:

k1 = f (xk, tk)h (2.19a)

k2 = f (xk + 0.25k1, tk + 0.25h) h (2.19b)

k3 = f

(
xk + 3

32
k1 + 9

32
k2, tk + 3

8
h

)
h (2.19c)

k4 = f

(
xk + 1932

2197
k1 − 7200

2197
k2 + 7296

2197
k3, tk + 12

13
h

)
h (2.19d)

k5 = f

(
xk + 439

216
k1 − 8k2 + 3680

513
k3 − 845

4104
k4, tk + h

)
h (2.19e)

k6 = f

(
xk − 8

27
k1 + 2k2 − 3544

2565
k3 + 1859

4104
k4 − 11

40
k5, tk + 0.5h

)
h (2.19f)

Returning to the idea of using an estimated error to adjust the integration step, we
can obtain an error estimate for the fourth-order result from

εk+1,4 = xk+1,5 − xk+1,4 (2.20)

that can be then used to adjust the integration step h in accordance with a user-
prescribed error tolerance.

Equation (2.17) fits the underlying Taylor series up to including the fourth-order

term d4xk
dt4

(
h4

4!
)

while Eq. (2.18) fits the Taylor series up to an including the fifth-

order term d5xk
dt5

(
h5

5!
)

. Thus, the subtraction (2.20) provides an estimate of the fifth-

order term.
The RK pair (2.17)–(2.18) is termed the Runge–Kutta–Fehlberg method [9],

usually designated RKF45. Note that an essential feature of an embedded pair as
illustrated by Eq. (2.19) is that the stages are the same for the lower and higher-
order methods (k1–k6 in this case). Therefore, the subtraction (2.20) can be used
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to combine terms of the same stages (since they are the same for the lower- and
higher-order methods and therefore have to be calculated only once for both of
them).

Two functions for implementing the RKF45 method, with the use of Eq. (2.20)
to estimate the truncation error and adjust the integration step, are ssrkf45 and
rkf45_solver listed below. The first function, ssrkf45, takes a single step
along the solution based on Eqs. (2.17)–(2.18):

1. After a block of comments explaining the operation of ssrkf45, the derivative
vector is computed at the base point and the first stage, k1, is evaluated according
to (2.19a). Note that k1 is a column vector with the row dimension equal to the
number of first order ODEs to be integrated. Each stage is just the ODE derivative
vector multiplied by the integration step h, so each xt0 is calculated by a call to
the derivative routine via feval.

2. The dependent variable vector and the independent variable are then evaluated to
initiate the calculation of the next stage, k2, according to (2.19b).

3. This basic procedure is repeated for the calculation of k3, k4, k5 and k6 according
to (2.19c)–(2.19f). Then the fourth- and fifth-order solutions are computed at
the next point by the application of Eqs. (2.17)–(2.18), and the error is estimated
according to (2.20).

4. The independent variable, the fifth-order solution and the vector of estimated
errors at the next point along the solution are then returned from ssrkf45 as t,
x, and e (the output or return arguments of ssrkf45).

function [t ,x ,e ] = ssrkf45 (odefunction ,t0 ,x0 ,h )
%
% This function computes an ODE solution by the RK Fehlberg 45
% method for one step along the solution (by calls to
% 'odefunction ' to define the ODE derivative vector ) . It also
% estimates the truncation error of the solution , and applies
% this estimate as a correction to the solution vector .
%
% Argument list
%
% odefunction − string containing name of user−supplied problem
% t0 − initial value of independent variable
% x0 − initial condition vector
% h − integration step
% t − independent variable (scalar )
% x − solution vector after one rkf45 step
% e − estimate of truncation error of the solution vector

% Derivative vector at initial (base ) point
[xt0 ] = feval (odefunction ,t0 ,x0 ) ;

% k1 , advance of dependent variable vector and independent
% variable for calculation of k2
k1 = h*xt0 ;
x = x0 + 0.25*k1 ;
t = t0 + 0.25*h ;

% Derivative vector at new x , t
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[xt ] = feval (odefunction ,t ,x ) ;

% k2 , advance of dependent variable vector and independent
% variable for calculation of k3
k2 = h*xt ;
x = x0 + ( 3 . 0 / 3 2 . 0 ) *k1 . . .

+ ( 9 . 0 / 3 2 . 0 ) *k2 ;
t = t0 + ( 3 . 0 / 8 . 0 ) *h ;

% Derivative vector at new x , t
[xt ] = feval (odefunction ,t ,x ) ;

% k3 , advance of dependent variable vector and independent
% variable for calculation of k4
k3 = h*xt ;
x = x0 + ( 1 9 3 2 . 0 / 2 1 9 7 . 0 ) *k1 . . .

− ( 7 2 0 0 . 0 / 2 1 9 7 . 0 ) *k2 . . .
+ ( 7 2 9 6 . 0 / 2 1 9 7 . 0 ) *k3 ;

t = t0 + ( 1 2 . 0 0 / 1 3 . 0 ) *h ;

% Derivative vector at new x , t
[xt ] = feval (odefunction ,t ,x ) ;

% k4 , advance of dependent variable vector and independent
% variable for calculation of k5
k4 = h*xt ;
x = x0 + ( 4 3 9 . 0 / 216 .0 ) *k1 . . .

− ( 8 . 0 )*k2 . . .
+ ( 3 6 8 0 . 0 / 513 .0 ) *k3 . . .
− ( 8 4 5 . 0 / 4 1 0 4 . 0 ) *k4 ;

t = t0 + h ;

% Derivative vector at new x , t
[xt ] = feval (odefunction ,t ,x ) ;

% k5 , advance of dependent variable vector and independent
% variable for calculation of k6
k5 = h*xt ;
x = x0 − ( 8 . 0 / 2 7 . 0 ) *k1 . . .

+ ( 2 . 0 )*k2 . . .
− ( 3 5 4 4 . 0 / 2 5 6 5 . 0 ) *k3 . . .
+ ( 1 8 5 9 . 0 / 4 1 0 4 . 0 ) *k4 . . .
− ( 1 1 . 0 / 4 0 . 0 ) *k5 ;

t = t0 + 0.5*h ;

% Derivative vector at new u , t
[xt ] = feval (odefunction ,t ,x ) ;

% k6
k6 = h*xt ;

% Fourth order step
sum4 = x0 + ( 2 5 . 0 / 216 .0 ) *k1 . . .

+ ( 1 4 0 8 . 0 / 2 5 6 5 . 0 ) *k3 . . .
+ ( 2 1 9 7 . 0 / 4 1 0 4 . 0 ) *k4 . . .
− ( 1 . 0 / 5 . 0 ) *k5 ;

% Fifth order step
sum5 = x0 + ( 1 6 . 0 / 135 .0 ) *k1 . . .

+ ( 6 6 5 6 . 0 / 1 2 8 2 5 . 0 ) *k3 . . .
+ ( 2 8 5 6 1 . 0 / 5 6 4 3 0 . 0 ) *k4 . . .
− ( 9 . 0 / 5 0 . 0 ) *k5 . . .
+ ( 2 . 0 / 5 5 . 0 ) *k6 ;

t = t0 + h ;

% Truncation error estimate
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e = sum5 − sum4 ;

% Fifth order solution vector (from 4 ,5 RK pair ) ;
% two ways to the same result are listed
% x = sum4 + e ;
x = sum5 ;

Function ssrkf45 Function for a single step along the solution of (1.12) based on (2.15)–(2.17)

We also require a function that calls ssrkf45 to take a series of step along the
solution. This function, rkf45_solver, is described below:

1. After an initial block of comments explaining the operation of rkf45_solver
and listing its input and output arguments, the integration is initialized. In partic-
ular, the initial integration step is set to h = Dtplot/2 and the independent
variable tout, the dependent variable vector xout and the estimated error vec-
tor eout are initiated for subsequent output. The integration steps, nsteps, and
the number of outputs, nplots, are also initialized.

2. Two loops are then executed. The outer loop steps through nplots outputs.
Within each pass through this outer loop, the integration is continued while the
independent variable t is less than the final value tplot for the current output
interval. Before entering the inner while loop, the length of the output interval,
tplot, is set.

3. Within each of the output intervals, a logic variable is initialized to specify a
successful integration step and a check is made to determine if the integration
step, h, should be reset to cover the remaining distance in the output interval.

4. ssrkf45 is then called for one integration step of length h.
5. A series of tests then determines if the integration interval should be changed.

First, if the estimated error (for any dependent variable) exceeds the error toler-
ances (note the use of a combination of the absolute and relative error tolerances),
the integration step is halved. If the integration step is reduced, the logic variable
fin1 is set to 0 so that the integration step is repeated from the current base point.

6. Next (for fin1 = 1), if the estimated error for all of the dependent variables
is less than 1/32 of the composite error tolerance, the step is doubled. The factor
1/32 is used in accordance with the fifth-order RK algorithm. Thus, if the inte-
gration step is doubled, the integration error will increase by a factor of 25 = 32.
If the estimated error for any dependent variable exceeds 1/32 of the composite
error tolerance, the integration step is unchanged (fin1 = 0).

7. Next, two checks are made to determine if user-specified limits have been reached.
If the integration step has reached the specified minimum value, the integration
interval is set to this minimum value and the integration continues from this point.
If the maximum number of integration steps has been exceeded, an error message
is displayed, execution of the while and for loops is terminated through the
two breaks, i.e., the ODE integration is terminated since the total number of
integration steps has reached the maximum value.
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8. Finally, at the end of the output interval, the solution is stored in arrays, which
are the return arguments for rkf45_solver. Note that the final end statement
terminates the for loop that steps the integration through the nplots outputs.

function [tout ,xout ,eout]=rkf45_solver (odefunction ,t0 ,tf ,x0 , . . .
hmin ,nstepsmax ,abstol , . . .
reltol ,Dtplot )

% This function solves first−order differential equations using
% the Runga−Kutta−Felhberg ( 4 , 5 ) method
% [tout , xout ] = rkf45_solver (@f ,t0 ,tf ,x0 ,hmin ,nstepsmax , . . .
% abstol ,reltol ,Dtplot )
% integrates the system of differential equations xt=f (t ,x )
% from t0 to tf with initial conditions x0 . f is a string
% containing the name of an ODE file . Function f (t ,x ) must
% return a column vector . Each row in solution array xout
% corresponds to a value returned in column vector t .
%
% rkf45_solver .m solves first−order differential equations
% using the variable step RK Fehlberg 45 method for a series of
% points along the solution by repeatedly calling function
% ssrkf45 for a single RK Fehlberg 45 step . The truncation error
% is estimated along the solution to adjust the integration step
% according to a specified error tolerance .
%
% Argument list
%
% f − String containing name of user−supplied problem description
% Call : xt = problem_name (t ,x ) where f = 'problem_name '
% t − independent variable (scalar )
% x − solution vector
% xt − returned derivative vector ; xt (i ) = dx (i ) /dt
%
% t0 − initial value of t
% tf − final value of t
% x0 − initial value vector
% hmin − minimum allowable time step
% nstepsmax − maximum number of steps
% abstol − absolute error tolerance
% reltol − relative error tolerance
% Dtplot − plot interval
% tout − returned integration points (column−vector )
% xout − returned solution , one solution row−vector per
% tout−value
% Start integration
t = t0 ;
tini = t0 ;
tout = t0 ; % initialize output value
xout = x0 ' ; % initialize output value
eout = zeros (size (xout ) ) ; % initialize output value
nsteps = 0 ; % initialize step counter
nplots = round ( (tf−t0 ) /Dtplot ) ; % number of outputs

% Initial integration step
h = 10*hmin ;

% Step through nplots output points
for i = 1 :nplots

% Final (output ) value of the independent variable
tplot = tini+i*Dtplot ;
% While independent variable is less than the final value ,
% continue the integration



2.2 A Basic Variable-Step Nonstiff ODE Integrator 59

while t <= tplot*0.9999
% If the next step along the solution will go past the
% final value of the independent variable , set the step
% to the remaining distance to the final value
if t+h > tplot , h = tplot−t ; end

% Single rkf45 step
[t ,x ,e ] = ssrkf45 (odefunction ,t0 ,x0 ,h ) ;

% Check if any of the ODEs have violated the error
% criteria
if max ( abs (e ) > (abs (x )*reltol + abstol ) )

% Error violation , so integration is not complete .
% Reduce integration step because of error violation
% and repeat integration from the base point .
% Set logic variable for rejected integration step .
h = h / 2 ;

% If the current step is less than the minimum
% allowable step , set the step to the minimum
% allowable value
if h < hmin , h = hmin ; end

% If there is no error violation , check if there is
% enough "error margin" to increase the integration
% step

elseif max ( abs (e ) > (abs (x )*reltol + abstol ) / 3 2 )
% The integration step cannot be increased , so leave
% it unchanged and continue the integration from the
% new base point .
x0 = x ; t0 = t ;
% There is no error violation and enough "security
% margin"

else
% double integration step and continue integration
% from new base point
h = 2*h ; x0 = x ; t0 = t ;

end %if

% Continue while and check total number of integration
% steps taken
nsteps=nsteps+1;
if (nsteps > nstepsmax )

fprintf ( ' \n nstepsmax exceeded ; integration terminated \n ' ) ;
break ;

end
end %while

% add latest result to the output arrays and continue for
% loop
tout = [tout ; t ] ;
xout = [xout ; x ' ] ;
eout = [eout ; e ' ] ;

end % for
% End of rkf45_solver

Function rkf45_solver Function for a variable step solution of an ODE system

In summary, we now have provision for increasing, decreasing or not changing the
integration interval in accordance with a comparison of the estimated integration error
(for each dependent variable) with the composite error tolerance, and for taking some
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special action if user-specified limits (minimum integration interval and maximum
number of integration steps) are exceeded.

We can now apply ssrkf45 an rkf45_solver to the logistic equation (2.1).
We already have function logistic_ode and the exact solution in logistic_
exact, so all we now require is a main program, which closely parallels the
main program calling the fixed step Euler integrator (Main_logistic). The
complete code is available in the companion library. Here, we just note a few
points:

1. Since rkf45_solver is a variable step integrator, it requires error tolerances,
a minimum integration step and the maximum number of steps

abstol = 1e-3;
reltol = 1e-3;
hmin = 1e-3;
nstepsmax = 1000;

These parameters are inputs to rkf45_solver.

% Call to ODE solver
[tout,xout] = rkf45_solver(@logistic_ode,t0,tf,N0,...

hmin,nstepsmax,abstol,...
reltol,Dtplot);

2. In order to assess the accuracy of the numerical solution, the absolute and relative
errors are computed from the exact solution. These (exact) errors can then be
compared with the absolute and relative error tolerances

% Print results
fprintf(’ t x(t) xex(t) abserr relerr\n’);
for i = 1:length(tout)

fprintf(’%7.1f%10.2f%10.2f%10.5f%10.5f\n’,...
tout(i),xout(i,1),Nexact(i),xout(i,1)-Nexact(i),...
(xout(i,1)-Nexact(i))/Nexact(i));

end

The plot produced by the main program is shown in Fig. 2.2. The exact and numer-
ical solutions are indistinguishable (as compared with Fig. 2.1). This issue is also
confirmed by the numerical output reproduced in Table 2.2.

We can note the following features of the numerical solution:

1. The initial conditions of the numerical and exact solutions agree (a good check).
2. The maximum relative error is −0.00001 which is a factor of 0.01 better than the

relative error tolerance set in the main program, i.e., reltol = 1e-3;
3. The maximum absolute error is −0.02847 which exceeds the absolute error toler-

ance, i.e., abstol = 1e-3; this absolute error tolerance can be
considered excessively stringent since it specifies 0.001 for dependent variable
values between 1,000 (t = 0) and 20,000 (t = 15). To explain why this absolute
error tolerance is not observed in the numerical solution, consider the use of
the absolute and relative error tolerances in function rkf45_solver, i.e., if
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Table 2.2 Numerical output obtained with rkf45_solver (abstol = 1e-3)

t x(t) xex(t) abserr relerr

0.0 1000.00 1000.00 0.00000 0.00000
0.5 1596.92 1596.92 -0.00033 -0.00000
1.0 2503.21 2503.22 -0.00958 -0.00000
1.5 3817.16 3817.18 -0.01991 -0.00001
2.0 5600.06 5600.09 -0.02673 -0.00000
2.5 7813.65 7813.68 -0.02799 -0.00000
3.0 10277.71 10277.73 -0.02742 -0.00000
3.5 12708.47 12708.50 -0.02847 -0.00000
4.0 14836.80 14836.83 -0.02623 -0.00000
4.5 16514.30 16514.31 -0.01358 -0.00000
5.0 17730.17 17730.17 0.00552 0.00000
5.5 18558.95 18558.92 0.02088 0.00000
6.0 19100.47 19100.44 0.02777 0.00000
6.5 19444.59 19444.56 0.02766 0.00000
7.0 19659.41 19659.39 0.02385 0.00000
7.5 19792.03 19792.01 0.01888 0.00000
8.0 19873.35 19873.33 0.01416 0.00000
8.5 19922.99 19922.98 0.01023 0.00000
9.0 19953.22 19953.21 0.00720 0.00000
9.5 19971.60 19971.60 0.00497 0.00000
10.0 19982.77 19982.76 0.00338 0.00000
10.5 19989.54 19989.54 0.00227 0.00000
11.0 19993.66 19993.66 0.00151 0.00000
11.5 19996.15 19996.15 0.00100 0.00000
12.0 19997.67 19997.67 0.00065 0.00000
12.5 19998.58 19998.58 0.00043 0.00000
13.0 19999.14 19999.14 0.00028 0.00000
13.5 19999.48 19999.48 0.00018 0.00000
14.0 19999.68 19999.68 0.00012 0.00000
14.5 19999.81 19999.81 0.00007 0.00000
15.0 19999.88 19999.88 0.00005 0.00000

