
Chapter 2
Features Based on Triplet Half-Band
Wavelet Filter-Banks

Abstract This chapter presents the design of a new class of triplet half-band filter
bank (THFB) and investigates its properties to extract iris image features. The feature
extraction process and post-classifier have been discussed in this chapter.
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2.1 Introduction

This chapter presents the design of a new class of triplet half-band filter bank (THFB)
and investigates its properties to extract the iris image features. The feature extraction
process and the post-classifier have been discussed in this chapter.

Daugman [1] used multi-scale quadrature 2-D Gabor filter to demodulate phase
information of an iris image to create IrisCode for the authentication. Proenca and
Alexandre [2] partitioned normalized iris image into six regions and obtained six
IrisCodes using Gabor filters. The matching scores of these six regions are fused
together to generate an overall matching score. However, Gabor basis provides an
over-complete representation which increases the redundancy and thus time required
for iris feature extraction is high. Masek [3] introduced the Log-Gabor filter to encode
the phase information of an iris image. Vatsa et al. [4] derived two types of dis-
tinct iris features (Log-Gabor and Euler numbers) from the normalized iris images
and improved the recognition accuracy by effective segmentation technique, quality
enhancement, and SVM rule. However, it consists of many stages to improve the
performance. Boles and Boashash [5] used 1-D WT to compute the zero-crossing
representation at different resolution levels of a concentric circle on an iris image.
However, this method provides very less information along a virtual circle on the
iris which affects the recognition accuracy. Wildes [6] obtained the characteriza-
tion of iris texture through Laplacian pyramid with four different resolution levels.
Furthermore, image registration technique is used to align the feature vectors of
two iris images and compared the corresponding feature vectors using a normalized
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correlation. However, this registration technique significantly increases the computa-
tional complexity of the entire method. Lim et al. [7] used 2-D Haar WT to decompose
an iris image into four levels and encoded the fourth-level high-frequency informa-
tion into an 87-bits binary ordinal code depending upon the sign of the filtered results.
However, this method looses middle frequency components of the iris. Ma et al. [8]
extracted the texture features of an iris using a bank of spatial filters and used quality
descriptor, bootstrap learning and FLD to improve the recognition rate. However, this
method is not suitable to perform well in the presence of eyelids/eyelashes occlusion.
The same authors used 1-D quadratic spline WT along the angular direction of a nor-
malized iris image [9]. In their work, feature vectors derived based on the local sharp
variation points of a variable length called as shape code (SC). Nabti et al. [10] pre-
sented multi-resolution iris feature extraction technique by analyzing the iris using
first wavelet maxima components and then applying a special Gabor filter bank on
the normalized iris image to extract all dominant features. Velisavljević [11] pre-
sented iris coding and recognition using directionlets based on 9/7 bi-orthogonal
wavelet basis. Abhyankar and Schuckers [12] introduced biorthogonal wavelet
neural network (BWN) for off-angle iris recognition by adjusting non-ideal fac-
tors through repositioning the BWN. Monro et al. [13] presented ordinal encoding
scheme based on the difference of optimized DCT coefficients of overlapped angular
patches from normalized iris image. Sun and Tan [14] presented OMs for iris feature
representation scheme based on MLDFs using 2-D Gaussian filters. MLDF has been
used on 1,024 densely sampled image regions to obtain 1024 bits ordinal code for
every iris image with flexible interlobe distance (d). This method has achieved the
good trade-off between distinctiveness and robustness. However, this representation
may lose some image specific information. Dong et al. [15] introduced a personalized
iris matching strategy using a class-specific weight map learned from the training
images of the same iris class. The robustness of the weight map totally depends upon
the number of training images within a class. However, this method requires more
number of training images to decide an effective weight-map within a class which
leads to increase the computational cost. Kumar and Passi [16] presented a compara-
tive study of the iris recognition performance using Log-Gabor, Haar wavelet, DCT,
and FFT based phase ordinal encoding with small number of training images. Huang
et al. [17] introduced a rotation invariant approach for iris feature extraction scheme
based on non-separable wavelet FB and Gaussian Markov random field (GMRF).
In their work, non-separable wavelet is constructed by using centrally symmetric
orthogonal matrices to obtain the iris features in eight different directions. Further-
more, FLD with polynomial kernel is used to improve the computational efficiency
and classification accuracy. Park et al. [18] noticed the importance of capturing direc-
tional information in iris images where a DFB is applied to a band-pass filtered iris
images to derive feature vectors.

It is observed that most of these iris recognition algorithms are sensitive to iris
segmentation (detection of inner and outer boundaries). The noise due to inaccurate
detection of outer boundary can be easily removed, but the inaccurate detection
of pupillary boundary plays a very important role for the iris verification. Due to
the inaccurate detection of pupillary boundary, either iris information will lose or
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Fig. 2.1 Block diagram of
two-channel PRFB

occlusion of pupil will occur on the normalized iris. Thus, an accurate segmentation of
iris region is significantly important for iris recognition which may not be possible in
the practical iris recognition system. The great progress has been made on iris feature
representation, but it is still an open problem. Although, there is a defined standard
for raw iris data, but there is none regarding iris features representation [14]. Most
of the iris feature extraction techniques in the literature used off-the-shelf wavelet
basis to extract the iris features. However, many issues are still open in the field of iris
feature-extraction and the choice of FB. The design of FB and investigations of their
properties (near-orthogonality, regularity, time-frequency localization, linear phase,
etc.) for image-coding, denoising, compression, etc. have been carried by many
researchers. However, effectiveness of these properties in iris pattern recognition is
not addressed in the literature. Hence, this chapter introduces a new wavelet basis
for iris texture representation in an attempt to extract effective and compact iris
features, and a flexible post-classifier k-out-of-n:A so as to handle possible artifacts
especially segmentation error (inaccurate detection of inner and outer boundaries of
iris), occlusion of eyelids/eyelashes, reflection on iris, shadow of upper/lower eyelid
on iris, non-linear deformation, etc.

