
Chapter 2

Topological Duality

In this chapter we study the topological duality that exists between
relational spaces—that is to say, relational structures endowed with
the topology of a Boolean space—and arbitrary Boolean algebras with
operators. The duality between the spaces and algebras carries with it a
corresponding duality between morphisms: every continuous bounded
homomorphism between relational spaces corresponds to a homomor-
phism between the dual Boolean algebras with operators, and con-
versely. The duality between the morphisms implies other dualities as
well. Here are some examples. Every special open subset of a relational
space corresponds to an ideal in the dual algebra, and vice versa. Every
relational congruence on a relational space corresponds to a subuni-
verse of the dual algebra, and vice versa. The equivalence classes of
compactifications of the disjoint union of a system of relational spaces
correspond to the subalgebras of the direct product of the system of
dual algebras that include the weak direct product of the system of
dual algebras, and vice versa. In particular, the Stone-Čech compactifi-
cation of a disjoint union of relational spaces corresponds to the direct
product of the dual algebras.

2.1 Topological Duality for Boolean Algebras

To motivate the development that follows, we recall some of the es-
sential features of the topological duality for Boolean algebras that
was discovered by Stone [36], [37]. Correlated with every Boolean alge-
bra A is a certain topological space U . The points in the space U are
the ultrafilters in A. The clopen subsets of U are the sets of the form

S. Givant, Duality Theories for Boolean Algebras with Operators,
Springer Monographs in Mathematics, DOI 10.1007/978-3-319-06743-8 2,
© Springer International Publishing Switzerland 2014

61



62 2 Topological Duality

Fr = {X ∈ U : r ∈ X}
for elements r in A, and the open subsets are the unions of arbitrary
systems of clopen sets. Under this topology, U becomes a Boolean
space, that is to say, it becomes a compact Hausdorff space in which
the clopen sets (the sets that are simultaneously closed and open) form
a base for the topology. The space U is called the dual space of the
algebra A.

Inversely, correlated with every Boolean space is a certain Boolean
algebra A. The elements in A are the clopen subsets of U , and the
Boolean operations are the set-theoretic operations of union and com-
plement. This Boolean algebra is called the dual algebra of the space U .

If one starts with a Boolean algebra A, forms its dual space U ,
and then forms the dual algebra of U , then the result is the Boolean
algebra B of sets of the form Fr for r in A. The algebras A and B
are isomorphic via the function that maps every element r in A to
the clopen set Fr. Similarly, if one starts with a Boolean space U ,
forms its dual algebra A, and then forms the dual space of A, the
result is the Boolean space V in which the points are the ultrafilters
of elements in A, that is to say, the ultrafilters of clopen subsets of U ;
these ultrafilters have the form

Xr = {F ∈ A : r ∈ F}
for elements r in U. The spaces U and V are homeomorphic via the
function that maps each point r in U to the ultrafilter Xr. This whole
state of affairs may be expressed by saying that each Boolean algebra is
isomorphic to its second dual and each Boolean space is homeomorphic
to its second dual.

The duality between Boolean algebras and Boolean spaces is ac-
companied by a corresponding duality—apparently due to Sikorski
(see [35])—between the homomorphisms on the algebras and the con-
tinuous functions on the spaces. Let U and V be Boolean spaces, and A
and B the corresponding dual Boolean algebras. If ϑ is a continuous
function from U into V , then there is a natural Boolean homomor-
phism ϕ from B into A that is defined by

ϕ(F ) = ϑ−1(F ) = {u ∈ U : ϑ(u) ∈ F}
for elements F in B, that is to say, for clopen subsets F of V . This
mapping is called the (first) dual of the function ϑ. Inversely, if ϕ is
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a homomorphism from B into A, then there is a natural continuous
function ϑ from U to V that is defined by

ϑ(u) = r if and only if r ∈ ⋂{F ∈ B : u ∈ ϕ(F )}.

for elements r in U . This function is called the (first) dual of the
homomorphism ϕ. If one starts with a homomorphism ϕ from B to A,
forms the dual continuous mapping ϑ from U to V , and then forms the
dual homomorphism of ϑ, the result is the original homomorphism ϕ.
Similarly, if one starts with a continuous function ϑ from U to V ,
forms the dual homomorphism ϕ from B to A, and then forms the
dual continuous mapping of ϕ, the result is the original function ϑ. This
whole state of affairs may be expressed by saying that every continuous
function between Boolean spaces, and every homomorphism between
Boolean algebras, is its own second dual. Furthermore, a continuous
mapping between Boolean spaces is one-to-one or onto if and only if
its dual homomorphism is onto or one-to-one respectively.

Finally, if ϑ is a continuous function from U to V , and δ a contin-
uous function from V to a Boolean space W , and if ϕ and ψ are the
respective dual homomorphisms of ϑ and δ, then the dual of the com-
position δ ◦ϑ is just the composition ϕ ◦ψ. The category of Boolean
algebras with homomorphisms as morphisms is therefore dually equiv-
alent to the category of Boolean spaces with continuous functions as
morphisms.

The epi-mono duality between morphisms implies a duality between
ideals and open sets, and a duality between subuniverses and Boolean
congruences; there is a corresponding duality between quotient alge-
bras and subspaces on the one hand, and a corresponding duality be-
tween subalgebras and quotient spaces on the other hand. The epi-
mono duality also implies a duality between certain subdirect prod-
ucts of Boolean algebras and compactifications of unions of Boolean
spaces, and in particular between direct products of Boolean algebras
and Stone-Čech compactifications of unions of Boolean spaces. (See,
for example, [10], Chapters 34–38, 43, where references to the literature
may also be found; or see [23], Chapter 3.)

We shall see that completely analogous dualities hold for Boolean
algebras with operators and relational spaces. Only a very basic knowl-
edge of topology is needed to understand much of this duality, but the
duality between subdirect products of algebras and compactifications
of unions of spaces requires a slightly deeper knowledge of topology.
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2.2 Relational Spaces

We begin with the task of defining what is meant by a topological
relational structure, or, for short, a relational space. When defining
a topological algebra such as a topological group, there are usually
some requirements on the fundamental operations—such as continuity
or openness—that render these operations compatible with the given
topology on the universe of the algebra. An operation of rank n in a
topological algebra is defined to be continuous if the inverse image,
under the operation, of every open set is open in the product topology
on the nth Cartesian power of the universe; and the operation is de-
fined to be open if the image, under the operation, of every open set in
the nth Cartesian power of the universe is open in the universe. A re-
lational structure does not have fundamental operations, but rather
fundamental relations, so one must clarify what it means for a funda-
mental relation to be continuous or open. The first task is to clarify
what is meant by the image and the inverse image of a set under such
a relation.

The definition of the image of a set under a relation is quite natural
and straightforward. If R is a relation of rank n + 1 in a relational
structure U, and if H is a subset of the nth Cartesian power Un of the
universe U , then the image of H under the relation R is the set

R∗(H) = {t ∈ U : R(r0, . . . , rn−1, t)

for some sequence (r0, . . . , rn−1) ∈ H}.
In particular, if F0, . . . , Fn−1 are subsets of U , then

R∗(F0 × · · · × Fn−1) = {t ∈ U : R(r0, . . . , rn−1, t)

for some ri ∈ Fi for i < n}.
In the case of a sequence of n elements r0, . . . , rn−1 from U , we shall
often write simply R∗(r0, . . . , rn−1) instead of R∗({(r0, . . . , rn−1)}).

To illustrate these ideas more concrete, consider the case of a ternary
relation R. If H a subset of U × U , then

R∗(H) = {t ∈ U : R(r, s, t) for some (r, s) ∈ H},

and if F and G are subsets of U , then

R∗(F ×G) = {t ∈ U : R(r, s, t) for some r ∈ F and s ∈ G}.
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The definition of the inverse image of a set under a relation is a
bit more involved, because there are several possibilities. The one that
works in the present context is the following. If H is a subset of U ,
then the inverse image of H under R is the set

R−1(H) = {(r0, . . . , rn−1) ∈ Un : R(r0, . . . , rn−1, t) implies t ∈ H}.
For example, if R is a ternary relation, then

R−1(H) = {(r, s) ∈ U × U : R(r, s, t) implies t ∈ H}.
Warning: this definition of inverse image requires the image of the
singleton set

{(r0, . . . , rn−1)} = {r0} × · · · × {rn−1}
under R to be entirely include in H, and not just to have a non-empty
intersection with H, before the sequence (r0, . . . , rn−1) is place in the
inverse image, so that

(r0, . . . , rn−1) ∈ R−1(H) if and only if R∗(r0, . . . , rn−1) ⊆ H .

Lemma 2.1. If R is a relation of rank n on a set U , and if H and K
are subsets of U , then

H ⊆ K implies R−1(H) ⊆ R−1(K).

Proof. Assume that H is included in K, and let (r0, . . . , rn−1) be a
sequence in R−1(H). The image set R∗(r0, . . . , rn−1) of this sequence is
included in H, by the observation preceding the lemma, and therefore
the image set of the sequence is also included in K, by the assumption.
Consequently, (r0, . . . , rn−1) belongs to R−1(K), by the observation
preceding the lemma. ��

One can imagine a definition of the inverse image of H under R
in which a sequence (r0, . . . , rn−1) is put into R−1(H) just in case
there exists an element t in H such that R(r0, . . . , rn−1, t) holds. In
fact, this is the definition that is adopted by Halmos [15] for binary
relations. However, this is not the definition that works in the present
context.

With the preceding notions in hand, we can now define what it
means for a relation to be open, clopen, or continuous. A relation R
of rank n+1 is defined to be open if the image under R of every open
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subset of Un (in the product topology) is an open subset of U , and
clopen if the image of every clopen subset of Un is a clopen subset
of U . Note that a unary relation is defined to be open or clopen if it
is an open subset or a clopen subset respectively of U . A relation R
of rank n+ 1 is defined to be continuous if the inverse image of every
open subset of U is an open subset of Un (in the product topology).

Definition 2.2. A topological relational structure , or a relational space
for short, is a relational structure U, together with a topology on the
universe U , such that U is a Boolean space under this topology—that
is to say, U is a compact Hausdorff space in which the clopen sets
form a base for the topology—and the relations in U are clopen, and
the relations of rank at least two are continuous. ��

Notice that a relation of rank 1 in U is always continuous, since the
inverse of every subset of U under such a relation is, by definition,
a subset of the set U0 = {∅} and is therefore automatically open.
Consequently, the final part of the preceding definition amounts to
saying that all the relations in U are clopen and continuous. In speaking
about relational spaces, we shall often use topological terminology. For
instance, we may call the elements in the universe “points”, and we
may use phrases such as “the set F is open in U” or “the set F is an
open subset of U” to express that F is an open subset of the topological
space U .

There have been several earlier definitions of an analogue of a re-
lational space. Halmos [15] is concerned with Boolean algebras with
a single unary operator. The corresponding topological structures he
considers are Boolean spaces with a single binary relation, say R, that
is Boolean in the sense that the inverse image (in his sense of the word)
of every clopen set under R is clopen, and the image of every point
under R is closed (see p. 232 in [15]). Goldblatt [13] is concerned not
only with arbitrary Boolean algebras with operators, but more gener-
ally with bounded distributive lattices with operators. If we restrict
our attention to the relational structures in his paper that correspond
to Boolean algebras with operators, then a relational space is for him
a relational structure with the topology of a Boolean space and with
the property that the inverse images of points under the fundamental
relations are closed subsets (in the product topology)—that is to say,
the set

{(r0, . . . , rn−1) : R(r0, . . . , rn−1, t)}
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is closed for each fundamental relation R of rank n + 1 and each
point t—and the images of clopen subsets (in the product topology)
are clopen sets (see his definition of an ordered relational space on
pp. 184–185 in [13]). We shall have more to say about the connection
between Goldblatt’s definition and our own later on. Hansoul [16] is
also concerned with bounded distributive lattices with operators. He
deals with multi-algebras instead of relational structures, but it seems
that in his definition of the appropriate topological multi-algebra, he
requires the inverse images of points to be closed, and the images
of clopen sets to be clopen (see Definition 1.6 in [16]). Sambin and
Vaccaro [32] are concerned with Boolean algebras with a single unary
operator that is distributive, not over addition, but rather over mul-
tiplication. They consider relational structures that consist of a single
binary relation, and they define such a relation R to be continuous if,
for every clopen set F , the set of elements r such that R(r, t) implies
that t is in F is always clopen.

2.3 Duality for Algebras

The next step is to correlate with each Boolean algebra with opera-
tors A a relational space U. The notion of a canonical extension of a
Boolean algebra with operators is implicitly involved in this discussion.

Definition 2.3. A canonical extension of a Boolean algebra with op-
erators A is a Boolean algebra with operators B that has the following
properties.

(i) B is complete (in particular, the operators in B are complete) and
atomic, and A is a subalgebra of B.

(ii) For any two distinct atoms r and s in B, there is an element t
in A that separates the atoms in the sense that r is below t and s
is below −t.

(iii) If a subset X of A has the supremum 1 in B, then there is a
finite subset Y of X such that 1 is the supremum of Y (in A and
in B). ��

Condition (ii) is called the atom separation property, while condi-
tion (iii) is called the compactness property. The preceding definition
goes back to Jónsson-Tarski [21], where it is shown that every Boolean
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algebra with operators A (even one that is not normal) has a canonical
extension, and that any two canonical extensions of A are isomorphic
via a mapping that is the identity function on A. This uniqueness up
to isomorphisms justifies speaking of the canonical extension of A.

The precise definition of (an isomorphic copy of) the canonical ex-
tension plays an important role in the subsequent discussion, so we
give some of the details of the construction. Let U be the set of all
ultrafilters in A. With each operator f of rank n in A, correlate a
relation R of rank n+ 1 on U by defining

R(X0, . . . ,Xn−1, Z) if and only if

{f(r0, . . . , rn−1) : ri ∈ Xi for i < n} ⊆ Z

for all ultrafilters X0, . . . ,Xn−1, Z in U . If one extends f in the usual
way to a complex operation of rank n on subsets of A, by

f(X0, . . . Xn−1) = {f(r0, . . . , rn−1) : ri ∈ Xi for i < n},

then the definition of the relation R on sequences of elements in U
assumes the form

R(X0, . . . ,Xn−1, Z) if and only if f(X0, . . . Xn−1) ⊆ Z .

For an operator of rank 0, that is to say, for a distinguished constant c,
the definition of R takes the form

R(Z) if and only if c ∈ Z .

In the case of a binary operator ◦ in A, the relation R is the ternary
relation on the set of ultrafilters that is defined on all triples of ultra-
filters X,Y,Z by

R(X,Y,Z) if and only if X ◦Y ⊆ Z ,

where X ◦Y is the complex product of X and Y , that is to say,

X ◦Y = {r ◦s : r ∈ X and s ∈ Y }

Let U be the relational structure whose universe is the set U of
ultrafilters in A, and whose fundamental relations are the relations
on U that are correlated with the operators in A. The complex alge-
bra Cm(U) is a complete and atomic Boolean algebra with operators,
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and the sum of every set of elements in Cm(U) is just the union of that
set of elements. For each element r in A, let Fr be the set of ultrafil-
ters in U that contain the element r, and notice that Fr is a subset
of U and therefore an element in the complex algebra Cm(U). Using
properties of ultrafilters, one can check that the following equations
hold in Cm(U). (The occurrence of f on the right side of the equation
in (iii) denotes an arbitrary operator in A, and the occurrence on the
left denotes the corresponding operator in Cm(U).)

Lemma 2.4. Let r, s, t, and r0, . . . , rn−1 be elements in A.

(i) Fr = Fs if and only if r = s.
(ii) Fr ∪ Fs = Ft if and only if t = r + s.
(iii) ∼Fr = Ft if and only if t = −r.
(iv) f(Fr0 , . . . , Frn−1) = Ft if and only if t = f(r0, . . . , rn−1).

Proof. The implication from right to left in (i) is trivial. The argument
establishing the reverse implication proceeds by contraposition. Sup-
pose r and s are distinct. One of the products r · −s and −r · s is then
non-zero, say it is r · −s. The set consisting of this single element triv-
ially satisfies the finite meet property, so there must be an ultrafilter Z
in A that contains r · −s, and therefore also r and −s, by the upward
closure of Z. It follows that Z contains r but not s, so Z belongs to
the set Fr but not to Fs. These two sets are therefore distinct.

The verifications of (ii) and (iii) use the basic properties of ultra-
filters and are not difficult. For example, to establish the implication
from right to left in (ii), suppose that t = r+ s. The element t belongs
to an arbitrary ultrafilter Z (in U) if and only if at least one of the
summands r and s is in Z , so

Z ∈ Fr ∪ Fs if and only if Z ∈ Fr or Z ∈ Fs,
if and only if r ∈ Z or s ∈ Z ,
if and only if t ∈ Z ,
if and only if Z ∈ Ft,

by the definition of the union of two sets, the definitions of the
sets Fr, Fs, and Ft, and the above mentioned property of ultrafil-
ters. Thus, the first equation in (ii) holds. To establish the reverse
implication, assume that the first equation in (ii) holds. Write p = r+s,
and observe that

Fp = Fr ∪ Fs,
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by the implication just established. Combine this with the assumed
equation in (ii) to arrive at Fp = Ft. Apply (i) to conclude that p = t.
This establishes the equivalence in (ii).

The equivalence in (iii) follows by a similar argument, using the
property that a complement −r belongs to an ultrafilter Z if and only
if r is not in Z.

The proof of the equivalence in (iv) is similar in character to the
preceding arguments, but substantially more complicated in details.
Consider the case of a binary operator ◦ . Let r and s be arbitrary
elements in A, and assume first that t = r ◦s, with the goal of showing
that

Fr ◦Fs = Ft. (1)

The definition of the operator ◦ in Cm(U), and the definitions of the
sets Fr and Fs imply that

Fr ◦Fs = {Z ∈ U : X ◦Y ⊆ Z
for some X,Y ∈ U with r ∈ X and s ∈ Y }. (2)

Consequently, if Z belongs to the left side of (1), then there must be
ultrafilters X and Y in U containing r and s respectively such that
the complex product X ◦Y is included in Z, by (2). The product r ◦s
belongs to X ◦Y , by the definition of the complex product of two sets,
so r ◦s must belong to Z and therefore Z must belong to the right side
of (1) by the assumption on t and the definition of the set Ft. This
proves that the left side of (1) is included in the right side.

To establish the reverse inclusion, suppose Z belongs to the right
side of (1). To show that Z belongs to the left side of (1), ultrafilters X
and Y containing r and s respectively must be constructed with the
property that X ◦Y is included in Z, by (2). The Boolean dual of Z is
the maximal Boolean ideal

−Z = {−r : r ∈ Z}

in A. Write
W0 = {v ∈ A : r ◦(v · s) ∈ −Z}. (3)

We proceed to show that W0 is a proper Boolean ideal containing the
element −s.

First of all,
r ◦(−s · s) = r ◦0 = 0,
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by Boolean algebra and the assumption that the operators in A are
normal. The element 0 belongs to the ideal −Z, so r ◦ (−s · s) belongs
to −Z, and consequently −s is in W0, by (3). In particular, W0 is not
empty.

Second, if u is in W0, and if v is an element in A that is below u,
then

r ◦ (v · s) ≤ r ◦(u · s),
by Boolean algebra and the monotony of the operators in A. Since the
element r ◦ (u·s) is in −Z, by (3) (with u in place of v), and since −Z is
an ideal (and therefore downward closed), the element r ◦(v · s) must
also be in −Z, and therefore v must be in W0, by (3). Thus, W0 is
downward closed.

Third, if u and v are in W0, then the elements

r ◦ (u · s) and r ◦(v · s)

must be in −Z, by (3). The sum of these two elements is also in −Z,
because −Z is an ideal and hence closed under addition. Since

r ◦ [(u+ v) · s] = r ◦ (u · s) + r ◦(v · s),

by Boolean algebra and the distributivity of the operators in A, it
follows that r ◦ [(u + v) · s] is in −Z, and therefore u + v is in W0,
by (3). Thus, W0 is closed under addition.

Finally, W0 does not contain the unit 1. Indeed, the product r ◦s is
in Z, by the assumption that Z is in Ft and the assumption about t,
so this product cannot be in −Z. Since

r ◦(1 · s) = r ◦s,

by Boolean algebra, it follows that r ◦(1 · s) is not in −Z, and conse-
quently 1 is not in W0, by (3). This completes the proof that W0 is a
proper Boolean ideal containing −s.

Use the Maximal Ideal Theorem for Boolean algebras (see
Section 1.2) to extend W0 to a maximal Boolean ideal W in A. The
Boolean dual of W is the ultrafilter Y that is determined by

Y = −W = {−v : v ∈W} = {w ∈ A : w 	∈W} = A∼W . (4)

The element −s is in W0 and therefore also in W , so s is in Y , by (4).
Also, if v is Y , then v is not in W , by (4), and therefore v is not in W0.
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Consequently, the element r ◦(v · s) cannot be in −Z, by (3), so this
element must be in Z. Since

r ◦(v · s) ≤ r ◦v,

by Boolean algebra and the monotony of the operators in A, and
since Z is a filter, it may be concluded that r ◦v is in Z, by the upward
closure of filters. Thus,

{r ◦v : v ∈ Y } ⊆ Z . (5)

Define a subset V0 of A by

V0 = {u ∈ A : (u · r) ◦v ∈ −Z for some v ∈ Y }. (6)

As before, the set V0 is a proper Boolean ideal in A that contains
the element −r. For example, −r is in V0, by (6), because 0 is in the
ideal −Z, and 1 is in Y , and

(−r · r) ◦1 = 0 ◦1 = 0,

by Boolean algebra and the assumption that ◦ is a normal operator.
The argument that V0 is downward closed is similar to the argument

that the set W0 is downward closed, and is left to the reader. To see
that V0 is closed under addition, assume u and v are in V0. There must
be elements w1 and w2 in Y such that

(u · r) ◦w1 and (v · r) ◦w2 (7)

are in −Z, by (6). Write w = w1 · w2, and observe that w is in Y , by
the closure of filters under multiplication. The elements

(u · r) ◦w and (v · r) ◦w (8)

are respectively below the elements in (7), by Boolean algebra and the
monotony of the operators in A, so they, too, belong to the ideal −Z,
by the downward closure of ideals. The sum of the elements in (8) is
therefore also in −Z, by the closure of ideals under addition. Since

[(u+ v) · r] ◦w = (u · r) ◦w + (v · r) ◦w,

by Boolean algebra and the distributivity of the operator ◦ , it follows
from the preceding observations and (6) that u + v belongs to V0.
Thus, V0 is an ideal.
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To see that the ideal V0 is proper, observe that

(1 · r) ◦v = r ◦v,

by Boolean algebra, and that r ◦v belongs to Z for every v in Y , by (5).
Consequently, (1 · r) ◦v cannot be in −Z for any v in Y , so 1 cannot
be in V0, by (6).

Extend V0 to a maximal Boolean ideal V . The Boolean dual of V is
the ultrafilter

X = −V = {−u : u ∈ V } = {w ∈ A : w 	∈ V } = A∼ V . (9)

The element −r is in V0, and V0 is included in V , so −r must be in V ,
and therefore r must be in X, by (9). If u is any element in X, then u
cannot be in V , by (9), and therefore u cannot be in V0. Consequently,
the element (u · r) ◦v cannot belong to −Z for any v in Y , by (6), so
this element must be in Z for every such v. Since Z is a filter, and
therefore upward closed, and since

(u · r) ◦v ≤ u ◦v,

it may be concluded that u ◦v belongs to Z for every v in Y . This con-
clusion holds for all u in X, so the complex product X ◦Y is included
in Z, as desired.

This completes the proof of (1) and of the implication from right
to left in (iv). The proof of the reverse implication in (iv) is nearly
identical to the proof of the corresponding implication in (ii) (with +
and Fr ∪ Fs replaced by ◦ and Fr ◦Fs respectively) and is left to the
reader. ��

The equivalences in Lemma 2.4 imply that the set B of all subsets
of U of the form Fr, for r in A, is closed under the operations of Cm(U)
and is therefore subuniverse of Cm(U). Let B be the corresponding
subalgebra. The equivalences also imply that the function ϕ mapping
each element r in A to the set Fr of ultrafilters containing r is an
isomorphism from A to B. It is called the canonical embedding of A
into Cm(U).

We proceed to show that Cm(U) is the canonical extension of B.
The canonical extension of A can then be obtained by applying the
Exchange Principle from general algebra to the pair B and Cm(U),
exchanging B for A, and Cm(U) for an isomorphic copy of Cm(U)
that is the desired canonical extension of A. As regards the atom
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separation property, observe that the atoms in Cm(U) are the sin-
gletons of ultrafilters. For any two distinct ultrafilters X and Y , there
must be an element r that belongs to one of the ultrafilters but not the
other, say r is in X but not in Y . The complement −r belongs to Y
(because Y is an ultrafilter that does not contain r), so the atom {X}
is included in Fr, while the atom {Y } is included in F−r. Thus, the
atom separation property holds for Cm(U) with respect to B.

To verify the compactness property, argue by contraposition. Con-
sider an arbitrary subset G of B with the property that no finite subset
of G has the unit F1 = U in Cm(U) as its union. It is to be shown
that G cannot have U as its union. The set G must have the form

G = {Fr : r ∈ I}

for some subset I of A, by the definition of B. The assumed property
of G and the isomorphism ϕ from A to B imply that no finite subset
of I has 1 as its sum in A. Consequently, the product of every finite
subset of the set

−I = {−r : r ∈ I}
is different from 0, by Boolean algebra, that is to say, the set −I has
the finite meet property. It follows that the set −I can be extended to
an ultrafilter X. Since the complement of every element in I belongs
to X, none of the elements r in I can belong to X, and therefore X
cannot belong to any of the sets Fr in G. It follows that the union of
the sets in G does not contain all of the ultrafilters in U , since it does
not contain X. Consequently, the union of G is not the unit U .

We turn now to the problem of correlating a relational space with A.
Let U be the relational structure defined above, consisting of the ul-
trafilters in A, and let B be the subalgebra of Cm(U) that is the iso-
morphic image of A under the canonical embedding. There is a natural
topology that can be defined on the universe of U with the help of the
algebra B. The universe of B—that is to say, the collection of sets of
the form Fr for elements r in A—is declared to be a base of the topol-
ogy, so that the open sets in the topology are the unions of arbitrary
systems of sets in B. Using the fact that B is closed under intersection
and contains the sets ∅ = F0 and U = F1, it is easy to check that this
class of open sets really does satisfy the three conditions for being a
topology, namely it contains the empty set and the universal set, it is
closed under unions of arbitrary systems of open sets, and it is closed
under intersections of finite systems of open sets. We shall refer to this
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topology as the topology induced on U by A (because the topology is
completely determined by the universe of A and the ultrafilters in A).
Since the algebra B is closed under the formation of complements, the
sets in the base of the topology are both open and closed; they consti-
tute the clopen sets of the topology. We shall return to this point in a
moment.

Under this topology, the space U is Hausdorff, and in fact any two
points in U are separated by a clopen set inB. This is just a topological
manifestation of the atom separation property for the canonical exten-
sion: distinct points in U are distinct ultrafilters X and Y in A, and for
any two such ultrafilters, the atom separation property of Cm(U) with
respect to B requires the existence of an element r in A such that X
belongs to Fr, but Y does not (see above). The clopen set Fr therefore
separates the points X and Y .

The space U is also compact, and in fact, compactness is a topo-
logical manifestation of the compactness property of the canonical ex-
tension. In order to see this, suppose a system of open sets covers the
space U. Each open set in the system is a union of clopen sets, by the
definition of the topology, so there must be a system (Fr : r ∈ I) of
clopen sets (where I is some subset of A) such that each of these clopen
sets is contained in one of the open sets in the given open cover, and
the union of this system of clopen sets is U . The compactness property
for Cm(U) with respect to B implies the existence of a finite subset I0
of I such that the union of the system (Fr : r ∈ I0) is U . Since each of
the clopen sets in this finite subsystem is included in one of the open
sets in the given open cover, a finite subsystem of the original open
cover must also have U as its union.