Table 2.3 Numerical output obtained with rkf45_solver (abstol=1)

t x(t) xex(t) abserr relerr

0.0 1000.00 1000.00 0.00000 0.00000
0.5 1596.92 1596.92 -0.00033 -0.00000
1.0 2503.21 2503.22 -0.00958 -0.00000
1.5 3817.16 3817.18 -0.01991 -0.00001
2.0 5600.06 5600.09 -0.02673 -0.00000
2.5 7813.65 7813.68 -0.02799 -0.00000
3.0 10277.71 10277.73 -0.02742 -0.00000
3.5 12708.47 12708.50 -0.02847 -0.00000
4.0 14836.80 14836.83 -0.02623 -0.00000
4.5 16514.30 16514.31 -0.01358 -0.00000
5.0 17730.17 17730.17 0.00552 0.00000
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Fig. 2.2 Plot of the
numerical (using the rkf45
IVP solver) and analyti-
cal solutions of the logistic
equation
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abs(e(i)) > (abs(x(i))*reltol + abstol). This composite error
is typically (1,000)*1.0e-03 + 1.0e-03 and therefore the contribution
of the absolute error tolerance (the second 1.0e-03) is small in comparison
to the contribution of the relative error tolerance (the first 1.0e-03). In other
words, the relative error tolerance controls the integration step in this case, which
explains why the absolute error tolerance in the output of Table 2.3 exceeds the
absolute error tolerance. This conclusion does emphasize the need to carefully
understand and specify the error tolerances.
To explore this idea a little further, if the absolute error tolerance had been specified
as abserr = 1, it would then be consistent with the relative error, i.e., both
the absolute error (=1) and the relative error of 1.0e-03 are 1 part in 1,000 for
the dependent variable N equal to its initial value of 1,000.
A sample of the output is given in Table 2.3. Note that this output is essentially
identical to that of Table 2.2 (thus confirming the idea that the absolute error
tolerance 1.0e-03 has essentially no effect on the numerical solution), but
now both error criteria are satisfied. Specifically, the maximum absolute error
−0.02847 is well below the specified absolute error (=1).
This example illustrates that the specification of the error tolerances requires some
thought, including the use of representative values of the dependent variable, in
this case N = 1,000 for deciding on appropriate error tolerances. Also, this
example brings to mind the possibility that the dependent variable may have a
value of zero in which case the relative error tolerance has no effect in the state-
ment if abs(e(i)) > (abs(x(i))*reltol + abstol) (i.e., x(i)
= 0) and therefore the absolute error tolerance completely controls the step
changing algorithm. In other words, specifying an absolute error tolerance of zero
may not be a good idea (if the dependent variable passes through a zero value).
This situation of some dependent variables passing through zero also suggests
that having absolute and relative error tolerances that might be different for
each dependent variable might be worthwhile, particularly if the dependent
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variables have typical values that are widely different. In fact, this idea is easy to
implement since the integration algorithm returns an estimated integration error
for each dependent variable as a vector (e(i) in the preceding program state-
ment). Then, if absolute and relative error tolerances are specified as vectors (e.g.,
reltol(i) and abstol(i)), the comparison of the estimated error with the
absolute and relative error tolerances for each dependent variable is easily accom-
plished, e.g., by using afor loop with indexi. Some library ODE integrators have
this feature (of specifying absolute and relative error vectors), and it could easily
be added torkf45_solver, for example. Also, the idea of a relative error brings
widely different values of the dependent variables together on a common scale,
while the absolute error tolerance should reflect these widely differing values, par-
ticularly for the situation when some of the dependent variables pass through zero.

4. As a related point, we have observed that the error estimator for the RKF45
algorithm (i.e., the difference between the fourth- and fifth-order solutions) is
conservative in the sense that it provides estimates that are substantially above
the actual (exact) error. This is desirable since the overestimate of the error means
that the integration step will be smaller than necessary to achieve the required
accuracy in the solution as specified by the error tolerances. Of course, if the error
estimate is too conservative, the integration step might be excessively small, but
this is better than an error estimate that is not conservative (too small) and thereby
allows the integration step to become so large the actual error is above the error
tolerances. In other words, we want an error estimate that is reliable.

5. Returning to the output of Table 2.2, the errors in the numerical solution actually
decrease after reaching maximum values. This is rather typical and very fortu-
itous, i.e., the errors do not accumulate as the solution proceeds.

6. The numerical solution approaches the correct final value of 20,000 (again, this
is important in the sense that the errors do not cause the solution to approach an
incorrect final value).

In summary, we now have an RKF45 integrator that can be applied to a broad
spectrum of initial value ODE problems. In the case of the preceding application to the
logistic equation, RKF45 was sufficiently accurate that only one integration step was
required to cover the entire output interval of 0.5 (this was determined by putting some
additional output statements in rkf45_solver to observe the integration step h,
which illustrates an advantage of the basic integrators, i.e., experimentation with
supplemental output is easily accomplished). Thus, the integration step adjustment
in rkf45_solver was not really tested by the application to the logistic equation.

Therefore, we next consider another application which does require that the inte-
gration step is adjusted. At the same time with this application, we will investigate
the notion of stiffness. Indeed, there is one important limitation of RKF45: it is an
explicit integrator which does not perform well when applied to stiff problems.

The next application consists of a system of two linear, constant coefficient ODEs

dx1

dt
= −ax1 + bx2 (2.21a)
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dx2

dt
= bx1 − ax2 (2.21b)

For the initial conditions

x1(0) = 0; x2(0) = 2 (2.22)

the analytical solution to Eq. (2.21) is

x1(t) = eλ1t − eλ2t (2.23a)

x2(t) = eλ1t + eλ2t (2.23b)

where

λ1 = −(a − b); λ2 = −(a + b) (2.24)

and a, b are constants to be specified.
We again use the RKF45 algorithm implemented in functions rkf45_solver

and ssrkf45. The main program, designated stiff_main, and associated func-
tions stiff_odes and stiff_odes_exact (which compute the exact solution
from Eq. (2.23) to (2.24)) can be found in the companion library and follows directly
from the previous discussion. Note that the absolute and relative error tolerances
are chosen as abstol=1e-4 and reltol=1e-4, which is appropriate for the
two dependent variables x1(t) and x2(t) since they have representative values of 1.
Further, since x1(t) has an initial condition of zero, the specification of an absolute
error tolerance is essential.

The numerical output from these functions is listed in abbreviated form in
Table 2.4. As we can see in the table, two rows are printed at each time instant.
The first row corresponds with the output for the first state variable (x1) while the
second row corresponds with the second state variable (x2). The error tolerances are
easily satisfied throughout this solution and the number of steps taken by the solver is
nsteps = 24. The plotted solution is shown in Fig. 2.3. The eigenvalues for this
solution with a = 1.5, b = 0.5 are λ1 = −(a − b) = −1 and λ2 = −(a + b) = −2.
As t increases, e−2t decays more rapidly than e−t and eventually becomes negligibly
small (in comparison to e−t). Therefore, from Eq. (2.21), the two solutions merge
(at about t = 5 from Fig. 2.3). In other words, the solution for both x1(t) and x2(t)
becomes essentially e−t for t > 5.

We can now vary a and b to investigate how these features of the solution change
and affect the numerical solution. For example, if a = 10.5, b = 9.5, the eigen-
values are λ1 = −1 and λ2 = −20 so that the exponential eλ2t = e−20t decays
much more rapidly than eλ1t = e−t . The corresponding plotted solution is shown in
Fig. 2.4. Note that the two solutions merge at about t = 0.5. Also, the specified error
criteria, abserr = 1.0e-04, relerr=1.0e-04, are satisfied throughout the
solution, but clearly, this is becoming more difficult for the variable-step algorithm to
accomplish because of the rapid change in the solution just after the initial condition.
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Table 2.4 Numerical output from stiff_main for a = 1.5, b = 0.5

t x(t) xex(t) abserr relerr

0.00 0.0000000 0.0000000 0.0000000 0.0000000
2.0000000 2.0000000 0.0000000 0.0000000

0.10 0.0861067 0.0861067 0.0000000 0.0000000
1.7235682 1.7235682 -0.0000000 -0.0000000

0.20 0.1484108 0.1484107 0.0000000 0.0000003
1.4890508 1.4890508 -0.0000000 -0.0000000

0.30 0.1920067 0.1920066 0.0000001 0.0000004
1.2896298 1.2896299 -0.0000001 -0.0000001

0.40 0.2209912 0.2209911 0.0000001 0.0000004
1.1196489 1.1196490 -0.0000001 -0.0000001

0.50 0.2386513 0.2386512 0.0000001 0.0000004
0.9744100 0.9744101 -0.0000001 -0.0000001

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

9.60 0.0000677 0.0000677 -0.0000000 -0.0000001
0.0000677 0.0000677 -0.0000000 -0.0000001

9.70 0.0000613 0.0000613 -0.0000000 -0.0000001
0.0000613 0.0000613 -0.0000000 -0.0000001

9.80 0.0000554 0.0000554 -0.0000000 -0.0000001
0.0000555 0.0000555 -0.0000000 -0.0000001

9.90 0.0000502 0.0000502 -0.0000000 -0.0000001
0.0000502 0.0000502 -0.0000000 -0.0000001

10.00 0.0000454 0.0000454 -0.0000000 -0.0000001
0.0000454 0.0000454 -0.0000000 -0.0000001

Practically, this manifests in an increased number of integration steps required to
meet the specified error tolerances, i.e., nsteps = 78.

If this process of separating the eigenvalues is continued, clearly the difficulty in
computing a numerical solution will increase, due to two causes:

• The initial “transient” (or “boundary layer”) in the solution just after the initial
condition will become shorter and therefore more difficult for the variable step
algorithm to resolve.

• As the eigenvalues separate, the problem becomes stiffer and the stability limit of
the explicit RKF45 integrator places an even smaller limit on the integration step to
maintain stability. The maximum allowable integration step to maintain stability
can be estimated from the approximate stability condition for RKF45 (see Fig. 1.6,
in particular the curve corresponding to the fourth-order method)

|λh| < 2.7 (2.25)

Thus, for λ2 = −20, h < 2.7
20 ≈ 0.135 which is still not very restrictive (relative to

the time scale of 0 ≤ t ≤ 5 in Fig. 2.4) so that for this case, accuracy still probably
dictates the maximum integration step (to meet the error tolerances).

http://dx.doi.org/10.1007/978-3-319-06790-2_1
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Fig. 2.3 Plot of the
numerical and analytical
solutions (2.21)–(2.24) with
a = 1.5, b = 0.5
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Fig. 2.4 Plot of the
numerical and analytical
solutions (2.21)–(2.24) with
a = 10.5, b = 9.5
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We consider one more case in separating the eigenvalues, a = 5000.5, b = 4999.5,
for which λ1 = −1, λ2 = −10,000; thus, the stiffness ratio is 10,000/1. The output
for this case is incomplete since rkf45_solver fails at t = 0.33 with an error
message indicating nsteps has exceeded the limit nstepsmax=1,000. This is to
be expected since the maximum step size to still maintain stability is now determined
by λ2 = −10,000, h < 2.7

10000 = 2.7 × 10−4. In other words, to cover the total time
interval 0 ≤ t ≤ 5, which is set by λ1 = −1 (so that the exponential for λ1 decays to
e−(1)(5)), the integrator must take at least 5

2.7×10−4 ≈ 2 × 104 steps which is greater
than nstepsmax=1,000 (i.e., the numerical solution only proceeded to t = 0.33
when nstepsmax=1,000 was exceeded).

Note in general that a stiff system (with widely separated eigenvalues) has the
characteristic that the total time scale is determined by the smallest eigenvalue (e.g.,
λ1 = −1) while the maximum step allowed to still maintain stability in covering
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this total time interval is determined by the largest eigenvalue (e.g., λ2 = −10,000);
if these two extreme eigenvalues are widely separated, the combination makes for a
large number of integration steps to cover the total interval (again, as demonstrated
by RKF45 which in this case could only get to t = 0.33 with 10,00 steps).

The preceding example illustrates the general limitation of the stability of explicit
ODE integrators for the solution of stiff systems. We therefore now consider implicit
ODE integrators, which generally circumvent this stability limit.

2.3 A Basic Variable Step Implicit ODE Integrator

Many implicit ODE integrators have been proposed and implemented in computer
codes. Thus, to keep the discussion to a reasonable length, we consider here only
one class of methods to illustrate some properties that clearly demonstrate the advan-
tages of using an implicit integrator. This type of integrator is generally termed as
Rosenbrock [10] or linearly implicit Runge–Kutta (LIRK) method.

Consider an autonomous function f (f does not depend explicitly on time) and
the following equation:

dx

dt
= f (x) (2.26)

The explicit RK methods developed earlier in this chapter (see Eqs. 2.10–2.12) are
given by

k1 = f (xk)

k2 = f (xk + hβ2,1k1)

k3 = f (xk + h(β3,1k1 + β3,2k2))

... (2.27)

kq = f (xk + h(βq,1k1 + βq,2k2 + · · · + βq,q−1kq−1))

xk+1 = xk + h
q∑

i=1

wiki

whereas the general implicit formulas can be expressed by

k1 = f (xk + h(β1,1k1 + β1,2k2 + · · · + β1,qkq))

k2 = f (xk + h(β2,1k1 + β2,2k2 + · · · + β2,qkq))

k3 = f (xk + h(β3,1k1 + β3,2k2 + · · · + β3,qkq))

... (2.28)

kq = f (xk + h(βq,1k1 + βq,2k2 + · · · + βq,qkq))
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xk+1 = xk + h
q∑

i=1

wiki

Diagonally implicit Runge–Kutta (DIRK) is a particular case of this general formu-
lation where βi,j = 0 for j > i, i.e.,

k1 = f (xk + hβ1,1k1)

k2 = f (xk + h(β2,1k1 + β2,2k2))

k3 = f (xk + h(β3,1k1 + β3,2k2 + β3,3k3))

... (2.29)

kq = f (xk + h(βq,1k1 + βq,2k2 + · · · + βq,qkq))

xk+1 = xk + h
q∑

i=1

wiki

LIRK methods introduce a linearization of stage ki

ki = f (xk + h(βi,1k1 + · · · + βi,i−1ki−1) + hβi,iki)

ki ≈ f (xk + h(βi,1k1 + · · · + βi,i−1ki−1))

+ hβi,i
∂f

∂x

∣∣∣∣
xk+h(βi,1k1+···+βi,i−1ki−1)

ki (2.30)

or, if we consider a system of ODEs dx
dt = f(x) (instead of a single ODE)

ki = f(xk + h(βi,1k1 + · · · + βi,i−1ki−1))

+ hβi,i
∂f
∂x

∣∣∣∣
xk+h(βi,1k1+···+βi,i−1ki−1)

ki (2.31)

where the Jacobian ∂f
∂x

∣∣∣
xk+h(βi,1k1+···+βi,i−1ki−1)

≈ ∂f
∂x

∣∣∣
xk

is usually not evaluated

for each stage, but rather assumed constant across the stages, so as to keep the
computational expense at a reasonable level.

In addition, Rosenbrock’s methods replace stage ki in the preceding expression
by a linear combination of the previous stages (constructed so as to preserve the
lower-triangular structure, i.e., γi,j = 0 for j > i)

k1 = f(xk) + hβ1,1Jkk1

k2 = f(xk + hβ2,1k1) + hJk
(
γ2,1k1 + γ2,2k2

)
... (2.32)

kq = f(xk + h(βq,1k1 + βq,2k2 + · · · + βq,q−1kq−1))
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+ hJk
(
γ2,1k1 + · · · + γq,qkq

)

xk+1 = xk + h
q∑

i=1

wiki

Therefore, each stage ki can be computed by solving a linear system of equations of
the form

(
I − hγi,iJk

)
ki = f

(
xk + h(βi,1k1 + βi,2k2 + · · · + βi,i−1ki−1)

)
+ hJk

(
γi,1k1 + · · · + γi,i−1ki−1

)
(2.33)

If the parameters γi,i are all given the same numerical values

γ1,1 = · · · = γq,q = γ (2.34)

then, the same LU decomposition can be used for all the stages, thus saving compu-
tation time.

In short form, the preceding equations which define a q-stage Rosenbrock’s
method for an autonomous system are given by

(I − hγi,iJk)ki = f

⎛
⎝xk + h

i−1∑
j=1

βi,jkj

⎞
⎠+ hJk

i−1∑
j=1

γi,jkj; xk+1 = xk + h
q∑

i=1

ωiki

(2.35)
If we now consider a nonautonomous system of equations (explicit dependence on t)

dx
dt

= f(x, t) (2.36)

then this system can be transformed into an autonomous form as

dx
dτ

= f(x, t); dt

dτ
= 1 (2.37)

and Eq. (2.35) lead to

(I − hγi,iJk)ki = f

⎛
⎝xk + h

i−1∑
j=1

βi,jkj, tk + hβi

⎞
⎠

+ hJk

i−1∑
j=1

γi,jkj + h
∂f
∂t

∣∣∣∣
tk ,xk

γi (2.38)

with βi = ∑i−1
j=1 βi,j and γi = ∑i

j=1 γi,j.
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For instance, a first-order accurate Rosenbrock’s scheme for nonautonomous
equations is given by

(I − hJk)k1 = f (xk, tk) + h
∂f
∂t

∣∣∣∣
tk ,xk

(2.39)

xk+1 = xk + hk1 (2.40)

A second-order accurate Rosenbrock’s method developed for autonomous equa-
tions in [11], and called ROS2, is as follows:

(I − γ hJk)k1 = f (xk) (2.41)

(I − γ hJk)k2 = f (xk + hk1) − 2k1 (2.42)

xk+1 = xk + 1.5hk1 + 0.5hk2 (2.43)

with desirable stability properties for γ ≥ 0.25.
In the following, we will focus attention on a modified Rossenbrock’s method

originally proposed in [12] and specifically designed for the solution of nonlinear
parabolic problems, which will be of interest to us in the following chapters dedicated
to the method of lines solutions of partial differential equations. As we have just seen,
the main advantage of Rosenbrock’s methods is to avoid the solution of nonlinear
equations, which naturally arise when formulating an implicit method. In [12], the
authors establish an efficient third-order Rosenbrock’s solver for nonlinear parabolic
PDE problems, which requires only three stages. In mathematical terms, the method
described in [12] is stated in a transformed form, which is used in practice to avoid
matrix-vector operations

(
I

hγ
− ∂f

∂x
(xk, tk)

)
Xk,i = f

⎛
⎝xk +

i−1∑
j=1

ai,jXk,j, tk + hαi

⎞
⎠

+
i−1∑
j=1

ci,j

h
Xk,j + hdi

∂f
∂t

(xk, tk) i = 1, 2, 3 (2.44)

Two stepping formulas for a third- and a second-order methods, respectively, are
used to estimate the truncation error, i.e., can be computed by taking the difference
between the two following solutions

xk+1 = xk +
3∑

j=1

mjXk,j (2.45a)
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Table 2.5 Parameters of the ROS23P algorithm

γ = 0.5 + √
3/6

a21 = 1.267949192431123 c21 = −1.607695154586736
a31 = 1.267949192431123 c31 = −3.464101615137755
a32 = 0 c32 = −1.732050807567788
α1 = 0 d1 = 0.7886751345948129
α2 = 1 d2 = −0.2113248654051871
α3 = 1 d3 = −1.077350269189626
m1 = 2 m̂1 = 2.113248654051871
m2 = 0.5773502691896258 m̂2 = 1
m3 = 0.4226497308103742 m̂3 = 0.4226497308103742

x̂k+1 = xk +
3∑

j=1

m̂jXk,j (2.45b)

Note that the solutions at intermediate points, Xk,j, are the same for both orders
reflecting the embedding of the second-order method in the third-order method.