2.2 Review of the Related Filter Banks

The block diagram of two channel Filter Banks (FB) is shown in Fig. 2.1. The
necessary and sufficient conditions for PR are given by the following two equations:

H0(z)G0(z) + H0(−z)G0(−z) = 2, (2.1)

H1 = z−1G0(−z), G1(z) = zH0(−z). (2.2)

The product filter P(z) = H0(z)G0(z) in Eq. (2.1) belongs to the special class
of filters known as half-band filter. The analysis scaling and wavelet functions are
given by the following two-scale dilation equations:

φ(t) = 2

|H0(ω)|ω=0

∑

n

h0(n)φ(2t − n), (2.3)

ψ(t) = 2

|G0(ω)|ω=0

∑

n

h1(n)φ(2t − n). (2.4)

where h0(n) and h1(n) are the analysis low-pass filter (LPF) and high-pass filter
(HPF) coefficients respectively.
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The two-channel wavelet FBs have been widely used in many applications which
require signal decomposition e.g. pattern recognition, compression, super-resolution,
etc. The biorthogonal FBs preferred for image processing due to its symmetric scaling
and wavelet functions. Regularity of wavelets is an important property which imposed
in the design of wavelet filters by having vanishing moments (zeros at z = −1) at the
aliasing frequencies of wavelet HPFs. Meanwhile, one of the design characteristics of
wavelet FBs for signal analysis is the ability to achieve time-frequency localization.
Thus, it is desirable to design a wavelet FBs that fulfill PR, linear phase, orthogonality,
regularity and time-frequency localization. One of the most common design methods
for designing wavelet filters is the factorization of a HBP [19]. It is well known that
most of the popular biorthogonal FBs (e.g. Cohen-Daubechies-Feauveau (CDF-9/7),
spline family of wavelet FBs [20–22] are designed by the factorization of a Lagrange
half-band polynomial (LHBP). The LHBP has the maximum number of zeros at
z = −1 to achieve the maximum regularity.

However, LHBP filters do not have any degree of freedom and thus there is no
direct control over frequency response of the filters. In order to have some inde-
pendent parameters (which can be optimized to obtain some control over frequency
response of the filter), Patil et al. [19] used general half-band filter factorization (not
LHBP) to design two-channel bi-orthogonal wavelet FIR FBs (BWFB). However,
it is observed that this factorization (includes decision of factorization of remainder
polynomial and reassignment of zeros) improves the frequency response of one of
the filters (analysis/synthesis) at the cost of the other filter (synthesis/analysis). The
improvement in frequency response of both the filters heavily depends upon the fac-
torization of a HBP. This is somewhat tedious task for higher order HBPs. It is also
observed that the designed biorthogonal FBs lose “maximal flat” condition and it is
far away from orthogonality condition. Lifting scheme is also one of the attractive
schemes to design wavelet FBs that provides structurally imposed PR property [23].
Based on the lifting scheme, Phoong et al. [24] introduced a class of halfband pair
filterbank (HPFB) structure based on two kernels. In HPFB structure, magnitudes of
the frequency responses of the analysis and synthesis low pass filters at ω = π/2 are
restricted to 0.5 and 1.0 respectively or vice-versa. This encounters certain restric-
tions for the control of its frequency response. In order to overcome this restriction
[24], Ansari et al. [25] proposed a FB structure based on a class of THFB using three
kernels that have structural PR, feature-rich structure and simple design. In their work,
two methods are proposed to design two-channel 1-D biorthogonal FBs based on the
triplet of half-band filters. The first method is based on Lagrange filter coefficients
to achieve maximal flatness in the filters (due to maximum regularity) with slow
frequency roll-off. The second method is employed Remez algorithm which results
in equiripple filters with user-defined cut-off frequencies. It has sharp frequency roll-
off but does not have the regularity condition. In their work, the shape parameter p
is used to achieve a greater flexibility in frequency response of the filters. However,
regularity order related to the number of zeros at z = −1 has not been specified. In
order to bridge the gap between these two extremes, Tay and Palaniswami [26] intro-
duced a novel approach to design a class of THFB. Parametric Bernstein polynomial
is used to impose the required vanishing moments (VMs). This technique is based
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on iterative least square approach to determine the coefficients of Bernstein polyno-
mial. However, Bernstein polynomial is suitable for nearly maximally flat frequency
response rather than for ripple responses with sharp roll-off. In [27], Tay modified the
work of [26] and suggested a new class of even-length biorthogonal wavelet filters
for Hilbert pair design (ETHFB). Chan and Yeung [28] presented a design of THFB
with regularity using semi-definite programming (SDP). However, the semi-infinite
constraints are approximated by a large finite number of constraints that give an
inefficient design for higher order filters. Kha et al. [29] proposed an efficient SDP
method in order to design a class of THFB with optimal frequency selectivity for a
given regularity condition. Eslami and Radha [30] generalized Ansari’s method to a
multidimensional FB design with any number of analysis and synthesis VMs using
a structural approach based on Kovacevic method [31]. The filters designed in [30]
achieved better regularity, lower frame bounds and better frequency selectivity than
the filters designed in [31].

