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Claude Allegre stubbornly passed on to his students the habit
of turning his perception of any geological process into
equations that could eventually be tested against
measurements….

Albarede (1995)

Abstract Partial melting of mantle and crustal rocks is an important process for
the genesis of a suite of igneous rocks seen at the surface of the earth. These rocks
preserve the imprints of the complex physico-chemical processes in the earth’s
interior in the form of their distinct end-member geochemical and isotopic com-
positions. Spatial and temporal variations in temperature, pressure, fluid mass and
concentration of chemical species basically control the petrological property of
rocks. This chapter describes basic framework of petrological modelling approach
to quantify the deeper processes. Most frequently used equations for geotherm
construction for continental and oceanic lithosphere, degree of partial melting and
its distribution with depth due to perturbation in geotherms, partition of trace
elements and radioactive elements in various partial melting models, crustal
evolution and chemical geodynamics models are presented with their derivations.

1 Introduction

The present structure and composition of the earth has been arrived at by physico-
chemical processes which are involved in the cooling of the earth. Within the
earth, thermal conduction is not an efficient mechanism for bringing heat to the
surface from the deep interior. Heat convection, supported by convective insta-
bility arguments, is a more favored mechanism. Convection brings materials from
the deep interior to the base of the lithosphere leading to their partial melting as a
result of decompression. Melts having lesser density rise towards the surface and
bring deeper heat to the surface and near-surface rocks, from where the heat is
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transported by conduction process. Thus, partial melting is a vital process for
earth’s evolution. Why and how such a process takes place needs quantitative
answers. It should be appreciated that reliable knowledge is gained by confronting
data with models. Enough knowledge exists to use principles and their mathe-
matical forms to understand what has undergone with the earth and also fathom
what lies ahead. As geology is a historical science, reductionism, philosophically
speaking, will not be able to trace computationally all geological trajectories,
connecting all space-time events, holistically. What can then be done reasonably?
We should reduce the whole problem into subsets of characteristic processes and
model each one separately to arrive at understanding of these underlying pro-
cesses. Based on such knowledge, one can then construct geological history of an
event or a location or the whole earth. In an interesting book titled ‘‘Melting the
Earth: The history of ideas on volcanic eruptions’’ (Sigurdsson 1999), historical
evolution of the idea of the melting in the earth has been discussed. Starting from
Greeks to current understanding of the pressure release melting has been narrated
in this book. Ideally, melting can occur in the earth due to the following processes:

(a) Temperature changes.
(b) Pressure changes.
(c) Composition changes.
(d) Melting temperature depression by the presence of volatiles, especially water.

All the above are possible, but pressure release melting is the most dominant
process.

Melting can provide good estimate of the thermal condition at its source
regions. We thus need to know the distribution of the temperature, pressure and
composition with depth, and the relationship of melt generation with changes in
these distributions. To further constrain the physico-chemical processes, we need
to model how chemical species partition amongst competing phases and compo-
nents. Albarede (1995) and Shaw (2006) have given an excellent theoretical
treatment of the subject.

2 Geotherm

Calculation of partial melting requires the knowledge of the geotherm in the
lithosphere. In the lithosphere heat transport takes place via heat conduction and
the sources of the heat are radiogenic heat sources and heat flow from the mantle.
Here the relevant balance law is energy conservation and constitutive law is the
Fourier law. We shall derive thermal structure for both continental and oceanic
regions. McKenzie et al. (2005) have formulated comprehensive thermal model of
both continental and oceanic lithospheres including the effects of temperature
dependence of physical properties.
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2.1 Continental Lithosphere

Thermal structure is determined using heat flow and heat generation data.
Worldwide analysis of these data sets has yielded following general inferences:

(1) Cratons show low surface heat flow values whereas orogens show high values.
There has been a decrease in the heat flow values over the geological history.
Radiogenic heat too decreases with time.

(2) There is scatter in the data over mean values. This scatter can be due to a
variety of causes such as hydrothermal circulation.

(3) Radiogenic heat sources in general contribute about 40 % to the surface heat
flow and the remaining is attributed to the deeper sources.

(4) Surface heat flow and heat generation are linearly related. The slope of such a
curve gives the depth scale of the radiogenic heat and intercept with heat flow
axis gives heat flow from the interior.