γ , ai,j, ci,j, αi, di, mi, m̂i are parameters defined for a particular Rosenbrock’s
method. Particular values are listed in Table 2.5, which defines a method designated
as ROS23P. ROS denotes Rosenbrock, 23 indicates a second-order method embedded
in a third-order method in analogy with the fourth-order method embedded in a
fifth-order method in RKF45, and P stands for parabolic problems. This solver will
indeed be particularly useful for the time integration of ODE systems arising from
the application of the method of lines to parabolic PDE problems. The selection of
appropriate parameters, as in Table 2.5, confers desirable stability properties to the
algorithm, which can therefore be applied to stiff ODEs. To reiterate, the system of
Eq. (2.44) is linear in Xk,j which is a very favorable feature, i.e., a single application
of a linear algebraic equation solver is all that is required to take the next step along
the solution (from point k to k + 1). This is in contrast to implicit ODE methods
which require the solution of simultaneous nonlinear equations that generally is a
substantially more difficult calculation than solving linear equations (usually done
by Newton’s method, which must be iterated until convergence).

As in the case of RKF45, we program the algorithm in two steps: (1) a single
step function analogous to ssrkf45 and (2) a function that calls the single step
routine to step along the solution and adjust the integration step that is analogous to
rkf45_solver. We first list the single step routine, ssros23p

function [t ,x ,e ] = ssros23p (odefunction ,jacobian , . . .
time_derivative ,t0 ,x0 ,h ,gamma ,a21 , . . .
a31 ,a32 ,c21 ,c31 ,c32 ,d ,alpha ,m ,mc )

%
% Function ssros3p computes an ODE solution by an implicit
% third−order Rosenbrock method for one step along the
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% solution (by calls to 'odefunction ' to define the ODE
% derivative vector , calls to 'jacobian ' to define the
% Jacobian and calls to time_derivative if the problem is
% non autonomous ) .
%
% Argument list
%
% odefunction − string containing name of user−supplied problem
% jacobian − string containing name of user−supplied Jacobian
% time_derivative − sting containing name of user−supplied
% function time derivative
%
% t0 − initial value of independent variable
% x0 − initial condition vector
% h − integration step
% t − independent variable (scalar )
% x − solution vector after one rkf45 step
% e − estimate of truncation error of the solution vector
%
% gamma ,a21 ,a31 ,a32 ,c21 ,c31 ,c32 ,alpha ,d ,m ,mc are the
% method parameters

% Jacobian matrix at initial (base ) point
[Jac ] = feval (jacobian , t0 , x0 ) ;

% Time derivative at initial (base ) point
[Ft ] = feval (time_derivative , t0 , x0 ) ;

% Build coefficient matrix and perform L−U decomposition
CM = diag ( 1 / (gamma*h )*ones (length (x0 ) , 1 ) ) − Jac ;
[L ,U ] = lu (CM ) ;

% stage 1
xs = x0 ;
[xt ] = feval (odefunction , t0+alpha ( 1 ) *h , xs ) ;
rhs = xt + h*d ( 1 ) *Ft ;
xk1 = U \ (L \rhs ) ;

% stage 2
xs = x0 + a21*xk1 ;
[xt ] = feval (odefunction , t0+alpha ( 2 ) *h , xs ) ;
rhs = xt + (c21 /h )*xk1 + h*d ( 2 ) *Ft ;
xk2 = U \ (L \rhs ) ;

% stage 3
xs = x0 + a31*xk1 + a32*xk2 ;
[xt ] = feval (odefunction , t0+alpha ( 3 ) *h , xs ) ;
rhs = xt + (c31 /h )*xk1 + (c32 /h )*xk2 + h*d ( 3 ) *Ft ;
xk3 = U \ (L \rhs ) ;

% second−order step
x2 = x0 + mc ( 1 ) *xk1 + mc ( 2 ) *xk2 + mc ( 3 ) *xk3 ;

% third−order step
x3 = x0 + m ( 1 ) *xk1 + m ( 2 ) *xk2 + m ( 3 ) *xk3 ;

% error evaluation
t = t0 + h ;
e = x3 − x2 ;
x = x3 ;

Function ssros23p Routine for a single step along the solution
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We can note the following details about ssros23p:

1. The first statement defining function ssros23p has an argument list that
includes the parameters (constants) used in the ROS23P algorithm as defined
in Table 2.5.

2. After an initial set of comments explaining the operation of ssros23p and its
arguments, the Jacobian matrix of the ODE system is first computed

% Jacobian matrix at initial (base) point
[Jac] = feval(jacobian,t0,x0);

The user-supplied routine jacobian (to be discussed subsequently) is called to
compute the Jacobian matrix in Eq. (2.44), fx(xk, tk) , at the base point tk = t0,
xk = x0.

3. Then, the time derivative of the ODE function is computed

%...
%... Time derivative at initial (base) point

[Ft] = feval(time_derivative, t0, x0);

The user-supplied routine time_derivative is called to compute ft(xk, tk).
4. The LHS coefficient matrix of Eq. (2.44)

(
I

hγ
− fx(xk, tk)

)

is then constructed

% Build coefficient matrix and perform L-U decomposition
CM = diag(1/(gamma*h)*ones(length(x0),1))-Jac;
[L,U] = lu(CM);

Note that the main diagonal of the identity matrix is coded as ones(length
(x0),1). Then subtraction of the Jacobian matrix,Jac, results in a square coef-
ficient matrix, CM, with dimensions equal to the length of the ODE dependent
variable vector (length(x0)). After CM is constructed, it is factored (decom-
posed) into L and U lower and upper triangular factors using the MATLAB
utility lu.

Just to briefly review why this decomposition is advantageous, if the coefficient,
A, of a linear algebraic system

Ax = b (2.46a)

is written in factored form, i.e., A = LU, Eq. (2.46a) can be written as

LUx = b (2.46b)
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Equation (2.46b) can be written as two algebraic equations

Ly = b (2.47)

Ux = y (2.48)

Note that Eq. (2.47) can be solved for y and Eq. (2.48) can then be solved for
x (the solution of Eq. (2.46a)). If matrix A can be decomposed into a lower tri-
angular matrix L and and upper triangular matrix U, then the solution of (2.47)
can be easily done by elementary substitution starting from the first equation to
the last one (forward substitution), whereas Eq. (2.48) can then be solved in the
same way from the last to the first equation (backward substitution). This is a
substantial simplification. Also, once the LU decomposition is performed, it can
be used repeatedly for the solution of Eq. (2.46a) with different RHS vectors, b,
as we shall observe in the coding of ssros23p. This reuse of the LU factor-
ization is an important advantage since this factorization is the major part of the
computational effort in the solution of linear algebraic equations.

5. We now step through the first of three stages, using i = 1 in Eq. (2.44)

% Stage 1
xs = x0;
[xt] = feval(odefunction,t0+alpha(1)*h,xs);
rhs = xt;
xk1 = U\(L\rhs);

Thus, the RHS of Eq. (2.44) is simply xt = f (xk, tk) (from Eq. 1.12). Finally,
the solution of Eq. (2.44) for Xk1 is obtained by using the MATLAB operator
twice, corresponding to the solution of Eqs. (2.47) and (2.48).

6. The second stage is then executed essentially in the same way as the first stage,
but with i = 2 in Eq. (2.44) and using Xk1 from the first stage

% Stage 2
xs = x0 + a21*xk1;
[xt] = feval(odefunction,t0+alpha(2)*h,xs);
rhs = xt + (c21/h)*xk1;
xk2 = U\(L\rhs);

Note in particular how the LU factors are used again (they do not have to be
recomputed at each stage).

7. Finally, the third stage is executed essentially in the same way as the first and
second stages, but with i = 3 in Eq. (2.44) and using Xk1 from the first stage and
Xk2 from the second stage

% Stage 3
xs = x0 + a31*xk1 + a32*xk2;
[xt] = feval(odefunction,t0+alpha(3)*h,xs);
rhs = xt + (c31/h)*xk1 + (c32/h)*xk2;
xk3 = U\(L\rhs);

Again, the LU factors can be used as originally computed.

http://dx.doi.org/10.1007/978-3-319-06790-2_1
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8. Equations (2.45a) and (2.45b) are then used to step the second- and third-order
solutions from k to k + 1

% Second-order step
x2 = x0 + mc(1)*xk1 + mc(2)*xk2 + mc(3)*xk3;
% Third-order step
x3 = x0 + m(1)*xk1 + m(2)*xk2 + m(3)*xk3;

9. The truncation error can be estimated as the difference between the second- and
third-order solutions

% Estimated error and solution update
e = x3 - x2;
t = t0 + h;
x = x3;

The solution is taken to be the third-order result at the end of ssros23p.

In order to use function ssros23p, we require a calling function that will also
adjust the integration step in accordance with user-specified tolerances and the esti-
mated truncation error from ssros23p. A routine, analogous to rkf45_solver,
is listed in ros23p_solver.

function [tout , xout , eout ] = ros23p_solver (odefunction , . . .
jacobian ,time_derivative ,t0 ,tf , . . .
x0 ,hmin ,nstepsmax ,abstol ,reltol , . . .
Dtplot )

% [tout , yout ] = ros23p_solver ( 'f ' , ' J ' , ' Ft ' ,t0 ,tf ,x0 ,hmin , . . .
% nstepsmax ,abstol , reltol ,Dtplot )
% Integrates a non−autonomous system of differential equations
% y ' =f (t ,x ) from t0 to tf with initial conditions x0 .
%
% Each row in solution array xout corresponds to a value
% returned in column vector tout .
% Each row in estimated error array eout corresponds to a
% value returned in column vector tout .
%
% ros23p_solver .m solves first−order differential equations
% using a variable−step implicit Rosenbrock method for a
% series of points along the solution by repeatedly calling
% function ssros23p for a single Rosenbrock step .
%
% The truncation error is estimated along the solution to
% adjust the integration step according to a specified error
% tolerance .
%
% Argument list
%
% f − String containing name of user−supplied
% problem description
% Call : xdot = fun (t ,x ) where f = 'fun '
% t − independent variable (scalar )
% x − Solution vector .
% xdot − Returned derivative vector ;
% xdot (i ) = dx (i ) /dt
%
% J − String containing name of user−supplied Jacobian
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% Call : Jac = fun (t ,x ) where J = 'fun '
% t − independent variable (scalar )
% x − Solution vector .
% Jac − Returned Jacobian matrix ;
% Jac (i ,j ) = df (i ) /dx (j )
%
% Ft − String containing nam of user−supplied
% function time derivative
% Call : Ft = fun (t ,x ) where Ft = 'fun '
% t − independent variable (scalar )
% x − Solution vector .
% Ft − Returned time derivative ;
% Ft (i ) = df (i ) /dt
%
% t0 − Initial value of t
% tf − Final value of t
% x0 − Initial value vector
% hmin − minimum allowable time step
% nstepsmax − maximum number of steps
% abstol − absolute error tolerance
% reltol − relative error tolerance
% Dtplot − Plot interval
%
% tout − Returned integration points (column−vector ) .
% xout − Returned solution , one solution row−vector per
% tout−value .

% Initial integration step
h = 10*hmin ;

% method parameters
gamma = 0.5+sqrt ( 3 ) / 6 ;
a21 = 1.267949192431123;
a31 = 1.267949192431123;
a32 = 0 . 0 ;
c21 = −1.607695154586736;
c31 = −3.464101615137755;
c32 = −1.732050807567788;
d ( 1 ) = 7.886751345948129e−01;
d ( 2 ) = −2.113248654051871e−01;
d ( 3 ) = −1.077350269189626e+00;
alpha ( 1 ) = 0 ;
alpha ( 2 ) = 1 . 0 ;
alpha ( 3 ) = 1 . 0 ;
m ( 1 ) = 2.000000000000000e+00;
m ( 2 ) = 5.773502691896258e−01;
m ( 3 ) = 4.226497308103742e−01;
mc ( 1 ) = 2.113248654051871e+00;
mc ( 2 ) = 1.000000000000000e+00;
mc ( 3 ) = 4.226497308103742e−01;
% Start integration
t = t0 ;
tini = t0 ;
tout = t0 ; % initialize output value
xout = x0 ' ; % initialize output value
eout = zeros (size (xout ) ) ; % initialize output value
nsteps = 0 ; % initialize step counter
nplots = round ( (tf−t0 ) /Dtplot ) ; % number of outputs

% Initial integration step
h = 10*hmin ;

% Step through nplots output points
for i = 1 :nplots

% Final (output ) value of the independent variable
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tplot = tini+i*Dtplot ;
% While independent variable is less than the final value ,
% continue the integration
while t <= tplot*0.9999

% If the next step along the solution will go past the
% final value of the independent variable , set the step
% to the remaining distance to the final value
if t+h > tplot , h = tplot−t ; end
% Single ros23p step
[t ,x ,e ] = ssros23p (odefunction ,jacobian , . . .

time_derivative ,t0 ,x0 ,h ,gamma ,a21 ,a31 ,a32 , . . .
c21 ,c31 ,c32 ,d ,alpha ,m ,mc ) ;

% Check if any of the ODEs have violated the error
% criteria
if max ( abs (e ) > (abs (x )*reltol + abstol ) )

% Error violation , so integration is not complete .
% Reduce integration step because of error violation
% and repeat integration from the base point . Set
% logic variable for rejected integration step .
h = h / 2 ;

% If the current step is less than the minimum
% allowable step , set the step to the minimum
% allowable value
if h < hmin , h = hmin ; end

% If there is no error violation , check if there is
% enough "error margin" to increase the integration
% step

elseif max ( abs (e ) > (abs (x )*reltol + abstol ) / 8 )
% The integration step cannot be increased , so leave
% it unchanged and continue the integration from the
% new base point .
x0 = x ; t0 = t ;

% There is no error violation and enough "security
% margin"

else

% double integration step and continue integration
% from new base point
h = 2*h ; x0 = x ; t0 = t ;

end %if

% Continue while and check total number of integration
% steps taken
nsteps=nsteps+1;
if (nsteps > nstepsmax )

fprintf ( ' \ n nstepsmax exceeded ; integration terminated \n ' ) ;
break ;
end

end %while

% add latest result to the output arrays and continue for
% loop
tout = [tout ; t ] ;
xout = [xout ; x ' ] ;
eout = [eout ; e ' ] ;

end % for
%
% End of ros23p_solver

Function ros23p_solver Routine for a variable step solution of an ODE system
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ros23p_solver closely parallels rkf45_solver, so we point out just a few
differences:

1. After a set of comments explaining the arguments and operation of ros23p_
solver, the parameters for the ROS23P algorithm are set in accordance with
the values defined in Table 2.5.

2. The variable step algorithm is then implemented as discussed for rkf45_
solver, based on the estimated truncation error vector from a call tossros23p

function [t,x,e] = ssros23p(odefunction,jacobian,...
time_derivative,t0,x0,h,gamma,...
a21,a31,a32,c21,c31,c32,d,...
alpha,m,mc)

In order to apply this algorithm to an example we need function to define the
ODE model. If the logistic equation is chosen as an example, such function is the
same as in logistic_ode. The exact solution to the logistic equation is again
programmed in logistic_exact.

Since ROS23P requires the Jacobian matrix in ssros23p, we provide function
logistic_jacobian for this purpose.

function [Jac ] = logistic_jacobian(t , N )
% Set global variables
global a b K N0

% Jacobian of logistic equation Nt=(a−b*N )*N
Jac = a − 2*b*N ;

Function logistic_jacobian Routine for the computation of the Jacobian matrix of logistic equa-
tion (2.1)

Note that, in this case, the logistic equation has a 1 × 1 Jacobian matrix (single
element), which is just the derivative of the RHS of Eq. (2.1) with respect to N.
ROS23P also requires a function to compute the time derivative of the ODE function,
which is only useful for nonautonomous problems (so not in this case).

We now have all of the programming elements for the ROS23P solution of the
logistic equation. Execution of the main program gives the numerical output of
Table 2.6 (the plotted output is essentially identical to Fig. 2.2 and therefore is not
repeated here).