It is well known that in a compact topological space, if a given
Boolean algebra of clopen sets separates points, then the space is in
fact a Boolean space, and the given Boolean algebra of clopen sets
is in fact the Boolean algebra of all clopen subsets of the space (see
Lemma 1 on p. 305 of [10]). It follows that the topology defined on U
turns this relational structure into a Boolean space, and the clopen
subsets of U are precisely the sets of the form Fr for r in A. In order
to show that U is in fact a relational space, it remains to prove that
the fundamental relations in U are clopen, and that the fundamental
relations of rank at least two are continuous.

Lemma 2.5. The fundamental relations in the relational structure U
correlated with a Boolean algebra with operators A are clopen .
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Proof. Focus on the case of a ternary relation R in U and the
corresponding binary operator ◦ in Cm(U). Consider first the spe-
cial case of the product two clopen subsets of U, say Fr and Fs. It is
to be shown that the image of the set Fr × Fs under the relation R is
clopen. This image is defined to be the set

R∗(Fr × Fs) = {Z ∈ U : R(X,Y,Z)

for some X ∈ Fr and Y ∈ Fs}. (1)

The sets Fr and Fs both belong to the complex algebra Cm(U), so it
is possible to form their product Fr ◦Fs in Cm(U). Use the definition
of ◦ in Cm(U) and (1) to obtain

Fr ◦Fs = {Z ∈ U : R(X,Y,Z)

for some X ∈ Fr and Y ∈ Fs} = R∗(Fr × Fs).

If t = r ◦s in A, then Ft = Fr ◦Fs in Cm(U), by Lemma 2.4(iv), so the
preceding computation shows that

R∗(Fr × Fs) = Fr ◦Fs = Ft. (2)

Since Ft is a clopen subset of U, by the definition of the topology on U,
the image of Fr × Fs under R is clopen, by (2).

Consider now the case of an arbitrary clopen subsetH of the product
space U×U . Because U is a Boolean space, every clopen subset of U×U
can be written as the union of finitely many products of clopen subsets
of U. There is consequently a finite set I of pairs of elements from A
such that

H =
⋃{Fr × Fs : (r, s) ∈ I}. (3)

It follows from (3) and the definition of the image of a set under the
relation R that

R∗(H) = {Z : R(X,Y,Z) for some (X,Y ) ∈ H}
= {Z : R(X,Y,Z) for some (r, s) ∈ I and (X,Y ) ∈ Fr × Fs}
=

⋃{R∗(Fr × Fs) : (r, s) ∈ I}.

It was shown in the preceding paragraph that the sets R∗(Fr × Fs)
are clopen in U. Since a union of finitely many clopen sets is clopen,
it follows that R∗(H) is clopen in U. ��
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In order to prove that the fundamental relations in U of rank at
least two are continuous, it is helpful to prove first that the images of
singleton points under these relations are closed sets.

Lemma 2.6. For every fundamental relation R of rank n + 1 in the
relational structure U correlated with the given Boolean algebra with
operators A, and for every sequence of points X0, . . . ,Xn−1 in U, the
image set

R∗(X0, . . . ,Xn−1) = {Z ∈ U : R(X0, . . . ,Xn−1, Z)}

is a closed , and hence compact , subset of U.

Proof. Focus on the case of a ternary relation R in U that is defined
in terms of a binary operator ◦ in A. Let X and Y be points in U,
and write

H = R∗(X,Y ) = {Z ∈ U : R(X,Y,Z)}. (1)

It is to be shown that H is a closed, compact subset of U. If a pointW
in U does not belongs toH—that is to say, if R(X,Y,W ) fails to hold—
then the complex product X ◦Y cannot be included in W , by the defi-
nition of the relation R in U. Consequently, there must be elements rW
in X and sW in Y such that the product rW ◦sW (formed in A) does
not belong to W , by the definition of the complex product X ◦Y . The
set FrW ◦ sW of all ultrafilters that contain the product rW ◦sW is a
clopen subset of U, by the definition of the topology on U, and this
clopen set does not contain W because rW ◦sW is not in W . The in-
tersection of a system of clopen sets is closed in the topology on U ,
so the set

F =
⋂{FrW ◦ sW :W ∈ U ∼H}

is a closed subset of U that does not contain W for any point W
in U∼H. In other words, F is a closed set that is disjoint from U∼H.

Consider now any point Z in H. Since R(X,Y,Z) holds, by (1), the
definition of the relation R in U implies that the complex productX ◦Y
is included in Z. Consequently, the element rW ◦sW must belong to Z
for every point W in U ∼ H, because rW is in X, and sW in Y . It
follows that the ultrafilter Z belongs to the clopen set FrW ◦ sW for
every W in U ∼ H, and therefore Z belongs to the intersection F of
these clopen sets, by the definition of F . Thus, the set H is included
in F . Combine this observation with those of the preceding paragraph
to conclude that the set H coincides with F and is therefore closed.
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Every closed subset of a compact topological space is compact, so the
set H must be compact. ��
Lemma 2.7. Every fundamental relation of rank at least two in the
relational structure U correlated with the given Boolean algebra with
operators A is continuous .

Proof. Focus on the case of a ternary relation R in U that is defined in
terms of a binary operator ◦ in A. The proof requires a preliminary
observation: for every element t in A, a pair (X,Y ) of points from U
belongs to the inverse image R−1(Ft) of the clopen set Ft if and only
if there are elements r in X and s in Y such that r ◦s ≤ t (in A). One
direction of the argument is straightforward. Suppose such elements r
and s exist. If R(X,Y,Z) holds, then the complex product X ◦Y is
included in Z, by the definition of the relation R, and therefore the
product r ◦s belongs to Z, by the definition of the complex product
and the assumption that r and s are inX and Y respectively. Since r ◦s
is below t, and Z is an ultrafilter, the element t must also belong to Z,
and therefore Z must belong to the clopen set Ft. This is true for
every Z such that R(X,Y,Z) holds, so the entire image set

R∗(X,Y ) = {Z ∈ U : R(X,Y,Z)} (1)

is included in Ft. Consequently, the pair (X,Y ) belongs to the inverse
image R−1(Ft), by the definition of this inverse image.

To establish the reverse implication, suppose that no such elements r
and s exist. We proceed to show that in this case the set

X ◦Y ∪ {−t} = {r ◦s : r ∈ X and s ∈ Y } ∪ {−t} (2)

has the finite meet property. Assume, accordingly, that

(ri : i ∈ I) and (si : i ∈ I)

are finite systems of elements in X and Y respectively, write

r =
∏
i ri and s =

∏
i si,

and observe that r belongs to X and s to Y , because X and Y are
ultrafilters and are therefore closed under finite Boolean products. The
element r ◦s is not below t, by assumption, so

−t · (r ◦s) 	= 0.
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Since r ≤ ri and s ≤ si for each i, the monotony of the operator ◦

implies that r ◦s ≤ ri ◦si for each i, and therefore r ◦s ≤ ∏
i(ri ◦si). It

follows that
−t ·∏i(ri ◦si) 	= 0,

as required.
Every subset of A with the finite meet property can be extended

to an ultrafilter, so the set in (2) can be extended to an ultrafilter Z
in A, by the observations of the preceding paragraph. The complex
product X ◦Y is included in Z, by (2), so R(X,Y,Z) holds, by the
definition of R. On the other hand, the complement −t is in Z, again
by (2), and Z is an ultrafilter, so t does not belong to Z, and therefore Z
does not belong to Ft. Apply the definition of the inverse image to con-
clude that the pair (X,Y ) cannot belong to the inverse image R−1(Ft).
This completes the proof of the preliminary observation.

In order to prove that R is continuous, it must be shown that for
every open subset H of U , the inverse image set

R−1(H) = {(X,Y ) : R(X,Y,Z) implies Z ∈ H}

is open in the product topology on U × U . Consider first the case
when H is a clopen subset of U , say H = Ft. If a pair (X,Y ) belongs
to the inverse image R−1(Ft), then there must be elements r in X
and s in Y such that r ◦s ≤ t, by the preliminary observation proved
above. The ultrafilters X and Y belong to the clopen sets Fr and Fs
respectively, by the definition of these clopen sets, so the pair (X,Y )
belongs to the product clopen set Fr × Fs. Furthermore, this product
clopen set is included in the inverse image R−1(Ft). Indeed, it is not
difficult to check that

Fr × Fs ⊆ R−1(Fr ◦Fs) ⊆ R−1(Ft). (3)

For the second inclusion, observe that the inequality r ◦s ≤ t im-
plies that the product Fr ◦Fs (formed in Cm(U)) is included in Ft,
by Lemma 2.4, and therefore the inverse image under R of the prod-
uct Fr ◦Fs is included in the inverse image under R of Ft, Lemma 2.1.
As regards the first inclusion, suppose X0 is in Fr and Y0 in Fs. The
product {X0} ◦{Y0} in Cm(U) of the atoms {X0} and {Y0} is included
in the product Fr ◦Fs, by the monotony of the operator ◦ . In other
words,

Z ∈ {X0} ◦{Y0} implies Z ∈ Fr ◦Fs,
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or put somewhat differently,

R∗(X0, Y0) ⊆ Fr ◦Fs.

This last inclusion is precisely the condition required for (X0, Y0) to
belong to the inverse image R−1(Fr ◦Fs).

It has been shown that every pair (X,Y ) in R−1(Ft) belongs to a
clopen subset Fr × Fs of U × U that in turn is included in R−1(Ft).
Consequently, the inverse image set R−1(Ft) is a union of clopen sets
and is therefore open in U × U .

Consider now the general case when H is an arbitrary open subset
of U. The space U is Boolean, so H must be the union of a system

(Ft : t ∈ I) (4)

of clopen sets. For each pair (X,Y ) in the inverse image R−1(H),
the image set in (1) is included in H, by the definition of the inverse
image set. Consequently, this image set is included in the union of the
system (4). The image set in (1) is compact, by Lemma 2.6, so there
must be a finite subsystem of (4) whose union covers R∗(X,Y ). The
union of finitely many clopen sets is clopen, so there is a clopen set Ft
such that

R∗(X,Y ) ⊆ Ft ⊆ H . (5)

The first inclusion in (5) implies that the pair (X,Y ) belongs to the
inverse image R−1(Ft), by the definition of this inverse image. It was
shown in the previous paragraph that this inverse image is an open
subset of U. The second inclusion in (5) implies that R−1(Ft) is in-
cluded in R−1(H), by Lemma 2.1. Conclusion: every pair (X,Y ) in
the inverse image R−1(H) belongs to an open set R−1(Ft) that is in-
cluded in R−1(H), so R−1(H) is a union of open sets and is therefore
open. Consequently, R is continuous. ��

The following theorem contains a summary of what has been ac-
complished in the preceding discussion and lemmas.

Theorem 2.8. The relational structure correlated with a Boolean al-
gebra with operators A is a relational space under the topology induced
on the relational structure by A.

The relational space correlated with A is called the (first) dual, or
the dual (relational) space, of A. As was mentioned earlier, if U is the
dual of A, then we may employ topological terminology in speaking
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about U, referring for example to the points in U (the elements in the
universe of U) and the clopen sets in U (the clopen sets in the topology
on the universe of U).

We now change footing: starting with an arbitrary relational space U,
we construct a Boolean algebra with operators A in terms of U.

Lemma 2.9. The set of clopen subsets of a relational space U is a
subuniverse of the complex algebra Cm(U).

Proof. Let A be the set of clopen subsets of U. Clearly, A is a subset
of the universe of Cm(U). The union of two clopen sets is clopen, and
the complement of a clopen set is clopen, so A is closed under the
Boolean operations of Cm(U), namely union and complement. To see
that A is closed under the operators of Cm(U), focus on the case of a
binary operator ◦ that is defined in terms of a ternary relation R in U.
For two clopen subsets F and G in A, the product F ◦G in Cm(U) is
defined to be the set

F ◦G = {t ∈ U : R(r, s, t) for some r ∈ F and s ∈ G}.
This is precisely the definition of the image set R∗(F ×G), so

F ◦G = R∗(F ×G). (1)

The definition of a relational space implies that the relation R is clopen;
this means—since F and G are assumed to be clopen subsets of U—
that the image set R∗(F ×G) is a clopen subset of U . Thus, F ◦G is a
clopen set, by (1), so it belongs to A. It follows that A is closed under
the operator ◦ . ��

Observe that the assumed continuity of the relations in U of rank
at least two is not used in the preceding proof.

The complex algebra Cm(U) is a Boolean algebra with operators,
and this property is preserved under the passage to subalgebras. In
particular, the subalgebra of Cm(U) that has as its universe the set of
the clopen subsets of U is a Boolean algebra with operators. It is called
the (first) dual, or the dual algebra, of U. Start with a Boolean algebra
with operators A, and form the dual space U consisting of ultrafilters
in A. The dual algebra of U consisting of the clopen subsets of U is
called the second dual of A.

Theorem 2.10. The second dual of every Boolean algebra with opera-
tors A is isomorphic to A. More explicitly , if U is the dual space of A,
and B the dual algebra of U, and if
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ϕ(r) = Fr = {X ∈ U : r ∈ X}

for each r in A, then ϕ is an isomorphism from A to B.

Proof. Essentially, this theorem has already been proved. We summa-
rize the main points of the argument. The relational space U that is
the dual of A has as its universe the set of ultrafilters in A. Each re-
lation R of rank n+ 1 in U is correlated with an operator f of rank n
in A and is defined by the formula

R(X0, . . . ,Xn−1, Z) if and only if f(X0, . . . ,Xn−1) ⊆ Z

for every sequence of ultrafilters X0, . . . ,Xn−1, Z (where the occur-
rence of f on the right side of this equivalence denotes the extension
of the operator f in A to subsets of A). The topology on U has as a
base the set of all sets of the form Fr for r in A, and these sets prove to
be precisely the clopen sets of the topology. The fundamental relations
in U are continuous (Lemma 2.7) and clopen (Lemma 2.5) under this
topology.

The Boolean algebra with operators B that is the dual of U has as
its universe the set of clopen subsets of U, that is to say, the universe
consists of the sets of the form Fr for r in A. The Boolean operations are
the set-theoretic ones of union and complement, while each operator f
of rank n in B is defined on a sequence of clopen sets Fr0 , . . . , Frn−1

by
f(Fr0 , . . . , Frn−1) = R∗(Fr0 × · · · × Frn−1)

(see the proof of Lemma 2.9), and the image set on the right side of
this equation coincides with the set Ft when t = f(r0, . . . , rn−1) in A
(see the proof of Lemma 2.5), so

f(Fr0 , . . . , Frn−1) = Ft if and only if t = f(r0, . . . , rn−1).

Consequently, B is precisely the subalgebra of Cm(U) that is the image
of A under the canonical embedding that maps each element r in A
to the element Fr in B. In particular, the canonical embedding is an
isomorphism from A to its second dual B. ��

Theorem 2.10 has a topological analogue. In order to formulate it,
we need some terminology. Start with a relational space U, and form
its dual algebra A consisting of the clopen subsets of U. The dual space
of A, consisting of the ultrafilters in A and endowed with the topology
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induced by A, is called the second dual of U. We shall prove that there
is a bijection ϑ from the universe of U to the universe of the second
dual of U that preserves the algebraic and topological structure of U in
the sense that ϑ is a relational structure isomorphism and a topological
homeomorphism. We shall call such a function a homeo-isomorphism,
and we shall say that two relational spaces are homeo-isomorphic if
there exists a homeo-isomorphism mapping one of them onto the other.

Theorem 2.11. The second dual of every relational space U is homeo-
isomorphic to U. More explicitly , if A is the dual algebra of U, and V
the dual space of A, and if

ϑ(r) = {F ∈ A : r ∈ F}

for each r in U, then ϑ is a homeo-isomorphism from U to V.

Proof. The universe of the dual algebra A of U is defined to be the set
of all clopen subsets of U, and the universe of the dual space V of A
is defined to be the set of all ultrafilters in A. The set

Xr = {F ∈ A : r ∈ F} (1)

is easily seen to be such an ultrafilter in A, so the function ϑ defined by

ϑ(r) = Xr (2)

maps the universe of U into the universe of V.
It is not difficult to see that ϑ is one-to-one. If r and s are distinct

points in U, then there is a clopen set F in U that contains r but not s,
because U has the topological structure of a Boolean space and there-
fore the clopen sets separate points. The set F—which is an element
in A—belongs to the ultrafilter Xr, but not to the ultrafilter Xs, so

ϑ(r) = Xr 	= Xs = ϑ(s).

To check that ϑ is onto, consider a point Y in the second dual V.
This point must be an ultrafilter in A, by the definition of V. In other
words, Y must be a maximal class of non-empty clopen subsets of U
that is upward closed and closed under finite intersections. The com-
pactness of the topology on U implies that every non-empty system of
closed sets with the finite intersection property has a non-empty inter-
section. In particular, since the ultrafilter Y has the finite intersection
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property, the intersection of the system of all sets in Y is non-empty.
Let r be any point in this intersection. The point r belongs to every
(clopen) set in Y , so every set in Y must belong to the ultrafilter Xr,
by (1). Thus, Y is included in Xr. Since Y is assumed to be an ultra-
filter, it follows that Y = Xr, by the maximality of Y , and therefore

ϑ(r) = Xr = Y .

Thus, ϑ is onto.
A bijection from a Boolean space to a compact Hausdorff is a home-

omorphism if and only if it maps clopen sets to clopen sets (see Corol-
lary 3 on p. 316 of [10]). Consequently, to prove that ϑ is a homeomor-
phism, it suffices to show that the image under ϑ of each clopen set
in U is a clopen set in V. The image under the mapping ϑ of a clopen
set F in U is the set

{Xr : r ∈ F}, (3)

by the definition of ϑ in (2). To say that r belongs to F is equivalent
to saying that F belongs to Xr, by (1), so (3) may be rewritten as

{Xr : r ∈ U and F ∈ Xr}. (4)

The elements in V are precisely the sets of the form Xr for r in U,
by the conclusion of the previous paragraph, so (4) may in turn be
rewritten as

{Y ∈ V : F ∈ Y }. (5)

Because V is assumed to be the dual space of the algebra A, each
clopen subset of V is determined by an element F in A in the sense
that it can be written as a set of the form (5) (see the remarks preced-
ing Lemma 2.5). Thus, the set in (5) is clopen in the topology of V.
Combine these observations to conclude that the image under ϑ of the
clopen set F in U is the clopen set (5) in V, so the mapping ϑ is clopen
and therefore a homeomorphism, as claimed.

It remains to prove that the mapping ϑ is a relational structure
isomorphism in the sense that it isomorphically preserves the funda-
mental relations of the relational structures. Focus on the case of a
ternary relation R. In view of (2), it must be shown that the equiva-
lence

R(r, s, t) if and only if R(Xr,Xs,Xt) (6)
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holds for all elements r, s, and t in U. (The first occurrence of R in (6)
refers to the relation in U, while the second occurrence refers to the
relation in V.) The assertion

R(Xr,Xs,Xt) (7)

means, by the definition of V as the dual space of A, that the complex
product

Xr ◦Xs = {F ◦G : F ∈ Xr and G ∈ Xs}
is included in the set Xt, that is to say,

F ∈ Xr and G ∈ Xs implies F ◦G ∈ Xt

for all elements F and G in A. This implication may be rewritten in
the form

r ∈ F and s ∈ G implies t ∈ F ◦G (8)

for all clopen subsets F and G of U. Since A is the dual algebra of U,
the product F ◦G in A is defined to be the image of the pair of clopen
sets (F,G) under the relation R in U,

F ◦G = R∗(F ×G)
= {w ∈ U : R(p, q, w) for some p ∈ F and q ∈ G},

so the implication in (8) is equivalent to the implication

r ∈ F and s ∈ G implies R(p, q, t) for some p ∈ F and q ∈ G (9)

for all clopen subsets F and G of U. These observations show that the
validity of (7) is equivalent to the validity of (9) for all clopen sets F
and G in U.

The implication from left to right in (6) is now easy to establish. If

R(r, s, t) (10)

holds, then for all clopen sets F and G in U containing the points r
and s respectively, there are always points p in F and q in G such
that R(p, q, t) holds, namely the points p = r and q = s, by (10). Con-
sequently, (9) is valid for all clopen sets F and G in U, and therefore (7)
holds.
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In order to establish the reverse implication in (6), assume that (10)
fails, with the intention of showing that (7) fails. For every point w
in U, the validity of R(r, s, w) implies that w must be different from t,
by the assumption that (10) fails. The clopen subsets of U separate
points, so for such a point w there must be a clopen set Hw in U that
contains w, but does not contain t. The union of these clopen sets is
an open set

H =
⋃{Hw : w ∈ U and R(r, s, w)}

in U that does not contain t. The inverse image of H under the rela-
tion R in U, that is to say, the set

R−1(H) = {(p, q) ∈ U × U : R(p, q, w) implies w ∈ H}, (11)

is open in the product topology on U ×U , by the assumed continuity
of R. Moreover, the pair (r, s) belongs to this inverse image. Indeed,
if w is any point in U such that R(r, s, w), then w belongs to the clopen
set Hw, by the definition of this set, and therefore w belongs to H,
by the definition of H; consequently, (r, s) is in R−1(H), by (11). The
products of pairs of clopen subsets of U form a base for the product
topology on U×U . Since R−1(H) is open in this topology and contains
the point (r, s), there must be clopen sets F and G in U for which

r ∈ F, s ∈ G, and F ×G ⊆ R−1(H). (12)

The clopen sets F and G satisfy the hypothesis of (9), by the first part
of (12), but not the conclusion of (9), by the last part of (12). Indeed, if
we had R(p, q, t) for some p in F and q in G, then the pair (p, q) would
belong to F×G, and therefore also to R−1(H), by the final part of (12);
this would force the point t to be in H, by (11), in contradiction to the
fact that t does not belong to H. Conclusion: if (10) fails, then there
are clopen sets F and G for which (9) fails, and therefore (7) fails, as
claimed. Thus, ϑ isomorphically preserves the ternary relation R.

The proof that the mapping ϑ isomorphically preserves a unary rela-
tion R is somewhat different in character than the preceding argument.
It is to be shown that the equivalence

R(t) if and only if R(Xt) (13)
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holds for all elements t in U, by the definition of ϑ in (2). (The first
occurrence of R in (13) refers to the relation in U, while the second
occurrence refers to the relation in V.) The point Xt belongs to the
relation R in V just in case the corresponding distinguished constant
in A belongs to Xt, by the definition of the relational space V cor-
related with the algebra A. The corresponding distinguished constant
in A is just the relation R from U, by the definition of the complex alge-
bra Cm(U) and the fact that A is a subalgebra of the complex algebra;
and R belongs to Xt just in case t belongs to R, by (1). Summarizing,
we have

Xt ∈ R if and only if R ∈ Xt,

if and only if t ∈ R
(where the first occurrence of R refers to the unary relation, or set,
in V, and the second and third to the unary relation, or set, in U). The
equivalence of the first formula with the last is just another way of ex-
pressing (13). This completes the proof that the function ϑ is a homeo-
isomorphism from the relational space U to its second dual V. ��

There is another version of the notion of a relational space that
proves to be equivalent to the version given in Definition 2.2, namely (a
slightly modified form of) the definition that is used in Goldblatt [13],
pp. 184–185, restricted to Boolean algebras with operators. (An ear-
lier version of Goldblatt’s approach, for Boolean algebras with a sin-
gle unary operator, is given in Section 10 of Goldblatt [12], and it is
remarked that his construction is an adaptation of one given in Sec-
tion III of Lemmon [24].)

Definition 2.12. A weak relational space is a relational structure U,
together with a topology on the universe U , such that U is a Boolean
space under the topology, the relations in U are clopen, and the rela-
tions R in U of rank n+ 1 (with n ≥ 1) are weakly continuous in the
sense that the sets

{(r0, . . . , rn−1) ∈ Un : R(r0, . . . , rn−1, t)}
are closed (in the product space Un) for every element t in U. ��

It turns out that, on the basis of the remaining conditions in the
two definitions, a relation in U of rank at least two is continuous if and
only if it is weakly continuous. One direction of this implication is not
difficult to prove.
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Theorem 2.13. Every relational space U is a weak relational space .
In particular , every relation in U of rank at least two is weakly contin-
uous .

Proof. Focus on the case of a ternary relation R in U that is, by as-
sumption, continuous. To show that R is weakly continuous, fix an
element t in U. The singleton set {t} is closed in the topology on U,
because U is a Hausdorff space and singleton subsets are always closed
in a Hausdorff space. Consequently, the complement ∼{t} is open. The
inverse image under R of this complement, the set

R−1(∼{t}) = {(r, s) ∈ U × U : R(r, s, t̄) implies t̄ ∈ ∼{t}} (1)

= {(r, s) ∈ U × U : R(r, s, t̄) implies t̄ 	= t},

is therefore open in the product topology on U × U , because R is
continuous.

It must be shown that the set

Ht = {(r, s) ∈ U × U : R(r, s, t)} (2)

is closed in U , or what amounts to the same thing, the comple-
ment ∼Ht is open. This is accomplished by establishing the equality

∼Ht = R−1(∼{t}). (3)

If a pair (r, s) belongs to the complement ∼Ht, then R(r, s, t) must fail
in U, by (2), and therefore R(r, s, t̄) always implies that t̄ 	= t. Thus, the
pair (r, s) belongs to the inverse image R−1(∼{t}), by (1), so the left
side of (3) is included in the right side. As regards the reverse inclusion,
if a pair (r, s) belongs to the inverse image R−1({∼{t}), then R(r, s, t̄)
always implies that t̄ 	= t, by (1), and therefore R(r, s, t) cannot hold.
It follows that the pair (r, s) cannot belong to Ht, by (2), so the pair
must belong to the complement ∼Ht. This establishes (3). Since the
set R−1(∼{t}) is open, by the remarks above, the set Ht must closed,
by (3). This is true for every element t in U, so the relation R is weakly
continuous. ��

The proof of the converse assertion that every weak relational space
is a relational space appears to be significantly more involved. We shall
give an indirect proof that depends on several of the main results of
this section. First of all, Lemma 2.9 remains true for every weak re-
lational space U. Indeed, as has already been noted, the proof of the
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lemma does not make use of the assumption that the fundamental rela-
tions of rank at least two are continuous (or even weakly continuous).
The subalgebra of Cm(U) that has as its universe the set of clopen
subsets of U is therefore a Boolean algebra with operators; it is called
the (first) dual of the weak relational space U. Write A for this dual.

The algebra A has a dual relational space V (and not just a dual
weak relational space), by Theorem 2.8. In particular, the fundamental
relations of rank at least two in V are continuous, by Lemma 2.7
applied to V. Call V the second dual of the weak relational space U.
The key step in the argument is to show that U is homeo-isomorphic
to V, that is to say, Theorem 2.11 continues to hold for weak relational
spaces. The proof that the function ϑ defined in the statement of that
theorem is a homeomorphism from the topological space U to the
topological space V , and the proof that for a unary relation R,

R(t) if and only if R(Xt)

remain unchanged. Indeed, the assumption that the fundamental re-
lations of rank at least two are continuous or weakly continuous is not
used in those parts of the argument.

The proof that ϑ isomorphically preserves every fundamental re-
lation R of rank n + 1 ≥ 2, and is therefore a homeo-isomorphism,
is of course different from the earlier proof, since that proof uses the
assumption that R is continuous. The proof below uses only the as-
sumption that R is weakly continuous. (The argument is essentially
the one given in Goldblatt [13], starting at the middle of p. 191.)

Consider the case of a ternary relation R. The equivalence

R(r, s, t) if and only if R(Xr,Xs,Xt) (6)

must be established. As in the proof of Theorem 2.11, the right side
of (6) holds in V just in case the implication

r ∈ F and s ∈ G implies t ∈ F ◦G (8)

is valid for all clopen subsets F and G of U, where

F ◦G = R∗(F ×G)
= {w ∈ U : R(p, q, w) for some p ∈ F and q ∈ G}.