In this chapter, a new class of THFB is designed in order to overcome the limita-
tions of recently presented FBs in [19, 25]. Firstly, three kernels are designed from
the generalized HBP by imposing the zeros at z = −1. These three designed kernels
are used in three step ladder structure to design a new class of THFB by varying
the shape parameter p. The objective function involves optimization of frequency
response of the filters. We have also shown that the designed filters achieve better
frequency selectivity, near-orthogonality, good time-frequency localization with lin-
ear phase and PR condition. This FB is used to form a new wavelet basis for extracting
the textural features of an iris image.

2.2.1 Triplet Halfband Filter Bank

The analysis and synthesis LPFs of a class of Triplet Halfband Filter Bank (THFB)
consist of three kernels as follows [25] :

H0(z) = 1 + p

2
+

(
1 + p

2

)
zT1(z

2)

(
1 − pzT0(z2)

1 + p

)
, (2.5)

G0(z) = 1 + pzT0(z2)

1 + p
+ 1 − p

1 + p
zT2(z

2)H0(−z). (2.6)

where, Tm(z) is obtained using:

Tm(z) =
N∈ even∑

n=1

tm(n)(z−n + zn−1), m = 0, 1, 2

The three HBPs T0(z2), T1(z2), and T2(z2) required for Eqs. (2.5) and (2.6) are
obtained using upsampled by 2 operation as:
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zTm(z2) =
Nm∈ even∑

n=1

tm(n)(z−2n+1 + z2n−1), m = 0, 1, 2. (2.7)

and the coefficients tm(n) are obtained using standard Lagrange interpolation
formula as:

tm(n) = (−1)n+Nm−1 ∏2Nm
ı=1 (Nm + 1/2 − ı)

(Nm − n)!(Nm − 1 + n)!(2n − 1)

The analysis and synthesis HPFs are obtained from Eq. (2.2) by quadrature mirror-
ing the LPFs. This class of THFB is implemented using three-step ladder structure.
The parameter p (degree of freedom) provides some flexibility in order to set the
same magnitude of the frequency response at ω = π/2 for both the analysis and
synthesis LPFs (symmetry between analysis and synthesis filters).

2.2.2 Factorization Based on a Generalized Half-Band Polynomial

The alternate approach to the design of two-channel FBs is the design of a halfband
filter, followed by its factorization to derive analysis and synthesis LPFs. Regularity
imposed in the design of P(z) by introducing zeros at z = −1. Patil et al. [19]
presented an approach to design FIR wavelet FBs using factorization of a half-band
polynomial (HBP). This approach is briefly discussed as follows:

1. Assume generalized symmetric half-band polynomial P(z) of order K as

P(z) = a0 + a2z−2 + · · · + a K
2 −1z− K

2 −1 + z− K
2 + a K

2 −1z− K
2 +1 + · · · + a0z−K

The coefficients ak (degree of freedom) of P(z) have to be designed.
2. Obtain L constraints on the coefficients ak of P(z) by introducing L zeros at

z = −1.
3. Using these constraints, P(z) can be expressed in terms of the independent (free)

parameters.
4. Now express the polynomial P(z) as P(z) = (z + 1)L R(z), where R(z) is the

remainder polynomial. Next factorize this R(z) into R1(z) and R2(z) to obtain
final filters as H0(z) = (z + 1)L/2 R1(z) and G0(z) = (z + 1)L/2 R2(z).
The independent coefficients are obtained by optimizing the objective function
(frequency responses of the factored filters H0(z) and G0(z)). It is observed that
the improvement in frequency responses of both the filters H0(z) and G0(z) is
totally depend on the step 4.
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2.3 Design of New Class of THFB

In this chapter, a new class of THFB is formulated in order to avoid the factorization
process and improve the frequency response of both the filters simultaneously. First,
general HBP of an order K (expressed in coefficients ak) which offers ( K

2 +1) degrees
of freedom to impose the vanishing moments is considered. From this polynomial,
three HBPs P1(z), P2(z), and P3(z) are obtained by imposing M zeros at z = −1,
where M < ( K

2 +1). With this, desired number of independent parameters ak (degree
of freedom) are obtained without imposing maximum flatness constraint. These three
HBPs can be expressed as follows:

Pi (z) = (z−1 + 1)Mi Ri (z), i = 1, 2, 3. (2.8)

where Mi is the number of zeros at z = −1 for i th polynomial and the remainder
term Ri (z) is given by the following equation:

Ri (z) = a0 + c1z−1 + c2z−2 + · · · + a0zK−Mi (2.9)

where c j are the constants which can be expressed as functions of a single parameter
a0 (as given in Eq. (2.9)). Thus, three remainder polynomials R1(z), R2(z), and
R3(z) are obtained by imposing M1, M2, and M3 (where M = M1 + M2 + M3 = K

2
can be a choice) zeros on P(z) (of order K ). It may be noted that the remainder
polynomials can also be expressed into any desired number of independent or free
parameters (a0, a2, a4, . . . ). Expressing the c j (remainder polynomial) with more
number of ak provides better flexibility at the cost of computational complexity.
With this, these three HBPs provide one degree of freedom (independent parameters)
by which flexibility in frequency responses can be achieved. We can also construct
three kernels from three different HBPs. In this context, any desired values of M1,
M2, and M3 can be used and available degrees of freedom are utilized to tweak the
frequency response. The required class of three kernels given in Eq. (2.7) is obtained
by following equation

T0(z
2) = zK/2 P1(z) − 1;

T1(z
2) = zK/2 P2(z) − 1;

T2(z
2) = zK/2 P3(z) − 1.