A comparison of Tables 2.3 and 2.6 clearly indicates that RKF45 in this case was
much more effective in controlling the integration error than ROS23P (all of the
integration parameters such as error tolerances were identical for the two integra-
tors, i.e., the parameters of Table 2.2). However, ROS23P did meet the relative error
tolerance, relerr = 1e-03. As explained previously, the large absolute error is
due to the dominance of the total error by the relative error, which produces a typical
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Table 2.6 Numerical output obtained with ros23p_solver for the logistic equation (2.1)

t x(t) xex(t) abserr relerr

0.0 1000.00 1000.00 0.00000 0.00000
0.5 1596.67 1596.92 -0.25079 -0.00016
1.0 2501.33 2503.22 -1.88884 -0.00075
1.5 3814.04 3817.18 -3.13425 -0.00082
2.0 5595.63 5600.09 -4.46446 -0.00080
2.5 7808.18 7813.68 -5.49428 -0.00070
3.0 10271.87 10277.73 -5.86125 -0.00057
3.5 12703.07 12708.50 -5.42835 -0.00043
4.0 14832.45 14836.83 -4.37216 -0.00029
4.5 16511.65 16514.31 -2.66122 -0.00016
5.0 17728.93 17730.17 -1.23181 -0.00007
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

15.0 19999.89 19999.88 0.00746 0.00000

term in the error test of ros23p_solver at t = 1.5 of 3814.04(0.001) =
3.814 whereas the absolute error (in absolute terms) was smaller, i.e., 3.13425.
Thus, although ROS23P did not control the integration error as tightly as RKF45, its
performance can still probably be considered acceptable for most applications, i.e.,
1 part in 1,000. This poorer error control can be explained by the lower order of the
error estimator of ROS23P relative to RKF45.

In other words, the error tolerances for ROS23P solver of abserr = 1e-03,
relerr = 1e-03 are rather loose. If they are tightened to abserr = 1e-05,
relerr = 1e-05 (i.e., 1 part in 105) the resulting output from ros23p_
solver is

t x(t) xex(t) abserr relerr
0.0 1000.00 1000.00 0.00000 0.00000
0.5 1596.92 1596.92 -0.00623 -0.00000
1.0 2503.20 2503.22 -0.01681 -0.00001
1.5 3817.15 3817.18 -0.03137 -0.00001
2.0 5600.04 5600.09 -0.04699 -0.00001
2.5 7813.62 7813.68 -0.05887 -0.00001
3.0 10277.67 10277.73 -0.06277 -0.00001
3.5 12708.44 12708.50 -0.05726 -0.00000
4.0 14836.78 14836.83 -0.04438 -0.00000
4.5 16514.29 16514.31 -0.02130 -0.00000
5.0 17730.19 17730.17 0.02374 0.00000
. .
. .
. .
15.0 19999.89 19999.88 0.00639 0.00000

The enhanced performance of ROS23P using the tighter error tolerances is evi-
dent (ROS23P achieved the specified accuracy of 1 part in 105). This example
illustrates the importance of error tolerance selection and the possible differences
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in error control between different integration algorithms. In other words, some
experimentation with the error tolerances may be required to establish the accuracy
(reliability) of the computer solutions.

Since ROS23P has a decided advantage over RKF45 for stiff problems (because
of superior stability), we now illustrate this advantage with the 2 × 2 ODE sys-
tem of Eq. (2.21) with again evaluating the numerical solution using the analytical
solution of Eq. (2.23). The coding of the 2 × 2 problem to run under ROS23P is
essentially the same as for RKF45 and can also be found in the companion library.
However, a routine for the Jacobian matrix is required by ROS23P (see function
jacobian_stiff_odes).

function Jac = jacobian_stiff_odes(t ,x )

% Set global variables
global a b

% Jacobian matrix
Jac = [−a b ;

b −a ] ;

Function jacobian_stiff_odes Jacobian matrix of 2 × 2 ODE Eq. (2.21)

Here we are evaluating the Jacobian matrix fx(xk, tk) in Eq. (2.44) as required in
ssros23p. For example, the first row, first element of this matrix is ∂f1

∂x1
= −a. Note

that since Eq. (2.21) are linear constant coefficient ODEs, their Jacobian matrix is
a constant matrix, and therefore function jacobian_stiff_odes would only
have to be called once. However, since ros23p_solver and ssros23p are
general purpose routines (they can be applied to nonlinear ODEs for which the
Jacobian matrix is not constant, but rather is a function of the dependent variable
vector), jacobian_stiff_odes will be called at each point along the solution
of Eq. (2.21) through ros23p_solver.

We should note the following points concerning the Jacobian matrix:

1. If we are integrating an nth order ODE system (n first-order ODEs in n unknowns
or a n × n ODE system), the Jacobian matrix is of size n × n. This size increases
very quickly with n. For example, if n = 100 (a modest ODE problem), the
Jacobian matrix is of size 100 × 100 = 10,000.

2. In other words, we need to compute the n × n partial derivatives of the Jaco-
bian matrix, and for large n (e.g., n > 100), this becomes difficult if not essen-
tially impossible (not only because there are so many partial derivatives, but also,
because the actual analytical differentiation may be difficult depending on the
complexity of the derivative functions in the RHS of Eq. (1.12) that are to be
differentiated).

3. Since analytical differentiation to produce the Jacobian matrix is impractical for
large n, we generally have to resort to a numerical procedure for computing
the required partial derivatives. Thus, a numerical Jacobian is typically used in

http://dx.doi.org/10.1007/978-3-319-06790-2_1
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Table 2.7 Numerical output from ssros23p for the stiff problem (2.21) with a = 500000.5 and
b = 499999.5

a = 500000.500 b = 499999.500

t x(t) xex(t) abserr relerr
0.00 0.0000000 0.0000000 0.0000000 0.0000000

2.0000000 2.0000000 0.0000000 0.0000000
0.10 0.9048563 0.9048374 0.0000189 0.0000208

0.9048181 0.9048374 -0.0000193 -0.0000213
0.20 0.8187392 0.8187308 0.0000084 0.0000103

0.8187187 0.8187308 -0.0000120 -0.0000147
0.30 0.7408210 0.7408182 0.0000028 0.0000038

0.7408101 0.7408182 -0.0000082 -0.0000110
0.40 0.6703187 0.6703200 -0.0000013 -0.0000020

0.6703128 0.6703200 -0.0000072 -0.0000108
0.50 0.6065277 0.6065307 -0.0000029 -0.0000049

0.6065246 0.6065307 -0.0000061 -0.0000100
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

10.00 0.0000454 0.0000454 -0.0000000 -0.0007765
0.0000454 0.0000454 -0.0000000 -0.0007765

the solution of stiff ODE systems. The calculation of a numerical Jacobian for
Eq. (2.21) is subsequently considered.

The numerical output from these functions is listed in abbreviated form in
Table 2.7. As in the case of Table 2.4, two rows are printed at each time instant.
The first row corresponds with the output for the first state variable (x1) while the
second row corresponds with the second state variable (x2). This solution was com-
puted with good accuracy and modest computation effort (the number of calls to
IVP solver was nsteps = 14). Note how the two solutions, x1(t), x2(t), merged
almost immediately and were almost identical by t = 0.1 (due to the large eigen-
value λ2 = −106 in Eq. (2.24) so that the exponential e−λ2t decayed to insignifi-
cance almost immediately). This example clearly indicates the advantage of a stiff
integrator (RKF45 could not handle this problem with reasonable computational
effort since it would take an extremely small integration step because of the stiff-
ness). Clearly the solution of the simultaneous equations of Eq. (2.44) was worth
the effort to maintain stability with an acceptable integration step (the integration
step could be monitored by putting it in an output statement in ros23p_solver).
Generally, this example illustrates the advantage of an implicit (stiff) integrator (so
that the additional computation of solving simultaneous linear algebraic equations
is worthwhile).

There is one detail that should be mentioned concerning the computation of
the solution in Table 2.7. Initially ros23p_solver and ssros23p failed to
compute a solution. Some investigation, primarily by putting output statements in
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ros23p_solver, indicated that the problem was the selection of an initial inte-
gration interval in ros23p_solver according to the statement

% Initial integration step
h = Dtplot/10;

In other words, since Dtplot = 0.1 (see the output interval of Table 2.7), the
initial integration step is 0.01. Recall that ros23p_solver is trying to compute a
solution according to Eq. (2.24) in which an exponential decays according to e−106t .
If the initial step in the numerical integration is h = 0.01, the exponential would
be e−106(0.01) = e−104

and it therefore has decayed to insignificance. The auto-
matic adjustment of the integration step in ros23p_solver would have to reduce
the integration step from 0.01 to approximately 10−7 so that the exponential is
e−106(10−7) = e−0.1 and it apparently was unable to do this. By changing the initial
integration programming to

% Initial integration step
h = Dtplot/1.0e+5;

the numerical integration proceeded without difficulty and produced the numerical
solution of Table 2.7. This discussion illustrates that some experimentation with the
initial integration step may be required, particularly for stiff problems. An alternative
would be to use an available algorithm for the initial integration step, but this would
increase the complexity of ros23p_solver. We therefore opted to use a man-
ual adjustment of the initial integration interval to successfully start the numerical
integration.

As indicated previously, the use of an analytical Jacobian with a stiff integrator is
not practical for large ODE problems (i.e., n > 100), but rather, a numerical Jaco-
bian should be used. To illustrate this approach, we consider the use of a numerical
Jacobian for the solution of Eq. (2.21). For example, we can use the finite difference
approximations.

fx =

⎡
⎢⎢⎣

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

⎤
⎥⎥⎦ ≈

⎡
⎢⎢⎣

f1(x1+
x1,x2)−f1(x1,x2)

x1

f1(x1,x2+
x2)−f1(x1,x2)

x2

f2(x1+
x1,x2)−f2(x1,x2)

x1

f2(x1,x2+
x2)−f2(x1,x2)

x2

⎤
⎥⎥⎦ (2.49)

Application of Eq. (2.49) to Eq. (2.21) gives

fx ≈
[ −a(x1+
x1)+bx2−(ax1+bx2)


x1

−ax1+b(x2+
x2)−(−ax1+bx2)

x2

f2(x1+
x1,x2)−f2(x1,x2)

x1

f2(x1,x2+
x2)−f2(x1,x2)

x2

]
=
[−a b

b −a

]

Thus, Eq. (2.49) gives the exact Jacobian (see jacobian_stiff_odes)
because the finite differences are exact for linear functions (i.e., the linear functions of
Eq. (2.21)). However, generally this will not be the case (for nonlinear functions) and
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therefore the finite difference approximation of the Jacobian matrix will introduce
errors in the numerical ODE solution. The challenge then is to compute the numeri-
cal Jacobian with sufficient accuracy to produce a numerical solution of acceptable
accuracy. Generally, this has to do with the selection of the increments 
x1, 
x2.
But the principal advantage in using finite differences to avoid analytical differentia-
tion is generally well worth the additional effort of computing a sufficiently accurate
numerical Jacobian. To illustrate the programming of a numerical Jacobian, we use
routine jacobian_stiff_odes_fd instead of jacobian_stiff_odes.

function [Jac ] = jacobian_stiff_odes_fd (t ,x )
% Function jacobian_stiff_odes_fd computes the Jacobian matrix
% by finite differences

% Set global variables
global a b

% Jacobian of the 2 x 2 ODE system
% Derivative vector at base point
xb = x ;
xt0 = stiff_odes (t ,x ) ;

% Derivative vector with x1 incremented
dx1 = x ( 1 ) * 0 . 0 0 1 + 0 . 0 0 1 ;
x ( 1 ) = x ( 1 ) + dx1 ;
x ( 2 ) = xb ( 2 ) ;
xt1 = stiff_odes (t ,x ) ;

% Derivative vector with x2 incremented
x ( 1 ) = xb ( 1 ) ;
dx2 = x ( 2 ) * 0 . 0 0 1 + 0 . 0 0 1 ;
x ( 2 ) = x ( 2 ) + dx2 ;
xt2 = stiff_odes (t ,x ) ;

% Jacobian matrix (computed by finite differences in place of
% Jac = [−a b ; b −a ] ) ;
Jac ( 1 , 1 ) = (xt1(1)−xt0 ( 1 ) ) /dx1 ;
Jac ( 1 , 2 ) = (xt2(1)−xt0 ( 1 ) ) /dx2 ;
Jac ( 2 , 1 ) = (xt1(2)−xt0 ( 2 ) ) /dx1 ;
Jac ( 2 , 2 ) = (xt2(2)−xt0 ( 2 ) ) /dx2 ;

Function jacobian_stiff_odes_fd Routine for the computation of the Jacobian matrix of Eq. (2.21)
using the finite differences of Eq. (2.49)

We can note the following points about this routine:

1. While the Jacobian routine jacobian_stiff_odes_fd appears to be con-
siderably more complicated than the routine jacobian_stiff_odes, it has
one important advantage: analytical differentiation is not required. Rather, the
finite difference approximation of the Jacobian partial derivatives requires only
calls to the ODE routine, stiff_odes (which, of course, is already available
for the problem ODE system).

2. To briefly explain the finite differences as expressed by Eq. (2.49), we first need
the derivative functions at the base (current) point along the solution (to give
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the derivative functions f1(x1, x2), f2(x1, x2) in Eq. (2.49)). These derivatives are
computed by the first call to stiff_odes

3. Then we need the derivatives with x1 incremented by 
x1, that is f1(x1+
x1, x2),
f2(x1 + 
x1, x2) which are computed by

% Derivative vector with x1 incremented
dx1 = x(1)*0.001 + 0.001;
x(1) = x(1) + dx1;
x(2) = xb(2);
xt1 = stiff_odes(t,x);

Note that in computing the increment dx1 we use 0.001x1 + 0.001; the second
0.001 is used in case x1 = 0 (which would result in no increment) as it does at
the initial condition x1(0) = 0.

4. Next, the derivatives with x2 incremented by 
x2 are computed

% Derivative vector with x2 incremented
x(1) = xb(1);
dx2 = x(2)*0.001 + 0.001;
x(2) = x(2) + dx2;
xt2 = stiff_odes(t,x);

5. Then the four partial derivatives of the Jacobian matrix are computed. For exam-
ple, ∂f1

∂x1
≈ f1(x1+
x1,x2)−f1(x1,x2)


x1
is computed as

% Jacobian matrix (computed by finite differences in
% place of Jac = [-a b; b -a]);
Jac(1,1) = (xt1(1)-xt0(1))/dx1;

The numerical solution with jacobian_stiff_odes (analytical Jacobian)
replaced with jacobian_stiff_odes_fd (numerical Jacobian) gave the same
solution as listed in Table 2.7. This is to be expected since the finite difference
approximations are exact for the linear ODEs Eq. (2.21).

To summarize this discussion of ROS23P, we have found that this algorithm:

1. Has a reliable error estimate (the difference between the second- and third-order
solutions), but not as accurate as RKF45 (the difference between the fourth- and
fifth-order solutions).

2. Requires only the solution of linear algebraic equations at each step along the
solution (thus the name LIRK where “LI” denotes linearly implicit). We should
also note that the accuracy of the numerical solution is directly dependent on the
accuracy of the Jacobian matrix. This is in contrast with implicit ODE integrators
that require the solution of nonlinear equations, but the Jacobian can often be
approximate or inexact since all that is required is the convergence of the nonlin-
ear equation solutions, usually by Newton’s method or some variant, which can
converge with an inexact Jacobian.

3. Has excellent stability properties (which are discussed in detail in [12]).
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Table 2.8 MATLAB solvers for differential equations

Initial value problem solvers for ODEs (if unsure about stiffness, try ode45 first, then ode15s)
ode45 Solve nonstiff differential equations, medium-order method
ode23 Solve nonstiff differential equations, low-order method
ode113 Solve nonstiff differential equations, variable-order method
ode23t Solve moderately stiff ODEs and DAEs index 1, trapezoidal rule
ode15s Solve stiff ODEs and DAEs index 1, variable-order method
ode23s Solve stiff differential equations, low-order method
ode23tb Solve stiff differential equations, low-order method

Initial value problem solvers for fully implicit ODEs/DAEs F(t, y, y′) = 0
decic Compute consistent intial conditions
ode15i Solve implicit ODEs or DAEs i ndex 1

Initial value problem solver for delay differential equations (DDEs)
dde23 Solve delay differential equations (DDEs) with constant delays

Boundary value problem solver for ODEs
bvp4c Solve two-point boundary value problems for ODEs by collocation

1D Partial differential equation solver
pdepe Solve initial-boundary value problems for parabolic-elliptic PDE

Thus, we now have a choice of high accuracy nonstiff (RKF45) and stiff (ROS23P)
algorithms that are implemented in library routines for solution of the general n × n
initial value ODE problem. The ambition of these solvers is not to compete with
the high-quality integrators that are included in the MATLAB ODE Suite or within
SCILAB or OCTAVE, but they are easy to use and to understand and will also
be easily translated into various environments. Before testing them in additional
applications, we introduce briefly the MATLAB ODE Suite.

2.4 MATLAB ODE Suite

We have previously discussed the use of advanced integrators, which are part of the
MATLAB ODE suite or library. Examples include the use of ode45 and ode15s
in Main_bacteria, and ode15s in Main_two_tanks. The MATLAB ODE
integrators have options beyond the basic integrators; furthermore, there is an exten-
sive selection of integrators as given in Table 2.8. We cannot go into all of the features
available because of limited space. The code for these integrators is relatively long
and complex, so they are typically used without modification. Additional details
about the MATLAB integrators are available in [1].

The application examples described in the next section are used to compare some
of the time integrators developed in the previous sections, as well as several integra-
tors from the MATLAB ODE Suite.
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2.5 Some Additional ODE Applications

The ODE applications considered previously in this chapter were quite modest in
complexity and could therefore be solved analytically or numerically; comparison
of these two types of solutions was used to establish the validity of the numerical
algorithms and associated codes. Now that the numerical integrators have been devel-
oped and tested, we consider some ODE applications that are sufficiently complex to
preclude analytical solution; thus, we have only the numerical integrators as a viable
approach to solutions, which is the usual case in realistic applications, i.e., numerical
methods can be applied when analytical methods are not tractable.