Assume first that the left side of (6) is true in U, and consider
arbitrary clopen subsets F and G of U. If r is in F and s in G, then
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since R(r, s, t) holds, the element t must belong to the set F ◦G, by
the definition of this set, and therefore the implication in (8) holds.
Thus, the right side of (6) is true in V.

Assume next that the left side of (6) is false in U. In this case, the
pair (r, s) does not belong to the set

Ht = {(p, q) ∈ U × U : R(p, q, t)},
so (r, s) must belong to the complement ∼Ht (in U × U). The set Ht

is closed, by the assumed weak continuity of the relation R, so the
complement ∼Ht is open. The products of clopen subsets of U form
a base for the product topology on U × U , so there must be clopen
subsets F and G of U such that

r ∈ F, s ∈ G, and F ×G ⊆ ∼Ht.

The pair of sets F and G therefore satisfies the hypothesis of (8), but
not the conclusion. Indeed, if p and q are any elements in F and G
respectively, then the pair (p, q) belongs to the set ∼Ht, and there-
fore R(p, q, t) is false, by the definition of Ht; consequently, t cannot
belong to the set F ◦G, by the definition of this set. The failure of (8)
for the particular clopen sets F and G implies that the right side of (6)
is false in V.

It has been shown that the function ϑ is a homeo-isomorphism
from U to V, so Theorem 2.11 continues to hold for weak relational
spaces U and their second duals V. As has already been pointed out,
the second dual V is a relational space, and not just a weak relational
space. In particular, the fundamental relations of rank at least two
in V are continuous. Since U is homeo-isomorphic to V, it follows that
the fundamental relations of rank at least two in U must also be con-
tinuous, so U is in fact a relational space. The following theorem has
been proved.

Theorem 2.14. Every weak relational space U is a relational space .
In particular , the fundamental relations of rank at least two in U are
continuous .

Goldblatt [13] shows for his notion of a relational space that every
bounded distributive lattice with operators is isomorphic to its second
dual, and every relational space is homeo-isomorphic to its second dual
(see Theorems 2.2.3 and 2.2.4 in [13]). It follows from Theorems 2.13
and 2.14 above that for Boolean algebras with operators, the approach
we have taken is equivalent to the approach that Goldblatt has taken.
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There is one more topological observation concerning relational
spaces that is worth making and that will be used later: the funda-
mental relations are closed subsets of the appropriate product space.
For the unary relations, this follows directly from Definition 2.2, but
for relations of rank at least two it requires proof.

Theorem 2.15. If U is a relational space , then every fundamental re-
lation in U of rank n ≥ 2 is a closed subset of the product spaces Un.

Proof. Focus on the case when R is a ternary relation in U. In order to
prove that R is a closed subset of U ×U ×U , it suffices to shown that
the complement of R is open. This is accomplished by demonstrating
that for every triple of elements (r, s, t) not in R, there are clopen
subsets F , G, and H of U such that

(r, s, t) ∈ F ×G×H and F ×G×H ⊆ ∼R. (1)

Assume that the triple (r, s, t) is not in R. The set

K = {(u, v) ∈ U × U : R(u, v, t)} (2)

is closed in U × U , by Theorem 2.13, so the complement of K is
open; and this complement contains the pair (r, s), by assumption.
The products of clopen subsets of U form a base for the product topol-
ogy on U × U , so there must be clopen sets F and G in U containing
the points r and s respectively such that F × G is included in ∼K.
The set

R∗(F ×G) = {w ∈ U : R(u, v, w) for some u ∈ F and v ∈ G} (3)

is clopen in U, by the assumption that U is a relational space (see
Definition 2.2). The complement

H = ∼R∗(F ×G)
= {w ∈ U : R(u, v, z) and u ∈ F and v ∈ G implies z 	= w} (4)

is therefore also clopen in U.
Observe that t belongs to H. For the proof, consider points u in F

and v in G, and suppose that z is a point in U such that R(u, v, z) holds.
Since F × G is included in ∼K, the pair (u, v) must belong to ∼K,
and therefore the point z must be different from t, by (2). It follows
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by (4) that t must be in H. This observation and the definitions of the
sets F and G imply that the triple (r, s, t) belongs to the product

F ×G×H . (5)

To check that (5) is included in ∼R, as is required in (1), consider
any triple (u, v, w) in (5). The point w belongs to the set H, by the
definition of the product (5), so w must belong to the complement of
the set R∗(F ×G), by (4). On the other hand, the points u and v are
in F and G respectively, so R(u, v, w) must fail to hold in U, by (3).
This shows that the triple (u, v, w) belongs to the complement of R,
which completes the proof of (1). The relation ∼R is therefore an open
subset of U × U × U , so R is closed. ��

2.4 Duality for Homomorphisms

The duality between Boolean algebras with operators and relational
spaces carries with it a duality between structure preserving func-
tions on the algebras and structure preserving functions on the spaces.
The structure preserving functions on the algebras are just homo-
morphisms (in the algebraic sense of the word), while the structure
preserving functions on the spaces are continuous bounded homomor-
phisms (see Definition 1.8). Recall that a mapping ϑ from a topological
space V to a topological space U is said to be continuous if the inverse
image

ϑ−1(F ) = {u ∈ V : ϑ(u) ∈ F}
of each open subset F of U is open in V . When the spaces in question
are Boolean, then it suffices to check that the inverse image of each
clopen set is clopen (see Lemma 1 on p. 313 of [10]).

The first task is to show that continuous bounded homomorphisms
give rise to homomorphisms. The proof is similar in flavor to the proof
of Theorem 1.9. That theorem is purely algebraic in formulation and
proof, with no reference to topologies on relational structures. The the-
orem we want refers also to the topologies and says that if the given
bounded homomorphism ϑ is in fact a continuous mapping with re-
spect to the topologies, then an appropriate restriction of the mapping
defined in Theorem 1.9 is a homomorphism from the dual algebra of U
(the subalgebra of Cm(U) consisting of the clopen subsets of U) to the
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dual algebra of V (the subalgebra of Cm(V ) consisting of the clopen
subsets of V).

Theorem 2.16. Let U and V be relational spaces , and A and B their
respective dual algebras . If ϑ is a continuous bounded homomorphism
from V into U, then the function ϕ defined on elements F in A by

ϕ(F ) = ϑ−1(F ) = {u ∈ V : ϑ(u) ∈ F}
is a homomorphism from A to B. Moreover , ϕ is one-to-one if and
only if ϑ is onto, and ϕ is onto if and only if ϑ is one-to-one .

Proof. The function ψ defined on subsets X of U by

ψ(X) = ϑ−1(X) = {u ∈ V : ϑ(u) ∈ X}
is a complete homomorphism from Cm(U) to Cm(V ), by Theorem 1.9.
It is clear from this definition that the function ϕ defined in the state-
ment of the theorem is the restriction of ψ to the set of all clopen
subsets of U. Consequently, ϕ is a homomorphism from the subalge-
bra A of Cm(U) consisting of the clopen subsets of U (see Lemma 2.9)
into Cm(V ). The bounded homomorphism ϑ is assumed to be con-
tinuous, and the inverse image of a clopen set under a continuous
function is again a clopen set (see pp. 312–313 of [10]), so the inverse
image ϑ−1(F ) of a clopen subset F of U is always a clopen subset of V.
Therefore, ϕ actually maps A into the subalgebra B of Cm(V ) that
consists of the clopen subsets of V.

Consider now the following statements: (1) ϑ is onto; (2) U∼ϑ(V ) is
empty; (3) every clopen subset of U∼ϑ(V ) is empty; (4) if F is a clopen
subset of U such that ϑ−1(F ) is empty, then F must be empty; (5) ϕ
is one-to-one. Each of these statements is equivalent to its neighbor.
Indeed, (1) is obviously equivalent to (2), and (2) obviously implies (3).
To see that (3) implies (2), observe that ϑ(V ) is the continuous image
of the compact set V , so ϑ(V ) is compact and therefore closed in U
(see Lemma 3 on p. 314 and Lemma 1 on p. 272 of [10]). It follows that
the difference U ∼ϑ(V ) is open, and is therefore the union of a system
of clopen sets. If each of these clopen sets is empty, as is asserted in (3),
then clearly their union must also be empty, and therefore (2) holds.
Statement (4) is really just a rephrasing of (3): to say of a subset F of U
that ϑ−1(F ) is empty is to say that F does not contain any elements in
the range of ϑ, or what amounts to the same thing, that F is a subset
of U ∼ ϑ(V ). As regards the equivalence of (4) and (5), recall that a
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Boolean homomorphism is one-to-one if and only if its kernel contains
only the zero element. The kernel of ϕ is the set of clopen subsets F
of U such that ϑ−1(F ) is empty, so this kernel contains only the zero
element ∅ just in case (4) holds. The equivalence of (1) and (5) proves
that ϕ is one-to-one if and only if ϑ is onto.

To prove the dual assertion, consider the following statements: (1) ϑ
is one-to-one; (2) the inverse images under ϑ of the clopen subsets of U
separate points in V (in the sense that for any two distinct points, the
inverse image of some clopen subset of U contains one of the two points
but not the other); (3) every clopen subset of V is the inverse image
under ϑ of some clopen subset of U ; (4) ϕ is onto. Each of these state-
ments is equivalent to its neighbor. To establish the equivalence of (1)
and (2), consider distinct points u and v in V . If (1) holds, then ϑ(u)
and ϑ(v) are distinct points in U . The clopen subsets of U separate
points (because U is a Boolean space), so there is a clopen subset F
of U that contains ϑ(u) but not ϑ(v). The inverse image ϑ−1(F ) is a
clopen subset of V (because ϑ is continuous), and it contains u but
not v, so (2) holds. Conversely, if (2) holds, then there is a clopen sub-
set F of U such that ϑ−1(F ) contains u but not v. Consequently, the
set F contains ϑ(u) but not ϑ(v), so ϑ(u) and ϑ(v) must be distinct.
Thus, (1) holds. To see that (2) implies (3), observe that the inverse
images under ϑ of the clopen subsets of U constitute a Boolean algebra
of clopen subsets of V under the operations of union and complement.
In more detail, if F and G are clopen subsets of U , then so are F ∪G
and U ∼ F ; since
ϑ−1(F ) ∪ ϑ−1(G) = ϑ(F ∪G) and ϑ−1(U ∼ F ) = V ∼ ϑ−1(F ),

it follows that the set of inverse images of clopen sets is closed under
the operations of union and complement, and is therefore a Boolean
algebra under these operations. This must be the Boolean algebra of
all clopen subsets of V , by (2) and the fact that in a compact space,
a Boolean algebra of clopen sets that separates points must be the
Boolean algebra of all clopen subsets of the space (see Lemma 1 on
p. 305 of [10]). The reverse implication from (3) to (2) follows from
the fact that V is a Boolean space, and therefore the clopen subsets
of V separate points. Finally, the equivalence of (3) and (4) follows
from the definition of ϕ. The equivalence of (1) and (4) proves that ϑ
is one-to-one if and only if ϕ is onto. ��

Goldblatt [13] shows (at the bottom of p. 193) that the function ϕ in
the statement of Theorem 2.16 is a homomorphism from A to B. He
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also points out that if ϑ is onto or one-to-one, then ϕ is one-to-one or
onto respectively. (An earlier version of Goldblatt’s result, for spaces
with a single binary relation, is given in Theorem 5.9 of Goldblatt [12].)

It is also possible to formulate a version of Theorem 2.16 that refers
not to relational spaces and their dual algebras, but rather to Boolean
algebras with operators and their dual spaces.

Corollary 2.17. Let A and B be Boolean algebras with operators ,
and U and V their respective dual spaces . If ϑ is a continuous bounded
homomorphism from V to U, then the function ψ defined on elements r
in A by

ψ(r) = s if and only if ϑ−1(Fr) = Gs,

where

Fr = {X ∈ U : r ∈ X} and Gs = {Y ∈ V : s ∈ Y },
is a homomorphism from A into B. Moreover, ψ is one-to-one if and
only if ϑ is onto, and ψ is onto if and only if ϑ is one-to-one .

Proof. Let A∗ and B∗ be the dual algebras of the dual relational
spaces U and V respectively. Thus, A∗ is the second dual of A, and B∗

is the second dual of B, by the definition of the second duals. The
functions ϕ1 and ϕ2 defined by

ϕ1(r) = Fr and ϕ2(s) = Gs (1)

for r in A and s in B are isomorphisms from A to A∗ and from B
to B∗ respectively, by Theorem 2.10.

Assume that ϑ is a continuous bounded homomorphism from V
to U. The function ϕ defined by

ϕ(F ) = ϑ−1(F ) = {Y ∈ V : ϑ(Y ) ∈ F} (2)

is a homomorphism from A∗ to B∗, by the first part of Theorem 2.16
(with A∗ andB∗ in place of A andB, and Y in place of u). Moreover, ϕ
is one-to-one or onto if and only if ϑ is onto or one-to-one respectively,
by the second part of Theorem 2.16. The composition

ψ = ϕ−1
2

◦ϕ ◦ϕ1 (3)

is therefore a homomorphism from A to B (see the diagram below).
Moreover, since ϕ1 and ϕ2 are bijections, the homomorphism ψ is one-
to-one or onto if and only the homomorphism ϕ is one-to-one or onto
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respectively. Consequently, ψ is one-to-one or onto if and only ϑ is onto
or one-to-one respectively.

A
ψ−−−−→ B

ϕ1

⏐
⏐
�

⏐
⏐
�ϕ2

A∗ ϕ−−−−→ B∗

If ϑ−1(Fr) = Gs, then ϕ(Fr) = Gs, by (2), and therefore

ψ(r) = (ϕ−1
2

◦ϕ ◦ϕ1)(r) = ϕ−1
2 (ϕ(ϕ1(r)))

= ϕ−1
2 (ϕ(Fr)) = ϕ−1

2 (Gs) = s,

by (3) and (1). On the other hand, if ψ(r) = s, then

ϕ(Fr) = (ϕ2 ◦ψ ◦ϕ−1
1 )(Fr) = ϕ2(ψ(ϕ

−1
1 (Fr)))

= ϕ2(ψ(r)) = ϕ2(s) = Gs,

by (3) and (1), and therefore ϑ−1(Fr) = Gs, by (2). Thus, the
homomorphism ψ is determined by the equivalence stated in the
corollary. ��

The function ϕ in Theorem 2.16 is called the (first) dual, or the
dual homomorphism, of the continuous bounded homomorphism ϑ.
The equation defining this dual in the statement of the theorem can
be reformulated as an equivalence, namely

u ∈ ϕ(F ) if and only if u ∈ ϑ−1(F )

for all elements u in V and F in A. This equivalence, in turn, may be
written in the form

u ∈ ϕ(F ) if and only if ϑ(u) ∈ F
for all elements u in V and F in A. Thus, the dual of ϑ is the function ϕ
from A to B that is determined by the preceding equivalence.

Theorem 2.16 says that every continuous bounded homomorphism
between relational spaces determines a dual homomorphism between
the dual algebras of the spaces. The converse is also true: every homo-
morphism between the dual algebras induces a continuous bounded
homomorphism between the relational spaces. We begin by proving
the corresponding statement about Boolean algebras with operators
and their dual spaces.



2.4 Duality for Homomorphisms 97

Theorem 2.18. Let A and B be Boolean algebras with operators ,
and U and V their respective dual spaces . If ϕ is a homomorphism
from A into B, then the function ϑ defined on elements Y in V by

ϑ(Y ) = ϕ−1(Y ) = {r ∈ A : ϕ(r) ∈ Y }

is a continuous bounded homomorphism from V into U. Moreover , ϑ
is one-to-one if and only if ϕ is onto, and ϑ is onto if and only if ϕ is
one-to-one .

Proof. The first task is to show that the function ϑ defined in the state-
ment of the theorem really does map the universe ofV into the universe
of U. The elements in U and in V are, by definition, the ultrafilters
in A and in B respectively. The Boolean homomorphism properties
of ϕ imply that if Y is an ultrafilter in B, then the inverse image of Y
under ϕ, that is to say, the set

X = ϕ−1(Y ) = {r ∈ A : ϕ(r) ∈ Y }, (1)

is an ultrafilter in A, and consequently ϑ does map the set V into the
set U . In more detail, if r and s belong to X, then the images ϕ(r)
and ϕ(s) belong to Y , by (1), and therefore so does the product of
these two images. Since

ϕ(r · s) = ϕ(r) · ϕ(s),

by the homomorphism properties of ϕ, it follows from (1) that r · s
belongs to X. A similar argument shows that if r is in X, and r ≤ s,
then s is in X. If r is not in X, then the image ϕ(r) cannot be in Y ,
by (1). In this case, −ϕ(r) must be in Y , because Y is an ultrafilter.
Since

ϕ(−r) = −ϕ(r),
by the homomorphism properties of ϕ, it follows from (1) that −r is
in X. Finally, 0 cannot be in X, by (1), because ϕ(0) = 0, and 0 is not
in Y . Thus, X is an ultrafilter in A.

The next step is to show that ϑ is a bounded homomorphism. Focus
on the case of a ternary relation R that is defined in terms of a binary
operator ◦ . Suppose Y1, Y2, and Y3 are elements in V such that

R(Y1, Y2, Y3) (2)
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holds in V, with the aim of proving that

R(ϑ(Y1), ϑ(Y2), ϑ(Y3)) (3)

holds in U. In view of the definition of the relation R in the dual
spaces V and U, the hypothesis in (2) is equivalent to the inclusion

Y1 ◦Y2 ⊆ Y3, (4)

(where the operation on the left side of this inclusion is the complex
operation induced on subsets of B by the operation ◦ in B), and the
proof of (3) amounts to showing that

ϑ(Y1) ◦ϑ(Y2) ⊆ ϑ(Y3),

or, equivalently, that

ϕ−1(Y1) ◦ϕ−1(Y2) ⊆ ϕ−1(Y3) (5)

(where the operation on the left sides of these two inclusions is the
complex operation induced on subsets of A by the operation ◦ in A).
To prove (5), consider elements r in ϕ−1(Y1) and s in ϕ−1(Y2). The
images ϕ(r) and ϕ(s) belong to the sets Y1 and Y2 respectively, so the
product ϕ(r) ◦ϕ(s) of the two images belongs to the complex prod-
uct Y1 ◦Y2, and therefore also to Y3, by (4). Since

ϕ(r ◦s) = ϕ(r) ◦ϕ(s),

by the homomorphism properties of ϕ, it follows that ϕ(r ◦s) is in Y3,
and consequently that r ◦s is in ϕ−1(Y3), as was to be shown. This
completes the proof of (5), and hence also of the implication from (2)
to (3).

In order to show that ϑ is also bounded, consider elements X1

and X2 in U, and Y3 in V such that

R(X1,X2, ϑ(Y3)) (6)

in U. Thus,
X1 ◦X1 ⊆ ϑ(Y3) = ϕ−1(Y3), (7)

by the definition of the relation R in U, and the definition of ϑ. (The
operation on the left side in (7) is the complex operation induced on
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subsets of A by the operation ◦ in A.) Elements Y1 and Y2 in V are
to be constructed such that

ϑ(Y1) = X1, ϑ(Y2) = X2, and R(Y1, Y2, Y3). (8)

The construction proceeds stepwise, and the first step is to obtain an
ultrafilter Y1 in B with the properties

X1 = ϕ−1(Y1) and Y1 ◦ϕ(X2) ⊆ Y3. (9)

It is clear from the right-hand inclusion in (9) that we must exclude
from Y1 all elements u in B with the property that u ◦ϕ(r) is not in Y3
for some r in X2. To this end, write

W1 = {u ∈ B : u ◦ϕ(r) 	∈ Y3 for some r ∈ X2}, (10)

and observe that W1 is closed under addition. Indeed, let u and v
be elements in W1, and suppose r and s are elements in X2 such
that u ◦ϕ(r) and v ◦ϕ(s) are not in Y3. Put t = r ·s, and observe that t
also belongs to X2, since X2 is an ultrafilter. Moreover,

u ◦ϕ(t) ≤ u ◦ϕ(r) and v ◦ϕ(t) ≤ v ◦ϕ(s),

by the homomorphism properties of ϕ and the monotony of the op-
erator ◦ . Neither of the terms on the right sides of these inequalities
is in Y3, by assumption, so neither of the terms on the left sides of
the inequalities can be in Y3, by the upward closure of Y3. It follows
that the sum u ◦ϕ(t) + v ◦ϕ(t) also cannot be in Y3, because Y3 is an
ultrafilter. Since

u ◦ϕ(t) + v ◦ϕ(t) = (u+ v) ◦ϕ(t),

we arrive at the conclusion that (u + v) ◦ϕ(t) cannot be in Y3, and
therefore u + v is in W1, as claimed. As a consequence of this obser-
vation, the set of complements of elements in W1, that is to say, the
set

−W1 = {−u : u ∈W1},
must be closed under multiplication.

Write ϕ(X1) for the image of the set X1 under ϕ, so that

ϕ(X1) = {ϕ(r) : r ∈ X1}.



100 2 Topological Duality

We proceed to show that the set

ϕ(X1) ∪−W1 (11)

has the finite meet property. The sets X1 and −W1 are closed under
multiplication, and ϕ preserves this operation, so it suffices to show
that there can be no elements r in X1 and u in W1 such that

ϕ(r) · −u = 0.

Assume, to the contrary, that such elements r and u exist. It follows
that ϕ(r) ≤ u. Since u is in W1, there must be an element s in X2

such that u ◦ϕ(s) is not in Y3, by (10). But then the product ϕ(r) ◦ϕ(s)
cannot be in Y3, because

ϕ(r) ◦ϕ(s) ≤ u ◦ϕ(s),

by the monotony of the operator ◦ , and the presence of ϕ(r) ◦ϕ(s)
in Y3 would imply that of u ◦ϕ(s), by the upward closure of Y3. Since

ϕ(r ◦s) = ϕ(r) ◦ϕ(s),

by the homomorphism properties of ϕ, it may be concluded that ϕ(r ◦s)
is not in Y3, and therefore that r ◦s is not in ϕ−1(Y3). However, r is
in X1, and s is in X2, so r ◦s belongs to the complex product X1 ◦X2

and therefore also to the inverse image ϕ−1(Y3), by (7). The desired
contradiction has arrived. Conclusion: the set in (11) has the finite
meet property.

Every set that has the finite meet property can be extended to an
ultrafilter, so there must be an ultrafilter Y1 in B that includes the
set in (11). In particular, ϕ(X1) is included in Y1, so X1 is included
in the inverse image ϕ−1(Y1). As both of these last two sets are ul-
trafilters in A, it follows that X1 = ϕ−1(Y1). The set Y1 is a proper
filter, so no element and its complement can simultaneously belong
to Y1. Since −W1 is included in Y1, it follows that Y1 must be disjoint
from W1. This means that if u is in Y1, then u ◦ϕ(r) belongs to Y3
for every r in X2, by (10). Thus, Y1 possesses the requisite properties
stated in (9).

The second step of the construction is to obtain an ultrafilter Y2
in B with the properties

X2 = ϕ−1(Y2) and Y1 ◦Y2 ⊆ Y3. (12)
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The argument is similar to the preceding one: we want ϕ(X2) to be
included in Y2, and we want to exclude from Y2 all elements v in B
with the property that u ◦v is not in Y3 for some u in Y1. To this end,
write

W2 = {v ∈ B : u ◦v 	∈ Y3 for some u ∈ Y1}. (13)

Just as before, one proves that W2 is closed under addition, and con-
cludes that the set of complements,

−W2 = {−v : v ∈W2},

is closed under multiplication.
Write ϕ(X2) for the image of the set X2 under the mapping ϕ. We

proceed to show that the set

ϕ(X2) ∪−W2 (14)

has the finite meet property. The sets X2 and −W2 are closed under
multiplication, and ϕ preserves this operation, so it suffices to show,
as before, that there are no elements s in X2 and v in W2 such that

ϕ(s) · −v = 0.

Assume, to the contrary, that such elements s and v exist. It follows
that ϕ(s) ≤ v. Since v is in W2, there must be an element u in Y1
such that u ◦v is not in Y3, by (13). Consequently, the product u ◦ϕ(s)
cannot be in Y3. In more detail,

u ◦ϕ(s) ≤ u ◦v,

by the monotony of the operator ◦ , so the presence of u ◦ϕ(s) in Y3
would imply that of u ◦v, by the upward closure of Y3, in contradiction
to the assumption that u ◦v is not in Y3. The failure of u ◦ϕ(s) to be
in Y3 contradicts the right-hand inclusion in (9). Conclusion: the set
in (14) has the finite meet property.

It follows from the preceding conclusion that there is an ultrafilter Y2
in B that includes the set in (14). As ϕ(X2) is included in Y2, the
set X2 is included in the inverse image ϕ−1(Y2). These last two sets
are ultrafilters, so X2 = ϕ−1(Y2). Also, −W2 is included in Y2, soW2 is
disjoint from Y2. This means that if v is in Y2, then u ◦v belongs to Y3
for every u in Y1, by (13). Thus, Y2 possesses the properties required
in (12).
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The definition of ϑ, and the left-hand equations in (9) and (12),
imply the first two equations in (8). The definition of R in V and the
right-hand inclusion in (12) imply the last part of (8). Thus, ϑ is a
bounded homomorphism, as claimed.

Turn now to the task of showing that the mapping ϑ is continuous.
The clopen sets in U and in V are respectively the sets of the form

Fr = {X ∈ U : r ∈ X} and Gu = {Y ∈ V : u ∈ Y }

for elements r in A and u in B, because U and V are assumed to be the
dual spaces of the algebras A andB respectively. Every open set in U is
a union of clopen subsets, and the operation of forming inverse images
of sets under a function preserves arbitrary unions. Consequently, it
suffices to show that the inverse image under ϑ of every clopen set in U
is a clopen set in V. In fact, if Fr is a clopen subset of U, then

ϑ−1(Fr) = {Y ∈ V : ϑ(Y ) ∈ Fr} = {Y ∈ V : r ∈ ϑ(Y )}
= {Y ∈ V : r ∈ ϕ−1(Y )} = {Y ∈ V : ϕ(r) ∈ Y } = Gϕ(r), (15)

by the definition of the inverse image under ϑ of a set, the definition
of Fr, the definition of the function ϑ, the definition of the inverse
image under ϕ of a set, and the definition of Gϕ(r). The set Gϕ(r) is
clopen, so ϑ is continuous.

The argument that ϑ is one-to-one if and only if ϕ is onto is similar
to the corresponding argument given in the proof of Theorem 2.16.
Statements (1)–(3) from that argument, and the proof of their equiva-
lence, remain unchanged. The argument continues by establishing the
equivalence of the following statements: (3) every clopen subset of V is
the inverse image under ϑ of some clopen subset of U ; (4) for every ele-
ment u in B there is an element r in A such that Gu = ϑ−1(Fr); (5) for
every element u in B there is an element r in A such that Gu = Gϕ(r);
(6) ϕ is onto. The equivalence of (3) and (4) is obvious from the de-
scription of the clopen subsets of U and V given above; the equivalence
of (4) and (5) follows from (15); and the equivalence of (5) and (6) is
a consequence of the fact that the correspondence mapping each el-
ement u in B to the clopen set Gu is a bijection from B to the set
of clopen subsets of V. Conclusion: ϑ is one-to-one if and only if ϕ is
onto.