These three designed kernels are then used in the three-step lifting scheme to obtain
a new class of analysis and synthesis LPFs respectively as follows:

H0(z) = 1 + p

2
+ 1 + p

2

(
zK/2 P2(z) − 1

) (
1

1 + p

(
1 + p

(
1 − zK/2 P1(z)

)))
,

(2.10)
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G0(z) = 1 − p + pzK/2 P1(z)

1 + p
+

(
1 − p

1 + p

) (
zK/2 P3(z) − 1

)
H0(−z). (2.11)

where, K is the order of HBP. The use of a class of THFB provides one more degree
of freedom (p) by which we can shape better frequency responses of the final filters.
Thus, the suggested design offers more flexibility in the design of filters using two
degrees of freedom (ak and p). This method has been illustrated in Sect. 2.3.1 with
one example. Due to the use of THFB and general HBP, frequency responses of both
the filters have been improved simultaneously. These filters satisfy regularity, near-
orthogonality, linear-phase, and PR properties. The resulting lengths of the analysis
LPF H0(z) is N1 + N2 − 1 and synthesis LPFs H0(z) is N1 + N2 + N3 − 2, where
N1, N2, and N3 are the lengths of P1(z), P2(z), and P3(z) respectively. It is observed
that synthesis LPF G0(z) is long and smooth as compared to synthesis HPF G1(z).
This setting is more desirable to avoid blocking, checkerboard, and ringing artifacts
during signal reconstruction in lossy coding [32].

2.3.1 Design Example

In the following example, 6th order HBP is used to design the required kernels T0(z2),
T1(z2), and T2(z2).

Example: Consider P(z) of order 6

P(z) = a0 + a2z−2 + z−3 + a2z−4 + a0z−6. (2.12)

This P(z) is used to construct P1(z), P2(z), and P3(z) by imposing the zeros at
z = −1 with the help of synthetic-division such that these three polynomials can be
expressed in terms of a single independent parameter a0. Consider M1 = 0, M2 = 1,
and M3 = 2 such that M1 + M2 + M3 = M = 3, where M < ( K

2 + 1).

The polynomials are expressed as follows:

P1(z) = a0 + (a0 + 0.5)z−2 + (−a0 + 1

2
)z−4 + a0z−6,

P2(z) = (1 + z−1)(a0 + (−a0)z
−1 + 1

2
z−2 + 1

2
z−3 + (−a0)z

−4 + a−5
0 ), (2.13)

P3(z) = (1 + z−1)2(a0 + (−2a0)z
−1 + (2a0 + 1

2
)z−2 + (−2a0)z

−3 + a0z−4).

Now optimized value of a0 = −0.062499 is obtained using MATLAB optimiza-
tion routine fminunc. This value of a0 minimizes the energy in the ripples of these
kernels. The proposed transfer functions for the class of THFB are obtained by using
Eqs. (2.5) and (2.6) to derive the LP analysis filter H0(z) and synthesis filter G0(z).
The optimized value of shaping parameter p = √

2 − 1 is used to obtain the same
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magnitude of H0(z) and G0(z) at ω = π/2. The lengths of filters H0(z) and G0(z) are
13 and 19 respectively. We compare the results of this proposed FBs with the same
length FBs designed using existing approach of [19]. The technique in [19] needs
30th order HBP to get analysis and synthesis LPFs of length 13 and 19 respectively.
Fourteen zeros are imposed at z = −1 on 30th order HBP. Then six zeros to analy-
sis and eight zeros to synthesis LPFs are reassigned to obtain 13/19 length filters
respectively. The frequency responses of the proposed analysis LPF and HPF are
compared with the existing FBs [19] as shown in Fig. 2.2. The analysis scaling and
wavelet functions for the proposed FBs are shown in Fig. 2.3.
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The properties of the proposed FB desirable for iris feature extraction are briefly
discussed as follows:

2.3.2 Properties of the Designed THFB Desirable
for Iris Feature Extraction

1. Linear phase (symmetry):
The non-symmetric wavelet basis degrades the classification accuracy due to its
non-linear phase. The non-linear phase generates phase distortion and the spatial
localization of the wavelet coefficients can not be well-preserved. It can have a
major effect on the shape of the output signal which can lead to decrease the
texture discrimination capability. Thus, linear-phase plays an important role for
iris feature extraction.