2.5.1 Spruce Budworm Dynamics

The first application we consider is an ecological model of the interaction of spruce
budworm populations with forest foliage [13]. The full model is a 3 × 3 system
of logistic-type ODEs. However, before considering the full model, we consider a
simplified version that has only one ODE, but which exhibits interesting dynamics.
The idea of the simplified model is to consider that the slow variables (associated
with foliage quantity and quality, S(t)) are held fixed, and to analyze the long-term
behavior of the fast variable, i.e., the budworm density, B(t).

The budworm’s growth follows a logistic equation

dB

dt
= rBB

(
1 − B

kB

)
− g (2.50)

where the carrying capacity kB = kS is proportional to the amount of foliage avail-
able, i.e., proportional to S.

The effect of predation (consumption of budworms by birds) is represented by:

g = βB2

α2 + B2 (2.51)

which has the following properties:

• The consumption of prey (budworms) by individual predators (birds) is limited by
saturation to the level β; note that g → β for large B.

• There is a decrease in the effectiveness of predation at low prey density (with the
limit g → 0, B → 0 , i.e., the birds have a variety of alternative foods).

• α determines the scale of budworm densities at which saturation takes place, i.e.,
α2 relative to B2.

Clearly g from Eq. (2.51) introduces a strong nonlinearity in ODE (2.50) which
is a principal reason for using numerical integration in the solution of Eq. (2.50).

We can now use Eq. (2.50) to plot dB
dt versus B as in Fig. 2.5, termed a phase plane

plot. Note that there are three equilibrium points for which dB
dt = 0 (the fourth point
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Fig. 2.5 dB
dt as a function of B from Eq. (2.50), for increasing value of S (S evolves from 200 to

10,000 by steps of 200)

at the origin B = 0, t = 0 is not significant). These equilibrium points are the roots
of Eq. (2.50) (combined with Eq. (2.51)) with dB

dt = 0 i.e.,

0 = rBB

(
1 − B

KB

)
− βB2

α + B2 (2.52)

The middle equilibrium point (at approximately B = 1.07 × 105) is not sta-
ble while the two outlying equilibrium points are stable. Figure 2.5 is parametrized
with increasing values of S (from 200 to 10,000, by steps of 200) corresponding to
increasing values of the carrying capacity KB = kS.

Qualitatively, the evolution of the system can be represented as in Fig. 2.6. Con-
sider the situation where there are three equilibrium points as in Fig. 2.5. In this case,
the intermediate point is unstable, whereas the upper and lower equilibrium points
are stable. Assume that the system is in a lower equilibrium point. As the forest
foliage, S(t), slowly increases, the system moves along the heavy lower equilibrium
line. This happens because the budworm density, B(t) is low (endemic population),
and the forest can grow under this good condition (low B(t)). At the end of this
slow process, the system moves quickly along a vertical arrow to reach the upper
equilibrium branch, which corresponds to a much higher budworm density (outbreak
population). Now, old trees are more susceptible to defoliation and die. As a conse-
quence, S(t) slowly decreases, and the system slowly moves along the heavy upper
equilibrium line. This continues up to a certain stage, where the system jumps along a
vertical line (budworm population collapses), and goes back to a status characterized
by a low budworm density.

In summary, slow processes are depicted by the heavy equilibrium lines, whereas
fast processes are represented by vertical arrows in Fig. 2.6. The interacting spruce
budworm population and forest follow limit cycles characterized by two periods of
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Fig. 2.6 Qualitative evolution of the budworm-forest system

slow change and two periods of fast change. An analysis of the system must include
the fast processes along with the slow processes. Even though the system dynamics
is dictated by the slow processes for most of the time (i.e., when the system moves
slowly along heavy equilibrium lines), fast transitions explain budworm population
outbreaks and collapses, which would be completely unforeseen if the fast dynamics
is neglected.

We now consider the full model in which the carrying capacity is given by

KB = kSE2

E2 + T2
E

(2.53)

i.e., it is again proportional to the amount of foliage available, S(t), but also depends
on the physiological condition (energy) of the trees, E(t); KB declines sharply when
E falls below a threshold TE .

The effect of predation is still represented by Eq. (2.51), but, in addition, the
half-saturation density α is proportional to the branch surface area S, i.e., α = aS.

The total surface area of the branches in a stand then follows the ODE

dS

dt
= rSS

(
1 − S

KS

KE

E

)
(2.54)

that allows S to approach its upper limit KS . An additional factor KE
E is inserted

into the equation because S inevitably decreases under stress conditions (death of
branches or even whole trees).
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Table 2.9 Spruce budworm
versus forest—parameter
values

Parameter Value Units

rB 1.52 year−1

rS 0.095 year−1

rE 0.92 year−1

k 355 larvae/branch
a 1.11 larvae/branch
β 43,200 larvae/acre/year
KS 25,440 branch/acre
KE 1 –

The energy reserve also satisfies an equation of the logistic type

dE

dt
= rEE

(
1 − KE

E

)
− P

B

S
(2.55)

where the second term on the RHS describes the stress exerted on the trees by the
budworm’s consumption of foliage. In this expression B

S represents the number of
budworms per branch. The proportionality factor P is given by

P = pE2

E2 + T2
E

(2.56)

as the stress on the trees is related to the amount of foliage consumed (P declines
sharply when E falls below a threshold TE).

The initial conditions (ICs) are taken as:

B(t = 0) = 10; S(t = 0) = 7, 000; E(t = 0) = 1 (2.57)

The model parameters are given in Table 2.9, [13]. The 3 × 3 ODE model—
Eqs. (2.50)–(2.56)—are solved by the code in function spruce_budworm_odes.

function xt = spruce_budworm_odes(t ,x )

% Set global variables
global rb k beta a rs Ks re Ke p Te

% Transfer dependent variables
B = x ( 1 ) ;
S = x ( 2 ) ;
E = x ( 3 ) ;

% Model Parameters
Kb = k*S*E ^ 2 / (E^2+Te ^ 2 ) ;
alpha = a*S ;
g = beta*B ^ 2 / (alpha^2+B ^ 2 ) ;
P = p*E ^ 2 / (Te^2+E ^ 2 ) ;
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% Temporal derivatives
Bt = rb*B*(1−B /Kb ) − g ;
St = rs*S*(1−(S /Ks ) * (Ke /E ) ) ;
Et = re*E*(1−E /Ke ) − P*B /S ;

% Transfer temporal derivatives
xt = [Bt St Et ] ' ;

Function spruce_budworm_odes Function for the solution of Eqs. (2.50)–(2.56) and associated
algebraic equations

We can note the following details about this function:

1. After defining the global variables which are shared with the main program to
be discussed next, the dependent variable vector received from the integration
function, x, is transferred to problem oriente variables to facilitate programming

% Global variables
global rb k beta a rs Ks re Ke p Te

% Transfer dependent variables
B = x(1);
S = x(2);
E = x(3);

2. The problem algebraic variables are computed from the dependent variable vector
(B, S, E)T

% Temporal derivatives

Kb = k*S*Eˆ2/(Eˆ2+Teˆ2); alpha = a*S; g =
beta*Bˆ2/(alphaˆ2+Bˆ2); P = p*Eˆ2/(Teˆ2+Eˆ2);

Note the importance of ensuring that all variables and parameters on the RHS of
these equations are set numerically before the calculation of the RHS variables.

3. The ODEs, Eqs. (2.50), (2.54), (2.55) are then programmed and the resulting tem-
poral derivatives are transposed to a column vector as required by the integrator

% Temporal derivatives
Bt = rb*B*(1-B/Kb) - g;
St = rs*S*(1-(S/Ks)*(Ke/E));
Et = re*E*(1-E/Ke) - P*B/S;
%
% Transfer temporal derivatives
xt = [Bt St Et]’;

The main program that calls the ODE function spruce_budworm_odes is
shown in Budworm_main

close all
clear all
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% start a stopwatch timer
tic

% set global variables
global rb k beta a rs Ks re Ke p Te

% model parameters
rb = 1 . 5 2 ;
k = 355;
beta = 43200;
a = 1 . 1 1 ;
rs = 0 . 0 9 5 ;
Ks = 25440;
re = 0 . 9 2 ;
Ke = 1 . 0 ;
p = 0 . 0 0 1 9 5 ;
Te = 0 . 0 3 ;

% initial conditions
t0 = 0 ;
tf = 200;
B = 10;
S = 7000;
E = 1 ;
x = [B S E ] ' ;

% call to ODE solver (comment /decomment one of the methods
% to select a solver )

% method = 'Euler '
% method = 'rkf45 '
% method = 'ode45 '
method = 'ode15s '

%
switch method

% Euler
case ( 'Euler ' )

Dt = 0 . 0 1 ;
Dtplot = 0 . 5 ;
[tout , yout ] = euler_solver (@spruce_budworm_odes , . . .

t0 , tf , x , Dt , Dtplot ) ;
% rkf45
case ( 'rkf45 ' )

hmin = 1e−3;
nstepsmax = 1000;
abstol = 1e−3;
reltol = 1e−3;
Dtplot = 0 . 5 ;
[tout ,yout ,eout ] = rkf45_solver (@spruce_budworm_odes , . . .

t0 ,tf ,x ,hmin ,nstepsmax ,abstol , . . .
reltol ,Dtplot ) ;

figure ( 5 )
plot (tout ,eout )
xlabel ( 't ' ) ;
ylabel ( 'truncation error ' ) ;

% ode45
case ( 'ode45 ' )

options = odeset ( 'RelTol ' , 1e−6 , 'AbsTol ' , 1e−6);
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t=[t0 : 0 . 5 :tf ] ;
[tout , yout ] = ode45 (@spruce_budworm_odes ,t ,x , . . .

options ) ;
% ode15s
case ( 'ode15s ' )

options = odeset ( 'RelTol ' , 1e−6 , 'AbsTol ' , 1e−6);
t=[t0 : 0 . 5 :tf ] ;
[tout , yout ] = ode15s (@spruce_budworm_odes ,t ,x , . . .

options ) ;

end
% plot results
figure ( 1 )
subplot ( 3 , 1 , 1 )
plot (tout ,yout ( : , 1 ) , 'k ' ) ;
% xlabel ( 't [years ] ' ) ;
ylabel ( 'B (t ) ' , 'FontName ' , 'Helvetica ' , 'FontSize ' , 1 2 ) ;
% title ( 'Budworm density ' ) ;
subplot ( 3 , 1 , 2 )
plot (tout ,yout ( : , 2 ) , 'k ' ) ;
% xlabel ( 't [years ] ' ) ;
ylabel ( 'S (t ) ' , 'FontName ' , 'Helvetica ' , 'FontSize ' , 1 2 ) ;
% title ( 'Branch density ' )
subplot ( 3 , 1 , 3 )
plot (tout ,yout ( : , 3 ) , 'k ' ) ;
xlabel ( 't [years ] ' , 'FontName ' , 'Helvetica ' , 'FontSize ' , 1 2 ) ;
ylabel ( 'E (t ) ' , 'FontName ' , 'Helvetica ' , 'FontSize ' , 1 2 ) ;
set (gca , 'FontName ' , 'Helvetica ' , 'FontSize ' , 1 2 ) ;
% title ( 'Energy ' ) ;
figure ( 2 )
plot3 (yout ( : , 1 ) ,yout ( : , 2 ) ,yout ( : , 3 ) , 'k ' )
xlabel ( 'B (t ) ' , 'FontName ' , 'Helvetica ' , 'FontSize ' , 1 2 ) ;
ylabel ( 'S (t ) ' , 'FontName ' , 'Helvetica ' , 'FontSize ' , 1 2 ) ;
zlabel ( 'E (t ) ' , 'FontName ' , 'Helvetica ' , 'FontSize ' , 1 2 ) ;
grid
title ( ' 3D phase plane plot ' , 'FontName ' , 'Helvetica ' , . . .

'FontSize ' , 1 2 ) ;
set (gca , 'FontName ' , 'Helvetica ' , 'FontSize ' , 1 2 ) ;

% read the stopwatch timer
tcpu=toc ;

Script Budworm_main Main program for the solution of Eqs. (2.50)–(2.56)

We can note the following points about this main program:

1. First, variables are defined as global so they can be shared with the ODE routine
2. The model parameters are then defined numerically
3. The time scale and the initial conditions of Eq. (2.57) are defined
4. The parameters of the integrator, e.g., error tolerances, are set and an integrator is

selected among four possible choices, e.g., euler_solver, rkf45_solver
(among the basic integrators introduced earlier in this chapter) or ode45 and
ode15s (among the integrators available in the MATLAB ODE suite). Table 2.10
shows a comparison of the performance of these and other IVP solvers applied to
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Table 2.10 Performance of different IVP solvers applied to the spruce budworm problem

Euler Heun rkf45 ros23p ode45 ode15s Adams BDF

N. steps 20,000 20,000 1,122 20,520 837 2,109 2,117
CPU time 2.5 4.9 1.0 4.24 1.1 2.2 2.2

Computational times are normalized with respect to the time spent by the most efficient solver, in
this example, rkf45

Eqs. (2.50)–(2.56). Absolute and relative tolerances were fixed to 10−6. For this
particular example, the most efficient solver is rkf45 while Heun’s method requires
the highest computational cost. These results show that the system of ODEs is not
stiff (rkf45 is an explicit time integrator) and that time step size adaptation is an
important mechanism to ensure specified tolerances and to improve computational
efficiency (we have used a conservatively small step size with fixed step integrators
such as Euler’s and Heun’s method).

5. After calculating the solution, a series of plots displays the numerical solution.

The plotted solutions correspond with Fig. 2.7, for the time evolution of the three
states, and Fig. 2.8, for the 3D phase plane. The oscillatory nature of the solution
resulting from the combination of slow and fast dynamics depicted in Fig. 2.7 is
clear. Also, the number of nonlinear ODEs (three) and associated algebraic equations
demonstrates the utility of the numerical solution; in other words, analytical solution
of this model is precluded because of its size and complexity.

2.5.2 Liming to Remediate Acid Rain

As a final ODE example application, we consider the modeling of an ecological
system described by a 3 × 3 system of nonlinear ODEs. Specifically, the effect
of acid rain on the fish population of a lake and the effect of remedial liming is
investigated. This model is described in [14].

The fish population N(t) is growing logistically, i.e.,

dN

dt
= r(C)N − r0N2

K(C)
− H, N(0) = N0 > 0 (2.58)

where r(C) is the specific growth rate, which depends on the acid concentration C(t)
in the following way:

r(C) =
⎧⎨
⎩

r0 if C < Clim
r0 − α(C − Clim) if Clim < C < Cdeath
0 if Cdeath < C < Q/δ

, (2.59)
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Fig. 2.7 Evolution of the three state variables (B(t), S(t) and E(t)) from the problem described by
Eqs. (2.50), (2.54) and (2.55)

Fig. 2.8 Composite plot
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vector from Eqs. (2.50), (2.54)
and (2.55)
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K(C) is the carrying capacity (i.e., the maximum population density that the eco-
system can support), which also depends on C(t)

K(C) =
⎧⎨
⎩

K0 if C < Clim
K0 − β(C − Clime) if Clim < C < Cdeath
Klim if Cdeath < C < Q/δ

, (2.60)
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Table 2.11 Table of
parameter values for
Eqs. (2.58)–(2.62)

r0 = 0.02 Q = 2
Clim = 50 δ = 0.002
α = 0.0001 δ0 = 0.005
β = 0.05 η = 0.04
K0 = 100,000 η0 = 0.004
Klim = 100 H = 100

and H is the harvesting rate. In Eqs. (2.59)–(2.60), Clim denotes the critical value of
the acid concentration (between 0 and Clim, acid is harmless to the fish population)
and Cdeath = (r0 − αClime)/α is the concentration above with the fish population
completely stops growing.

We suggest a careful study of the RHS of Eq. (2.58) and the switching functions
of Eqs. (2.59)–(2.60) since these functions reflect several features of the model.

The acid concentration C(t) is described by the ODE

dC

dt
= Q − δC − δ0E (2.61)

where Q is the inlet acid flow rate (due to acid rain), δ is the natural depletion rate,
while δ0 is the depletion rate due to liming. E is the liming effort applied to maintain
the lake at a permissible acid concentration Clim, and is given by the ODE

dE

dt
= η(C − Clim) − η0E (2.62)

where η represents the control action and η0 is the natural depletion rate of E.
Again, we suggest a careful analysis of the RHS functions of Eqs. (2.61) and

(2.62). The complexity of the model is clearly evident from Eqs. (2.58)–(2.62), e.g.,
the nonlinear switching functions of Eqs. (2.59) and (2.60). Thus, although some
analytical analysis is possible as we demonstrate in the subsequent discussion, a
numerical solution of Eq. (2.24) is the best approach to gain an overall understanding
of the characteristics of the model. In particular, we will compute the state space
vector (the solution of Eqs. (2.58), (2.61) and (2.62)), N(t), C(t), E(t) by numerical
ODE integration.

The initial conditions for Eqs. (2.58), (2.61) and (2.62) are taken as

N(t = 0) = 72,500; C(t = 0) = 80; E(t = 0) = 190 (2.63)

and the parameter values are given in Table 2.11.

If harvesting is below a certain threshold value, i.e., H <
K(C∗){r(C∗)}2

4r0
, there exist

two equilibrium points Pi(N∗, C∗, E∗) with i = 1, 2 in the state space. The notation
∗ indicates that the state is at equilibrium.