The argument that ϑ is onto if and only if ϕ is one-to-one is also sim-
ilar to the corresponding argument given in the proof of Theorem 2.16.
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Statements (1)–(4) from that argument, and the proof of their equiv-
alence, remain unchanged. The argument continues by establishing
the equivalence of the following statements, where we use (15) to
write Gϕ(r) for the inverse image ϑ−1(Fr): (4) if F is a clopen sub-
set of U such that ϑ−1(F ) is empty, then F is empty; (5) if Gϕ(r) is
empty, then Fr is empty; (6) if ϕ(r) = 0, then r = 0; (7) ϕ is one-
to-one. Statement (5) is just a rephrasing of assertion (4) using the
introduced notation. The equivalence of (5) and (6) follows from the
fact that the only clopen subsets of U and V that are empty are respec-
tively the sets Fr and Gu with r = 0 and u = 0, by the monomorphism
properties of the canonical embeddings. The equivalence of (6) and (7)
is just the assertion that a Boolean homomorphism is one-to-one if and
only if its kernel contains only the zero element. Conclusion: ϑ is onto
if and only if ϕ is one-to-one. ��

The assertion in Theorem 2.18 that, under the hypotheses of the
theorem, the mapping ϑ is a continuous bounded homomorphism, and
the proof of this assertion, are due to Goldblatt [13] (see Theorem 2.3.2
and its proof in [13]). He also points out that if ϕ is onto or one-to-
one, then ϑ is one-to-one or onto respectively. (An earlier version of
Goldblatt’s result, for Boolean algebras with a single unary operator,
is given in Theorem 10.9 of Goldblatt [12].)

Theorem 2.18 also has a version that refers not to Boolean algebras
with operators and their dual spaces, but rather to relational spaces
and their dual algebras.

Corollary 2.19. Let U and V be relational spaces , and A and B their
respective dual algebras . If ϕ is a homomorphism from A to B, then
the function δ defined on elements s in V by

δ(s) = r if and only if ϕ−1(Ys) = Xr ,

where

Xr = {F ∈ A : r ∈ F} and Ys = {G ∈ B : s ∈ G},

is a continuous bounded homomorphism from V into U. Moreover, δ
is one-to-one if and only if ϕ is onto, and δ is onto if and only if ϕ is
one-to-one .

Proof. Let U∗ and V∗ be the dual spaces of the dual algebras A and B
respectively. Thus, U∗ is the second dual of U, and V∗ the second dual
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of V, by the definition of the second duals. The functions ϑ1 and ϑ2
defined by

ϑ1(r) = Xr and ϑ2(s) = Ys (1)

for r in U and s inV are homeo-isomorphisms from U to U∗ and fromV
to V∗ respectively, by Theorem 2.11.

Assume that ϕ is a homomorphism from A to B. The function ϑ
defined on elements Y in V∗ by

ϑ(Y ) = ϕ−1(Y ) = {F ∈ A : ϕ(F ) ∈ Y } (2)

is a continuous bounded homomorphism from V∗ to U∗, by the first
part of Theorem 2.18 (with U∗ and V∗ in place of U and V, and F in
place of r). Moreover, ϑ is one-to-one or onto if and only if ϕ is onto
or one-to-one respectively, by the second part of Theorem 2.18. The
composition

δ = ϑ−1
1

◦ϑ ◦ϑ2 (3)

is therefore a continuous bounded homomorphism from V to U (see
the diagram below). Moreover, since ϑ1 and ϑ2 are bijections, the map-
ping δ is one-to-one or onto if and only the mapping ϑ is one-to-one or
onto respectively. Consequently, δ is one-to-one or onto if and only ϕ
is onto or one-to-one respectively.

V
δ−−−−→ U

ϑ2

⏐
⏐
�

⏐
⏐
�ϑ1

V∗ ϑ−−−−→ U∗

If ϕ−1(Ys) = Xr, then ϑ(Ys) = Xr, by (2), and therefore

δ(s) = (ϑ−1
1

◦ϑ ◦ϑ2)(s) = ϑ−1
1 (ϑ(ϑ2(s)))

= ϑ−1
1 (ϑ(Ys)) = ϑ−1

1 (Xr) = r,

by (3) and (1). On the other hand, if δ(s) = r, then

ϑ(Ys) = (ϑ1 ◦δ ◦ϑ−1
2 )(Ys) = ϑ1(δ(ϑ

−1
2 (Ys)))

= ϑ1(δ(s)) = ϑ1(r) = Xr ,

by (3) and (1), and therefore ϕ−1(Ys) = Xr, by (2). Thus, the map-
ping δ is determined by the equivalence stated in the corollary. ��
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The function δ in Corollary 2.19 is called the (first) dual, or the
dual continuous bounded homomorphism, of the homomorphism ϕ. The
equivalence defining this dual in the statement of the corollary can be
formulated in a different way. The right side of this equivalence, namely
the equation

ϕ−1(Ys) = Xr ,

expresses that

F ∈ Xr if and only if ϕ(F ) ∈ Ys
for every element F in A (that is to say, for every clopen subset F
of U), or equivalently that

r ∈ F if and only if s ∈ ϕ(F )

for every element F in A, by the definitions of the ultrafilters Xr

and Ys, and the definition of the inverse image ϕ−1(Ys). Consequently
the function δ defined in the corollary is completely determined by the
equivalence

δ(s) ∈ F if and only if s ∈ ϕ(F )

for all elements s in V and F in A. This equivalence may, in turn, be
reformulated as

s ∈ δ−1(F ) if and only if s ∈ ϕ(F )

for all elements s in V and F in A. This last equivalence simply says
that the dual δ is determined by the validity of the equation

ϕ(F ) = δ−1(F )

for every F in A. This equation is of course the definition of ϕ in terms
of δ, by Theorem 2.16. The point is that the equation is also valid in
the context of Corollary 2.19, where we are defining δ in terms of ϕ.
Notice in passing that in view of the second equivalence above, the
definition of δ in Corollary 2.19 may be written in the form

δ(s) = r if and only if r ∈ ⋂{F : s ∈ ϕ(F )}.
We continue with the assumptions of the corollary, namely that U

and V are relational spaces with dual algebras A and B respectively.
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If ϕ is a homomorphism from A to B, and δ the dual continuous
bounded homomorphism from V to U, then the dual of δ is called the
second dual of ϕ. This second dual is a homomorphism ϕ∗ from A to B
that is defined on elements F in A by

ϕ∗(F ) = δ−1(F ),

by Theorem 2.16 (with δ and ϕ∗ in place of ϑ and ϕ respectively).
Comparing this definition with the conclusion of the last paragraph,
we see that

ϕ∗(F ) = δ−1(F ) = ϕ(F ).

In other words, ϕ is its own second dual. Similarly, if ϑ is a continuous
bounded homomorphism from V to U, and ϕ the dual homomorphism
from A to B, then the dual of ϕ is called the second dual of ϑ. This
second dual is a function ϑ∗ from V to U that is determined by the
equivalence

ϑ∗(s) ∈ F if and only if s ∈ ϕ(F )

for all elements s in V and F in A, by the remarks of the preceding
paragraph (with ϑ∗ in place of δ). On the other hand, since ϕ is the
dual of ϑ, we have

s ∈ ϕ(F ) if and only if ϑ(s) ∈ F

for all s in V and F in A, by the remarks following Corollary 2.17
(with s in place of u). Thus,

ϑ∗(s) ∈ F if and only if ϑ(s) ∈ F
for all s in V and F in A, that is to say, for all points s in V and
all clopen subsets F of U. Fix the point s for a moment. The space U
is Boolean, so distinct points are separated by clopen sets. It follows
that the image points ϑ∗(s) and ϑ(s) must be the same, for otherwise
they would be separated by a clopen subset F of U. Since this is true
for every element s in V, the function ϑ coincides with its own second
dual.

Suppose next that U, V, and W are relational spaces with dual
algebras A, B, and C respectively. Let δ be a continuous bounded
homomorphism from W to V, and ϑ a continuous bounded homomor-
phism from V to U. It is easy to check that the composition ϑ ◦δ is a
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continuous bounded homomorphism from W to U. The dual of δ is the
homomorphism � from B to C defined by

�(G) = δ−1(G)

for elements G in B, and the dual of ϑ is the homomorphism ϕ from A
to B defined by

ϕ(F ) = ϑ−1(F )

for elements F in A, by Theorem 2.16 and the definition of the dual
of a continuous bounded homomorphism. The composition � ◦ϕ is a
homomorphism from A to C, and

(� ◦ϕ)(F ) = �(ϕ(F )) = δ−1(ϑ−1(F )) = (ϑ ◦δ)−1(F )

for all F in A. Consequently, the composition � ◦ϕ is the dual of the
composition ϑ ◦δ, by the definition of that dual.

The next theorem summarizes the results of this section.

Theorem 2.20. Let U, V, and W be relational spaces , and A, B,
and C their respective dual algebras . There is a bijective correspondence
between the set of continuous bound homomorphisms ϑ from V to U
and the set of homomorphisms ϕ from A to B such that the equivalence

u ∈ ϕ(F ) if and only if ϑ(u) ∈ F

holds for all sets F in A and all elements u in V. Each of the map-
pings ϑ and ϕ is its own second dual . The continuous bounded homo-
morphism ϑ is one-to-one if and only if its dual homomorphism ϕ is
onto, and ϑ is onto if and only if ϕ is one-to-one . If δ is a continuous
bounded homomorphism from W to V, with dual �, then the dual of
the composition ϑ ◦δ is the composition � ◦ϕ.

Part of the contents of the preceding theorem may be expressed
by saying that the correspondence taking each relational space to its
dual algebra, and each continuous bounded homomorphism to its dual
homomorphism, is a contravariant functor from the category of all
relational spaces with continuous bounded homomorphisms as mor-
phisms to the category of all Boolean algebras with operators with
homomorphisms as morphisms; and the correspondence taking each
Boolean algebra with operators to its dual space, and each homomor-
phism to its dual continuous bounded homomorphism, is a contravari-
ant functor from the category of all Boolean algebra with operators
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with homomorphisms as morphisms to the category of all relational
spaces with continuous bounded homomorphisms as morphisms; and
these two contravariant functors are inverses of one another. Conse-
quently, the two categories are dually equivalent. This last statement
is contained in Theorem 2.3.3 of Goldblatt [13]; an earlier version of his
theorem, applicable to the categories of modal algebras and descriptive
modal frames, is given at the end of Section 10 in Goldblatt [12].

2.5 Duality for Ideals

The duality between homomorphisms and continuous bounded homo-
morphisms implies a duality between ideals (see Definition 1.15) and
open sets: every ideal has a dual open set with a special property, and
every open set with this special property has a dual ideal. The special
property that the open sets possess is set forth in the next definition.

Definition 2.21. An open subset H of a relational space U is called
special if for every relation R in U of rank n + 1 (with n ≥ 1), and
every sequence of clopen subsets F0, . . . , Fn−1 of U, if Fi is included
in H for some i < n, then the clopen image set

R∗(F0 × · · · × Fn−1) = {t ∈ U : R(r0, . . . , rn−1, t)

for some r0 ∈ F0, . . . , rn−1 ∈ Fn−1}

is included in H . ��
For example, if U has a single ternary relation R, then an open subsetH
of U is special provided that for every pair of clopen subsets F and G
of U, if one of F and G is included in H, then the clopen image set

R∗(F ×G) = {t ∈ U : R(r, s, t) for some r ∈ F and s ∈ G}

is included in H.
Suppose U is a relational space, and A its dual algebra. If M is an

ideal in A, then the union of the clopen sets in M is a special open set
in U. Conversely, if H is an arbitrary special open set in U, then the
set of all clopen subsets of H is an ideal in A. In order to prove these
assertion, it is helpful to make a preliminary observation: if M is a set
of elements in A—that is to say, if M is a set of clopen subsets of U—
and if M satisfies conditions (ii) and (iii) in the definition of an ideal,
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then an element F in A belongs to M just in case F is included in
the union of M . One direction of this observation is clear: if F belongs
to M , then F is certainly included in the union of all of the sets in M .
To prove the reverse direction, suppose F is included in the union
of M . The set F , being clopen, is closed and therefore compact in the
topology of U, and the sets in M , being clopen, are open and therefore
form an open cover of F (because F is included in their union). Apply
compactness to obtain a finite subset M0 of M such that the union of
the sets in M0 includes F . The set M is closed under finite unions, by
condition (ii), so the union of the sets in M0 is a clopen set G that
belongs to M . The set M is also downward closed, by condition (iii),
and F is included in G, so F must belong to M .

Lemma 2.22. Let U be a relational space and A its dual algebra . If M
is an ideal in A, then the union of the sets inM is a special open subset
of U. Inversely , if H is a special open set in U, then the set of clopen
sets in U that are included in H is an ideal in A.

Proof. Suppose first thatM is an ideal in A, and let H be the union of
the sets in M . Since A is the dual algebra of U, the elements in A are
the clopen subsets of U. In particular,M is a set of clopen subsets of U,
so its union H is an open set in U. To show that H is special, consider
the case of a ternary relation R in U and the binary operator ◦ that
is defined in A in terms of R. Let F and G be clopen sets in U, and
suppose that F is included in H. The set F must then belong to the
ideal M , by the observation preceding the lemma, and therefore the
set F ◦G also belongs to M , by condition (iv) in the definition of an
ideal. The set F ◦G coincides with the image set R∗(F × G), by the
definition of the dual algebra A (see Lemma 2.9 and its proof), so
the image set belongs to M and is therefore included in the union H.
A similar argument applies if G is included in H. Consequently, H is
a special open set, by Definition 2.21.

To prove the second assertion of the lemma, assume that H is an
arbitrary special open set in U, and let M be the set of all clopen
subsets of H. It must be shown that M satisfies conditions (i)–(iv) in
the definition of an ideal. The empty set is obviously a clopen subset
of U that is included in H, so the empty set belongs to M . Thus,
condition (i) is satisfied. The union of two clopen subsets of U that
are included in H is again a clopen subset of U that is included in H.
Consequently, M contains the union of any two of its elements and
therefore satisfies condition (ii). The intersection of a clopen subset
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of U that is included in H with an arbitrary clopen subset of U is again
a clopen subset of U that is included inH, soM satisfies condition (iii).
To show that M satisfies condition (iv), consider the case of a binary
operator ◦ in A that is defined in terms of a ternary relation R in U.
Let F and G be clopen sets in U, and suppose F belongs to M . The
clopen image set R∗(F ×G) is then included in H, by Definition 2.21
and the assumption that H is a special open set, so this image set must
belong to M , by the observation made before the lemma. Since this
image set coincides with F ◦G, it follows that the latter must belong
toM . A similar argument applies if G belongs toM . Consequently,M
satisfies conditions (iv) and is therefore an ideal in A. ��

If M is an ideal in the dual algebra A of a relational space U, then
the special open set that is the union of the sets in M is called the
(first) dual, or the dual open set, ofM . Similarly, if H is a special open
set in U, then the ideal of clopen subsets of U that are included in H
is called the (first) dual, or the dual ideal, of H.

IfM is the dual ideal of an arbitrary special open setH in U, thenM
is, by definition, the set of clopen subsets of H. The dual open set ofM
is, by definition, the union of M . This union must coincide with H,
because every open set in a Boolean space is the union of its clopen
subsets. It follows that the second dual of every special open set in U is
itself. Similarly, if H is the dual open set of an arbitrary ideal M in A,
then H is, by definition, the union of M . The dual ideal of H is, by
definition, the set of all clopen subsets of H. This ideal must coincide
with M , because a clopen set is included in H if and only if it belongs
to M , by the observation made before the preceding lemma. It follows
that the second dual of every ideal in A is itself.

If M and N are ideals in A, and if H and K are their respective
dual special open sets, then

M ⊆ N if and only if H ⊆ K .

The implication from left to right is clear, since H and K are defined
to be the unions of M and N respectively. On the other hand, if H is
included in K, then every clopen subset of H is also a clopen subset
of K. Consequently,M is included in N , becauseM and N are defined
to be the sets of all clopen subsets of H and K respectively.

The principal facts about the duality between ideals and special
open sets are summarized in the following duality theorem for ideals.
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Theorem 2.23. The dual of every special open subset of a relational
space U is an ideal in the dual algebra A, and the dual of every ideal
in A is a special open subset of U. The second dual of every ideal and
of every special open set is itself . The function that maps every ideal
in A to its dual special open set is an isomorphism from the lattice of
ideals in A to the lattice of special open sets in U.

It is illuminating to look at the duality between ideals and special
open sets from the perspective of an arbitrary Boolean algebra with
operators A and its dual space U, instead of from the perspective of an
arbitrary relational space U and its dual algebra A, as in Theorem 2.23.
The elements in U are the ultrafilters in A, and every element r in A is
identified via the canonical isomorphism with an element in the second
dual of A—that is to say, in the dual algebra of U—namely with the
clopen set

Fr = {X ∈ U : r ∈ X}.

Every ideal M is A is consequently identified with the ideal of clopen
sets

M0 = {Fr : r ∈M}

in the second dual. The ideal M determines a special open set in U,
namely the union

FM =
⋃{Fr : r ∈M}

of the clopen sets belonging to M0. Furthermore, every special open
set H in U has the form H = FM for some ideal M in A. Indeed,
if M0 is taken to be the set of clopen subsets of H, then M0 is an ideal
in the dual of U, and the union of the sets in M0 is just the special
open set H, by the preceding theorem. If M is the ideal in A that
corresponds to M0 (under the canonical isomorphism), then

H =
⋃
M0 =

⋃{Fr : r ∈M} = FM .

Thus, the special open sets in U are precisely the sets FM , where M
ranges over the ideals in A.

The canonical isomorphism from A to its second dual obviously in-
duces an isomorphism between the corresponding lattices of ideals. The
lattice of ideals of the second dual is isomorphic to the lattice of special
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open subsets of U, by Theorem 2.23. Consequently, the correspondence
that maps each ideal M in A to the special open set FM in U is an
isomorphism from the lattice of ideals in A to the lattice of special
open sets in U. In this formulation of the duality between ideals and
special open sets, the assertion that the second dual of every ideal is
itself is not literally true; one must first identify the algebra A with its
second dual before the assertion becomes true.

Theorem 2.23 has an analogue for filters. (The notion of a filter in
a Boolean algebra with operators is defined in a dual manner to that
of an ideal.) Let U be a relational space, and A the dual algebra of U.
A closed subset of U is called special if it is the complement of a special
open set. If N is a filter in A, then the intersection of the clopen sets
in N is a special closed subset of U; in fact, if M is the ideal that is the
dual of N , then the intersection of N is the complement of the special
open set that is the union of M . Call this special closed set the (first)
dual, or the dual closed subset, of N . Conversely, if H is a special closed
subset of U, then the set of all clopen sets in U that include H is a
filter in A. Call this filter the (first) dual, or the dual filter, of H. Each
filter in A and each special closed set in U is its own second dual, and
the function that maps each filter in A to its dual special closed set is
an isomorphism from the lattice of filters in A to the lattice of special
closed sets in U. A related result, discovered independently by Celani,
is given in Proposition 29 of [2].

2.6 Duality for Quotients

The duality between the special open subsets of a relational space U
and the ideals in the dual algebra A implies a duality between quo-
tients of A and certain subspaces of U. We begin by clarifying the
relationship between inner subuniverses (see Definition 1.12 and the
remarks following it) and special closed subsets.

Lemma 2.24. A closed subset V of a relational space U is a inner
subuniverse of U if and only if V is a special closed subset of U.

Proof. Focus on the case of a fundamental ternary relation R. Assume
first that V is a special closed subset of U, and observe that the com-
plement ∼V is, by definition, a special open set. To check that V is
an inner subuniverse of U, consider elements r, s, and t in U such
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that R(r, s, t) holds in U. If at least one of r and s is not in V , then t
cannot be in V . Indeed, suppose r is not in V . The clopen sets form a
base for the topology of U, and ∼V is an open set that contains r, so
there must be a clopen set F in U such that r is in F and F is included
in ∼V . The set U is also clopen, so the image clopen set

R∗(F × U) = {w : R(p, q, w) for some p ∈ F and q ∈ U}

is included in ∼V , by the assumption that ∼V is a special open set.
In particular, since r is in F , and s in U , and since R(r, s, t) holds, it
may be concluded that t is in R∗(F × U) and therefore also in ∼V ,
so t cannot be in V . An analogous argument applies if s is not in V .
Conclusion: if R(r, s, t) holds in U, and if t is in V , then r and s must
both belong to V . Consequently, V is an inner subuniverse of U.

Suppose now that V is an inner subuniverse of U that is closed in
the topology of U. The complement ∼V is then an open subset of U,
and it must be shown that this complement is special. To this end,
consider clopen sets F and G, and suppose that F is included in ∼V .
If t belongs to the image set R∗(F ×G), then there must be elements r
in F and s in G such that R(r, s, t) is true in V, by the definition of the
image set. Since V is an inner subuniverse of U, the presence of t in V
would force both r and s to belong to V . But r belongs to F , which is
included in ∼V . Consequently, t cannot be in V , so t belongs to ∼V .
This is true for every element t in the set R∗(F ×G), so the entire set
is included in ∼V . A similar argument applies if G is included in ∼V ,
so ∼V is a special open set. ��

By a restriction of a relational space U to a subset V , we understand
the relational structure whose universe is V and whose fundamental
relations are the restrictions to V of the fundamental relations in U,
together with the topology that V inherits from U. In general, the
restriction of a relational space to a subset is not a relational space.
The next lemma gives a sufficient condition for such a restriction to
be a relational space.

Lemma 2.25. If V is a closed subset and an inner subuniverse of a
relational space U, then the restriction of U to V is a relational space .

Proof. The inherited topology turns V into a Boolean space, because V
is assumed to be a closed subset of the Boolean space U (see Lemma 2
on p. 306 of [10]). Let V be the restriction of U to the set V . It must
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be shown that the relations in V are clopen, and those of rank at least
two are continuous, in the sense of Definition 2.2 and the remarks
preceding it. Focus on the case of a ternary relation R.

Suppose F and G are clopen subsets of V, with the aim of proving
that the image set

R∗(F ×G) = {t ∈ V : R(r, s, t) for some r ∈ F and s ∈ G} (1)

is clopen. (Since the fundamental relations of V are the restrictions
to V of the fundamental relations of U, it does not matter whether
the relation R in (1) is viewed as the ternary relation in V or as the
ternary relation in U.) The set V is assumed to be closed, so there
must be clopen subsets F̄ and Ḡ of U such that

F = F̄ ∩ V and G = Ḡ ∩ V (2)

(see Lemma 2 on p. 306 of [10]). Because F̄ and Ḡ are clopen in U, the
image set

R∗(F̄ × Ḡ) = {t ∈ U : R(r, s, t) for some r ∈ F̄ and s ∈ Ḡ}. (3)

is clopen in U, by Definition 2.2 and the assumption that U is a rela-
tional space.

Observe that

R∗(F ×G) = R∗(F̄ × Ḡ) ∩ V . (4)

Indeed, if t belongs to the left side of (4), then R(r, s, t) holds in V
for some r in F and s in G, by (1). In particular, t is in V , by (2).
Since F is included in F̄ , and G in Ḡ, by (2), the element r belongs
to F̄ , and s to Ḡ, and therefore t belongs to the right side of (4), by (3)
and the assumption that V is a subset of U. On the other hand, if t
belongs to the right side of (4), then t is in V , and R(r, s, t) holds in U
for some r in F̄ and s in Ḡ. Since V is an inner subuniverse of U,
and t is in V , the elements r and s must be in V (see the remarks
following Definition 1.12). Consequently, r is in F and s in G, by (2),
so t belongs to the left side of (4), by (1).

The equation in (4) shows that R∗(F ×G) is the intersection with V
of a clopen subset of U. It follows that R∗(F × G) is a clopen subset
of V. Since this is true for every pair of clopen sets F and G in V, the
relation R in V is clopen.
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The next task is to prove that the relation R in V is weakly con-
tinuous in the sense of Definition 2.12. To this end, fix an arbitrary
element t in V, with the aim of showing that the set

Ht = {(r, s) : r, s ∈ V and R(r, s, t)} (5)

is closed in the product space V × V . The set

H̄t = {(r, s) : r, s ∈ U and R(r, s, t)} (6)

is closed in the product space U × U , by Theorem 2.13, because U is
assumed to be a relational space. It is not difficult to check that

Ht = H̄t ∩ (V × V ). (7)

Indeed, if a pair (r, s) belongs to the left side of (7), then R(r, s, t)
holds in V, by (5). It follows that R(r, s, t) holds in U, because the
fundamental relations inV are the restrictions to V of the fundamental
relations in U; and consequently, the pair (r, s) belongs to the right side
of (7), by (6). On the other hand, if a pair (r, s) belongs to the right
side of (7), then the elements r and s are in V , as is t (by assumption),
and R(r, s, t) holds in U, by (6). It follows that R(r, s, t) holds in V,
because the fundamental relations in V are the restrictions to V of the
fundamental relations in U; and the pair (r, s) therefore belongs to the
left side of (7), by (5).

The equation in (7) shows that Ht is the intersection with V ×V of a
closed subset of U ×U . Since V is assumed to be closed in U, it follows
that Ht is a closed subset of V ×V . This is true for every element t inV,
so the relation R in V is weakly continuous. It has been shown that the
restriction V is a Boolean space and that the fundamental relations
in V are clopen, and those of rank at least two are weakly continuous,
under the inherited topology. Apply Theorem 2.14 to conclude that V
is a relational space. ��

In order to state the version of the sub-quotient duality theorem that
applies to quotients of Boolean algebras with operators, it is necessary
to define the appropriate notion of a subspace for relational spaces.

Definition 2.26. A relational space V is an inner subspace of a rela-
tional space U if algebraically V is an inner substructure of U and if
the topology on V is the subspace topology inherited from U. ��
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Notice that every inner subspace V of a relational space U must be
the restriction of U to some subset of U, namely the subset V that
is the universe of V, by the definition of an inner substructure, the
definition of the subspace topology, and the definition of a restriction.
The next theorem characterizes those subsets of U that lead to inner
subspaces.

Theorem 2.27. For a subset V of a relational space U, the following
conditions are equivalent .

(i) V is a special closed subset of U.
(ii) V is a closed subset and an inner subuniverse of U.
(iii) The restriction of U to V is an inner subspace of U.

Proof. The equivalence of (i) and (ii) follows at once from Lemma 2.24.
For the implication from (ii) to (iii), assume that V is a closed sub-
set and an inner subuniverse of U. The restriction of U to V is then
a relational space V, by Lemma 2.25. Algebraically, V is an inner
substructure of U, by the assumption that V is an inner subuniverse
of U. Topologically, V is a subspace of U, by the definition of a restric-
tion of a relational space. Consequently, V is an inner subspace of U,
by Definition 2.26.

To establish the reverse implication from (iii) to (ii), assume that V
is an inner subspace of U. The universe of V must then be an inner
subuniverse of U, by Definition 2.26. Topologically, V is a subspace
of U, by Definition 2.26, and the universe of V is compact because V
is assumed to be a relational space. Consequently, this universe must
be closed in the topology of U, because a subset of a compact Hausdorff
space is compact if and only if it is closed (see pp. 271–272 of [10]). ��
Corollary 2.28. An inner subuniverse V of a relational space U is
the universe of an inner subspace of U if and only if V is closed in the
topology of U.

The duality between quotient algebras and inner subspaces may now
be formulated as follows.

Theorem 2.29. There is a bijective correspondence between the inner
subspaces of a relational space U and the quotients of its dual algebra A.
If V is an inner subspace of U, then the dual algebra of V is isomorphic
to the quotient A/M , where M is the ideal that is the dual of the special
open set ∼V . Inversely , if M is an ideal in A, then the dual space of
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the quotient algebra A/M is homeo-isomorphic to the inner subspace
that is the restriction of U to V , where V is the complement of the
special open set that is the dual of M .

Proof. Each ideal M in A uniquely determines an inner subspace of U,
by Theorems 2.23 and 2.27, namely the inner subspace whose universe
is the special closed set that is the complement of the special open
set that is the dual of M . Conversely, each inner subspace V of U
uniquely determines an ideal in A, namely the ideal that is the dual of
the special open set that is the complement of the universe of V. The
correspondence mapping the inner subspace V to the quotient A/M
is therefore a bijection from the set of inner subspaces of U to the set
of quotients of A, by Theorem 2.23.