2. Near-orthogonality:
Similarity between analysis and synthesis filters is a desirable property. It could
be used as a measure of near-orthogonality [30]. It is a quantitative measure
of how far a biorthogonal FBs from orthogonality. In this chapter, ‖h0 − g0‖2

(h0 and g0 are LP analysis and synthesis filters coefficients respectively) and
|H0(π/2)−G0(π/2)| are used to measure the dissimilarity of the designed filters.
Also, it is well known that orthogonality conserves the energy between the input
and output of the FB [33]. This property over bi-orthogonality can be useful
to represent iris features that can have better bit allocation technique and less
distortion due to quantization noise. This property also plays an important role
for the texture classification in the presence of noise. The details are presented
in [34].

3. Frequency selectivity:
Measure of energy of the error between designed normalized filter and ideal filter
is one of the ways to determine frequency selectivity [30]. The total energy of the
error is defined as

E =
(π/2)∫

0

|1 − H0(ω)|2dω +
π∫

π/2

|H0(ω)|2dω. (2.14)

In this chapter, Eq. (2.14) is used as an objective function to choose the value
of a0. The proposed FB provides good frequency selectivity which is helpful to
represent effective iris features.

4. Regularity:
It is well known that one of the important properties of a wavelet FB is regu-
larity. The regularity leads to smooth scaling and wavelet functions. Regularity
is imposed in the design of wavelet FB by imposing zeros at z = −1 [35]. The
LP filtering followed by decimation will result in the aliasing due to the lower
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Table 2.1 Properties measures of 1-D analysis LPFs

Properties measures Patil’s FB 30th order Proposed THFB 13/19

|H0(pi/2) − G0(pi/2)| 0.6318 0.0026
‖h0 − g0‖2 57.76 0.1589
E 61.65 59.65
�t2 0.5595 0.9464
�ω2 0.5662 0.5672

sampling rate. Consequently, successively LP filtering with decimation results in
more aliasing terms [34]. This leads to produce significant iris verification error.
Thus, it is desirable to approximate the iris features in order to minimize the
quantization error and have better iris texture discrimination. It is also important
to note that if regularity order of analysis wavelet function is greater than the
synthesis wavelet function, then the resultant wavelet basis has more approxima-
tion power in the decomposition section and is more regular in reconstruction
[30]. This setting is more desirable for iris feature extraction.

5. Time-Frequency localization:
Time-frequency localization plays a very important role in order to show the abil-
ity of WT for signal analysis. However, many of wavelet design techniques do
not explicitly incorporate any localization criteria [36]. The measure of spatial
localization and frequency localization are computed directly from filter coef-
ficients. The details are given in [36, 37]. It is also given that lower �ω2 have
a sharper roll-off in the frequency response. The proposed FB provides better
time-frequency resolution, so it can be well adopted to characterize the variations
in iris images.

Table 2.1 presents the performance measures for some of the properties of the
designed filters using approach in [19] and the class of THFB. It is observed that
investigated filters provide more similarity between analysis and synthesis LPFs
(near-orthogonality), good frequency selectivity, and good time-frequency localiza-
tion. It may be noted that the designed filters can achieve all the above properties for
any order of HBP.

In order to apply investigated class of THFB to iris images, 2-D extension of
wavelets are required. An obvious way to construct separable 2-D wavelet filters is
to use tensor product of their 1-D counterparts. A 2-D approximation and three detail
functions are obtained from Eq. (2.15) as:

L(z) = H1d
0 (z1) × H1d

0 (z2)

H(z) = H1d
0 (z1) × H1d

1 (z2)

V (z) = H1d
1 (z1) × H1d

0 (z2)

D(z) = H1d
1 (z1) × H1d

1 (z2).

(2.15)
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Fig. 2.4 One-level decomposition of CASIA-IrisV3.0 iris image using proposed class of THFB
a LH sub-band b HL sub-band c HH sub-band d approximate (LL) sub-band

where H1d
0 (z1) and H1d

1 (z1) are 1-D LPF and HPF respectively of the designed
filter-banks. The one-level decomposition results in Vertical (V ), Horizontal (H), and
Diagonal (D) sub-bands and one approximation sub-band (L), which corresponds
to LH, HL, HH, and LL sub-bands respectively as shown in Fig. 2.4a–d for one of
the iris images.

2.4 Iris Recognition Algorithm

In this work, iris features which are mostly oriented in vertical, horizontal and
diagonal directions are computed by the introduced wavelet basis. The inner half
iris region is divided into six sub-images and selected only four regions for further
processing. This new class of THFB is applied separately on each of the four selected
sub-blocks (sub-images). The feature vector for each sub-image is derived by esti-
mating the channel energies of the THFB. The four distance scores are obtained
and fused by the flexible post-classifier (k-out-of-n:A) in order to develop robust iris
recognition technique. The block diagram of the half-iris recognition technique is
shown in Fig. 2.5.

2.4.1 Feature Extraction Using a New Class of THFB

The original eye image must be preprocessed in order to extract iris features from an
eye image. The preprocessing involves localization and normalization of iris image.
In this work, iris is localized using Daugman’s IDO and normalized with the help of
DRSM of the fixed size [1]. The preprocessing steps are shown in Fig. 2.6a–c.