E∗ =
η
(

Q
δ

− Clim

)

η0 + η δ0
δ

(2.64)
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C∗ = Q − δ0E∗

δ
(2.65)

N∗
1 = K(C∗)r(C∗)

2r0

(
1 −

√
1 − 4r0H

K(C∗){r(C∗)}2

)
(2.66)

N∗
2 = K(C∗)r(C∗)

2r0

(
1 +

√
1 − 4r0H

K(C∗){r(C∗)}2

)
(2.67)

The equilibrium point P1 corresponding to N∗
1 of Eq. (2.66) is unstable (two

eigenvalues of the Jacobian matrix have negative real parts, but the third one is real
positive, so that P1 is a saddle point) whereas P2 corresponding to N∗

2 of Eq. (2.67)
is locally asymptotically stable (the three eigenvalues of the Jacobian matrix have
negative real parts). In fact, when C and E tends to their steady-state values C∗ and
E∗, it is possible to rewrite the ODE for N , Eq. (2.58), as follows

dN

dt
= − r0

K(C∗)
(N − N∗

1 )(N − N∗
2 ) (2.68)

Since N∗
2 > N∗

1 , the RHS of Eq. (2.68) expression shows that

dN

dt
< 0 if N < N∗

1 or N > N∗
2 (2.69)

dN

dt
> 0 if N∗

1 < N < N∗
2 (2.70)

In turn, the fish population tends to extinction if N(0) < N∗
1 , and tends to N∗

2 if
N(0) > N∗

1 . Therefore, the equilibrium point P2 is globally asymptotically stable in
the region

{
(N, C, E) : N∗

1 ≤ N ≤ K(0), 0 ≤ C ≤ Q

δ
, 0 ≤ E ≤ η

η0

(
Q

δ
− Clim

)}

(2.71)
For the parameter value of Table 2.11, the equilibrium points are [14]

N∗
1 = 6,671; N∗

2 = 75,069 (2.72)

The code fish_odes implements a solution to Eqs. (2.58)–(2.62) including
several variations. First, the function to define the model equations is listed.

function xt = fish_odes (t ,x )
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% Set global variables
global r0 Clim alpha Cdeath K0 Klim beta H Q delta delta0
global eta eta0

% x has three columns corresponding to three different
% column solution vectors (which can be used for
% numerical evalution of the Jacobian ) :
ncols = size (x , 2 ) ;

for j=1:ncols

% Transfer dependent variables
N = x ( 1 ,j ) ;
C = x ( 2 ,j ) ;
E = x ( 3 ,j ) ;

% Temporal derivatives
if C < Clim

r = r0 ;
elseif Clim <= C < Cdeath

r = r0−alpha*(C−Clim ) ;
else

r = 0 ;
end
%
if C < Clim

K = K0 ;
elseif Clim <= C < Cdeath

K = K0−beta*(C−Clim ) ;
else

K = Klim ;
end

Nt = r*N − r0*N^ 2 /K − H ;
Ct = Q − delta*C − delta0*E ;
Et = eta*(C−Clim ) − eta0*E ;

% Transfer temporal derivatives
% (One column for each column of x )
xt ( : ,j ) = [Nt Ct Et ] ' ;

end ;

Function fish_odes Function for Eqs. (2.58)–(2.62)

We can note the following points about fish_odes.

1. After defining a set of global variables, a 3× ncol matrix, x(3,1), is defined,
where the first index defines a row dimension of three for the state vector
(N, C, E)T , and the second index defines a column dimension of one for one
computed solution corresponding to a single set of parameters and initial condi-
tions defined in the main program that calls fish_odes (discussed next)

% x has three columns corresponding to three different
% column solution vectors
ncols = size(x,2);
% Step through the ncol solutions
for j=1:ncols

%
% Transfer dependent variables
N = x(1,j);
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C = x(2,j);
E = x(3,j);

2. The expressions (2.59) to (2.60) are then programmed

% Parameters r, K set
%
if C < Clim

r = r0;
elseif Clim <= C < Cdeath

r = r0-alpha*(C-Clim);
else

r = 0;
end
%
if C < Clim

K = K0;
elseif Clim <= C < Cdeath

K = K0-beta*(C-Clim);
else

K = Klim;
end

Note in particular the switching to three possible values of the parameters r and
k depending on the current value of C.

3. The temporal derivatives for the three solutions are then computed according to
ODEs, (2.58), (2.61), and (2.62)

% Temporal derivatives
Nt = r*N - r0*Nˆ2/K - H;
Ct = Q - delta*C - delta0*E;
Et = eta*(C-Clim) - eta0*E;

4. The temporal derivatives are then stored in a 3 × 1 matrix for return to the ODE
integrator (a total of 3 × 1 = 3 derivatives)

% Transfer temporal derivatives
% (One column for each column of x)
xt(:,j) = [Nt Ct Et]’;

Note the index for the solutions, j, is incremented by the for statement at the
beginning of fish_odes that is terminated by the end statement. In the present
case, ncol=1 (just one solution is computed). However, this approach to comput-
ing multiple solutions in parallel could be used to conveniently compare solutions,
generated, for example, for multiple sets of initial conditions or model parameters.
In other words, having the solutions available simultaneously would facilitate their
comparison, e.g., by plotting them together. This feature of computing and plotting
multiple solutions in a parametric study is illustrated subsequently in Fig. 2.11.

The main program that calls fish_odes is presented in fish_main.
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close all
clear all

% start a stopwatch timer
tic

% set global variables
global r0 Clim alpha Cdeath K0 Klim beta H Q delta delta0
global eta eta0 fac thresh vectorized

% model parameters
r0 = 0 . 0 2 ;
Clim = 50;
alpha = 0 . 0 0 0 1 ;
Cdeath = (r0+alpha*Clim ) /alpha ;
K0 = 100000;
Klim = 100;
beta = 0 . 0 5 ;
H = 100;
Q = 2 ;
delta = 0 . 0 0 2 ;
delta0 = 0 . 0 0 5 ;
eta0 = 0 . 0 0 4 ;

% select the control action 'eta ' (comment /decomment one
% of the actions )
action = 'strong '

% action = 'moderate '
% action = 'weak '
switch action

% strong
case ( 'strong ' )

eta = 0 . 5 ;
% moderate
case ( 'moderate ' )

eta = 0 . 1 ;
% weak
case ( 'weak ' )

eta = 0 . 0 4 ;
end

% equilibrium points
[N1star ,N2star ] = equilibrium_fish(r0 ,Clim ,alpha , . . .

Cdeath ,K0 ,Klim ,beta ,H ,Q ,delta , . . .
delta0 ,eta ,eta0 )

% initial conditions
t0 = 0 ;
tf = 3560;
N = 72500;
% N = 5000;
C = 80;
E = 190;
x = [N C E ] ' ;

% call to ODE solver (comment /decomment one of the methods
% to select a solver )
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% method = 'euler '
% method = 'midpoint '
% method = 'heun '
% method = 'heun12 '
% method = 'rk4 '
% method = 'rkf45 '
% method = 'ros3p '
method = 'ros23p '
% method = 'ode45 '
% method = 'ode15s '
% method = 'lsodes '
switch method

% Euler
case ( 'euler ' )

Dt = 0 . 1 ;
Dtplot = 20;
[tout ,xout ] = euler_solver (@fish_odes ,t0 ,tf ,x , . . .

Dt ,Dtplot ) ;
% midpoint
case ( 'midpoint ' )

Dt = 5 ;
Dtplot = 20;
[tout ,xout ] = midpoint_solver(@fish_odes ,t0 , . . .

tf ,x ,Dt ,Dtplot ) ;
% Heun
case ( 'heun ' )

Dt = 5 ;
Dtplot = 20;
[tout ,xout ] = heun_solver (@fish_odes ,t0 ,tf ,x , . . .

Dt , Dtplot ) ;
% Heun12
case ( 'heun12 ' )

hmin = 0 . 0 0 0 1 ;
nstepsmax = 1e5 ;
abstol = 1e−3;
reltol = 1e−3;
Dtplot = 20;
[tout ,xout ] = heun12_solver (@fish_odes ,t0 ,tf , . . .

x ,hmin ,nstepsmax , . . .
abstol ,reltol ,Dtplot ) ;

% rk4
case ( 'rk4 ' )

Dt = 5 ;
Dtplot = 20;
[tout , xout ] = rk4_solver (@fish_odes ,t0 ,tf ,x , . . .

Dt ,Dtplot ) ;
% rkf45
case ( 'rkf45 ' )

hmin = 0 . 0 0 0 1 ;
nstepsmax = 1e5 ;
abstol = 1e−3;
reltol = 1e−3;
Dtplot = 20;
[tout ,xout ,eout ] = rkf45_solver (@fish_odes ,t0 , . . .

tf ,x ,hmin ,nstepsmax , . . .
abstol ,reltol ,Dtplot ) ;

figure ( 2 )
plot (tout / 3 5 6 ,eout ( : , 1 ) , ' : r ' ) ;
hold on
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plot (tout / 3 5 6 ,eout( : ,2) , ' − −b ' ) ;
plot (tout / 3 5 6 ,eout( : ,3) , ' − −g ' ) ;
xlabel ( 't ' ) ;
ylabel ( 'e (t ) ' ) ;

% ros3p
case ( 'ros3p ' )

Dt = 1 ;
Dtplot = 20;
fac = [ ] ;
thresh = 1e−12;
[tout ,xout ] = ros3p_solver (@fish_odes , . . .

@jacobian_num_fish , . . .
t0 ,tf ,x ,Dt ,Dtplot ) ;

% ros23p
case ( 'ros23p ' )

hmin = 0 . 0 0 0 1 ;
nstepsmax = 1e5 ;
abstol = 1e−3;
reltol = 1e−3;
Dtplot = 1 ;
fac = [ ] ;
thresh = 1e−12;
[tout ,xout ,eout ] = ros23p_solver (@fish_odes , . . .

@jacobian_num_fish , . . .
@ft_fish ,t0 ,tf ,x , . . .
hmin ,nstepsmax , . . .
abstol ,reltol ,Dtplot ) ;

figure ( 2 )
plot (tout ,eout ( : , 1 ) , ' : r ' ) ;
hold on
plot (tout ,eout( : ,2) , ' − −b ' ) ;
plot (tout ,eout( : ,3) , ' − −g ' ) ;
xlabel ( 't ' ) ;
ylabel ( 'e (t ) ' ) ;

% ode45
case ( 'ode45 ' )

options = odeset ( 'RelTol ' , 1e−3 , 'AbsTol ' , 1e−3);
Dtplot = 20;
t = [t0 :Dtplot :tf ] ;
[tout ,xout ] = ode45 (@fish_odes ,t ,x ,options ) ;

% ode15s
case ( 'ode15s ' )

options = odeset ( 'RelTol ' , 1e−3 , 'AbsTol ' , 1e−3);
Dtplot=20;
t=[t0 :Dtplot :tf ] ;
[tout , xout ] = ode15s (@fish_odes ,t ,x ,options ) ;

% lsodes
case ( 'lsodes ' )

resname = 'fish_odes ' ;
jacname = ' [ ] ' ;
neq = 3 ;
Dtplot = 20;
tlist = [t0+Dtplot :Dtplot :tf ] ;
itol = 1 ;
abstol = 1e−3;
reltol = 1e−3;
itask = 1 ;
istate = 1 ;
iopt = 0 ;
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lrw = 50000;
rwork = zeros (lrw , 1 ) ;
liw = 50000;
iwork = zeros (liw , 1 ) ;
mf = 222;
[tout ,xout ] = lsodes (resname ,jacname ,neq ,x ,t0 , . . .

tlist ,itol ,reltol ,abstol , . . .
itask ,istate ,iopt ,rwork , . . .
lrw ,iwork ,liw ,mf ) ;

end

% plot results
figure ( 1 )
subplot ( 3 , 1 , 1 )
plot (tout / 3 5 6 ,xout ( : , 1 ) , ' − ' ) ;
% xlabel ( 't [years ] ' ) ;
ylabel ( 'N (t ) ' ) ;
% title ( 'Fish population ' ) ;
subplot ( 3 , 1 , 2 )
plot (tout / 3 5 6 ,xout ( : , 2 ) , ' − ' ) ;
% xlabel ( 't [years ] ' ) ;
ylabel ( 'C (t ) ' ) ;
% title ( 'Acid concentration ' )
subplot ( 3 , 1 , 3 )
plot (tout / 3 5 6 ,xout ( : , 3 ) , ' − ' ) ;
xlabel ( 't [years ] ' ) ;
ylabel ( 'E (t ) ' ) ;
% title ( 'Liming effort ' ) ;

% read the stopwatch timer
tcpu=toc ;

Script fish_main Main program that calls subordinate routine fish_odes

We can note the following points about fish_main.

1. First, global variables are defined and the model parameters are set.
2. An integrator is then selected from a series of basic or advanced integrators (also

including LSODES, which is a ODE solver from ODEPACK [2] transformed into
a MEX-file - we will give more details on how to create MEX-files in a subsequent
section) by uncommenting a line, in this case for ros23p_solver discussed
previously.

3. The degree of liming is then set by a switch function which in this case selects a
character string for “strong.”

4. Calls to the various integrators are listed. The call to ros23p is similar to
that of the main program Budworm_main. The details for calling the various
integrators are illustrated with the coding of the calls. Table 2.12 shows a compar-
ison of the performance of these solvers. Note that the performance of the solvers
increases as the control law becomes weaker, in particular, for Euler’s and Heun’s
methods.

5. The numerical solutions resulting from the calls to the various integrators are
plotted. Note in the case of ros23p, the estimated errors (given by the sub-
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Table 2.12 Performance of different IVP solvers applied to the liming to remediate acid rain
problem

ode15s
Control action Euler Heun rkf45 ros23p ode45 Adams BDF

Strong N. steps 17,800 1,780 212 213 101 281 271
CPU time 38.9 8.4 3.4 5.0 2.4 4.4 4.2

Moderate N. steps 3560 356 193 203 44 123 127
CPU time 8.0 1.8 3.2 4.9 1.4 2.8 2.6

Weak N. steps 1780 178 193 193 29 79 82
CPU time 4.0 1.0 3.2 4.6 1.2 2.2 2.1

Computational times are normalized with respect to the time spent by the most efficient solver, in
this example, Heun’s solver with weak control law

traction of Eq. (2.45a) and (2.45b) and implemented in ssros23p) are also
plotted.

To complete the programming of Eqs. (2.58)–(2.62), we require a function for
the calculation of the equilibrium points (called by fish_odes) and a function for
the Jacobian matrix (called by ssros23p). Function equillibrium_fish is a
straightforward implementation of Eqs. (2.64)–(2.67).

function [N1star ,N2star ] = equilibrium_fish(r0 ,Clim , . . .
alpha ,Cdeath ,K0 ,Klim ,beta , . . .
H ,Q ,delta ,delta0 ,eta ,eta0 )

%
Estar = eta*(Q /delta−Clim ) / ( eta0+eta*(delta0 /delta ) ) ;
Cstar = (Q−delta0*Estar ) /delta ;

%
if Cstar < Clim

r = r0 ;
elseif Clim <= Cstar < Cdeath

r = r0−alpha*(Cstar−Clim ) ;
else

r = 0 ;
end

%
if Cstar < Clim

K = K0 ;
elseif Clim <= Cstar < Cdeath

K = K0−beta*(Cstar−Clim ) ;
else

K = Klim ;
end

%
N1star = (K*r ) / ( 2 *r0)*(1−sqrt(1−(4*r0*H ) / ( K*r ^ 2 ) ) ) ;
N2star = (K*r ) / ( 2 *r0 )* (1+sqrt(1−(4*r0*H ) / ( K*r ^ 2 ) ) ) ;

Function equillibrium_fish Function for the calculation of the equilibrium points from Eq. (2.64)
to (2.67)
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Function jacobian_fish computes the analytical Jacobian of the ODE sys-
tem, Eqs. (2.58), (2.61) and (2.62)

function Jac = jacobian_fish (t ,x )
%
% Set global variables
global r0 Clim alpha Cdeath K0 Klim beta H Q delta delta0
global eta eta0
%
% Transfer dependent variables
N = x ( 1 ) ;
C = x ( 2 ) ;
E = x ( 3 ) ;
%
% Jacobian matrix
%
% Nt = r*N − r0*N^ 2 /K − H ;
% Ct = Q − delta*C − delta0*E ;
% Et = eta*(C−Clim ) − eta0*E ;
%
%
if C < Clim

r = r0 ;
K = K0 ;
Jac = [r−2*r0*N /K 0 0 ;

0 −delta −delta0 ;
0 eta −eta0 ] ;

elseif Clim <= C < Cdeath
r = r0−alpha*(C−Clim ) ;
K = K0−beta*(C−Clim ) ;
Jac = [r−2*r0*N /K −alpha*N+beta*r0*N^ 2 /K^2 0 ;

0 −delta −delta0 ;
0 eta −eta0 ] ;

else
r = 0 ;
K = Klim ;
Jac = [r−2*r0*N /K 0 0 ;

0 −delta −delta0 ;
0 eta −eta0 ] ;

end

Function jacobian_fish Function for the calculation of the Jacobian matrix of Eqs. (2.58), (2.61)
and (2.62)

Note that the Jacobian matrix programmed in jacobian_fish also has a set
of three switching functions, which give different elements of the Jacobian matrix
depending on the current value of C. To illustrate the origin of the elements of the
Jacobian matrix, consider the first case for C < Clim.

if C < Clim
r = r0;
K = K0;

Jac = [r-2*r0*N/K 0 0 ;
0 -delta -delta0 ;
0 eta -eta0 ];
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The first row has the three elements for the Jacobian matrix from Eq. (2.58). The
RHS function of Eq. (2.58) is:

r(C)N − r0N2

K(C)
− H

with r = r0, K = K0, the RHS function becomes

r0N − r0N2

K0
− H

We now have the following expressions for the derivative of this function with respect
to each of the state variables

∂
(

r0N − r0N2

K0
− H

)
∂N

= r0 − 2r0N

K0
;

∂
(

r0N − r0N2

K0
− H

)
∂C

= 0

∂
(

r0N − r0N2

K0
− H

)
∂E

= 0

which are programmed as

Jac = [r-2*r0*N/K 0 0 ;

The remaining six elements of the Jacobian matrix follow in the same way from
the RHS functions of Eqs. (2.61) and (2.62).