To prove the second assertion of the theorem, suppose V is an in-
ner subspace of the relational space U, and let B be the dual algebra
of V. Since V is, in particular, an inner substructure of U, the iden-
tity function ϑ on V is a bounded monomorphism from V into U,
by Corollary 1.14. Also, ϑ is continuous, by the definition of the inher-
ited topology on V. Indeed, if H is an open set in U, then

ϑ−1(H) = H ∩ V ,

which is an open set in V, by the definition of the inherited topology;
so the inverse image under ϑ of every open set in V is an open set
in U.

The dual of ϑ is the epimorphism ϕ from A to B that is defined by

ϕ(F ) = ϑ−1(F ) = {u ∈ V : ϑ(u) ∈ F} = F ∩ V
for elements F in A, that is to say, for clopen subsets F of U, by The-
orem 2.16 and the assumption that ϑ is the identity function. The
kernel of ϕ is the set of elements mapped to the empty set by ϕ. Since

ϕ(F ) = ∅ if and only if F ∩ V = ∅,

if and only if F ⊆ ∼V,
the kernel of ϕ is just the ideal of clopen subsets of ∼V . In other
words, the kernel is the ideal M that is the dual of the special open
set ∼V . Because ϕ is an epimorphism from A to B with kernel M ,
the quotient A/M is isomorphic to B via the function that maps each
coset F/M to the intersection ϕ(F ) = F ∩V , by the First Isomorphism
Theorem for Boolean algebras with operators.
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To prove the third assertion of the theorem, consider an arbitrary
ideal M in A. The dual of M is the special open set that is the union
of the sets in M . If V is the complement of this special open set,
and if V is the restriction of U to V , then V is an inner subspace of U,
by Theorem 2.27. Let B be the dual algebra of V. The dual ideal of the
special open set ∼V is M , by Theorem 2.23, so B is isomorphic to the
quotient A/M , by the observations of the preceding paragraphs. Apply
Theorem 2.18 to conclude that the dual space of the quotient A/M is
homeo-isomorphic to the dual space of B. Since B is the dual algebra
of V, the dual space of B is, by definition, the second dual of V, and V
is homeo-isomorphic to its second dual, by Theorem 2.11. It follows
that the dual space of the quotient A/M is homeo-isomorphic to V,
as claimed. ��

For some remarks concerning the relationship of Theorem 2.29 to
the duality between inner subspaces and homomorphic images that is
known from the literature, see the end of Section 2.8.

2.7 Duality for Subuniverses

The other half of the sub-quotient duality involves a duality between
subuniverses of Boolean algebras with operators and special congru-
ences on relational spaces. There is a corresponding duality between
subalgebras of Boolean algebras with operators and quotients of rela-
tional spaces.

Recall that if U is a topological space, and Θ an equivalence relation
on U , then the set V of equivalence classes of Θ can be turned into a
topological space by declaring a subset F of V to be open just in case
the union of the equivalence classes in F is an open subset of U . The
set V endowed with this quotient topology is called the quotient space
of U modulo Θ. A quotient of a compact space is necessarily compact,
but a quotient of a Hausdorff space or a Boolean space need not be
Hausdorff or Boolean. An equivalence relation Θ on U is said to be
Boolean if for any two elements in U that are inequivalent modulo Θ,
there is a clopen subset of U that is compatible with Θ (that is to
say, it is a union of equivalence classes of Θ—see the remarks preced-
ing Lemma 1.21) and that contains one of the two elements but not
the other. It is not difficult to check that for any equivalence relation Θ
on a Boolean space, the quotient space is Boolean if and only if Θ is
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a Boolean relation (see, for example, Lemma 1 on p. 362 of [10]). The
quotient function that maps each element in a Boolean space U to its
equivalence class modulo a Boolean relation Θ is a continuous function
from U onto the quotient space V , by the definition of the quotient
topology. Conversely, if ϑ is a continuous mapping from a Boolean
space U onto a Boolean space W , then the kernel of ϑ, that is to say,
the relation Θ defined by

r ≡ s mod Θ if and only if ϑ(r) = ϑ(s),

is a Boolean relation on U , and the quotient of U modulo Θ is home-
omorphic to W via the mapping that take each equivalence class u/Θ
to the element ϑ(u).

To defined the appropriate notion of a congruence on a relational
space, we must combine the notions of a Boolean relation and a
bounded congruence (see Definition 1.20).

Definition 2.30. A binary relation Θ on a relational space U is
called a relational congruence if Θ is a bounded congruence on U
and simultaneously a Boolean relation with respect to the topology
on U. ��

Every relational congruence on a relational space gives rise to a
subuniverse of the dual algebra.

Lemma 2.31. If Θ is a relational congruence on a relational space U,
then the set of clopen subsets of U that are compatible with Θ is a
subuniverse of the dual algebra of U.

Proof. Let A be the dual algebra of U, and B the set of clopen subsets
of U that are compatible with Θ. It is to be shown that B is a sub-
universe of A. Clearly, the empty set is clopen and compatible with Θ,
so it belongs to B. Also, the union of two clopen sets is clopen, and
the complement of a clopen set is clopen, in any topological space;
and the union of two sets compatible with Θ is compatible with Θ,
and the complement of a set compatible with Θ is compatible with Θ.
Consequently, B is closed under the Boolean operations of A.

To show that B is closed under the operators of A, consider the case
of a binary operator ◦ that is defined in terms of a ternary relation R
in U. Let F and G be sets in B. The product of F ◦G in A, which is
the image set defined by

F ◦G = R∗(F ×G) = {w : R(u, v, w) for some u ∈ F and v ∈ G},
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is clopen in U, by the assumption that U is a relational space (see
Definition 2.2), and it is compatible with Θ because Θ is assumed to
be a bounded congruence on U (see the argument in the corresponding
part of the proof of Lemma 1.21). Consequently, F ◦G belongs to B,
so B is in fact a subuniverse of A. ��

There is a type of converse to the preceding lemma that is also true.

Lemma 2.32. If B is a subuniverse of the dual algebra of a relational
space U, then the relation Θ on U that is defined by r ≡ s mod Θ
if and only if r and s belong to the same sets in B is a relational
congruence on U.

Proof. We give an indirect proof that makes use of the epi-mono du-
ality. Suppose A is the dual algebra of U, and V the dual space of A.
Thus, V is the second dual of U: the elements in V are the sets of the
form

Xr = {F ∈ A : r ∈ F}, (1)

and the function � that maps each element r in U to the set Xr is a
homeo-isomorphism from U to V, by Theorem 2.11.

Write B for the subalgebra of A with universe B. The identity func-
tion ϕ onB is a monomorphism fromB into A, since B is a subalgebra
of A. The dual of ϕ is the function ϑ on V determined by

ϑ(Xr) = ϕ−1(Xr) = {F ∈ B : ϕ(F ) ∈ Xr}
= {F ∈ B : F ∈ Xr} = {F ∈ B : r ∈ F}, (2)

by the definition of ϑ, the definition of the inverse image of a set under
the function ϕ, the assumption that ϕ is the identity function on B,
and (1). This dual is a continuous bounded epimorphism from V to
the dual relational space of B, by Theorem 2.18. The kernel of ϑ is,
by definition, the relation Ψ on V that is defined by

Xr ≡ Xs mod Ψ if and only if ϑ(Xr) = ϑ(Xs). (3)

Since the kernel of a bounded homomorphism is a bounded congru-
ence, by Lemma 1.27, and the kernel of a continuous mapping between
Boolean spaces is a Boolean relation (see the remark before Defini-
tion 2.30), it follows that Ψ is a relational congruence on U, by Defi-
nition 2.30.
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The equations in (2) imply that

ϑ(Xr) = ϑ(Xs) if and only if

{F ∈ B : r ∈ F} = {F ∈ B : s ∈ F}.

The right side of this equivalence just says that r and s belong to
the same sets in B, which is exactly what it means for the elements r
and s to be equivalent modulo Θ. Combine these observations with (3)
to conclude that

Xr ≡ Xs mod Ψ if and only if r ≡ s mod Θ. (4)

The equivalence in (4) implies that the relation Θ is the inverse
image, under the homeo-isomorphism �, of the relation Ψ. Homeo-
isomorphisms preserve all algebraic and topological properties. In par-
ticular, since Ψ is a relational congruence on V, it follows that Θ must
be a relational congruence on U. ��

We continue with the assumption that U is a relational space, and A
its dual algebra. If Θ is a relational congruence on U, then the sub-
universe of A consisting of the clopen sets that are compatible with Θ
(Lemma 2.31) is called the (first) dual, or the dual subuniverse, of Θ.
Similarly, if B is a subuniverse of A, then the relational congruence
on U consisting of the pairs of elements that belong to precisely the
same sets in B (Lemma 2.32) is called the (first) dual, or the dual
relational congruence, of B.

Each relational congruence on U is its own second dual, that is to
say, if Θ is a relational congruence on U with dual subuniverse B, and
if Ψ is the dual relational congruence of B, then Θ = Ψ. The proof
depends on two facts. First, the sets in B are all compatible with Θ,
by the definition of B. In particular, if r and s are elements in U that
are congruent modulo Θ, then for any set F in B, either r and s are
both in F , or neither r nor s is in F , by the compatibility of F with Θ.
It follows that r and s belong to the same sets in B, and therefore r
and s are congruent modulo Ψ, by the definition of Ψ as the dual of the
subuniverse B. Second, Θ is a Boolean relation, so if elements r and s
are not congruent modulo Θ, then there must be a clopen subset F
of U that is compatible with Θ and that contains r but not s. The
set F belongs to B, by the definition of B, so the elements r and s do
not belong to precisely the same sets in B and consequently r and s
are not equivalent modulo Ψ. Conclusion: Θ = Ψ.
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Each subuniverse of A is also equal to its second dual. For the proof,
suppose B is a subuniverse of A with dual relational congruence Θ,
and let C be the dual subuniverse of Θ. It is to be shown that B = C.
The proof requires a number of preliminary observations. Write

B/Θ = {F/Θ : F ∈ B} and C/Θ = {F/Θ : F ∈ C},

where
F/Θ = {r/Θ : r ∈ F}.

Since Θ is, in particular, a Boolean relation on the topological space U ,
the quotient space U/Θ is a Boolean space, and the clopen subsets of
this quotient space are the quotients of the clopen subsets of U that are
compatible with Θ (see Lemma 1 on p. 362 of [10]). By definition, C
consists of all clopen subsets of U that are compatible with Θ, so C/Θ
is the set of all clopen subsets of U/Θ.

Turn now to the quotient B/Θ. Every set in B is a clopen subset
of U , because B is a subuniverse of the algebra A of all clopen subsets
of U . Furthermore, every set in B is compatible with Θ. Indeed, if r
and s are elements in U that are equivalent modulo Θ, then r and s
belong to exactly the same sets in B, by the definition of Θ as the
dual of the subuniverse B. Consequently, if F is a set in B, and if r
is in F , then s is in F . The presence of an element r in F therefore
implies that the entire equivalence class r/Θ is included in F , so F is
compatible with Θ. It follows from these observations that the set B
is included in C, and therefore the quotient B/Θ is included in C/Θ.

The next step is to show that B/Θ is closed under the operations
of union and complement. To this end, suppose that F and G are sets
in B. The union F ∪G and the complement ∼F are also in B, since B
is a subuniverse of A. To show that B/Θ is closed under union, it
therefore suffices to check that

(F/Θ) ∪ (G/Θ) = (F ∪G)/Θ.

For an arbitrary element r in U , we have

r/Θ ∈ (F/Θ) ∪ (G/Θ) if and only if r/Θ ∈ F/Θ or r/Θ ∈ G/Θ,
if and only if r ∈ F or r ∈ G,
if and only if r ∈ F ∪G,
if and only if r/Θ ∈ (F ∪G)/Θ,
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by the definition of the union of two sets and by the compatibility of
the sets F , G, and F ∪ G with the congruence Θ. Consequently, the
desired equality does hold. A similar argument shows that

∼(F/Θ) = (∼F )/Θ

(where the first complement is formed in B/Θ, and the second in B),
so that B/Θ is closed under complement.

The third step is to observe that the sets in B/Θ—which are clopen
subsets of the quotient space U/Θ—separate points in the quotient
space. Indeed, if r/Θ and s/Θ are distinct points in the quotient space,
then the definition of the relation Θ implies that there must be a set F
in B that contains the element r but not the element s. The clopen
set F/Θ belongs to B/Θ, and it contains the point r/Θ but not the
point s/Θ (because F is compatible with Θ), so F/Θ separates these
two points.

It has been shown that B/Θ is a Boolean algebra of clopen subsets
of U/Θ that separates points in U/Θ. Any Boolean algebra of clopen
sets that separates points in a Boolean space is necessarily the Boolean
algebra of all clopen sets in the space (see Lemma 1 on p. 305 of [10]).
Consequently, B/Θ is the Boolean algebra of all clopen sets in U/Θ,
that is to say,

B/Θ = C/Θ.

Each set F that belongs to B or to C is the union of the equivalence
classes in the quotient F/Θ, because F is compatible with Θ. The
equality at the end of the last paragraph therefore implies that B = C.
In more detail, if F is in C, then the quotient set F/Θ belongs to C/Θ,
and therefore also to B/Θ, by the equality at the end of the last
paragraph. Consequently, F/Θ = G/Θ for some set G in B. Since

F =
⋃
(F/Θ) =

⋃
(G/Θ) = G,

it follows that F belongs to B. Thus, C is included in B. The reverse
inclusion was established above. This completes the proof that B is its
own second dual.

Consider now two arbitrary relational congruences on U, say Θ
and Ψ, with dual subuniverses B and C respectively. It is not diffi-
cult to check that

Θ ⊆ Ψ if and only if C ⊆ B.



124 2 Topological Duality

For the proof, assume first that C is included in B. The relations Θ
and Ψ are their own second duals, so they are the first duals of the
subuniverses B and C respectively. If r and s are elements in U that
are equivalent modulo Θ, then these two elements belong to the same
sets in B, by definition of the first dual of B. Since C is assumed to
be included in B, it follows that r and s belong to the same sets in C,
and therefore r and s are equivalent modulo Ψ, by the definition of
first dual of C. Thus Θ is included in Ψ.

To prove the reverse implication, assume that Θ is included in Ψ.
The subuniverses B and C are defined to be the sets of clopen subsets
of U that are compatible with Θ and Ψ respectively. Consequently, if F
is an arbitrary element in C, then F must be clopen and compatible
with Ψ. It follows from the assumed inclusion that F must also be
compatible with Θ, and therefore must belong to B. In more detail,
if r is an element in F , then the entire equivalence class r/Ψ is included
in F , by the compatibility of F with Ψ. Since Θ is included in Ψ, the
equivalence class r/Θ is included in the equivalence class r/Ψ, and
therefore r/Θ is also included in F . Thus, F is also compatible with Θ,
and therefore F belongs to B, as claimed. This argument shows that C
is included in B.

The preceding arguments imply that the function � mapping each
relational congruence on U to its dual subuniverse of A is a dual lattice
isomorphism. Indeed, if δ is the function mapping each subuniverse
of A to its dual relational congruence on U, then

(δ ◦�)(Θ) = Θ and (� ◦δ)(B) = B

for each relational congruence Θ and each subuniverse B, because Θ is
the dual of the dual of Θ, and B is the dual of the dual of B. Thus, δ ◦�
is the identity function on the lattice of relational congruences on U,
and � ◦δ is the identity function on the lattice of subuniverses of A,
so � and δ are bijections and inverses of one another. Since a relational
congruence Θ is included in a relational congruence Ψ if and only if
the dual of Ψ is included in the dual of Θ, that is to say, if and only
if �(Ψ) is included in �(Θ), the bijection � reverses the lattice partial
ordering, and is therefore a dual lattice isomorphism. The results of
this section are summarized in the following theorem.

Theorem 2.33. Suppose U is a relational space and A its dual algebra .
The dual of every relational congruence on U is a subuniverse of A,
and the dual of every subuniverse of A is a relational congruence on U.
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The second dual of every relational congruence and of every subuni-
verse is itself . The function mapping each relational congruence on U
to its dual subuniverse of A is a dual lattice isomorphism from the
lattice of relational congruences on U to the lattice of subuniverses
of A.

A related result, discovered independently by Celani, is given in
Theorem 27 of [2].

2.8 Duality for Subalgebras

The duality between relational congruences and subuniverses implies
a corresponding duality between quotient spaces and subalgebras. By
the quotient of a relational space, we mean the following.

Definition 2.34. The quotient of a relational space U modulo a
relational congruence Θ is the quotient relational structure of U
(see Definition 1.26) endowed with the quotient topology. The quo-
tient is denoted by U/Θ. The quotient function, or quotient mapping,
from U to U/Θ is the function that maps each element u in U to its
congruence class u/Θ. ��

The first observation to make is that every continuous bounded
homomorphism gives rise to a relational congruence, namely its kernel.

Lemma 2.35. If ϑ is a continuous bounded homomorphism from a
relational space U to a relational space V, then the kernel of ϑ is a
relational congruence on U.

Proof. The kernel of a continuous mapping between Boolean spaces is a
Boolean relation, so the kernel of ϑ—call it Θ—is a Boolean relation.
The kernel of a bounded homomorphism is a bounded congruence,
by Lemma 1.27, so Θ is a bounded congruence on U. Therefore, Θ is
a relational congruence, by Definition 2.30. ��

The converse of the preceding lemma says that every relational con-
gruence gives rise to a continuous bounded epimorphism. This ob-
servation is the analogue of Theorem 1.28, and its proof presents no
difficulties.
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Theorem 2.36. If Θ is a relational congruence on a relational space U,
then the corresponding quotient mapping is a continuous bounded epi-
morphism from U to the quotient U/Θ that has Θ as its kernel .

Proof. The quotient mapping ϑ is a bounded epimorphism from U
to U/Θ with kernel Θ, by Theorem 1.28, and ϑ is continuous be-
cause U/Θ is endowed with the quotient topology. ��

The proof that quotients of relational spaces are relational spaces is
more involved.

Lemma 2.37. The quotient of a relational space modulo a relational
congruence is a relational space .

Proof. Suppose Θ is a relational congruence on a relational space U,
and ϑ the quotient mapping from U onto U/Θ. The quotient U/Θ is
certainly a relational structure. The congruence Θ is, by definition,
a Boolean relation, so the quotient topology on the quotient of the
universe of U turns that quotient into a Boolean space and turns ϑ
into a continuous function. It remains to check that the fundamental
relations in the quotient are clopen, and those of rank at least two are
continuous, in the quotient topology.

Focus on the case of a ternary relation R. To see that R is clopen
in U/Θ, consider clopen subsets F and G of U/Θ. It is to be shown
that the image set

R∗(F ×G) = {t ∈ U/Θ : R(r, s, t) for some r ∈ F and s ∈ G} (1)

is clopen in the quotient topology. The inverse images

F̄ = ϑ−1(F ) and Ḡ = ϑ−1(G) (2)

are clopen subsets of U because the mapping ϑ is continuous, and they
are compatible with Θ because ϑ is the quotient mapping, so the image
set

R∗(F̄ × Ḡ) = {w ∈ U : R(u, v, w) for some u ∈ F̄ and v ∈ Ḡ} (3)

is certainly clopen in U, by the assumption that U is a relational space
(see Definition 2.2). Furthermore, the image set in (3) is compatible
with Θ. Indeed, consider any element w in the image set, and suppose
that w̄ belongs to the congruence class w/Θ; it must be shown that w̄ is
also in the image set. Since w is in (3), there are elements u in F̄ and v
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in Ḡ such that R(u, v, w) holds in U. The congruence Θ is bounded,
by definition, and w̄ ≡ w mod Θ, by assumption, so there must be
elements ū and v̄ in U such that

ū ≡ u mod Θ, v̄ ≡ v mod Θ, and R(ū, v̄, w̄). (4)

The sets F̄ and Ḡ are compatible with Θ and contain the elements u
and v respectively, so they also contain the elements ū and v̄ respec-
tively, by the definition of compatibility. It follows that w̄ belongs to
the image set in (3), by the final part of (4). Thus, the image set in (3)
is compatible with Θ, as claimed. The quotient of a clopen set in U
that is compatible with Θ is a clopen set in the quotient U/Θ (see the
remarks following Lemma 2.32). Consequently, the quotient set

R∗(F̄ × Ḡ)/Θ = {w/Θ : w ∈ R∗(F̄ × Ḡ)}
is clopen in U/Θ.

In view of the preceding observations, to prove that the set in (1) is
clopen it suffices to show that

R∗(F ×G) = R∗(F̄ × Ḡ)/Θ. (5)

Consider an arbitrary element t in U/Θ, and assume first that t belongs
to the left side of (5). There are then elements r in F and s in G such
that R(r, s, t) holds in U/Θ, by (1). The relation R in U/Θ is defined
to be the quotient of the corresponding relation in U, so there must be
elements u, v, and w in U such that

r = u/Θ, s = v/Θ, t = w/Θ, and R(u, v, w)

in U. The function ϑ maps each element in U to its quotient, so we
must have

ϑ(u) = u/Θ = r, ϑ(v) = v/Θ = s, ϑ(w) = w/Θ = t. (6)

Since r and s belong to the sets F andG respectively, it follows from (6)
and (2) that u and v belong to the inverse image sets F̄ and Ḡ respec-
tively. Consequently, w belongs to the set in (3), and therefore the
quotient w/Θ, which is equal to t, belongs to the quotient on the right
side of (5).

Assume now that t belongs to the right side of (5). In this case, t
is equal to w/Θ for some element w in R∗(F̄ × Ḡ), so there must el-
ements u in F̄ and v in Ḡ such that R(u, v, w) holds in U, by (3).
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Write r = u/Θ and s = v/Θ, and observe two things: first, R(r, s, t)
must hold in the quotient U/Θ, by the definition of the relation R in
the quotient; and second, r and s must belong to the sets F and G
respectively, by (2), (6), and the fact that u and v are in F̄ and Ḡ
respectively. Therefore, t belongs to the left side of (5), by (1). Con-
clusion: the equation in (5) holds, so the relation R in U/Θ is clopen,
as claimed.

The final task is to prove that the relation R in U/Θ is continuous. In
view of Theorem 2.14, it suffices to prove that R is weakly continuous
in the sense of Definition 2.12. Consider an element t in U/Θ, and write

H = {(r, s) ∈ U/Θ × U/Θ : R(r, s, t)}. (7)

It is to be shown that the set H is closed in the product topology on
the space

U/Θ× U/Θ. (8)

The element t is, by assumption, the quotient of some element in U,
say

ϑ(w) = w/Θ = t. (9)

The set
H̄ = {(u, v) ∈ U × U : R(u, v, w)} (10)

is certainly closed in U, because U is a relational space and therefore the
relation R in U is weakly continuous, by Theorem 2.13. The quotient
function ϑ is continuous, because U/Θ is endowed with the quotient
topology, so the induced function ϑ̄ defined by

ϑ̄(u, v) = (ϑ(u), ϑ(v))

for u and v in U is a continuous mapping from U ×U to U/Θ×U/Θ.
A continuous function from a compact space to a Hausdorff space
maps closed sets to closed sets (see Corollary 1 on p. 315 of [10]). Since
the spaces U × U and U/Θ× U/Θ are both Boolean (and hence both
compact Hausdorff spaces), and since the set H̄ is closed, the image set

ϑ̄(H̄) = {ϑ̄(u, v) : (u, v) ∈ H̄}
must also be closed.

In view of the observations of the preceding paragraph, to prove
that the set H in (7) is closed in the space (8), it suffices to show that

ϑ̄(H̄) = H . (11)
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To this end, consider an arbitrary pair (u, v) in H̄. Because ϑ is a
homomorphism, by Theorem 2.36, and because R(u, v, w) holds in U,
by (10), we have R(ϑ(u), ϑ(v), ϑ(w)) in U/Θ. Also, ϑ(w) = t, by (9), so
it follows from (7) (with r and s replaced by ϑ(u) and ϑ(v) respectively)
that the pair (ϑ(u), ϑ(v)) belongs to the set H. Apply the definition of
the function ϑ̄ to see that ϑ̄(u, v) must belong to H. Conclusion: the
image set ϑ̄(H̄) is included in H.

To establish the reverse inclusion, assume that (r, s) is an arbitrary
pair in H. In this case, R(r, s, t) holds in the quotient U/Θ, by (7),
and therefore R(r, s, ϑ(w)) holds in the quotient, by (9). The quotient
mapping ϑ is a bounded epimorphism, by Theorem 2.36, so there must
be elements u and v in U such that

ϑ(u) = r, ϑ(v) = s, and R(u, v, w).

The pair (u, v) belongs to H̄, by (10), and

ϑ̄(u, v) = (ϑ(u), ϑ(v)) = (r, s),

so (r, s) belongs to the image set ϑ̄(H̄). Conclusion: H is included in
the set ϑ̄(H̄). This completes the proof of (11), so H is closed in the
product space (8), as claimed. Consequently, the relation R in U/Θ is
weakly continuous, and therefore continuous. ��

The next theorem is the analogue for relational spaces of the
First Isomorphism Theorem for algebras. It says that up to homeo-
isomorphisms, the only continuous bounded homomorphic images of a
relational space are the relational quotients of that space.

Theorem 2.38. Every continuous bounded homomorphic image of a
relational space U is homeo-isomorphic to a quotient of U modulo a
relational congruence on U. In fact , if ϑ is a continuous bounded epi-
morphism from U to a relational space V, and if Θ is the kernel of ϑ,
then the function mapping u/Θ to ϑ(u) for each u in U is a homeo-
isomorphism from U/Θ to V.

Proof. The kernel Θ is a relational congruence on U, by Lemma 2.35.
The function that maps each congruence class u/Θ to the element ϑ(u)
is a well-defined homeomorphism from the topological structure of U/Θ
to the topological structure of V, by the First Isomorphism Theorem
for topological spaces, and it is an isomorphism from the algebraic
structure of U/Θ to the algebraic structure of V, by First Isomorphism
Theorem for relational structures (see Theorem 1.29). Consequently,
this function is a homeo-isomorphism from U/Θ to V. ��
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We are now ready to establish the duality between quotient relational
spaces and subalgebras of relational algebras.

Theorem 2.39. There is a bijective correspondence between the quo-
tients of a relational space U and the subalgebras of its dual algebra A.
If Θ is a relational congruence on U, then the dual algebra of the
quotient U/Θ is isomorphic to the subalgebra of A whose universe is
the dual subuniverse of Θ. Inversely , if B is a subalgebra of A, then
the dual space of B is homeo-isomorphic to the quotient space U/Θ,
where Θ is the dual relational congruence of the universe of B.

Proof. Each relational congruence Θ on U uniquely determines a sub-
algebra of the dual algebra A, namely the subalgebra whose universe
is the dual subuniverse of Θ, that is to say, the subalgebra whose uni-
verse is the set of clopen subsets of U that are compatible with Θ,
by Lemma 2.31. Conversely, each subalgebra B of A uniquely deter-
mines a relational congruence on U, namely the relational congruence
that is the dual of the universe of B, that is to say, the congruence
consisting of the pairs of elements from U that belong to exactly the
same sets in B, by Lemma 2.32. Because subuniverses and relational
congruences are their own second duals, it follows that the correspon-
dence mapping each quotient space U/Θ to the dual subalgebra B is a
bijection from the set of quotient spaces of U to the set of subalgebras
of A, by Theorem 2.33.