Although some of the existing methods extract iris texture efficiently, their per-
formance degrades significantly when the image quality is poor. Chen et al. [38]
suggested that different regions of the iris have different qualities and local iris
image regions with better quality have better classification capability and vice-
versa. In multi-biometric recognition system, fusion of information extracted from
classifiers provide better recognition performance as compared to single classifier
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Iris Segmentation and
Normalization

Selected upper half normalized iris image

Partitioned half iris into six regions
and selected only four regions 

Decomposed each sub-region using
proposed THFB upto two levels

Construct FV by computing energies of 
       subbands for each sub-region

Obtained four Canbera Distances (CDs) 
and find minimum CD for each region.

Verify the person using k-out-n:A
               postclassifier

              Iris Segmentation and    
                   Normalization

Selected upper half normalized iris image

      Partitioned half iris into six regions
      and selected only four regions 

       Decomposed each sub-region using
     proposed THFB upto two levels

Construct FV by computing energies of 
       subbands for each sub-region 

Stored in Database

Enrollment Testing

Obtained four FVs of each length 3*no
of levels+1

Obtained four FVs of each length 3*no
of levels+1

Fig. 2.5 Block diagram of the proposed iris recognition scheme

Fig. 2.6 a Original eye image.
b Segmented iris image.
c Normalized iris image.
d Partitioned normalized iris
image

1 2 3 4 5 6

(a) (b)

(c)

(d)
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[2, 4, 39]. Therefore, instead of recognizing the entire iris image, we have divided
the iris image into multiple regions. Each iris sub-region is recognized separately
and fused the decision using flexible post-classifier. The upper half-iris (inner iris
region) is preferred from the entire normalized iris image because (1) the region
closer to the pupil provides more discriminating iris information and (2) limbic
boundary sometimes may not be segmented properly. Thus, one of the practical arti-
facts (inaccurate outer-boundary detection) in the iris recognition system has been
removed inherently. This half-iris is divided into six sub-regions and selected only
four sub-regions (Region: 1, 3, 4, and 6) as shown in Fig. 2.6d so as to minimize
some effect of occlusions during iris recognition. The designed wavelets filters are
applied on each of these four regions to extract multi-resolution based iris texture.
As energy is an important characteristic in identifying texture (which is normally
being used in the literature to represent textures), the normalized energy is computed
by L1 norm from each channel of the THFB as below.

Ei = 1

M × N

M∑

m=1

N∑

n=1

|Wi (m, n)| (2.16)

where Wi are the i th sub-band coefficients and M × N is the total number of coef-
ficients in that sub-band. The feature vector is derived by concatenating the features
at different scales and orientations as

E = [E1,1, E1,2, E1,3, . . . , ES,3, Ea]; (2.17)

where S is the total number of scales and Ea is the energy of an approximate sub-
band. The total number of sub-bands for THFB is 3S+1. The derived feature vectors
of each region are stored in the database as reference (enrollment process). The test
iris pattern is classified on the basis of minimum Canbera distance (CD) between
test iris feature vector and that of feature vectors stored in the database. The use of
CD is due to the normalization property of individual feature components before
computing the distance between test iris feature vector and that of databases. The
CD is computed as

CD(X, Y ) =
B∑

i=1

|Xi − Yi |
|Xi | + |Yi | (2.18)

where B is the dimension of feature vector. Xi is the i th component of test feature
vector and Yi is i th component of enrolled feature vector.
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2.4.2 Design of k-out-of-n:A Post-classifier for Iris Recognition

Iris recognition algorithms have succeeded in achieving a low FAR. However, reduc-
ing the FRR remains a major challenge. FRR needs to reduce to make iris recognition
algorithm more robust. Many researchers have suggested that fusion of information
extracted from classifiers provided better recognition performance as compared to
single classifier [2, 4, 15, 39, 40]. In this work, fusion at the decision level is explored
using k-out-of-n:A post-classifier. The value of k can be varied upto n and hence it is a
flexible post-classifier. The designed post-classifier works on the ROC curve directly.
ROC is the indirect representation of the distance scores between the test and enrolled
feature vectors. ROC is obtained by varying threshold values of the distance scores.
EER is a general optimal operating point that indicates threshold of the distance
score. Multiple ROCs obtained from n-iris regions are fused by the post-classifier in
order to improve the performance. The performance of the iris recognition system is
assessed by measuring the errors made by rejecting genuine users (FRR), accepting
impostor users for a given value of threshold (FAR), and computing computational
complexity.

The test iris is accepted if at least any k out of the n-region(s) is (are) accepted
(flexible k-out-of-n:A, where k ≤ n ). The details of general k-out-of-n system for the
reliability analysis is given in [41]. In this rule, person is authenticated only when
any k regions k = 1, 2, 3, and 4 out of n-regions (n = 4) passes the test of iris
recognition. This system recognizes the person if any k distance scores (CDs) out of
n-distance scores (CDs) are less than or equal to the corresponding thresholds.

FR can only occur by k-out-of-n:A post-classifier when n-regions iris tests produce
FRs. Thus, genuine person is rejected when the combinations of k out of n-tests fail to
recognize correctly. Based on this assumption, k-out-of-n:A post-classifier is framed
for the different values of k as:

FR = {CDI
1 > T h1 ∩ CDI

2 > T h2 . . . ,∩CDI
n > T hn}, k = 1.