We can note three important features of the programming of the Jacobian matrix:

• If the state vector is of length n (i.e., n ODEs), the Jacobian matrix is of size n ×n.
This size grows very quickly with increasing n. Thus for large systems of ODEs,
e.g., n > 100, the Jacobian matrix is difficult to evaluate analytically (we must
derive n × n derivatives).

• The Jacobian matrix can have a large number of zeros. Even for the small 3 × 3
ODE problem of Eqs. (2.58), (2.61), and (2.62), the Jacobian matrix has four zeros
in a total of nine elements. Generally, for physical problems, the fraction of zeros
increases rapidly with n and is typically 0.9 or greater. In other words, Jacobian
matrices tend to be sparse, and algorithms that take advantage of the sparsity by
not storing and processing the zeros can be very efficient. Therefore, scientific
computation often depends on the use of sparse matrix algorithms, and scientific
software systems such as MATLAB have sparse matrix utilities.

• Because the differentiation required for an analytical Jacobian is often diffi-
cult to develop, numerical methods for producing the required n × n partial
derivatives are frequently used, as illustrated with Eq. (2.49) and in function
jacobian_stiff_odes_fd. A routine for calculating the numerical Jacobian
for Eqs. (2.58), (2.61), and (2.62) is presented in functionjacobian_num_fish.
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function Jac = jacobian_num_fish(t ,x )
%
% Set global variables
global fac thresh vectorized
%
% numerical Jacobian matrix
tstar = t ;
xstar = x ;
xtstar = fish_odes (tstar ,xstar ) ;
threshv = [thresh ;thresh ;thresh ] ;
vectorized = 1 ;
[Jac , fac ] = numjac (@fish_odes ,tstar ,xstar ,xtstar ,threshv , . . .

fac ,vectorized ) ;

Function jacobian_num_fish Function for the numerical calculation of the Jacobian of
Eqs. (2.58), (2.61) and (2.62)

We will not consider the details of jacobian_num_fish, but rather, just point
out the use of fish_odes for ODEs (2.58), (2.61) and (2.62), and the MATLAB
routines threshv and numjac for the calculation of a numerical Jacobian. Clearly
calls to the MATLAB routines for a numerical Jacobian will be more compact than
the programming of the finite difference approximations for large ODE systems (as
illustrated by the small 2 × 2 ODE system in function jacobian_stiff_odes_fd).

Coding to call jacobian_num_fish is illustrated in the use of ros3p (fixed
step LIRK integrator) in fish_main.

This completes the coding of Eqs. (2.58), (2.61) and (2.62). We conclude this
example by considering the plotted output from the MATLAB code fish_main
given in Figs. 2.9 and 2.10. We note in Fig. 2.9 that the solution N(t) reaches a stable
equilibrium point N∗

2 = 93,115, which is the value for strong liming (η = 0.5) as set
in fish_main. This constrasts with the stable equilibrium point of Eq. (2.72) for
weak liming (η = 0.04). As might be expected, the equilibrium point for weak lim-
ing is below that for strong liming (increased liming results in a higher equilibrium
fish population).

Figure 2.10 indicates that the maximum estimated error for N(t) is about 3.6.
Since N(t) varies between 72,500 (the initial condition set in fish_main) and 93,115
(the final equilibrium value of N(t)), the maximum fractional error is 3.6/72500 =
0.0000496, which is below the specified relative error of reltol=1e-3 set in
fish_main. Of course, this error of 3.6 is just estimated, and may not be the actual
integration error, but this result suggests that the numerical solution has the specified
accuracy.

Also, the estimated errors for the other two state variables, C(t) and E(t), are so
small they are indiscernible in Fig. 2.10. This is to be expected since the magnitudes
of these variables are considerably smaller than for N(t) (see Fig. 2.9). In conclusion,
these results imply that the error estimate of the embedded LIRK algorithm performed
as expected in this application.
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Fig. 2.9 Solution of Eqs. (2.58), (2.61) and (2.62) from fish_main for a strong control action
η = 0.5

Fig. 2.10 Estimated error
from ros23p for Eqs. (2.58),
(2.61) and (2.62) from
fish_main
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Fig. 2.11 State variable plots for Eqs. (2.58), (2.61) and (2.62) for the three liming conditions
corresponding to η = 0.04, 0.1, 0.5

We conclude this discussion by including a few plots—see Fig. 2.11—with the
solutions for the three liming conditions (η = 0.04, 0.1, 0.5) superimposed so that
the effect of the liming is readily apparent.

As another result, we can mention that for the weak liming condition (η = 0.04),
if the initial fish population is lower than the first unstable equilibrium point
N∗

1 = 6,661 , e.g. N∗
1 = 5,000, the fish population decreases and eventually van-

ishes as predicted by the theoretical analysis. Also, for this case, an event detection is
necessary to prevent the fish population from becoming negative (a function
events.m monitors the value of N(t)). In this respect, the model equations are
not well formulated (they allow N(t) to become negative).
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2.6 On the Use of SCILAB and OCTAVE

As mentioned before, MATLAB has been selected as the main programming environ-
ment because of its convenient features for vector/matrix operations that are central
to the solution of AE/ODE/PDE systems. In addition, MATLAB provides a very
complete library of numerical algorithms (for numerical integration, matrix opera-
tions, eigenvalue computation,…), e.g., the MATLAB ODE SUITE [1], that can be
used advantageously in combination with the proposed MOL toolbox.

However, there exist very powerful open source alternatives, such as SCILAB
(for Scientific Laboratory) or OCTAVE, that can be used for the same purposes.
SCILAB and OCTAVE provide high-level, interpreted programming environments,
with matrices as the main data type, similar to MATLAB.

Initially named 
lab (Psilab), the first software environment was created in 1990
by researchers from INRIA and École nationale des ponts et chaussées (ENPC) in
France. The SCILAB Consortium was then formed in 2003 [15] to broaden con-
tributions and promote SCILAB in academia and industry. In 2010, the Consor-
tium announced the creation of SCILAB Enterprises, which develops and maintain
SCILAB as an open source software but proposes commercial services to industry
(professional software and project development). With regard to the solution of ordi-
nary differential equations, SCILAB has an interface, called ode, to several solvers,
especially those from the FORTRAN library ODEPACK originally developed by
Alan Hindmarsh [2].

OCTAVE [16] was initially developed by John Eaton in the early 1990s, and then
developed further by many contributors following the terms of the GNU General
Public License (GPL) as published by the Free Software Foundation. The name
OCTAVE is inspired by Octave Levenspiel, former Chemical Engineering Professor
of John Eaton, who was known for his ability to solve numerical problems. OCTAVE
has a built-in ODE solver based on LSODE [3], and a DAE solver, DASSL, originally
developed by Linda Petzold [4]. Additional contributed packages are also available,
e.g., OdePkg, which has a collection of explicit and implicit ODE solvers and DAE
solvers.

An interesting feature of SCILAB and OCTAVE, as we will see, is the degree
of compatibility with MATLAB codes. In many cases, slight modifications of the
MATLAB codes will allow us to use them in SCILAB or OCTAVE.

Let us now show the programming of the spruce budworm dynamics—see
Eqs. (2.50)–(2.55)—in SCILAB highlighting the main differences with MATLAB.

The SCILAB script spruce_budworm_main.sci is the main program,
which now has an extension .sci instead of .m. The main features of this program are
the following:

• Commented lines (these lines are not read by the interpreter but are very useful to
explain the code) in SCILAB start with a double slash (//) as in C++, which is the
equivalent to the percentage symbol (%) in MATLAB.
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• The information to be displayed during the execution of the program can be
changed in SCILAB with the mode(k) command. With k=-1 the code runs
silently (no information is displayed).

• The stopwatch timer commands coincide with the MATLAB ones (tic, toc)
• Setting the global variables in SCILAB is slightly different than in MATLAB. In

SCILAB, each variable is inside quotation marks and it is separated from the other
variables by commas.

• One important difference with respect to the MATLAB codes is that the functions
must be loaded with the exec command. For instance, the ODEs are programmed
in function spruce_budworm_odes.sci and it is loaded with the command
exec(’spruce_budworm_odes.sci’). In MATLAB any function defined
in the path can be called.

• The definition of model parameters and initial conditions is exactly the same in
MATLAB and SCILAB.

• After the definition of the initial conditions, the ODE solver is chosen. In this case
two possibilities are offered, namely, Euler’s method and a Runge–Kutta–Fehlberg
implementation. Note that all our basic time integrators (presented in this chapter)
can easily be translated to SCILAB, and are provided in the companion software.
In the application example, Euler’s method is chosen by commenting out the line
method = ‘rkf45’. Then the select command with two different cases
is used. This command is equivalent to the switch command in MATLAB. As
’Euler’ is the method of choice, the code will run the lines corresponding to this
selection while the lines corresponding to’rkf45’will be blind to the execution.
An example of use of the SCILAB ODE library is included in Sect. 3.12.

• In order to use the Euler solver, it is required to load the function that implements
it: exec(’euler_solver.sci’). Then the function where the ODEs are
defined is called (spruce_budworm_odes.sci) practically in the same way
as in MATLAB. In this sense, in SCILAB we have

[tout,yout] = euler_solver(‘‘spruce_budworm_odes(t,x)’’,...
t0,tf,x,Dt,Dtplot);

while in MATLAB this line is written as:

[tout,yout] = euler_solver(@spruce_budworm_odes,...
t0, tf, x, Dt, Dtplot);

• Finally, the solution is plotted using the same commands as in MATLAB

/ / Display mode
mode( −1);

/ / Clear previous workspace variables
clear

/ / start a stopwatch timer

http://dx.doi.org/10.1007/978-3-319-06790-2_3
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tic

/ / set global variables
global ( "rb " , "k " , "pbeta " , "a " , "rs " , "Ks " , "re " , "Ke " , "p " , "Te " )

/ / Load the subroutines
exec ( 'spruce_budworm_odes .sci ' )

/ / model parameters
rb = 1 . 5 2 ;
k = 355;
pbeta = 43200;
a = 1 . 1 1 ;
rs = 0 . 0 9 5 ;
Ks = 25440;
re = 0 . 9 2 ;
Ke = 1 ;
p = 0 . 0 0 1 9 5 ;
Te = 0 . 0 3 ;

/ / initial conditions
t0 = 0 ;
tf = 200;
B = 10;
S = 7000;
E = 1 ;
x = [B ,S ,E ] ' ;

/ / call to ODE solver (comment /decomment one of the methods
/ / to select a solver )
method = 'Euler '
/ / method = 'rkf45 '

select method ,
case 'Euler ' then

/ / Load the Euler solver subroutine
exec ( 'euler_solver .sci ' )
Dt = 0 . 0 1 ;
Dtplot = 0 . 5 ;
[tout ,yout ] = euler_solver ( "spruce_budworm_odes(t ,x ) " , . . .

t0 ,tf ,x ,Dt ,Dtplot ) ;
case 'rkf45 ' then

/ / Load the rkf45 solver subroutines
exec ( 'rkf45_solver .sci ' )
exec ( 'ssrkf45 .sci ' )
hmin = 0 . 0 0 1 ;
nstepsmax = 1000;
abstol = 0 . 0 0 1 ;
reltol = 0 . 0 0 1 ;
Dtplot = 0 . 5 ;
[tout ,yout ,eout ] = . . .

rkf45_solver ( "spruce_budworm_odes(t ,x ) " ,t0 ,tf ,x , . . .
hmin ,nstepsmax ,abstol ,reltol ,Dtplot ) ;

end

/ / Plot the solution
subplot ( 3 , 1 , 1 )
plot (tout ,yout ( : , 1 ) )
ylabel ( 'B (t ) ' , 'FontSize ' , 2 ) ;
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subplot ( 3 , 1 , 2 )
plot (tout ,yout ( : , 2 ) )
ylabel ( 'S (t ) ' , 'FontSize ' , 2 ) ;
subplot ( 3 , 1 , 3 )
plot (tout ,yout ( : , 3 ) )
xlabel ( 'Time [years ] ' , 'FontSize ' , 2 ) ;
ylabel ( 'E (t ) ' , 'FontSize ' , 2 ) ;

/ / read the stopwatch timer
tcpu = toc ( ) ;

Script spruce_budworm_main.sci Main program that calls functions Euler_solver.sci
and spruce_budworm_odes.sci

The other two SCILAB functions required to solve the problem are: spruce_
budworm_odes.sci (where the RHS of the ODEs are defined) and Euler_
solver.sci (containing the implementation of the Euler solver). These codes
are practically the same as in MATLAB, the main differences are those already
mentioned in the main script, i.e., the symbol used to comment the lines (//), the
way of setting the global variables and the mode command to select the information
printed during execution.

/ / Display mode
mode( −1);

function [xt ] = spruce_budworm_odes(t ,x )

/ / Output variables initialisation (not found in input
/ / variables )
xt= [ ] ;

/ / Set global variables
global ( "rb " , "k " , "pbeta " , "a " , "rs " , "Ks " , "re " , "Ke " , "p " , "Te " )

/ / Transfer dependent variables
B = x ( 1 ) ;
S = x ( 2 ) ;
E = x ( 3 ) ;

/ / Model Parameters
Kb = ( (k*S ) * (E ^ 2 ) ) / (E^2+Te^ 2 ) ;
alpha = a*S ;
g = (pbeta*(B ^ 2 ) ) / (alpha^2+B ^ 2 ) ;
P = (p*(E ^ 2 ) ) / (Te^2+E ^ 2 ) ;

/ / Temporal derivatives
Bt = (rb*B)*(1−B /Kb ) − g ;
St = (rs*S)*(1 −(S /Ks ) * (Ke /E ) ) ;
Et = ( (re*E)*(1−E /Ke)−(P*B ) /S ) ;

/ / Transfer temporal derivatives
xt = [Bt ,St ,Et ] ' ;
endfunction
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Function spruce_budworm_odes.sci Right hand side of the ODE system (2.50)–(2.55).

Finally, the SCILAB functionEuler_solver.sci contains another difference
with respect to MATLAB: the feval command

xnew = x + feval(odefunction,t,x)*Dt;

is substituted by

xnew = x+evstr(odefunction)*Dt;

where odefunction is an input parameter of type string.

/ / Display mode
mode( −1);

function [tout ,xout ] = euler_solver (odefunction ,t0 ,tf , . . .
x0 ,Dt ,Dtplot )

/ / Output variables initialisation (not found in input
/ / variables )
tout= [ ] ;
xout= [ ] ;

/ / Initialization
plotgap = round (Dtplot /Dt ) ; / / number of computation
/ / steps within a plot interval
Dt = Dtplot /plotgap ;
nplots = round ( (tf−t0 ) /Dtplot ) ; / / number of plots
t = t0 ; / / initialize t
x = x0 ; / / initialize x
tout = t0 ; / / initialize output value
xout = x0 ' ; / / initialize output value

/ / Implement Euler ' ' s method
for i = 1 :nplots
for j = 1 :plotgap

/ / Use MATLAB ' ' s feval function to access the
/ / function file , then take Euler step
xnew = x+evstr (odefunction)*Dt ;
t = t+Dt ;
x = xnew ;

end ;
/ / Add latest result to the output arrays
tout = [tout ;t ] ;
xout = [xout ;x ' ] ;
/ /

end ;
endfunction

Function Euler_solver.sci SCILAB version of the basic Euler ODE integrator

As mentioned before, SCILAB has an interface, called ode, to several solvers. The
use of function ode in SCILAB will be illustrated with a bioreactor example (see
Sect. 3.12). The different options for the solvers include: lsoda (that automatically

http://dx.doi.org/10.1007/978-3-319-06790-2_3
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selects between Adams and BDF methods), adaptive RK of order 4, and Runge–
Kutta–Fehlberg.

On the other hand, OCTAVE comes with LSODE (for solving ODEs) and DASSL,
DASPK and DASRT (designed for DAEs). However, a whole collection of around
15 solvers is included in the package OdePkg http://octave.sourceforge.net/odepkg/
overview.html. This package include explicit RK solvers of different orders for ODE
problems, backward Euler method and versions of different FORTRAN solvers for
DAEs (as RADAU5, SEULEX, RODAS, etc.), as well as more sophisticated solvers
for implicit differential equations and delay differential equations which are out of
the scope of this book.

It must be mentioned that OCTAVE is even more compatible with MATLAB
than SCILAB. The main difference between MATLAB and OCTAVE is the call to
the ODE solvers when built-in functions are used. If time integration is carried out
using our solvers (Euler, rkf45, ros23p, etc.), the MATLAB codes developed in this
chapter can be directly used in OCTAVE. However, when built-in solvers are used,
slight modifications are required. For instance, the call to ode15s in MATLAB for
the spruce budworm problem is of the form:

options = odeset(’RelTol’,1e-6,’AbsTol’,1e-6);
t = [t0:0.5:tf];
[tout, yout] = ode15s(@spruce_budworm_odes,t,x,options);

where spruce_budworm_odes is the name of the function where the RHS of the
ODE equations is implemented, t is the time span for the integration, x are the initial
conditions and options is an optional parameter for setting integration parameters
as the tolerances or the maximum step size.