To prove the second assertion of the theorem, suppose Θ is a rela-
tional congruence on U, and let C be the dual algebra of the quotient
space U/Θ. The elements in C are the clopen subsets of U/Θ, so they
are the sets of the form

F/Θ = {u/Θ : u ∈ F},

where F ranges over the clopen subsets of U that are compatible
with Θ. The quotient function ϑ from U to U/Θ, which maps each
element u to its congruence class u/Θ, is a continuous bounded epi-
morphism, by Theorem 2.36. The dual of ϑ is the monomorphism ϕ
from C into A that is defined by

ϕ(F/Θ) = ϑ−1(F/Θ)

for each element F/Θ in C, by Theorem 2.16. For clopen sets F that
are compatible with Θ, the inverse image under ϑ of the quotient
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set F/Θ is just F , because F includes the equivalence class of each of
its elements. Consequently,

ϕ(F/Θ) = F

for each set F/Θ in C. It follows from these observations that ϕ maps
the universe of C bijectively to the subuniverse of A consisting of the
clopen subsets of U that are compatible with Θ, so ϕ is an isomorphism
from C to the subalgebra of A whose universe is the dual of Θ.

To prove the third assertion of the theorem, consider an arbitrary
subalgebra B of A, and let Θ be the relational congruence on U that is
the dual of the universe ofB. The dual of Θ is, by definition, the second
dual of the universe of B, and the universe of B is its own second dual,
by Theorem 2.33. Apply the part of the theorem already proved to
conclude that the dual algebra of U/Θ—call it C—is isomorphic to B.
The dual relational spaces of these two algebras must therefore be
homeo-isomorphic, by Theorem 2.18. The dual relational space of C is,
by definition, the second dual of the quotient space U/Θ, and these two
spaces are homeo-isomorphic, by Theorem 2.11. Consequently, U/Θ is
homeo-isomorphic to the dual space of B, as desired. ��

As in the case of relational structures and their dual complete and
atomic Boolean algebras with operators (see the remarks at the end of
Section 1.9), there are weaker, less explicit versions of Theorems 2.29
and 2.39 that are known from the literature and that follow almost
immediately from the epi-mono duality between continuous bounded
homomorphisms and homomorphisms formulated in Theorem 2.20. To
describe these weaker versions, consider two relational spaces U and V
with dual algebras A and B respectively.

If V is homeo-isomorphic to an inner subspace of U, say via a con-
tinuous bounded monomorphism ϑ, then the dual of ϑ is an epimor-
phism ϕ from A to B, so that B is a homomorphic image of A. Con-
versely, if B is a homomorphic image of A, say via an epimorphism ϕ,
then the dual of ϕ is a continuous bounded monomorphism ϑ from V
to U, so that V is isomorphic to an inner subspace of U. Thus, there
is a duality between (homeo-isomorphic copies of) inner subspaces of
a relational space U and homomorphic images of the dual algebra A.

In a similar vein, if V is a continuous bounded homomorphic image
of U, say via a continuous bounded epimorphism ϑ, then the dual
of ϑ is a monomorphism ϕ from B to A, so that B is isomorphic
to a subalgebra of A. Conversely, if B is isomorphic to a subalgebra
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of A, say via a monomorphism ϕ, then the dual of ϕ is a continuous
bounded epimorphism from U to V, so that V is a continuous bounded
homomorphic image of U. Thus, there is a duality between continuous
bounded homomorphic images of a relational space U and (isomorphic
copies of) subalgebras of the dual algebra A.

For relational spaces with a single binary relation and Boolean al-
gebras with a single unary operator (modal algebras), a version of
the dualities just described is implicit in Goldblatt [12] (see, for ex-
ample, Theorems 5.9 and 10.9). For more general similarity types, a
corresponding version of these dualities follows from Theorems 2.3.1
and 2.3.2 in Goldblatt [13]. (See also Theorem 5.28 in Venema [40].)

Theorems 2.29 and 2.39 strengthen these known duality results by
making explicit exactly how the dual structures are constructed. First
of all, a duality between ideals and special open sets is constructed—
the dual of an ideal M is the special open set H that is the union of
the sets in M , and the dual of a special open set H is the ideal M
of clopen sets that are included in H—and this duality proves to be
a lattice isomorphism (Theorem 2.23). Similarly, a duality between
relational congruences and subuniverses is constructed—the dual of a
relational congruence Θ is the subuniverse B that consists of clopen
sets that are compatible with Θ, and the dual of a subuniverse B is
the relational congruence Θ consisting of pairs of elements that belong
to the same sets in B—and this duality proves to be a dual lattice
isomorphism (Theorem 2.33).

Return now to the relational spaces U and V with their dual alge-
bras A and B. If V is homeo-isomorphic to an inner subspace, say W,
of U, then the dual algebra B is a homomorphic image of A, and in
fact it is isomorphic to the quotient of A modulo the ideal that is the
dual of the special open set that is the complement of the universe
of W. Conversely, if B is a homomorphic image of A, say via an epi-
morphism ϕ, then B is isomorphic to the quotient of A modulo the
ideal M that is the kernel of ϕ, and therefore the dual structure V
is homeo-isomorphic to the inner subspace of U whose universe is the
complement of the special open set that is the dual of the ideal M .
This is the content of Theorem 2.29.

Similarly, ifV is a continuous bounded homomorphic image of U, say
via a continuous bounded epimorphism ϑ, then V is homeo-isomorphic
to the quotient of U modulo the relational congruence Θ that is the
kernel of ϑ, and therefore the dual algebraB is isomorphic to the subal-
gebra of A whose universe is the dual of the congruence Θ. Conversely,
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if B is isomorphic to a subalgebra, say C, of A, then the dual space V
is homeo-isomorphic to the quotient of U modulo the relational con-
gruence that is the dual of the universe of the subalgebra C, so that V
is a continuous bounded homomorphic image of U. This is the content
of Theorem 2.39.

2.9 Duality for Completeness

What special properties does the dual space of a complete Boolean
algebra with operators possess? (In this section, we do not assume
that the operators of a complete algebra are necessarily complete.) The
answer is that the space must be complete in the topological sense that
the closure of every open set is open and hence clopen. The proof of the
duality between complete algebras and complete spaces is based on the
next lemma, which gives a topological characterization of the suprema
that happen to be formable in a not necessarily complete Boolean
algebra with operators. The lemma has other applications as well.

Lemma 2.40. If (Fi : i ∈ I) is a system of elements (clopen sets)
in the dual algebra A of a relational space U, and if H =

⋃
i Fi, then

a necessary and sufficient condition for the given system to have a
supremum in A is that the closure H− of the set H in U be open .
If this condition is satisfied , then

∑
i Fi = H−,

that is to say, the algebraic supremum of the given system is the closure
of the set-theoretical union .

Proof. The proof is similar to the proof of the analogous result for
Boolean algebras (see Lemma 1 on p. 368 of [10]). Assume first that
the supremum F of the given system

(Fi : i ∈ I) (1)

exists in A. The set F belongs to A, by assumption, so it is a clopen
subset of U, by the definition of A as the algebra of clopen subsets of U.
Since F is closed and includes each set Fi, it must include the union H
of these sets, and therefore it must also include the closure H− of this
union; in more detail,

H ⊆ F implies H− ⊆ F− = F .
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Since F is open, the difference F − H− is also open. If this differ-
ence were non-empty, then it would include a non-empty clopen set G,
because the clopen sets form a base for the topology on U. The dif-
ference F − G would then be a clopen set—and hence an element
in A—that is properly included in F (because G is non-empty), and
that includes each set Fi (because G is included in F − H− and is
therefore disjoint from the union H of the sets Fi). Consequently, F
could not be the supremum in A of the system of sets in (1), in contra-
diction to the assumption on F . It follows that F−H− must be empty,
and consequently H− = F . In other word, H− is the supremum in A
of the system in (1), and therefore H− is open.

If, conversely, the closure H− is open, then H− is clearly clopen,
and of course it includes each of the sets Fi, so it is an upper bound
in A of the system in (1). If G is any upper bound in A of the system
in (1), then G is by definition a clopen set that includes each of the
sets Fi. The union H of the system in (1) must then be included in G,
and therefore the closure of H must be included in G, since G is closed.
Thus, H− is the least upper bound in A of the system in (1). In other
words, the system of sets in (1) has a supremum, and that supremum
is H−. ��
Theorem 2.41. The dual algebra of a relational space U is (alge-
braically) complete if and only if U is (topologically) complete .

Proof. Let A be the dual algebra of the relational space U, and assume
first that A is complete. An arbitrary open subsetH of U is the union of
its clopen subsets, because the clopen sets form a base for the topology
of U. The system of these clopen subsets has a supremum in A, by the
assumption that A is complete. Apply Lemma 2.40 to conclude that
the set H− must be open. It follows that the space U is complete.

Now suppose that the space U is complete, and consider an arbitrary
system of elements in A. The elements in this system are clopen subsets
of U, because A—as the dual algebra of U—consists of the clopen
subsets of U. Consequently, the union H of this system of elements is
open in U. The closure H− must also be open in U, by the assumption
that U is complete. Apply Lemma 2.40 to conclude that the given
system of elements in A has a supremum, and that supremum is H−.
It follows that A is complete. ��

A Boolean algebra with operators A may possess a certain degree of
completeness without being complete. For instance, A is defined to be
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countably complete, or σ-complete, if the supremum of every countable
set of elements in A exists. There is a version of Theorem 2.41 that ap-
plies to countably complete algebras. To formulate it, we need the no-
tion of a Baire set. A Baire set in a Boolean space is a set that belongs
to the countably complete Boolean set algebra generated by the set of
clopen subsets of the space. In other words, a Baire set is a set that can
be obtained from the class of clopen sets by repeated applications of
the operations of forming unions and intersections of countable systems
of sets. (The operation of forming complements is not really needed
because the complement of a countable union—respectively a count-
able intersection—of sets is the countable intersection—respectively
the countable union—of the complements of the sets, by the infinitary
versions of the De Morgan laws, and the complement of a clopen set
is again a clopen set.) The main topological result about the structure
of open Baire sets is that every open Baire set in a Boolean space is
the union of countably many clopen sets (see Corollary 1 on p. 375
of [10]). We shall say that a relational space is countably complete, or
a σ-space, if the closure of every open Baire set is open.

Theorem 2.42. The dual algebra of a relational space U is (alge-
braically) countably complete if and only if U is (topologically) count-
ably complete .

Proof. Let A be the dual algebra of the relational space U, and assume
first that A is countably complete. If H is an open Baire set in U,
then H must be the union of a countable system of clopen sets, by
the remarks preceding the theorem. Since this countable system has a
supremum in A, by the assumed countable completeness of A, it follows
from Lemma 2.40 that H− is open. Consequently, U is a countably
complete space, by the definition of such a space.

Assume now that the space U is countably complete, and consider
any countable system of elements in A. The elements in this system
are clopen subsets of U (since they belong to the dual algebra of U),
so their union H is an open set and also a Baire set in U, by the
definition of a Baire set. The closure H− is therefore open, by the
assumed countable completeness of U. Apply Lemma 2.40 to conclude
that the given countable system of elements in A has a supremum,
and that supremum is H−. It follows that A is a countably complete
algebra. ��
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2.10 Duality for Finite Products

What can one say about the dual space of a direct product of Boolean
algebras with operators? This question is easier to answer for prod-
ucts of finite systems than for products of infinite systems: the dual
space of the product of finitely many Boolean algebras with opera-
tors is homeo-isomorphic to the disjoint union of the dual relational
spaces. (A result to this effect is mentioned in passing in Jónsson [19],
before Definition 3.2.5, but no details or proofs are given.) Here are
the details.

Suppose (Ui : i ∈ I) is a system of mutually disjoint topological
spaces, and U is the union of the sets Ui, for i in I. Every subset F
of U can be written in a unique way as a union F =

⋃
i Fi, where Fi

is a subset of Ui for each i, namely Fi = F ∩ Ui; the sets Fi are called
the components of F . A subset F of U is declared to be open in U
if and only if each of its components Fi is open in the corresponding
component space Ui. The set of open sets so defined constitutes a
topology on U , called the union topology, and the resulting topological
space is called the union of the given system of component spaces.
Since the complement of a subset F of U is the union of the system of
complements of the components Fi (in Ui), it follows that F is closed
in U if and only if each component Fi is closed in the component
space Ui. Consequently, F is clopen in U if and only if each component
is clopen in the corresponding component space.

The union of a disjoint system of topological spaces inherits a num-
ber of properties from the component spaces. For instance, the union
is a Hausdorff space if and only if each component space is Hausdorff,
and the union has a base consisting of clopen sets just in case each
component space has a base consisting of clopen sets. If each of the
component spaces is compact, then the union is locally compact in the
sense that every point belongs to the interior of some compact sub-
set. The property of compactness, however, is not inherited by the
union unless the given system consists of only finitely many (compact)
spaces. If the system is finite in this sense of the word, then the union
is a Boolean space if and only if each component space is a Boolean
space.

Turn now to the definition of the union of a system of relational
spaces.
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Definition 2.43. The union of a system (Ui : i ∈ I) of mutually dis-
joint relational spaces is defined to be the structure U such that the
algebraic part of U is the union, in the sense of Definition 1.31, of
the relational structures in the given system, and the topology on U
is the union topology induced by the topologies of the component
spaces Ui. The disjoint union of an arbitrary system (Vi : i ∈ I)
of relational spaces is defined to be the union of the disjoint sys-
tem (Ui : i ∈ I) in which Ui is the homeo-isomorphic image of the
space Vi under the function that maps each element r in Vi to the
element (r, i). ��

In connection with the second half of this definition, see the remarks
following Definition 1.31.

Lemma 2.44. If U is the union of a disjoint system (Ui : i ∈ I) of
relational spaces , then each component space Ui is an inner subspace
of the union U in the sense that the topology on Ui is the one inherited
from U, and algebraically Ui is an inner substructure of U. Moreover ,
a subset of Ui is open , closed , clopen , or compact in U if and only if
it has the same property in Ui.

Proof. Focus on the case of a ternary relation R in U. This relation is,
by definition, the disjoint union of the corresponding relations, say Ri,
in Ui, for i in I . In particular, the restriction of R to the universe
of Ui must coincide with the relation Ri. For the same reason, if t is
an element in Ui, and if R(r, s, t) holds in U, then the triple (r, s, t)
must belong to the relation Ri, so that r and s must be in Ui. Thus, Ui
is algebraically an inner substructure of U, by the definition of such a
substructure.

If F is any open subset of U, then for each index i, the component
of F in Ui, which is just the intersection F ∩ Ui, is open in Ui, by the
definition of the union topology on U. Conversely, if G is any open
subset of Ui, and if for each index j, the set Fj is defined by

Fj =

{
G if i = j,

∅ if i 	= j,

then the union F =
⋃
j Fj is open in U, since each component of this

union is open in the relevant component space. Obviously,

G = F = F ∩ Ui,
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so every open set in Ui is the intersection with Ui of an open set in U.
Conclusion: the topology on Ui is the one inherited from U.

The preceding argument also shows that every open set G in Ui is
actually equal to an open set F in U. Conversely, if F is any open set
in U that is a subset of Ui, then F must coincide with its component
in Ui and therefore must be open in Ui, by the definition of the union
topology. Thus, a subset of Ui is open in Ui if and only if it is open
in U. Similar arguments apply to closed sets, clopen sets, and compact
sets. ��

The disjoint union of a system of relational spaces is almost a rela-
tional space. The compactness property may fail, but the union is at
any rate locally compact.

Lemma 2.45. Suppose U is the union of a disjoint system of rela-
tional spaces . The union topology turns the universe of U into a locally
compact Hausdorff space in which the clopen sets form a base for the
topology . Under this topology, the relations in U are clopen and con-
tinuous .

Proof. Let U be the union of a disjoint system (Ui : i ∈ I) of relational
spaces. A subset of Ui is open, closed, clopen, or compact in U if and
only if it is open, closed, clopen, or compact in Ui, by Lemma 2.44. One
consequence of this observation is that the clopen sets in U form a base
for the topology on U. In fact, the clopen subsets of the component
spaces form a base for the topology on U. A second consequence is
that U is a Hausdorff space. Indeed, two points belonging to the same
component space Ui are separated by a clopen subset of Ui, while two
points belonging to distinct component spaces Ui and Uj are separated
by the clopen sets Ui and Uj; and all these separating sets remain
clopen in U. A third consequence is that U is locally compact. In fact,
if r is any point in U, then r belongs to one of the component spaces Ui,
and Ui is an open compact set (both in Ui and in U) that contains r.
Thus, U has the topology of a locally compact Hausdorff space in which
the clopen sets form a base for the topology.

The next task is to show that the relations in U are clopen and those
of rank at least two are continuous. Focus on the case of a ternary
relation R that is the disjoint union of the corresponding ternary rela-
tions Ri in Ui, for i in I. To prove that R is clopen, it must be shown
that for any two clopen sets F and G in U, the image set

R∗(F ×G) = {t ∈ U : R(r, s, t) for some r ∈ F and s ∈ G} (1)
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is clopen. Write F and G as the unions of their components,

F =
⋃
i Fi and G =

⋃
iGi. (2)

A set in U is clopen if and only if each component of the set is clopen
in the relevant component space, so the components Fi and Gi must
be clopen sets in Ui for each i. Consequently, the set

R∗
i (Fi ×Gi) = {t ∈ Ui : Ri(r, s, t) for some r ∈ Fi and s ∈ Gi} (3)

is clopen in Ui for each i, by the assumption that Ui is a relational
space. In order to prove that (1) is clopen, it therefore suffices to prove
that

R∗(F ×G) = ⋃
iR

∗
i (Fi ×Gi), (4)

by the definition of the union topology.
The equality in (4) follows rather easily from the fact that

R =
⋃
iRi (5)

is a disjoint union. Indeed, consider an element t in U. If t belongs
to the left side of (4), then there must be elements r in F and s
in G such that R(r, s, t) holds (in U), by (1). In view of (5), we must
have Ri(r, s, t) (in Ui) for some index i, so the elements r and s are
in Ui, and therefore they belong to the sets

F ∩ Ui = Fi and G ∩ Ui = Gi

respectively. In view of (3), it follows that t belongs to R∗
i (Fi×Gi), so t

belongs to the right side of (4). Thus, the left side of (4) is included in
the right side.

To establish the reverse inclusion, assume that t belongs to the right
side of (4). In this case, t is in R∗

i (Fi × Gi) for some index i. Conse-
quently, there must be elements r in Fi and s in Gi such that Ri(r, s, t)
holds. Clearly, r is in F and s in G, by (2), and R(r, s, t) holds in U,
by (5), so t must belong to the left side of (4), by (1). Thus, the right
side of (4) is included in the left. This establishes (4) and proves that
the relation R is clopen.

To prove that R is continuous, consider an open subset H of U. It
must be shown that the set

R−1(H) = {(r, s) ∈ U × U : R(r, s, t) implies t ∈ H} (6)
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is open in the product topology on U ×U . Write H as the union of its
components,

H =
⋃
iHi. (7)

A set is open in U if and only if each of its components is open in the
relevant component space, so for each index i, the component Hi is
open in Ui. Consequently, the set

R−1
i (Hi) = {(r, s) ∈ Ui × Ui : Ri(r, s, t) implies t ∈ Hi} (8)

is open in the product topology on Ui×Ui—and therefore open in the
product topology on U ×U—by the assumption that Ui is a relational
space. Also, each of the sets Ui×Uj is open in U ×U , since Ui and Uj
are open subsets of U. Consequently, the union

G = (
⋃
iR

−1
i (Hi)) ∪ (

⋃{Ui × Uj : i, j ∈ I and i 	= j}) (9)

is open in U × U .
In view of the preceding observations, it suffices to prove that

R−1(H) = G. (10)

Consider a pair (r, s) in U × U . There are two possibilities: either r
and s belong to the same component space or they belong to distinct
component spaces. If they belong to distinct component spaces, then
the pair (r, s) obviously belongs to G, by (9); and the pair vacuously
belongs to R−1(H), by (6), because the relation R(r, s, t) can never
hold in U, by (5). Thus, R−1(H) and G contain the same pairs having
coordinates in distinct component spaces.

Suppose now that r and s belong to the same component space,
say Ui, with the goal of showing that the pair (r, s) belongs to the
set R−1(H) if and only if it belongs to G. Assume first that (r, s) be-
longs to R−1(H). In order to prove that (r, s) belongs to R−1

i (Hi), and
therefore to G, it must be shown that the hypothesis Ri(r, s, t) implies
that t belongs toHi, by (8). The hypothesis implies that R(r, s, t) must
hold, by (5), and therefore t must belong to H, by (6). The hypothesis
also implies that tmust be in Ui, so t belongs to the intersection H∩Ui,
which is just Hi. Assume now that (r, s) belongs to G. Since r and s
are assumed to be in the same component space Ui, the pair (r, s)
must belong to R−1

i (Hi), by (9). In order to prove that (r, s) belongs
to R−1(H), it must be shown that the hypothesis R(r, s, t) implies t
is in H. The hypothesis and the assumption that r and s are in Ui
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imply that Ri(r, s, t) holds, by (5); so t belongs to Hi, by (8), and
therefore t belongs to H, by (7). This completes the proof of (10) and
shows that R is continuous. ��

The lemma implies that the disjoint union of a system of relational
spaces possesses all of the properties of a relational space except per-
haps compactness. Since the union of finitely many compact spaces is
compact, we arrive at the following corollary.

Corollary 2.46. The disjoint union of finitely many relational spaces
is again a relational space .

The next theorem describes the duality that exists between unions
of finitely many disjoint relational spaces and the product of their dual
algebras.

Theorem 2.47. The dual algebra of the union of a finite system of
disjoint relational spaces is equal to the internal product of the dual
algebras of the system .

Proof. Let U be the union of a finite system

(Ui : i ∈ I) (1)

of mutually disjoint relational spaces, and let A and Ai be the dual
algebras of U and Ui respectively. It is to be shown that A is the internal
product of the system

(Ai : i ∈ I) (2)

in the sense defined in Section 1.10 (see also the remarks following Def-
inition 2.48 in the next section). The complex algebra Cm(U) is equal
to the internal product of the system of complex algebras

(Cm(Ui) : i ∈ I), (3)

by Theorem 1.32. For each index i, the algebra Ai is a subalgebra
of Cm(Ui), by its very construction, so the internal product of the
system in (2) is a subalgebra of the internal product of the system
in (3). Consequently, the internal product of the system in (2) is a
subalgebra of Cm(U). The universe of this internal product consists of
the sets of the form

F =
⋃
i Fi, (4)

where for each i, the set Fi belongs to Ai, that is to say, Fi is a clopen
subset of Ui.
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The algebra A is also a subalgebra of Cm(U), and its universe is the
set of clopen subsets of U. Since U is the union of the spaces in (1),
the clopen subsets of U are just the sets of the form (4), where Fi
is a clopen subset of Ui for each i. Thus, the universe of A coincides
with the universe of the internal product of the system in (2). Since A
and the internal product are both subalgebras of Cm(U), and they
have the same universe, they must be the same subalgebra. ��

The dual version of the preceding theorem says that the dual space
of the direct product of a finite system of Boolean algebras with oper-
ators is homeo-isomorphic to the disjoint union of the system of dual
relational spaces.

2.11 Duality for Subdirect Products

The description of the dual space of a direct product of infinitely
many Boolean algebras with operators is more involved. There is in
fact a dual correspondence between certain subalgebras of such prod-
ucts and the compactifications of unions of relational spaces. In view
of Lemma 2.45, the disjoint union of an infinite system of relational
spaces possesses all the properties of a relational space except possibly
compactness, which has been replaced by a weaker property, namely
local compactness. Let us call such a structure a locally compact rela-
tional space. Thus, a locally compact relational space is not required
to be compact, whereas a relational space is compact by its very defi-
nition.

Definition 2.48. A compactification of a locally compact relational
space U is defined to be a relational space V such that U is a dense
inner subspace of V in the following sense: algebraically, U is an inner
substructure of V; the topology on U is the one inherited from V; and
the (topological) closure of the set U in V is just the set V . ��

Our immediate goal is a description of the relationship between com-
pactifications of disjoint unions of infinite systems relational spaces,
and certain subalgebras of direct products of infinite systems of
Boolean algebras with operators. We proceed to establish the notation
that will be used in this description. Fix a disjoint system (Ui : i ∈ I)
of relational spaces for the remainder of this section, and let U the
union of this system. For each index i, let Ai be the dual algebra of
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the space Ui, and let A be the internal product of the system of dual
algebras. The elements in A are the subsets of U of the form F =

⋃
i Fi,

where each set Fi is an element in Ai, that is to say, Fi is a clopen
subset of Ui. The operations of A are performed coordinatewise: if

F =
⋃
i Fi and G =

⋃
iGi

are elements in A, then

F +G =
⋃
i(Fi +Gi) and − F =

⋃
i−Fi,

and if f is an operator of rank n, and if

F0 =
⋃
i F0,i , . . . , Fn−1 =

⋃
i Fn−1,i

is a sequence of elements in A, then

f(F0, . . . , Fn−1) =
⋃
i f(F0,i, . . . , Fn−1,i),

where the operations on the left sides of the equations above are those
of A, while the ones on the right sides, after the union symbols, are
the operations of the factor algebras Ai.

Lemma 2.49. If V is a compactification of U, then each component
space Ui is an inner subspace of V in the sense of Definition 2.26. The
universe of U is an open subset of V. A subset of Ui is open , closed ,
clopen , or compact in V if and only if it has this same property in Ui.

Proof. For each index i, the relational space Ui is algebraically an in-
ner substructure of U, by Lemma 2.44, and U is an inner substructure
of V, by Definition 2.48, so Ui is an inner substructure of V, by the
transitivity of the relation of being an inner substructure. Similarly,
the universe of Ui is topologically a subspace of the universe of U,
by Lemma 2.44, and the universe of U is a topologically a subspace
of the universe of V, by Definition 2.48, so the universe of Ui is topo-
logically a subspace of the universe of V, by the transitivity of the
relation of being a topological subspace. Combine these observations
to conclude that Ui is a subspace of V in the sense of Definition 2.26.

Every dense, locally compact subspace of a Hausdorff space is open
in that space (see Corollary 1 on p. 400 of [10]). Since the universe of U
is topologically a dense, locally compact subspace of V, it follows that
this universe must be open in the topology of V.
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The universe of Ui is open in U, by Lemma 2.44, and the universe
of U is open in V, by the observations of the preceding paragraph,
so the universe of Ui is also open in V. Consequently, a subset of Ui
is open in V if and only if it is open in Ui. From this it also follows
that a subset F of Ui is compact in V if and only if it is compact
in Ui. The reason is that every open cover of F in Ui remains an
open cover of F in V, and inversely, the intersection with the universe
of Ui of any open cover of F in V yields an open cover of F in Ui. In
compact Hausdorff spaces, the closed sets coincide with the compact
sets. Consequently, a subset of Ui is closed inV if and only if it is closed
in Ui, by the preceding remark. Combine these observations to conclude
that a subset of Ui is clopen in V if and only if it is clopen in Ui. ��

There is a subalgebra of the internal product A that will play a
special role in our discussion, namely the one that is generated by the
union

⋃
iAi of the universes of the factor algebras. The elements of

this subalgebra are precisely those sets F =
⋃
i Fi in A such that the

system (Fi : i ∈ I) is constant almost everywhere in the following sense:
there is a term τ in the language of Boolean algebras with operators
that is built up from the distinguished constant symbols (symbols for
operations of rank 0, including 0 and 1) and the operation symbols,
without using any variables, such that Fi coincides with the value of τ
in Ai for all but finitely many indices i. We denote this subalgebra
by D and call it the weak internal product of the system (Ai : i ∈ I).
We now prove that the dual of every compactification of U corresponds
to a subalgebra of A that includes D.

Lemma 2.50. If B is the dual algebra of a compactification of U, then
the set

B0 = {F ∩ U : F ∈ B}
is a subuniverse of A that includes the universe of D. Moreover , B
is isomorphic to the corresponding subalgebra B0 via the function that
maps F to F ∩ U for each F in B.