FR = {(CDI
1 > T h1 ∪ CDI

2 > T h2) ∩ (CDI
1 > T h1 ∪ CDI

3 > T h3)

. . . ,∩(· · · ∪ CDI
n > T hn)}, k = 2

FR = {(CDI
1 > T h1 ∪ CDI

2 > T h2 ∪ CDI
3 > T h3) (2.19)

∩ (CDI
1 > T h1 ∪ CDI

3 > T h3 ∪ CDI
4 > T h4)

. . . ,∩(· · · ∪ CDI
n > T hn)}, k = 3

FR = {CDI
1 > T h1 ∪ CDI

2 > T h2 ∪ CDI
3 > T h3 ∪ CDI

4 > T h4}, k = 4

where superscript I denotes the intra-class comparisons. The final fused FRR for
k = 1 is computed by counting the number of CDI

i greater than T hi denoted as
C(CDI

i , T hi )

FRR =
n∏

i=1

C(CDI
i > T hi )

Ni
(2.20)
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where N is the total number of intra-class comparisons. Similarly, final FRRs are
obtained for the different values of k = 2, 3, 4.

The FA occurs only if any k out of n-regions passes the test (k-CDs less than or
equal to the corresponding thresholds). It is expressed as:

F A = {CDE
1 ≤ T h1 ∪ CDE

2 ≤ T h2 . . . ,∪CDE
n ≤ T hn}, k = 1.

F A = {(CDE
1 ≤ T h1 ∩ CDE

2 ≤ T h2) ∪ (CDE
1 ≤ T h1 ∩ CDE

3 ≤ T h3)

. . . ,∪(· · · ∩ CDE
n ≤ T hn)}, k = 2

F A = {(CDE
1 ≤ T h1 ∩ CDE

2 ≤ T h2 ∩ CDE
3 ≤ T h3) (2.21)

∪ (CDE
1 ≤ T h1 ∩ CDE

3 ≤ T h3 ∩ CDE
4 ≤ T h4)

. . . ,∪(· · · ∩ CDE
n > T hn)}, k = 3

F A = {CDE
1 ≤ T h1 ∩ CDE

2 ≤ T h2 ∩ CDE
3 ≤ T h3 ∩ CDE

4 ≤ T h4}. k = 4.

where superscript E denotes the inter-class comparisons. The final fused FAR for
k = 1 is computed by counting CDE

i less than or equal to T hi denoted as
C(CDE

i , T hi )

FAR =
n∑

i=1

C(CDE
i ≤ T hi )

Qi
(2.22)

where Q is the total number of inter-class comparisons. Similarly, final FARs are
obtained for the different values of k = 2, 3, 4 (k of n-possible combinations).
Through this process, the final fused FARs and FRRs are obtained separately for
each value of k (fused ROC for each k from n-multiple ROCs).

2.5 Experimental Results

This section evaluates the proposed approach using UBIRIS [42], MMU1 [43],
CASIA-IrisV2.0 (device1) [44], CASIA-IrisV3 (Interval) [44], and IITD [45] data-
bases. The details of these databases have been provided in Appendix A. It is observed
that segmentation on some of the images of all the databases is not accurate due to
noncircular boundaries and poor transition from iris to sclera. Inaccurate segmented
iris images are also used for the experimentation. Figure 2.7 shows few samples of
inaccurately segmented images which were used for the experimentations. The com-
bination of THFB and k-out-of-n:A has been compared with four successful existing
iris recognition algorithms [1, 13–15]. In order to assess the recognition accuracy of
fused post-classifier, the performance of THFB is compared for four different values
of k.

In this chapter, to test the robustness of the proposed approach in the presence of
artifacts, no preprocessing technique is used to isolate artifacts during iris recogni-
tion process. The scale and shift invariance are achieved by the normalization and
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Fig. 2.7 Some inaccurate segmented images on MMU1 and CASIA-IrisV3-Interval databases

segmentation processes respectively. The registration process used two iris images
per subject. To achieve rotation invariance, five normalized images corresponding
to angles −100, −50, 00, 50, 100 are obtained from each image and used for train-
ing. Thus total number of enrolled images for each person is 10. For the testing,
remaining three iris images per class are used. In no case images in training and
testing sets are overlapping. In order to minimize the effect of intra-class variations
and avail the discriminating iris information for the recognition, the upper half iris
part from the original normalized iris image is selected. The selected half iris is par-
titioned into six sub-images and used four regions for the further processing. Each
of these four regions is decomposed up-to two levels using these designed filters to
create the four feature vectors separately. The artifacts present in iris images lead to
reduction in accuracy. In order to improve the performance (reduce the error rate),
k-out-of-n:A post-classifier is used on these four feature vectors. The performance of
the proposed method (combination of THFB and 2-out-of-n:A) has been compared
with four existing well known iris recognition algorithms. These include Daugman
[1], Monro et al. [13], Sun and Tan [14], and Dong et al. [15]. These algorithms are
implemented and tested on the same set of normalized iris images for comparing the
performance of this approach.