The call to the lsode solver in OCTAVE is carried out as follows:

lsode_options(’absolute tolerance’,1e-6);
lsode_options(’relative tolerance’,1e-6);
tout = [t0:0.5:tf];
[yout, istat, msg] = lsode(@spruce_budworm_odes, x, tout);

The most important difference with respect to MATLAB is the order of the depen-
dent and independent problem variables x and t. Note that in OCTAVE x is the second
input parameter and t the third. This also affects functionspruce_budworm_odes.
In MATLAB the first line of this code reads as:

function xt = spruce_budworm_odes(t,x)

while in OCTAVE we have

function xt = spruce_budworm_odes(x,t)

Note that if we want to reuse this code for integration with our solvers, they must
be slightly modified accordingly. For instance, in MATLAB, Euler solver make calls
to function spruce_budworm_odes

xnew = x + feval(odefunction,t,x)*Dt;

http://octave.sourceforge.net/odepkg/overview.html
http://octave.sourceforge.net/odepkg/overview.html
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Table 2.13 Performance of different IVP solvers in several environments for the spruce budworm
and liming to remediate acid rain problems

Spruce budworm Acid rain

MATLAB Euler 23.85 2.96
rkf45 10.00 2.53
ode45 10.77 1.77
ode15s 21.92 3.27

SCILAB Euler 117.31 224.61
rkf45 24.23 9.61
lsode (Adams) 10.38 5.00
lsode (BDF) 13.46 7.69

OCTAVE Euler 43.85 52.30
rkf45 19.23 5.00
lsode 6.15 1.00
dassl 13.46 1.77

In the acid rain problem a strong control law, which is the most challenging, is used. Times have
been normalized with respect to the most efficient case, i.e., LSODE in OCTAVE for the acid rain
problem

In OCTAVE this must be modified to

xnew = x + feval(odefunction,x,t)*Dt;

To conclude this section, a comparison of the performance of different solvers
in MATLAB, SCILAB, and OCTAVE is included in Table 2.13. When our simple
IVP solvers are used, i.e., euler and rkf45, MATLAB is by far the most efficient
environment for both problems. The computational cost in OCTAVE is clearly the
largest one. On the other hand, when built-in solvers are used, OCTAVE is the
most efficient alternative (especially with LSODE) while SCILAB and MATLAB
computational costs are of comparable magnitude (SCILAB is more efficient than
MATLAB for solving the spruce budworm problem and the reverse is true when
solving the acid rain problem). However, it should be noted that in general, when the
size and complexity of the problem increases, MATLAB will usually appear as the
most efficient alternative even when using built-in solvers.

2.7 How to Use Your Favorite Solvers in MATLAB?

This last section is intended for the reader with some background knowledge in
programming, and we suggest for the reader who is not interested in implementation
details to skip this material, and possibly to come back to it later on.

MATLAB EXecutable files (MEX-files) are dynamically linked subroutines
produced from C or FORTRAN source code that, when compiled, can be run
within MATLAB in the same way as MATLAB M-files or built-in functions www.
mathworks.com/support/tech-notes/1600/1605.html.

The main reasons for using MEX-files are listed below:

www.mathworks.com/support/tech-notes/1600/1605.html
www.mathworks.com/support/tech-notes/1600/1605.html
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1. During the last few decades, a huge collection of C and FORTRAN numerical
algorithms have been created and largely tested by different research and industrial
organizations. Such codes cover a large variety of fields such as linear algebra,
optimization, times series analysis among many others. Particularly interesting
for this chapter is the collection of efficient and reliable ODE solvers. Using the
MEX-files we can call these subroutines without the need of rewriting them in
MATLAB.

2. MATLAB is a high-level language and as such the programming is easier than in
low-level languages as C/C++ or FORTRAN. As a drawback, MATLAB codes
are, in general, slower than C and FORTRAN. MEX-files allow us to increase the
efficiency of MATLAB M-files or built-in functions.

In order to create a MEX-file, first a gateway routine is required. The gate-
way is the routine through which MATLAB accesses the rest of the routines in
MEX-files. In other words, it is the connection bridge between MATLAB and
the FORTRAN or C subroutines. The standard procedure for creating gateways is
described in http://www.mathworks.com/support/tech-notes/1600/1605.html?BB=
1. This procedure is, however, tiresome, prone to mistakes and with a complex debug-
ging only recommendable for those with good programming skills.

There is however a tool (OPENFGG) for generating semiautomatically the gate-
ways. This tool can be downloaded from the url http://www8.cs.umu.se/~dv02jht/
exjobb/download.html and includes a graphical user interphase. There are four steps
to create the gateway with this tool:

• Create a new project File → New
• Add the source files to parse. In this step we include the FORTRAN code for which

we want to generate the mex file (e.g. mycode.f)
• Select the inputs and the outputs of mycode.f
• Press the Compile buttom. The gateway mycodegw.f is generated

One of the main drawbacks of OPENFGG is that it does not allow to create reverse
gateways, this is, codes for calling MATLAB files from FORTRAN.

It must be noted that for creating a MEX file an adequate FORTRAN or C/C++
compiler must be installed.

Now we are ready to create the MEX-file. To that purpose we open a MATLAB
session and type:

mex -setup

And choose one of the installed compilers. This step is only required to be done once.
After this, type

mex mycode.f mycodegw.f

Which creates the MEX-file that can be used at the MATLAB command prompt in
the same way as any M-file or built-in function.

From the MATLAB version 7.2 (R2006a), it is possible to use open source FOR-
TRAN and C compilers (g95, gfortran, gcc) through the tool GNUMEX. GNUMEX

http://www.mathworks.com/support/tech-notes/1600/1605.html?BB=1
http://www.mathworks.com/support/tech-notes/1600/1605.html?BB=1
http://www8.cs.umu.se/~dv02jht/exjobb/download.html
http://www8.cs.umu.se/~dv02jht/exjobb/download.html
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allows to set up the Windows versions of gcc (also gfortran and g95) to compile mex
files. The procedure is described in detail at http://gnumex.sourceforge.net, However,
the main steps are summarized below:

• Install the packages for the gcc compiler. The easiest way is to Download Mingw
from http://www.mingw.org/ and install it. The installation path C:\mingw is
recommended.

• Download the g95 compiler from http://www.g95.org/downloads.shtml and install
it. The option Self-extracting Windows x86 (gcc 4.1, experimental) is recom-
mended.

• Download GNUMEX http://sourceforge.net/projects/gnumex/ unzip the files and
place the folder in a directory (e.g C:\gnumex).

• Open a MATLAB session, go to the path where gnumex was unzipped and
type gnumex. A window will open. Through this window we will modify the
mexopts.bat which contains the information about the compilers and options
used for creating the MEX-file.

• In the new window

– Indicate the place where mingw and g95 binaries are located
– In language for compilation chose C/C++ or g95 depending on if the

MEX-file will be created from a C or a FORTRAN subroutine.
– Press Make options file

Now we should be able to create the MEX-file using the command mex in
MATLAB.

A simple example of how to create a MEX-file is described in Sect. 2.7.1.

2.7.1 A Simple Example: Matrix Multiplication

In order to illustrate the procedure for constructing a MEX-file and how such MEX-
file can speed-up our code, we consider in this section the simple example of matrix
multiplication.

We first list the MATLAB algorithm for matrix multiplication matrix_mult.m

function C = matrix_mult (A ,B ,nrA ,ncA ,ncB )

% Code for matrix multiplication
C = zeros (nrA ,ncB ) ;
for ii = 1 :nrA

for jj = 1 :ncB
for kk = 1 :ncA

C (ii ,jj ) = C (ii ,jj ) + A (ii ,kk )*B (kk ,jj ) ;
end

end
end

http://gnumex.sourceforge.net
http://www.mingw.org/
http://www.g95.org/downloads.shtml
http://sourceforge.net/projects/gnumex/
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Function matrix_mult.m Simple MATLAB algorithm for matrix multiplication

It should be noted that the MATLAB symbol * contains a much more efficient
algorithm than matrix_mult.m thus matrix_mult.m is only used for illustra-
tion purposes.

The FORTRAN code for matrix multiplication is written in matmult.f

C matmult subroutine in FORTRAN

SUBROUTINE matmult (A ,B ,C ,nrA ,ncA ,ncB )

IMPLICIT NONE
INTEGER nrA ,ncA ,ncB
REAL*8 A (nrA ,ncA )
REAL*8 B (ncA ,ncB )
REAL*8 C (nrA ,ncB )

INTEGER I ,J ,K

DO I=1 ,nrA
DO J=1 ,ncB

C (I ,J ) = 0 . 0
DO K=1 ,ncA

C (I ,J ) = C (I ,J ) + A (I ,K )*B (K ,J )
END DO

END DO
END DO
RETURN
END

Function matmult.f Simple FORTRAN algorithm for matrix multiplication

The next step is to create the gateway for the FORTRAN subroutine. For that
purpose, we will employ the tool OpenFGG. In this tool, we must define the input
and output variables of the subroutine, so we define A,B,nrA,ncA, and ncB as input
variables and C as the output variable. After this step the gateway matmultgw.f is
generated.1 It must be noted here that the gateway matmultgw.f contains almost
700 lines of code which gives us an idea of the complexity of creating FORTRAN
gateways by hand.

The next step is to create the MEX-file using the following command in MATLAB:

mex -O matmult.f matmultgw.f

where the -O option is to optimize the code. This step creates the MEX-file whose
extension will depend on the platform and the version of MATLAB. In our case, we
obtain matmult.mexglx since we are runing MATLAB 2009b under a Linux 32
bits platform.

1 The code for the gateway matmultgw.f is not included in this document because of its length.
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Another option is to create the MEX file for a C function. The C code for matrix
multiplication is written in mmcsubroutine.c

void mmcsubroutine (
double C [ ] ,
double A [ ] ,
double B [ ] ,
int nrA ,
int ncA ,
int ncB

)
{

int i ,j ,k ,cont ;
cont = 0 ;
for (j=0; j<ncB ; j++) {

for (i=0; i<nrA ; i++) {
for (k=0; k<ncA ; k++) {

C [cont ] += A [nrA*k+i ]*B [k+j*ncA ] ;
}
cont++;

}
}
return ;

}

Function mmcsubroutine.c Simple C algorithm for matrix multiplication

There is no software for the automatic generation of the gateway thus we have
to create it by hand. In this particular case, this task is not too difficult but some
programming skills are required. The gateway is written in matmultc.c

/ * Gateway MATMULTC .C for matrix multiplication in C * /
#include <math .h>
#include "mex .h"

/ * Input Arguments * /
#define A_IN prhs [ 0 ]
#define B_IN prhs [ 1 ]
#define NRA_IN prhs [ 2 ]
#define NCA_IN prhs [ 3 ]
#define NCB_IN prhs [ 4 ]

/ * Output Arguments * /
#define C_OUT plhs [ 0 ]

/ * Mex function * /
void mexFunction ( int nlhs , mxArray *plhs [ ] ,

int nrhs , const mxArray*prhs [ ] )
{

double *C ;
double *A , *B ;
int nrA ,ncA ,ncB ;
mwSize m ,n ,nA ,mB ;

/ * Check for proper number of arguments * /
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if (nrhs != 5) {
mexErrMsgTxt ( "Five input arguments required . " ) ;
} else if (nlhs > 1) {
mexErrMsgTxt ( "Too many output arguments . " ) ;
}

/ * Check the dimensions of A and B * /
nA = mxGetN (A_IN ) ;
mB = mxGetM (B_IN ) ;
if ( (nA != mB ) ) {
mexErrMsgTxt ( "N cols . in A different from N rows in B . " ) ;
}

/ * Create a matrix for the return argument * /
m = mxGetM (A_IN ) ;
n = mxGetN (B_IN ) ;
C_OUT = mxCreateDoubleMatrix(m , n , mxREAL ) ;

/ * Assign pointers to the various parameters * /
C = mxGetPr (C_OUT ) ;
A = mxGetPr (A_IN ) ;
B = mxGetPr (B_IN ) ;
nrA = (int ) mxGetScalar (NRA_IN ) ;
ncA = (int ) mxGetScalar (NCA_IN ) ;
ncB = (int ) mxGetScalar (NCB_IN ) ;

/ * Do the actual computations in a subroutine * /
mmcsubroutine (C ,A ,B ,nrA ,ncA ,ncB ) ;
return ;

}

Function matmultc.c C gateway for the subroutine mmcsubroutine.c

We can note the following details about matmultc.c:

1. The code starts by defining the input and output arguments of the subroutine
mmcsubroutine.c.

/* Input Arguments */
#define A_IN prhs[0]
#define B_IN prhs[1]
#define NRA_IN prhs[2]
#define NCA_IN prhs[3]
#define NCB_IN prhs[4]
/* Output Arguments */
#define C_OUT plhs[0]

There are five inputs and one output. The part rhs in prhs[*] calls for the
right hand side while lhs in plhs[*] calls for the left hand side. The order of
the parameters when calling the subroutine is indicated by the number between
brackets.

2. After defining the inputs and outputs, we start by constructing the MEX function.

/* Mex function */
void mexFunction( int nlhs, mxArray *plhs[],

int nrhs, const mxArray*prhs[] )
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The name of the MEX function must always be mexFunction. This part is
common to all MEX-files.

3. Next the parameters used in the MEX function are defined

double *C;
double *A,*B;
int nrA,ncA,ncB;
mwSize m,n,nA,mB;

4. The matrix output is created

/* Create a matrix for the return argument */
m = mxGetM(A_IN);
n = mxGetN(B_IN);
C_OUT = mxCreateDoubleMatrix(m, n, mxREAL);

5. Then the pointers are assigned to the different input/output parameters

/* Assign pointers to the various parameters */
C = mxGetPr(C_OUT);
A = mxGetPr(A_IN);
B = mxGetPr(B_IN);
nrA = (int) mxGetScalar(NRA_IN);
ncA = (int) mxGetScalar(NCA_IN);
ncB = (int) mxGetScalar(NCB_IN);

6. At this point, the subroutine which performs the matrix multiplication computa-
tion is called

/* Do the actual computations in a subroutine */
mmcsubroutine(C,A,B,nrA,ncA,ncB);

7. Alternatively some code for checking the input/output arguments can be included

/* Check for proper number of arguments */
if (nrhs != 5) {
mexErrMsgTxt(‘‘Five input arguments required.’’);
} else if (nlhs > 1){
mexErrMsgTxt(‘‘Too many output arguments.’’);
}
/* Check the dimensions of A and B */
nA = mxGetN(A_IN); mB = mxGetM(B_IN);
if ((nA != mB)) {

mexErrMsgTxt(‘‘N cols. in A different from N rows in B.’’);
}

Finally, the MEX-file is created as in the previous case:

mex -O matmultc.c mmcsubroutine.c

Now we are ready to call the mex-file from MATLAB. In order to compare the
computational times obtained with the MATLAB function and with the MEX-file,
the MATLAB script main_matrix_mult will be used.
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% Main program calling the matrix_mult code and the mex file
clear all
clc

% Dimension of matrices
nrA = 200;
ncA = 1000;
ncB = 500;

% Create the matrices
A = rand (nrA ,ncA ) ;
B = rand (ncA ,ncB ) ;

% Call the MATLAB function
tt = cputime ;
C1 = matrix_mult (A ,B ,nrA ,ncA ,ncB ) ;
fprintf ( 'Matlab function time = %2.2f s \n ' ,cputime−tt ) ;

% Call the FORTRAN MEX−file
tt = cputime ;
C2 = matmult (A ,B ,nrA ,ncA ,ncB ) ;
fprintf ( 'Fortran Mex−file time = %2.2f s \n ' ,cputime−tt ) ;

% Call the C MEX−file
tt = cputime ;
C3 = matmultc (A ,B ,nrA ,ncA ,ncB ) ;
fprintf ( 'C Mex−file time = %2.2f s \n ' ,cputime−tt ) ;

Script main_matrix_mult Main program that calls MATLAB function matrix_mult.m and
mex-file matmult.mexglx

As a result, we obtain the following MATLAB screen-print:

MATLAB function time = 3.60 s
Fortran Mex-file time = 0.56 s
C Mex-file time = 0.45 s

showing that for this particular case, the MEX-file obtained from the FORTRAN
code is more than six times faster than the MATLAB function while the MEX-file
obtained from the C code is even faster.

2.7.2 MEX-Files for ODE Solvers

Efficient FORTRAN or C time integrators can also be exploited within MATLAB
using the concept of MEX-files. The creation of these MEX-files is too complex to
be detailed in this introductory text and we content ourselves with an application
example. A comparison against the IVP solver RKF45 is shown in Table 2.14, which
lists computational times normalized with respect to the smallest cost, i.e., that cor-
responding to the simulation of the logisticequation using the FORTRAN version.
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Table 2.14 Computation times required for solving different ODE systems considered in this
chapter with versions of the RKF45 solver implemented in FORTRAN and MATLAB

FORTRAN MATLAB

Logistic equation (Sect. 2.1) 1 1,500
Stiff ODEs (Sect. 2.2) 14.71 5882.4
Spruce budworm (Sect. 2.5) 229.4 56,971

As shown in the table, the FORTRAN MEX-file is orders of magnitude faster than
the MATLAB version. Several MEX-files are available in the companion software.
The details of their construction are omitted due to space limitation.

2.8 Summary

In this chapter, a few time integrators are detailed and coded so as to show the main
ingredients of a good ODE solver. First, fixed-step integrators are introduced, fol-
lowed by variable-step integrators that allow to achieve a prescribed level of accuracy.
However, stability appears as an even more important issue than accuracy, limiting the
time-step size in problems involving different time scales. A Rosenbrock’s method
is then considered as an example to solve efficiently this class of problems. After
the presentation of these several basic time integrators, we turn our attention to the
MATLAB ODE suite, a powerful library of time integrators which allow to solve
a wide range of problems. We then apply several of these integrators to two more
challenging application examples, i.e., the study of spruce budworm dynamics and
the study of liming to remediate the effect of acid rain on a lake. On the other hand,
we introduce the use of SCILAB and OCTAVE, two attractive open-source alter-
natives to MATLAB, to solve ODE and DAE problems, and we highlight the main
syntaxic differences. As MATLAB is an interpreted language, the computational cost
can however be an issue when computing the solution of large system of ODEs, or
when solving repeatedly the same problem (as for instance when optimizing a cost
function, involving the solution of a ODE model). The use of compiled functions
can be advantageous in this case, and this is why we end the presentation of ODE
integrators by the use of MATLAB MEX-files.
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