Proof. Let V be a compactification of U, and B the dual algebra of V.
Algebraically, U is an inner substructure ofV, by Definition 2.48, so the
identity function ϑ on U is a bounded monomorphism from U to V,
by Corollary 1.14. The algebraic dual of ϑ is, by Theorem 1.9, the
complete epimorphism ψ from Cm(V ) to Cm(U) that is defined by

ψ(F ) = ϑ−1(F )
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for elements F in Cm(V ), that is to say, for subsets F of V. Since

ϑ−1(F ) = {r ∈ U : ϑ(r) ∈ F} = {r ∈ U : r ∈ F} = F ∩ U,

by the definition of the inverse image under ϑ of a set, and the defini-
tion of ϑ as the identity function on U, it may be concluded that

ψ(F ) = F ∩ U (1)

for each F in Cm(V ). The dual algebraB is, by construction, a subalge-
bra of Cm(V ). The appropriate restriction of ψ therefore maps B onto
a subalgebra of Cm(U), namely the subalgebra B0 with universe B0,
by (1) and the homomorphism properties of ψ. We shall also use the
symbol ψ to refer to this restriction.

The dual algebra Ai of the relational space Ui is a subalgebra
of Cm(Ui), by construction. The internal product A of the system

(Ai : i ∈ I) (2)

is therefore a subalgebra of the internal product of the system

(Cm(Ui) : i ∈ I).

Since the internal product of the latter system is just Cm(U), by The-
orem 1.32, it follows that A is a subalgebra of Cm(U). We proceed to
show that B0 is a subset of the universe of A. Since B0 and A are both
subalgebras of Cm(U), it then follows that B0 is a subalgebra of A.

An arbitrary element in B0 has the form F ∩U for some set F in B,
by the definition of B0. The set F is clopen in V, by the definition
of B as the dual of V, and the universe Ui of Ui is clopen in V,
by Lemma 2.49, so the intersection of F with Ui, the set

Fi = F ∩ Ui,

is clopen in V and therefore also in Ui, by Lemma 2.49. Conse-
quently, Fi belongs to Ai, by the definition of Ai as the dual algebra
of Ui. Since

F ∩ U = F ∩ (
⋃
i Ui) =

⋃
i(F ∩ Ui) =

⋃
i Fi,

it follows from the definition of A as the internal product of the system
in (2) that F ∩ U belongs to A. Thus, B0 is a subset of A, so B0 is a
subalgebra of A.
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The next step is to show that D is a subalgebra of B0. Since both
of these algebras are subalgebras of A, it suffices to show that every
element in a set of generators of D belongs to B0. The algebra D is, by
definition, generated by the union of the universes of the algebras Ai,
and the elements in these universes are just the clopen subsets of the
component spaces Ui. An arbitrary clopen subset F of Ui remains
clopen in V, by Lemma 2.49, and therefore belongs to B. Since the
intersection of F with U is just F , it follows that F belongs to B0.
Thus, every element in a set of generators for D does belong to B0,
so D is a subalgebra of B0.

The function ψ maps B homomorphically onto B0. In order to show
that the two algebras are isomorphic, it suffices to prove that ψ re-
stricted to B is one-to-one. Suppose F and G are elements in B.
Observe that

(F ∩ U)− = F and (G ∩ U)− = G, (3)

where X− denotes the topological closure in V of a subset X of V.
In more detail, (F ∩ U)− = F ∩ U− because F is a clopen set (see
Exercise 13(e) on p. 62 of [10]), and therefore

(F ∩ U)− = F ∩ U− = F ∩ V = F ,

because U is dense in V, and F is a subset of V. If ψ(F ) = ψ(G), then

F ∩ U = G ∩ U,

by (1), and therefore

F = (F ∩ U)− = (G ∩ U)− = G,

by (3). Thus, ψ is one-to-one. ��
We shall refer to the algebra B0 in Lemma 2.50 as the relativization

of B to U , and we shall call the isomorphism ψ from B to B0 the
relativization isomorphism.

The next task is to determine how the subalgebras of A that corre-
spond to various compactifications of U are related to one another.

Lemma 2.51. Suppose V and W are compactifications of U, with dual
algebras B and C respectively . The relativization of C to U is a subal-
gebra of the relativization of B to U if and only if there is a continuous
bounded epimorphism from V to W that is the identity function on U .
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Proof. LetB0 be the relativization ofB to U , and ψ the corresponding
relativization isomorphism defined by

ψ(F ) = F ∩ U (1)

for each set F in B. Similarly, let C0 be the relativization of C to U ,
and � the corresponding relativization isomorphism defined by

�(F ) = F ∩ U (2)

for each set F in C.
Assume first that there is a continuous bounded epimorphism ϑ

from V to W that maps each element in U to itself. The dual of ϑ is
the monomorphism ϕ from C to B that is defined by

ϕ(F ) = ϑ−1(F ) = {r ∈ V : ϑ(r) ∈ F} (3)

for every set F in C, by Theorem 2.16. The composition

δ = ψ ◦ϕ ◦�−1 (4)

is a monomorphism from C0 to B0 (see the diagram below).

B
ϕ←−−−− C V

ϑ−−−−→ W

ψ

⏐
⏐
�

⏐
⏐
��

B0 ←−−−−
δ

C0

We proceed to show that δ is the identity function on C0. From this
it follows at once that C0 is a subalgebra of B0. For each element G
in C0, there is a unique element F in C such that

G = �(F ) = F ∩ U , (5)

by (2) and the fact that � is an isomorphism from C to C0. An easy
computation yields

δ(G) = ψ(ϕ(�−1(G))) = ψ(ϕ(F ))

= ψ(ϑ−1(F )) = ϑ−1(F ) ∩ U = F ∩ U = G.

The first equality follows from (4), the second and final equalities
from (5), the third equality from (3), and the fourth equality from (1).
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For the fifth equality, observe that an element r is in ϑ−1(F )∩U just in
case r is in U and ϑ(r) is in F , by (3). Since ϑ is the identity function
on U , this last condition is equivalent to saying that r is in F ∩ U .

To prove the converse direction of the lemma, assume that C0 is a
subalgebra of B0. The identity function on C0—call it δ—is then a
monomorphism from C0 to B0. The composition

ϕ = ψ−1 ◦δ ◦� (6)

is a monomorphism from C to B (see the diagram above). For each
set F belonging to any one of the factor algebras Ai, we have

ϕ(F ) = ψ−1(δ(�(F ))) = ψ−1(δ(F ∩ U)) = ψ−1(F ∩ U) = F ,

by (6), (2), the assumption that δ is the identity function on C0,
and (1). Thus, ϕ is the identity function on the universe of Ai for
each index i.

The dual of ϕ is the continuous bounded epimorphism ϑ from V
to W that is determined by

ϑ(r) ∈ F if and only if r ∈ ϕ(F ) (7)

for all elements r in V and sets F in C, by Theorem 2.20. It remains to
show that ϑ is the identity function on U. An element r in U necessarily
belongs to one of the spaces Ui, by the definition of U as the union of
these spaces, and ϕ is the identity function on the sets in Ai, by the
observations of the preceding paragraph. Consequently, for such an
element r, and for sets F in Ai, the equivalence in (7) assumes the
form

ϑ(r) ∈ F if and only if r ∈ F . (8)

The set X of all sets in Ai that contain the element r is an ultrafilter
in Ai, and r is the only element in Ui that belongs to each of the
sets in X (since two distinct elements in Ui are always separated by a
clopen set). On the other hand, the sets in X all contain ϑ(r), by (8),
so we must have ϑ(r) = r. ��

Notice that the argument in the final paragraph proves a some-
what stronger assertion: if the dual of a continuous bounded homo-
morphism ϑ from V to W is the identity function on elements in Ai
for each index i, then ϑ is the identity function on elements in U.
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Lemma 2.52. Suppose V and W are compactifications of U, with
dual algebras B and C respectively . The spaces V and W are homeo-
isomorphic via a function that is the identity function on U if and
only if the relativizations of B and C to U are equal , or equivalently ,
if and only if B and C are isomorphic via a function that is the identity
function on Ai for each i.

Proof. Write B0 and C0 for the respective relativizations of B and C
to the set U . If there is a homeo-isomorphism from V to W that is
the identity function on U, then the relativizations B0 and C0 are
subalgebras of each other, by Lemma 2.51, and are therefore equal.

Suppose now that B0 and C0 are equal. There are then continuous
bounded epimorphisms ϑ from V to W, and δ from W to V, that are
the identity function on U, by Lemma 2.51. The composition δ ◦ϑ is
a continuous bounded epimorphism from V to V that is the identity
function on U, and the identity function on V is also a continuous
bounded epimorphism from V to V that is the identity function on U.
The universe of U is a dense subset of V, by Definition 2.48. Two
continuous functions from a topological space to a Hausdorff space that
agree on a dense subset agree on the whole space (see Corollary 2 on
p. 315 of [10]), so δ ◦ϑmust be the identity function on V. A symmetric
argument shows that ϑ ◦δ is the identity function on W. It follows
that ϑ is a bijection and δ its inverse.

Since each of ϑ and its inverse δ is a continuous bounded epimor-
phism, the function ϑ must be a homeo-isomorphism from V to W.
For example, consider the case of a ternary relation R. If R(r, s, t)
holds in V, then R(ϑ(r), ϑ(s), ϑ(t)) must hold in W, by the homomor-
phism properties of ϑ. Conversely, if R(ϑ(r), ϑ(s), ϑ(t)) holds in W,
then R(δ(ϑ(r)), δ(ϑ(s)), δ(ϑ(t))) must hold in V, by the homomor-
phism properties of δ. Since δ ◦ϑ is the identity function on V, it may
be concluded that R(r, s, t) holds in V. Consequently, the function ϑ
isomorphically preserves the relation R.

To establish the second equivalence of the lemma, assume that C is
isomorphic to B via a function ϕ that is the identity function on each
algebra Ai. The dual of ϕ is a homeo-isomorphism ϑ from V to W,
by Corollary 2.19, and ϑ is the identity function on U, by the remark
following Lemma 2.51.

Assume now that V is homeo-isomorphic to W via a function ϑ
that is the identity function on U. The relativizations B0 and C0

are then equal, by the first part of the lemma. If ψ is the relativiza-
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tion isomorphism from B to B0, and � the relativization isomorphism
from C to C0, then the composition

ϕ = ψ−1 ◦�

is an isomorphism from C to B, and it is easy to check that ϕ is the
identity function on each of the algebras Ai. Indeed, if F is a set in Ai,
then

ϕ(F ) = ψ−1(�(F )) = ψ−1(F ∩ U) = F ,

by the definitions of ψ and �. ��
The final lemma says that every algebra between D and A comes

from the dual of some compactification of U.

Lemma 2.53. Every subalgebra of A that includes D is the relativiza-
tion to U of the dual algebra of some compactification of U.

Proof. Consider a subalgebra C of A that includes D, and let V be the
dual space of C. The idea of the proof is to construct a dense inner
subspace of V (in the sense of Definition 2.48) that is the image of U
under a homeo-isomorphism �, and that has the property that the
relativization of the dual algebra of V to this dense inner subspace is
the image of C under the isomorphism induced by �. An application of
the general algebraic Exchange Principle then yields a compactification
of U with the property that the dual algebra of the compactification,
when relativized to U , coincides with the given subalgebra C.

Because V is assumed to be the dual space of C, the topology on V
is the one induced by C. Thus, the elements in V are the ultrafilters
of elements in C, the clopen subsets of V are the sets of the form

GF = {Y ∈ V : F ∈ Y }, (1)

where F ranges over the elements in C, and the open subsets of V are
the unions of the clopen sets. Each element F in C comes from A and
is therefore a subset of U; in fact, F has the form F =

⋃
i Fi, where for

each index i, the component Fi = F ∩Ui belongs to Ai and is therefore
a clopen subset of Ui. For every element r in U, the set

Yr = {F ∈ C : r ∈ F}

is easily seen to be an ultrafilter of elements in C; in fact, if r belongs to
the component space Ui, then Yr consists of precisely those elements F
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in C such that r belongs to the component Fi. Every ultrafilter of this
form is a point in the dual space V (but there are other points—other
ultrafilters—in V as well). Notice that distinct points r and s in U
yield distinct ultrafilters Yr and Ys. Indeed, suppose r is in Ui and s
in Uj . If i 	= j, then the clopen set Ui—which belongs to Ai and is
therefore in D, and hence also in C—belongs to Yr, while its comple-
ment in C belongs to Ys. If i = j, then there is a clopen subset of Ui
that contains r, but not s, because the clopen subsets of Ui separate
points; and that clopen set (which belongs to Ai and is therefore in D
and in C) belongs to Yr, while its complement in Ui belongs to Ys.
Notice also that

GUi = {Y ∈ V : Ui ∈ Y }
is a clopen subset of V (because Ui belongs to D and therefore also
to C).

Define a subset W of V by

W = {Yr : r ∈ U}.

It is easy to check that W is a dense subset of V. For the proof,
it suffices to show that every non-empty clopen set in V has a non-
empty intersection with W . An arbitrary non-empty clopen set in V
has the form GF for some non-empty set F in C, by the remarks of
the preceding paragraph. It follows from (1) and the definitions of the
set W and the ultrafilters Yr that

GF ∩W = {Yr : F ∈ Yr} = {Yr : r ∈ F}. (2)

The set F is not empty, so the intersection in (2) cannot be empty. In
fact, it contains the element Yr for every r in F . Thus, the set W is
dense in V, as claimed. We shall eventually prove that the restriction
of V to W is an inner subspace of V that is homeo-isomorphic to U.

Write
Wi = GUi ∩W = {Yr : r ∈ Ui}, (3)

and observe that for i 	= j, the sets Wi and Wj are disjoint, since
the sets Ui and Uj are disjoint. The space U is the disjoint union of
the component spaces Ui, so obviously W is the disjoint union of the
component sets Wi (in V), by the definitions of W and Wi, and by the
observation made earlier that distinct elements r and s in U lead to
distinct ultrafilters Yr and Ys. The immediate goal is to prove that Wi

is a compact subset of V. Assume for a moment that this has been
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accomplished. It then follows thatW , as the disjoint union of compact
subsets of V, is locally compact. A dense, locally compact subspace
of a Hausdorff space is necessarily open (see Corollary 1 on p. 400
of [10]), so W must be open in V. Thus, Wi is the intersection of two
open sets in V, namely GUi and W , so Wi must also be open in V. Of
course, Wi is also closed in V, because it is a compact subset of the
Hausdorff space V, so Wi must in fact be clopen.

The proof that Wi is compact is somewhat involved and uses some
of the duality theorems that were proved earlier. Because A is the
internal product of the system of algebras (Ai : i ∈ I), the projection
from A to the factor algebra Ai is the epimorphism ϕi defined by

ϕi(F ) = F ∩ Ui = Fi

for every set F in A, where Fi is the component of F in Ai. Because C
is a subalgebra of A, the restriction of ϕi to C is a homomorphism
from C into Ai. Every element in Ai belongs to D and therefore also
to C. For each set F in Ai, we have

ϕi(F ) = F ∩ Ui = F ,

since F is a subset of Ui. Thus, ϕi maps C homomorphically onto Ai.
We shall refer to the restriction of ϕi to C by using the same symbol ϕi.

The restriction of ϕi to C induces a continuous bounded monomor-
phism ϑi from the dual space of Ai to the dual space of C that is
defined by

ϑi(X) = ϕ−1
i (X)

for each element X in the dual space of Ai, by Theorem 2.18. The dual
space of C is V, by assumption. The dual space of Ai—call it Ūi—is the
second dual of the relational space Ui, and Ui is homeo-isomorphic Ūi
via the function δi that maps each element r in Ui to the ultrafilter

Xr = {F ∈ Ai : r ∈ F},

by Theorem 2.11. In particular, the elements in Ūi are precisely the
ultrafilters of the form Xr for elements r in Ui, and distinct elements
in Ui correspond to distinct ultrafilters. The definition of ϑi may there-
fore be written in the form

ϑi(Xr) = ϕ−1
i (Xr)
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for each element r in Ui. Observe that for each such r,

ϕ−1
i (Xr) = {F ∈ C : ϕi(F ) ∈ Xr} = {F ∈ C : F ∩ Ui ∈ Xr}

= {F ∈ C : r ∈ F ∩ Ui} = {F ∈ C : r ∈ F} = Yr,

by the definition of the inverse image under ϕi of a set, the defini-
tion of ϕi, the definition of Xr, the assumption that r is in Ui, and
the definition of Yr. Combine these observations to conclude that ϑi
is the continuous bounded monomorphism from Ūi to V that is deter-
mined by

ϑi(Xr) = Yr (4)

for every r in Ui.
The set Wi is the image (in V) under the continuous mapping ϑi of

the compact set Ūi, by (3) and (4). The continuous image of a compact
set is compact, so Wi must be a compact subset of V. The argument
presented earlier now implies that Wi is a clopen subset, and W an
open subset, of V. From this, it is not difficult to see that the subspace
topology onW coincides with the union topology thatW inherits from
the components Wi. Indeed, the open sets in W under the subspace
topology are just the subsets of W that are open in V, because W
itself is open in V. For any subset H of W , write Hi = H ∩Wi, and
observe that

H = H ∩W = H ∩ (
⋃
iWi) =

⋃
i(H ∩Wi) =

⋃
iHi.

If H is open in V, then Hi is open in V, because Wi is open in V;
consequently, H is a union of open subsets of the componentsWi, so H
is open in the union topology, by the definition of that topology. On
the other hand, if H is open in the union topology, then each set Hi

is open in Wi, and therefore also open in V, by the definition of the
union topology; consequently, H is a union of open sets in V, so H is
open in V.

The fact that ϑi is a continuous bounded monomorphism from Ūi
into V implies that the image set Wi is an inner subuniverse of V,
by Lemma 1.13, and also that ϑi is algebraically an isomorphism
from Ūi to the corresponding inner substructure that is the restric-
tion of V to Wi. The set Wi is closed in V, so the restriction of V
to Wi is actually a relational space Wi that is an inner subspace of V,
by Lemma 2.25. It is clear that ϑi is continuous with respect to the
topology on Wi. Indeed, Wi is open in V, so every open subset of Wi
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is open in V, and therefore the inverse image under ϑi of every open
subset of Wi must be open in Ūi (because ϑi is continuous with respect
to the topology on V). A continuous bijection from a compact space
to a Hausdorff space is necessarily a homeomorphism (see Lemma 5
on p. 316 of [10]), so ϑi is a homeo-isomorphism from Ūi to Wi.

Write W for the restriction of V to the set W . It is not difficult to
check that V is a compactification of W in the sense of Definition 2.48.
First of all, the topology on W is, by definition, the topology inherited
from V. Second, we have already seen that the universe of W is a dense
subset of V. Third, W is algebraically an inner substructure of V. To
see this, consider the case of a ternary relation R. Let r and s be any
elements in V, and t any element in W, and suppose that R(r, s, t)
holds in V. The universe of W is the union of the universes of the
spaces Wi, so the element t must belong to Wi for some i. It was shown
in the preceding paragraph that Wi is an inner subspace of V, so the
elements r and s must belong to Wi, and therefore these elements
must also belong to W.

In a similar way, we show that W is the union, in the sense of Def-
inition 2.43, of the disjoint system of relational spaces (Wi : i ∈ I).
First of all, we have already seen that the subspace topology on W
coincides with the union topology inherited from the given system of
spaces. Second, to check that W is algebraically the union of the re-
lational structures Wi, consider as an example the case of a ternary
relation R. If R(r, s, t) holds in W, then this relationship must also
hold in V, because W is a restriction of V. The element t belongs
to Wi for some i, and Wi is an inner subspace of V, so r and s must
be in Wi. Consequently, R(r, s, t) holds in Wi, because Wi is a restric-
tion of V. Conversely, if R(r, s, t) holds in Wi, then this relationship
also holds in V, because Wi is a restriction of V. The elements r, s,
and t clearly belong to W, which is a restriction of V, so R(r, s, t) must
hold in W. Conclusion: the relation R in W is the (disjoint) union of
the corresponding relations in the spaces Wi, so W is the union of the
given system, as claimed.

The composition �i = ϑi ◦δi of the homeo-isomorphism δi from Ui
to Ūi and the homeo-isomorphism ϑi from Ūi to Wi is a homeo-
isomorphism from Ui to Wi. The union of these compositions is the
bijection � from U to W that is defined by

�(r) = �i(r) = ϑi(δi(r)) = ϑi(Xr) = Yr (5)
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whenever r is an element in U that belongs to Ui. It is not difficult to
check that this disjoint union of homeo-isomorphisms is itself a homeo-
isomorphism. To check that � is a homeomorphism, consider any open
subset F =

⋃
i Fi of U. The component sets Fi must be open in Ui, by

the definition of the union topology, and each mapping �i is a homeo-
isomorphism, so each set �i(Fi) must be open in Wi. Consequently, the
union of these sets is open in W (because the topology on W coincides
with the union topology). That union is just �(F ), since the image
of F under � is the set

�(F ) = �(
⋃
i Fi) =

⋃
i �(Fi) =

⋃
i �i(Fi),

so the image under � of an open set in U is an open set in W. A com-
pletely analogous argument shows that the inverse image under � of
an open set in W is an open set in U. Thus, � is a homeomorphism, as
claimed.

To check that � isomorphically preserves the fundamental relations,
consider the case of a ternary relation R. Let r, s, and t be elements
in U. If R(r, s, t) holds in U, then this relationship must hold in Ui
for some index i, because U is the union of the component spaces Ui.
Since �i is a homeo-isomorphism from Ui to Wi, the relationship

R(�i(r), �i(s), �i(t))

must hold inWi. Consequently, R(�(r), �(s), �(t)) must hold inWi and
therefore also in W, by the definition of � and the fact that W is the
union of the component spaces Wi. A completely analogous argument
shows that if R(�(r), �(s), �(t)) holds in W, then R(r, s, t) holds in U.
Thus, � isomorphically preserves the relation R. Conclusion: � is an
isomorphism, and therefore a homeo-isomorphism, from U to W.

The homeo-isomorphism � from U to W induces an isomorphism �̄
from Cm(U) to Cm(W ) that is defined by

�̄(F ) = {�(r) : r ∈ F}

for every subset F of U, by Corollary 1.7. In view of (5), it is clear that
the definition of �̄ may be written in the form

�̄(F ) = {Yr : r ∈ F}. (6)

The algebra C is a subalgebra of A, by assumption, and A is a sub-
algebra of Cm(U), by Theorem 1.32, so C is a subalgebra of Cm(U).
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It therefore makes sense to restrict the isomorphism �̄ to C, and this
restriction must map C isomorphically to a subalgebra of Cm(W ).

Consider now the dual algebra of V—call it B. This algebra is the
second dual of C, and C is isomorphic to its second dual via the canon-
ical isomorphism ζ that maps each set F in C to the set GF defined
in (1), by Theorem 2.10. In particular, the elements in B are just the
sets GF for F in C. The algebra B is, in turn, isomorphic to its rel-
ativization B0 via the relativization isomorphism ψ that maps each
element in B to its intersection with W , by Lemma 2.50 (with W as
the locally compact relational space, and V as the compactification
of W). In this connection, recall from the proof of Lemma 2.50 that ψ
is the restriction of the relativization homomorphism from Cm(V )
to Cm(W ) that maps each subset of V to its intersection with the
set W . Composing ψ with ζ, and using (2), we arrive at

(ψ ◦ζ)(F ) = ψ(ζ(F )) = ψ(GF ) = GF ∩W = {Yr : r ∈ F} (7)

for each set F in C. Compare (6) with (7) to conclude that

�̄ = ψ ◦ζ

(where the left side of this equation actually denotes the restriction
of �̄ to C). Thus, the restriction of �̄ maps C isomorphically to the
algebra B0 that is the relativization to W of the algebra B, which in
turn is the dual of V.

Here is a summary of what has been accomplished. First, the locally
compact union space U has been mapped homeo-isomorphically by � to
a space W of which V is a compactification. Second, the subalgebra C
of A has been mapped isomorphically by �̄—the mapping induced on C
by �—to the relativization of the dual algebra B (of V) to the setW . If
we now use the homeo-isomorphism � to identify U withW, and we use
the induced isomorphism �̄ to identify C with the relativization of B
toW , then we arrive at the desired goal: V is a compactification of the
union space U, and the relativization to U of the dual algebra of V is
just C.

The technical tool for carrying out this identification is a version
of the general algebraic Exchange Principle that applies to structures
such as U. The elements in V that come from W are replaced by
the corresponding elements from U (under the correspondence that
is the inverse of �), the remaining elements in V being modified if
necessary so that they do not occur in U. Once this is accomplished,
the function � becomes the identity function on U, and therefore the
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mapping �̄ on C induced by � becomes the identity function on C.
Consequently, C coincides with B0, which is the relativization of B
to W . ��
Consider the function that maps each compactification V of the union
space U to the isomorphic copy of the dual algebra of V that is ob-
tained by relativizing the dual algebra to the set U . This function maps
the class of compactifications of U onto the class of algebras interme-
diate between D and A, by Lemmas 2.50 and 2.53. In general, this
function is not one-to-one, as Lemma 2.52 makes clear; distinct com-
pactifications of U may be mapped to the same intermediate algebra.
Such compactifications do not differ from one another in any material
way, and it is natural to identify them by grouping them together in
one class. Motivated by these considerations, we define two compact-
ifications of U to be equivalent if there is a homeo-isomorphism from
one compactification to the other that is the identity function on U. It
is easy to check that the relation defined in this way is an equivalence
relation on the class of compactifications of U. Equivalent compacti-
fications have dual algebras that are isomorphic via a function that
is the identity on the universes of the factor algebras Ai, and the iso-
morphic copies of these dual algebras obtained by relativization to U
are in fact equal, by Lemma 2.52. Thus, one may speak with some
justification of the dual algebra of the equivalence class. The corre-
spondence that maps each equivalence class of compactifications of U
to the relativization of its dual algebra is a well-defined bijection from
the class of equivalence classes of compactifications of U to the set of
subalgebras of A that include D. It turns out that this bijection is
actually a lattice isomorphism.

The set of algebras between D and A is partially ordered by the
relation of being a subalgebra, and under this partial ordering the
set becomes a complete lattice with zero D and unit A. The partial
ordering on the class of equivalence classes of compactifications of U is
more complicated to describe, but it is equally natural. Define a binary
relation ≤ on the class of compactifications of U by writing W ≤ V
just in case there is a continuous bounded epimorphism from V to W
that is the identity function on U. This relation is preserved by the
relation of equivalence in the following sense: if compactifications V1

and V2 are equivalent, and if compactifications W1 and W2 are also
equivalent, then

W1 ≤ V1 if and only if W2 ≤ V2.
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For the proof, suppose δ is a homeo-isomorphism fromV1 toV2 that
is the identity function on U, and � a homeo-isomorphism from W1

to W2 that is the identity function on U. If ϑ is a continuous bounded
epimorphism fromV1 toW1 that is the identity function on U, then the
composition � ◦ϑ ◦δ−1 is a continuous bounded epimorphism from V2

to W2 that is the identity function on U (see the diagram below). This
shows that W1 ≤ V1 implies W2 ≤ V2. The reverse implication is
established by a symmetric argument.

V1
δ−−−−→ V2

ϑ

⏐
⏐
�

⏐
⏐
�

W1 −−−−→
�

W2

We shall say of two compactifications V and W of U that the equiv-
alence class of W is less than or equal to the equivalence class of V
if W ≤ V. The remarks in the preceding paragraph imply that the
relation on equivalence classes defined in this manner is well defined in
the sense that it does not depend on the particular choice of the rep-
resentatives of the equivalence classes involved. One can prove with-
out difficulty that the relation is a partial ordering on the class of
equivalence classes. For instance, to prove that the relation is anti-
symmetric, assume that the equivalence class of W is less than or
equal to the equivalence class of V, and vice versa. It must be shown
that the two equivalence classes are equal. The assumption implies
that V ≤W and W ≤ V. Consequently, there is a continuous bounded
epimorphism ϑ fromV to W and a continuous bounded epimorphism δ
from W to V such that both mappings are the identity function on U,
by the definition of ≤ . The composition δ ◦ϑ is therefore a continu-
ous bounded epimorphism from V to V that is the identity function
on U. The identity function on V is also a continuous bounded epimor-
phism from V to V that is the identity function on U. The universe
of U is a dense subset of V, by the assumption that V is a compacti-
fication of U. Two continuous functions from a topological space to a
Hausdorff space that agree on a dense subset must agree on the entire
space (see Corollary 2 on p. 315 of [10]), so the composition δ ◦ϑ must
be the identity function on V. A similar argument shows that ϑ ◦δ
is the identity function on W. Consequently, ϑ is a bijection from V
to W and δ is its inverse. A bounded epimorphism that is a bijection
is an isomorphism, by the remark following Definition 1.8, so ϑ is a
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continuous isomorphism with a continuous inverse δ. Conclusion: ϑ is
a homeo-isomorphism that is the identity function on U. This implies
that the compactifications V andW are equivalent, and therefore their
equivalence classes are equal, as desired.