The first popular existing algorithm implemented for the comparison with the
proposed approaches is the Daugman’s algorithm [1]. In this algorithm, Gabor filters
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Table 2.2 Comparison of the proposed technique (THFB + k-out-of-n:A (k = 2)) with existing
iris recognition systems

Algorithms UBIRIS MMU1 CAS-IrisV2.0 CAS-IrisV3.0 IITD
FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Daugman 0.85 0.98 1.35 1.51 0.56 0.67 2.10 2.36 0.46 0.52
Sun and Tan 1.20 1.33 2.72 3.33 1.84 2.13 2.96 3.02 1.35 1.45
Monro et al. 2.29 3.11 4.64 5.56 3.59 4.27 5.16 5.11 2.98 3.01
Dong et al. 2.95 3.28 4.68 5.00 2.86 4.15 4.67 4.89 3.23 3.80
Proposed (k=2) 0.52 0.49 1.99 1.89 0.36 0.41 1.91 2.10 0.16 0.15

are parameterized with four degrees-of-freedom: size of the kernels, orientations, and
two positional co-ordinates (four scales and three orientations). They are applied on
the specific regions of the normalized iris image in order to perform total 1,024
convolutions. The filter outputs of each region are quantized into two bits in order to
obtain 2048 bits IrisCode. The dissimilarity between two IrisCodes is estimated using
Hamming distance (without using a mask for separation of the region affected by
artifacts). In second algorithm, dipole MLDF using 2-D Gaussian kernel (size—5×5
and σ = 1.7) [14] with d = 5 without using bootstrap method was implemented.
The extension of this approach as suggested by Dong et al. [15], where the concept
of personalized weight map is used for the robustness of encoding algorithm on
different iris regions was implemented. It is observed that the robustness of the
weight map depends upon the number of training images within a class. If number
of training images within a class is more, the performance is significantly improved.
This algorithm was trained using three training images per class. The next algorithm
implemented is based on DCT coefficients and proposed in [13]. The experimental
results for comparison of these algorithms have been presented in Table 2.2.

It is observed from Table 2.2 that the suggested method yields superior perfor-
mance against these existing iris recognition methods. This is because it works on
each selected region of iris independently, so artifacts can only affect the correspond-
ing region and not the entire iris signature. The transformation on iris partitioned
sub-regions does not corrupt the good iris region by combining them with artifacts
(segmentation error, eyelids /eyelashes occluded regions, etc.). Thus, this approach
achieves the robustness to intra-class variations (especially occlusion of pupil on
iris due to inaccurate pupil segmentation, occlusion of eyelids/ eyelashes, specu-
lar reflection, etc.) in iris recognition system. Figure 2.8a–e shows the comparison
in the form of ROC curve of the proposed method with state-of-the-art algorithms
on UBIRIS, MMU1, CASIA-IrisV2.0 (device1), CASIA-IrisV3-Inerval, and IITD
databases respectively. The influence of k-out-of-n:A post-classifier on the recogni-
tion performance of the suggested method was tested for different values of k. The
experimental results are shown in Table 2.3.

It is observed that 2-out-of-4:A post-classifier (acceptance of any two regions out
of 4-regions) best suited for all the databases in order to improve the recognition
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Fig. 2.8 Comparison of proposed algorithm with existing iris recognition algorithms using
a UBIRIS b MMU1 c CASIA-IrisV2.0 d CASIA-IrisV3.0 e IITD iris databases

Table 2.3 Performance of proposed technique (THFB + k-out-of-n:A) for different values of k
with n = 4

THFB + UBIRIS MMU1 CAS-IrisV2.0 CAS-IrisV3.0 IITD
k-out-of-n:A FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

k=1 2.47 2.76 4.45 4.56 1.96 2.03 2.47 2.76 0.92 0.98
k=2 0.52 0.49 1.99 1.88 0.36 0.41 1.91 2.10 0.16 0.15
k=3 0.48 0.53 2.38 2.61 0.42 0.46 1.48 1.53 0.30 0.35
k=4 12.01 13.69 12.07 12.71 3.36 3.30 13.46 13.69 7.51 7.77
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performance of the proposed method. The recognition performance of 4-out-of-4:A
is very poor. It is because this post-classifier has been selected all the four iris regions
for the recognition which affect the performance due to the artifacts present on the
normalized iris image. The detailed design of the FBs and iris recognition algorithms
is given by authors in [46, 47].

2.6 Summary

In this chapter, a new class of separable 2-D biorthogonal wavelet basis is designed
for iris feature extraction. The design is based on the generalized HBP and a class of
THFB. First, three kernels are designed from the generalized halfband polynomial
P(z) by imposing the zeros at z = −1. These three designed kernels are used in
three step ladder structure to obtain a new class of THFB by selecting the indepen-
dent coefficients of the HBPs and the shape parameter p. The suggested approach
has two degrees of freedom in the design compared to one in the existing THFB. The
use of a class of THFB provides one more degree of freedom (p) by which we can
shape better frequency response of the final filters. The desirable properties of the
proposed FB for effective iris feature extraction are investigated. Also, flexible k-out-
n:A post-classifier is incorporated on partitioned sub-images in order to reduce the
FR. The developed method is robust against inaccurate pupillary and limbic boundary
segmentations and is invariant to shift, scale, and rotation. The performance of the
presented scheme is evaluated using five different databases and compared with four
recently developed iris recognition algorithms. It is observed that cumulative effect
of partition of normalized iris image, feature extraction using THFB, and exploration
of k-out-of-n:A post-classifier significantly reduces error rates. The method provides
low computational complexity which makes the technique feasible for online appli-
cations. The experimental results show that the performance of the proposed scheme
under non-ideal environmental conditions (in presence of eyelids/eyelashes occlu-
sion, inaccurate segmentation of inner and outer iris boundaries, specular reflection,
etc.) is superior to recently developed iris recognition algorithms.
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