We have seen that the class of equivalence classes of compactifi-
cations of U is partially ordered by the less-than-or-equal-to relation
defined in the preceding paragraph, and the class of subalgebras of A
that include D is partially ordered by the relation of being a subalge-
bra. We have also seen that the function ζ mapping each equivalence
class of compactifications to the relativization to U of the dual alge-
bra of the equivalence class is a bijection from the class of equivalence
classes of compactifications of U to the class of subalgebras of A that
include D. We now show that ζ preserves the partial ordering in a
strong sense. Consider compactifications V and W of U, and let B
and C be their respective dual algebras. Write B0 and C0 for the rel-
ativizations of B and C to U . The function ζ maps the equivalence
class of V to the subalgebra B0, and the equivalence class of W to the
subalgebra C0. Since the equivalence class of W is less than or equal
to the equivalence class of V just in case W ≤ V, it suffices to prove
that

W ≤ V if and only if C0 ⊆ B0.

If W ≤ V, then there must be a continuous bounded epimorphism ϑ
from V to W that is the identity function on U, by the definition of
the relation ≤ . Apply Lemma 2.51 to conclude that the relativization
of C to U is a subalgebra of the relativization of B to U , that is to
say, C0 is a subalgebra of B0. Conversely, if C0 is a subalgebra of B0,
then there must be a continuous bounded epimorphism from V to W
that is the identity function on U , again by Lemma 2.51, so W ≤ V.
The following theorem summarizes what has been proved.

Theorem 2.54. Let U be the union of a disjoint system (Ui : i ∈ I)
of relational spaces . For each index i, let Ai be the dual algebra of Ui,
and let A be the internal product , and D the weak internal product , of
the system (Ai : i ∈ I) of algebras . Equivalent compactifications of U
have , up to isomorphism , the same dual algebra , and that dual algebra
is isomorphic via relativization to a subalgebra of A that includes D.
The function that maps each equivalence class of compactifications of U
to the corresponding subalgebra of A that includes D is a lattice iso-
morphism from the lattice of equivalence classes of compactifications
of U to the lattice of subalgebras of A that include D.
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2.12 Duality for Infinite Direct Products

The internal product A of the system of dual algebras (Ai : i ∈ I) of a
given disjoint system (Ui : i ∈ I) of relational spaces is the maximum
element in the lattice of subalgebras of A that include the weak internal
product. The equivalence class of the dual space of A must therefore be
the maximum element in the lattice of equivalence classes of compacti-
fications of the union space U, by Theorem 2.54. It is natural to look for
a topological characterization of this maximum compactification. The
maximum compactification of an arbitrary locally compact Hausdorff
space U is the Stone-Čech compactification. This space—call it V—is
characterized by the property that every continuous mapping from U
into a compact Hausdorff space W can be extended (in a unique way)
to a continuous mapping from V into W . These considerations moti-
vate the following definition.

Definition 2.55. A Stone-Čech compactification of a locally compact
relational space U is defined to be a compactification V of U with
the property that every continuous bounded homomorphism from U
into a relational space W can be extended to a continuous bounded
homomorphism from V into W. ��

Observe that if V is a Stone-Čech compactification of a locally com-
pact relational space U, then the continuous bounded homomorphism
on V that extends a given continuous bounded homomorphism from U
to a relational space W must be unique. The reason is that the uni-
verse of U is a dense subset ofV, by Definition 2.48, and two continuous
functions that agree on a dense subset of a space agree everywhere on
the space. Observe also that if such a compactification V exists, then
the equivalence class of V must be the maximum element in the lattice
of equivalence classes of compactifications of U, by the next lemma.

Lemma 2.56. If V is a Stone-Čech compactification of a locally com-
pact relational space U, then every compactification of U is a continuous
bounded homomorphic image of V via a mapping that is the identity
function on U.

Proof. Suppose W is a compactification of U. The space U is then an
inner subspace of W in the sense that it is algebraically an inner sub-
structure of W and topologically a subspace of W (see Definition 2.48).
The identity function ϑ on U is therefore a continuous bounded homo-
morphism from U to W. In more detail, ϑ is a bounded monomorphism
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from U to W, by Corollary 1.14; and if H is an open subset of W, then
the inverse image of H under ϑ is the set

ϑ−1(H) = {r ∈ U : ϑ(r) ∈ H} = {r ∈ U : r ∈ H} = H ∩ U ,

which is an open subset of U, by the definition of the subspace topology;
consequently, ϑ is continuous. Apply Definition 2.55 and the assump-
tion that V is a Stone-Čech compactification of U to conclude that
there is a continuous bounded homomorphism δ from V to W that ex-
tends ϑ. A continuous mapping from a compact space to a Hausdorff
space maps closed sets to closed sets (see Corollary 1 on p. 315 of [10]),
so the image set

δ(V ) = {δ(r) : r ∈ V }
must be closed in W. This image set includes the set U , because δ is
an extension of ϑ, and ϑ is the identity function on U. Since U is a
dense subset of W, the closure of U in W must be W . It follows that

W = U− ⊆ δ(V )− = δ(V ),

so δ maps V onto W. Conclusion: W is the image of V under a con-
tinuous bounded homomorphism δ that is the identity function on U.
��
Corollary 2.57. A Stone-Čech compactification of a locally compact
relational space U, if it exists , is unique up to homeo-isomorphisms
that are the identity function on U.

Proof. Suppose V1 and V2 are Stone-Čech compactifications of a lo-
cally compact relational space U. There is a continuous bounded epi-
morphism δ1 from V1 to V2 that is the identity function on U, and
also a continuous bounded epimorphism δ2 from V2 into V1 that is the
identity function on U, by Lemma 2.56. Just as in the argument given
before Theorem 2.54 (showing that the relation ≤ is antisymmetric),
the compositions δ1 ◦δ2 and δ2 ◦δ1 must be the identity functions on the
spaces V2 and V1 respectively, so δ1 and δ2 are bijections and inverses
of one another; consequently, δ1 is a homeo-isomorphism fromV1 toV2

that is the identity function on U. ��
The preceding corollary justifies speaking about the Stone-Čech

compactification of a locally compact relational space U. The next
theorem establishes the existence of the Stone-Čech compactification
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in the case in which we are interested, and it simultaneously shows
that this compactification is essentially the dual space of the direct
product.

Theorem 2.58. Let U be the union of a disjoint system (Ui : i ∈ I) of
relational spaces , and for each index i, let Ai be the dual algebra of Ui.
The Stone-Čech compactification of U exists , and its dual algebra is
isomorphic to the internal product of the system (Ai : i ∈ I) via the
relativization function .

Proof. We begin by introducing some notation and making some
preliminary observations. Let A be the internal product of the sys-
tem (Ai : i ∈ I) of dual algebras of the given disjoint system (Ui : i ∈ I)
of relational spaces. The definition of the internal product implies that
the elements in A are the subsets of the union space U that can be writ-
ten in the form F =

⋃
i Fi, where Fi is an element in Ai and therefore

a clopen subset of Ui. The clopen subsets of the space U are also the
unions of the clopen subsets of the component spaces Ui, by the re-
marks at the beginning of Section 2.10 concerning union spaces. It
follows that the elements in A are precisely the clopen subsets of U.

Observe, as in the proof of Theorem 2.47, that for each index i,
the dual algebra Ai is, by its very construction, a subalgebra of the
complex algebra Cm(Ui). The internal product of the system of dual
algebras is therefore a subalgebra of the internal product of the system
of complex algebras

(Cm(Ui) : i ∈ I).
The first product is equal to A, by assumption, and the second product
is equal to the complex algebra Cm(U), by Theorem 1.32, so A is a
subalgebra of Cm(U). Conclusion: A is the subalgebra of Cm(U) whose
universe is the set clopen subsets of U, by the previous observations.

Let V be the maximum compactification of the union space U, which
exists by Theorem 2.54 and the fact that A has a maximum subalgebra,
namely itself. The dual algebra of V—call it B—is isomorphic to A
via the relativization function ψ that is defined by

ψ(G) = G ∩ U
for every element G in B, by Theorem 2.54. The inverse function ψ−1

is therefore the isomorphism from A to B that is defined by

ψ−1(F ) = G if and only if F = G ∩ U , (1)

for every element F in A.
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Consider now an arbitrary continuous bounded homomorphism ϑ
from U into a relational space W. It is to be shown that ϑ can be
extended to a continuous bounded homomorphism δ from V to W. As
a bounded homomorphism, ϑ has an algebraic dual, by Theorem 1.9,
namely the complete homomorphism ϕ from Cm(W ) to Cm(U) that is
defined by

ϕ(H) = ϑ−1(H) = {s ∈ U : ϑ(s) ∈ H} (2)

for every element H in Cm(W ), that is to say, for every subset H of W.
The assumed continuity of ϑ implies that the inverse image under ϑ of
every clopen subset of W is a clopen subset of U. Thus, the algebraic
dual ϕ defined in (2) maps clopen subsets of W to clopen subsets
of U. The (topological) dual algebra of the relational space W is the
subalgebra C of Cm(W ) whose universe is the set of all clopen subsets
of W, and the internal product A is, by the observations made above,
the subalgebra of Cm(U) whose universe is the set of all clopen subsets
of U. It follows that the restriction of ϕ to C—for which we shall also
write ϕ—is a homomorphism from C into A.

The composition of the homomorphism ϕ from C to A with the
isomorphism ψ−1 from A to B is a homomorphism � from C into B
that is determined by

�(H) = ψ−1(ϕ(H))

for every element H in C. In view of (1) and the definition of �, this
means that

�(H) = G if and only if ϕ(H) = G ∩ U . (3)

Because C is the dual algebra of the relational space W, and B is
the dual algebra of the relational space V, and � is a homomorphism
from C into B, the topological duality theorem for homomorphisms in
the form of Corollary 2.19 (with U, A, and ϕ replaced by W, C, and �
respectively) may be applied to the homomorphism � to obtain a dual
continuous bounded homomorphism δ from V to W that is defined by

δ(s) = r if and only if �−1(Ys) = Xr ,

where

Xr = {H ∈ C : r ∈ H} and Ys = {G ∈ B : s ∈ G}.
It remains to show that δ is an extension of ϑ.
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The remarks following Corollary 2.19 (with � and H in place of ϕ
and F ) imply that the definition of the dual mapping δ may equiva-
lently be written in the form

δ(s) ∈ H if and only if s ∈ �(H) (4)

for all elements s in V and H in C. Fix an element H in C, that is to
say, fix a clopen subset of W, and write �(H) = G. For any element s
in U, we have

s ∈ �(H) if and only if s ∈ G,
if and only if s ∈ G ∩ U,
if and only if s ∈ ϕ(H),

if and only if s ∈ ϑ−1(H),

if and only if ϑ(s) ∈ H,

by the definition of the set G, the assumption that s is in U, the
equivalence in (3) and the assumption that �(H) = G, the definition
of ϕ in (2), and the definition of the inverse image under ϑ of the set H.
The preceding equivalences show that

ϑ(s) ∈ H if and only if s ∈ �(H).

Combine this with (4) to see that if s belongs to U, then

δ(s) ∈ H if and only if ϑ(s) ∈ H (9)

for every clopen subset H of W. The clopen subsets of W separate
points, so the equivalence in (9) can only hold if δ(s) = ϑ(s). Thus, δ
agrees with ϑ on elements in U. Conclusion: δ is a continuous bounded
homomorphism from V to W that extends ϑ. ��

The preceding theorem does not say that the topology on the Stone-
Čech compactification V of the union space U is the Stone-Čech com-
pactification of the topology on U in the standard sense that this term
is used in topology, namely that every continuous function from (the
universe of) U into an arbitrary compact Hausdorff space W can be
extended to a continuous function from (the universe of) V into W .
The theorem only says that condition set forth in Definition 2.55 is
satisfied, namely every continuous bounded homomorphism from U
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into a relational space W can be extended to a continuous bounded
homomorphism from V to W. In particular, the topology on W is that
of a Boolean space, not that of an arbitrary compact Hausdorff space.
Showing that the topology on V really is the standard Stone-Čech
topology requires a separate argument.

Theorem 2.59. If V is the Stone-Čech compactification of the union U
of a disjoint system of relational spaces , then the topology on V is the
standard Stone-Čech compactification of the topology on U.

Proof. Suppose U is the union of a disjoint system

(Ui : i ∈ I) (1)

of relational spaces. Let
(Ai : i ∈ I) (2)

be the system of dual algebras corresponding to (1), and let A be the
internal product of the system of algebras in (2). The dual algebra of
the Stone-Čech compactification V (of U)—call it B—is isomorphic
to A via the relativization function ψ that maps each set H in B to
the intersection H ∩ U , by Theorem 2.58. Essential use of this fact is
needed to establish a preliminary observation, namely that two disjoint
closed subsets of the union space U are always separated by a clopen
subset of V.

For the proof, consider two closed subsets F1 and F2 of U that are
disjoint. For each index i, the intersections

F1 ∩ Ui and F2 ∩ Ui (3)

are disjoint closed subsets of Ui, because Ui is topologically a sub-
space of U, by Lemma 2.44; and therefore the two sets in (3) are com-
pact, because closed subsets of a compact space are compact. A rather
straightforward compactness argument, using the fact that the topol-
ogy on Ui is Boolean, produces a clopen subset Gi of Ui that separates
the sets in (3) in the sense that

F1 ∩ Ui ⊆ Gi and F2 ∩Gi = ∅. (4)

In more detail, in a compact Hausdorff space, any two closed sets can
be separated by an open set that includes the first closed set and is
disjoint from the second (see Exercise 33 on p. 280 of [10]). If the space
is Boolean, then the separating open set is the union of a system of
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clopen sets, so the compactness of the first closed set implies that there
is a finite subsystem of the clopen sets whose union includes the first
closed set, and that union remains disjoint from the second closed set.
The desired conclusion now follows from the observation that a union
of finitely many clopen sets is clopen.

For each index i, the clopen set Gi belongs to the dual algebra Ai,
by the definition of the dual algebra, so the system of clopen sets

(Gi : i ∈ I) (5)

has a supremum in the internal product A, by the definition of the
internal product. In fact, the supremum in A of this system is just the
union

G =
⋃
iGi.

Every clopen subset of Ui remains a clopen subset ofV, by Lemma 2.49,
and obviously the relativization isomorphism ψ maps each such subset
of Ui to itself. Consequently, the image of each set Gi under ψ is Gi,
and therefore

ψ−1(Gi) = Gi. (6)

Since the inverse isomorphism ψ−1 preserves arbitrary suprema, and
since the system in (5) has a supremum in A, the image of this sys-
tem under ψ−1 must have a supremum in B. The image system is
again just (5), by (6); consequently, the system in (5) has a supremum
in B. Apply Lemma 2.40 (with Fi, H, A, and U respectively replaced
by Gi, G, B, andV) to conclude that the closure G− is open and hence
clopen in the topology of V, and that G− is the supremum of (5) in B,
that is to say

G− =
∑

iGi.

An easy computation shows that the clopen set G− separates the
sets F1 and F2 in V. Indeed,

F1 = F1 ∩ U = F1 ∩ (
⋃
i Ui) =

⋃
i(F1 ∩ Ui) ⊆

⋃
iGi ⊆ G−,

and

F2 ∩G− = F2 ∩ (
∑

iGi) =
∑

i(F2 ∩Gi) =
∑

i∅ = ∅,

by (4) and the distributive law for multiplication over arbitrary sums
in B.



2.12 Duality for Infinite Direct Products 167

Turn now to the main task of the proof, which is to demonstrate
that the topology onV is the Stone-Čech compactification of the topol-
ogy on U. We use italic letters to refer to topological spaces having
no algebraic structure. Consider an arbitrary continuous function ϑ
from U (the universe of U) into a compact Hausdorff space W . It is to
be shown that ϑ can be extended to a continuous function δ from V
(the universe of V) intoW . Every point in V is completely determined
by the clopen sets to which it belongs, since clopen sets separate points
in a Boolean space. Thus, if s is a point in V , and if Ns is the set of
clopen subsets of V that contain s, then Ns is an ultrafilter in B, and
the intersection of the sets in Ns is just the singleton {s}. It is natural
to define δ(s) to be the intersection of the class of image sets

{ϑ(F ) : F ∈ Ns}.
Two problems arise with this approach. First, ϑ is defined only on
points in U (not on points in V ), so it is necessary to replace the
set ϑ(F ) with the set

ϑ(F ∩ U) = {ϑ(t) : t ∈ F ∩ U}.
Second, ϑ(F ∩ U) may not be closed in W , so there is no assurance
that the intersections of all of the sets of this form will be non-empty.
The solution is to pass to the closure ϑ(F ∩ U)−.

Given any point s in V , put

Ms = {ϑ(F ∩ U)− : F ∈ Ns}. (7)

We shall prove that the intersection of the sets in Ms contains exactly
one point. In order to show that the intersection is not empty, it suffices
to prove that the sets inMs have the finite intersection property in the
sense that the intersection of finitely many of these sets is always non-
empty; the desired conclusion then follows by compactness, because
the intersection of a system of closed sets with the finite intersection
property is always non-empty in a compact space (see p. 271 of [10]).
The finite intersection property is a direct consequence of two obser-
vations. The first is that the sets in Ms are not empty. For the proof,
consider a clopen set F inNs, and notice that F is not empty because it
contains s. The set U is a dense subset of V , because V is a compactifi-
cation of U , so every non-empty open set has a non-empty intersection
with U ; in particular, F has a non-empty intersection with U . It fol-
lows that the image set ϑ(F ∩ U) cannot be empty, so the closure of
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this image set cannot be empty. The second observation is that the
intersection of any finite system of sets in Ms includes a set from Ms

and is therefore not empty. For the proof, consider a finite system

(Fj : 0 ≤ j < n)

of sets in Ns. The intersection F of this system belongs to Ns, be-
cause Ns is a Boolean filter and is therefore closed under finite inter-
sections. Since F is included in Fj for j < n, the set ϑ(F ∩ U)− must
be included in the set ϑ(Fj ∩ U)− for each j, so that

ϑ(F ∩ U)− ⊆ ⋂
j ϑ(Fj ∩ U)−,

as desired.
The argument that the intersection of Ms cannot contain two dis-

tinct points proceeds by showing that for any two distinct points inW ,
there is a set inMs that does not contain at least one of the two points.
Let r1 and r2 be distinct points in W . Since W is assumed to be a
compact Hausdorff space, there must exist open sets H1 and H2 in W
containing r1 and r2 respectively such that the closures H−

1 and H−
2

are disjoint (see Corollary 2 on p. 273 of [10]). The inverse images

ϑ−1(H−
1 ) and ϑ−1(H−

2 ) (8)

are then obviously disjoint, and they are closed subsets of U , by the
assumed continuity of the mapping ϑ. The preliminary observation at
the beginning of the proof implies the existence of a clopen subset G
of V that separates the two closed sets in (8) in the sense that

ϑ−1(H−
1 ) ⊆ G and ϑ−1(H−

2 ) ∩G = ∅. (9)

The element s belongs to exactly one of the sets G and ∼G. If s is
in G, then G is in Ns, by the definition of Ns; so the set ϑ(G ∩ U)−

belongs to Ms, by (7), and this set does not contain r2. In more de-
tail, if r2 belonged to the closure of ϑ(G ∩ U), then every open set
containing r2 would have a non-empty intersection with ϑ(G ∩ U).
In particular, the open set H2 would have a non-empty intersection
with ϑ(G ∩ U). It follows that ϑ−1(H2) would have a non-empty in-
tersection with G ∩ U and therefore also with G, in contradiction to
the right-hand equation in (9). A similar argument applies if s is as-
sumed to be in ∼G: the assumption implies that the set ϑ(∼G ∩ U)−
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is in Ms, and this set does not contain r1. For if it did contain r1,
then H1 would have a non-empty intersection with ϑ(∼G ∩ U)−, and
therefore ϑ−1(H1) would have a non-empty intersection with ∼G, in
contradiction to the left-hand inclusion in (9).

Define the function δ on each point s in V by taking δ(s) to be
the unique point that belongs to the intersection of Ms. This function
is a well-defined mapping from V to W , by the observations of the
preceding two paragraphs. To see that δ is an extension of ϑ, assume
that s belongs to U . In this case, s belongs to the intersection F ∩ U
for every set F in Ns, so ϑ(s) belongs to ϑ(F ∩ U) and therefore also
to ϑ(F ∩ U)−, for every set F in Ns. It follows that ϑ(s) is the unique
element in the intersection of Ms, by (7). Consequently, δ(s) = ϑ(s),
by the definition of δ.

It remains to prove that δ is continuous. To this end, consider an
arbitrary open subsetH ofW . It must be shown that the inverse image
of H under δ is open in V , and for this it suffices to prove that every
element s in δ−1(H), belongs to some clopen set F that is included
in δ−1(H). Fix a point s in δ−1(H), and observe that δ(s) belongs toH.
The definition of δ(s) specifies that this value is the unique element
in the intersection

⋂
Ms, so this intersection must be included in H .

A routine compactness argument shows that the intersection of some
finite subset of Ms must already be included in H (see Exercise 24 on
p. 279 of [10]). The intersection of any finite subset of Ms includes an
element fromMs, by the argument used to prove thatMs has the finite
intersection property. Consequently, there is a clopen set F in Ns such
that

ϑ(F ∩ U)− ⊆ H , (10)

by (7). The element s belongs to F , by the definition of Ns and the
fact that F is in Ns. To see that F is included in δ−1(H), consider an
arbitrary element t in F . Since F is in Nt, by the definition of Nt, the
set ϑ(F ∩ U)− must belong to Mt, by (7) (with t in place of s). Con-
sequently, the intersection of the sets in Mt is included in ϑ(F ∩ U)−

and therefore also in H, by (10). The value δ(t) is the unique point in
the intersection of Mt, so δ(t) belongs to H, and therefore t belongs
to δ−1(H). This is true for every element t in F , so F is included
in δ−1(H). ��

In view of Theorem 2.59, we know that the maximum compactifica-
tion V of a union space U has the topology of the classic Stone-Čech
compactification, that is to say, every continuous function ϑ from U
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into a compact Hausdorff space W can be extended to a continuous
function from V into W . It may happen that a compact Hausdorff
space W is the universe of a relational structure W, and that a con-
tinuous function ϑ from U to W is also a homomorphism (though not
necessarily a bounded homomorphism). What topological conditions
must the relations in W satisfy in order for the continuous extension
of ϑ to also be a homomorphism? The answer is that the relations
in W must be closed subsets of the appropriate product space. Define
a closed space to be a relational structure W with a compact Haus-
dorff topology such that the relations in W are closed in the product
topology, that is to say, if R is a relation of rank n in W, then R is a
closed subset of the product space W n. Observe that every relational
space is a closed space, by Theorem 2.15 and the remark preceding
that theorem.

Theorem 2.60. If V is the Stone-Čech compactification of the union U
of a disjoint system of relational spaces , then every continuous homo-
morphism from U into a closed space W can be extended to a contin-
uous homomorphism from V into W.

Proof. Suppose ϑ is a continuous homomorphism from U into a closed
space W. The topology on W is, by definition, compact and Hausdorff,
so there is a uniquely determined continuous function δ from V into W
that extends ϑ, by Theorem 2.59. It must be demonstrated that δ
preserves the fundamental relations ofV. Focus on the case of a ternary
relation R.

Assume u, v, and w are elements in V such that

R(u, v, w) (1)

holds in V, and write

r = δ(u), s = δ(v), t = δ(w). (2)

The goal is to prove that R(r, s, t) holds in W. The strategy is to show
that every open subset of the product space

W ×W ×W (3)

that contains the triple (r, s, t) must have a non-empty intersection
with R. Since the relation R is a closed subset of (3), by the assumption
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that W is a closed space, it then follows that (r, s, t) belongs to R, so
that R(r, s, t) does hold. The sets of the form

H1 ×H2 ×H3, (4)

with Hk open inW for k = 1, 2, 3, form a base for the product topology
on (3), so it suffices to prove that every set of form (4) which contains
the triple (r, s, t) has a non-empty intersection with R.

Consider open setsH1,H2, andH3 inW that contain the points r, s,
and t respectively. The inverse images δ−1(H1) and δ

−1(H2) are open
subsets of V that contain the points u and v respectively, by (2) and
the continuity of δ. The clopen sets form a base for the topology of V,
so there must be clopen sets F and G in V such that

u ∈ F and v ∈ G, (5)

and

F ⊆ δ−1(H1) and G ⊆ δ−1(H2). (6)

The image set

R∗(F ×G) = {z ∈ V : R(x, y, z) for some x ∈ F and y ∈ G} (7)

is clopen in V, because V is a relational space (see Definition 2.2); and
the point w belongs to this set, by (1), (5) and (7). Also, the inverse
image δ−1(H3) is open and contains w, by (2), the continuity of δ, and
the assumption that t is in H3. Consequently, the intersection

R∗(F ×G) ∩ δ−1(H3) (8)

is an open set in V that contains w.
The universe of U is a dense subset of V, because V is a compactifi-

cation of U (see Definition 2.48), so the open set in (8) must intersect
the universe of U in some point w̄. Since w̄ belongs to the set in (7),
there must be points ū in F and v̄ in G such that

R(ū, v̄, w̄) (9)

holds inV. Now U is an inner subspace ofV (becauseV is a compactifi-
cation of U) and consequently U is algebraically an inner substructure
of V, by Definition 2.48. Since w̄ belongs to U, it follows that the
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points ū and v̄ must also belong to U, and (9) must hold in U, by
the definition of an inner substructure. The continuous function ϑ is
assumed to be a homomorphism from U to W, so (9) implies that

R(ϑ(ū), ϑ(v̄), ϑ(w̄))

holds in W. The function δ agrees with ϑ on U, so

δ(ū) = ϑ(ū), δ(v̄) = ϑ(v̄), δ(w̄) = ϑ(w̄),

and therefore
R(δ(ū), δ(v̄), δ(w̄)) (10)

holds in W.
The points ū and v̄ belong to the sets F and G respectively, so

they must also belong to the inverse images δ−1(H1) and δ−1(H2)
respectively, by (6). Consequently, δ(ū) is in H1 and δ(v̄) in H2, by
the definition of the inverse image of a set. Also, the point w̄ belongs
to δ−1(H3), so δ(w̄) belongs to H3. It follows that the triple

(δ(ū), δ(v̄), δ(w̄))

belongs to the set in (4), and therefore to the intersection of this set
with R, by (10). Thus, the set in (4) has a non-empty intersection
with R, as was to be shown. Conclusion: the function δ preserves the
fundamental relations of the relational structures, so it is a homomor-
phism; consequently, δ is a continuous homomorphism from V to W
that extends ϑ. ��

Ian Hodkinson has kindly pointed out to us the following theorem
due to Goldblatt that is apparently related to some of the results in
this section: the ultrafilter space of the direct limit of a direct sys-
tem of modal algebras is isomorphic to the inverse limit of the inverse
system of ultrafilter spaces of the modal algebras in the direct sys-
tem. According to Hodkinson, this theorem is a consequence of Theo-
rems 10.7, 11.2, and 11.6 in [12].
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