The last mentioned relationship is used to derive depth dependence of the
radiogenic heat in the crust. The steady state temperature is given by the solution
of the following heat conduction equation:

d

dz
K Tð Þ dT

dz

� �
þ A zð Þ ¼ 0; ð1Þ

with the following boundary conditions:

T ¼ TS; at z ¼ 0; K Tð Þ dT

dz
¼ QS; at z ¼ 0: ð2Þ

Here T denotes temperature, K the thermal conductivity, A(z) the radiogenic
heat distribution, and z the depth. The variation of the radiogenic heat with depth is
given by:

AðzÞ ¼ A0exp(�z=dÞ: ð3Þ

For a homogeneous layer with constant K and A, the solution of Eq. (1) yields
the following expression for temperature distribution:

TðzÞ ¼ TS þ QS
z

K
� A

z2

2K
: ð4Þ

For a stratified crustal model, thermal structure can be obtained by using the
following relationship between temperature Tn and heat flux Qn at the base of the
nth layer having uniform properties (Kn and An) and thickness hn(zn - zn-1) with
temperature Tn�1 and heat flux and Qn-1 at the surface of the layer:
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Tn ¼ Tn�1 þ Qn�1
zn � zn�1

Kn
� An

zn � zn�1ð Þ2

2Kn
; ð5Þ

Qn ¼ Qn�1 þ Anðzn � zn�1Þ: ð6Þ

An can be chosen to represent any general form of radiogenic heat in the crust.
Given values of the concentrations (ci in ppm) of isotopes of U, Th and K and their
decay energies (ei in J/kg s), the radiogenic heat is given by:

A ¼ q
X

i

eici ð7Þ

The decay energies of U, Th and K are respectively 9.66 9 10-2, 2.65 9 10-2

and 3.58 9 10-6 mW/kg. For most rocks, A varies within the range of
0.008–8.0 lW/m3. The base of the lithosphere is assumed to have temperature of
about 1,330 �C. The above formalism can be used to obtain the steady state
thermal regime of the lithosphere.

Sometimes the normal heat production in the crust cannot yield partial melt
such as in granite formation which is a major constituent of the continental crust.
In this case we need to resort to generating transient thermal regimes in the
lithosphere. Tectonic deformation and erosion can lead to redistribution of heat
sources in the crust which can produce higher temperature transiently. One can
also assume horizontal flows of material which can transport heat to longer dis-
tances and lead to partial melting. The mathematical model to construct such
regimes will require solutions of the following advection-diffusion equation:

qC
0

p

oT

ot
þ V :rT

� �
¼ r: K:rTð Þ þ A; ð8Þ

with suitable initial and boundary conditions. Here, V is advection velocity in the
medium, q is the density and C

0
p is the isobaric specific heat capacity.

2.2 Oceanic Lithosphere

Thermal structure of the oceanic lithosphere in its simplest form is constructed by
using a cooling half space model. Mathematically, we need to solve the following
problem:

qC
0

p

oT

ot
¼ K

o2T

oz2
; T 0; tð Þ ¼ TS; T z!1; tð Þ ¼ Tm; T z; 0ð Þ ¼ Tm:

ð9Þ
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Here K; Tm and TS represent thermal conductivity, mantle temperature, and
surface temperature (other variables are already defined). Solution of this equation
with the above initial and boundary conditions is expressed in terms of error
function as (Turcotte and Schubert 2002):

T z; tð Þ � TS

Tm � TS
¼ erf

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Kt=qC0

p

q
0
B@

1
CA: ð10Þ

If the oceanic lithosphere is spreading at the rate v, then time can be related to
horizontal distance from the ridge as t ¼ x=v. Thus, the horizontal and vertical
variation in the temperature is given by:

T z; xð Þ � TS

Tm � TS
¼ erf

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Kx=qC0

pv
q

0
B@

1
CA: ð11Þ

For the error function the following approximate formula can be used
(Abramowitz and Stegun 1964):

erf xð Þ � 1� a1t þ a2t2 þ a3t3
� �

exp �x2
� �

; ð12Þ

where

t ¼ 1
1þ 0:47047xð Þ ; a1 ¼ 0:34802; a2 ¼ �0:09587; a3 ¼ 0:74785:

Given the values of parameters appearing in the above equation, thermal
structure can be easily determined. Variation of heat flow and subsidence with age
of the oceanic lithosphere is given by (Turcotte and Schubert 2002):

Q ¼ K
Tm � TSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pKt=qC0

p

q ; w ¼ 2qma Tm � TSð Þ
qm � qS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kt=pqC0

p

q
ð13Þ

3 Pressure Distribution Within Lithosphere

At depths, stresses can be decomposed into isotropic pressure and deviatoric
stresses. Except near the surface region, stresses can be taken largely as pressure
P which is governed by the following equation:

dP

dz
¼ qg: ð14Þ
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Here P; q and g are pressure, density of rocks and acceleration due to gravity.
Integrating this equation gives P(z) as:

P zð Þ ¼ Zz

0

qgdz: ð15Þ

If the material properties of a given crustal column are constant, then we have:

P zð Þ ¼ qgz: ð16Þ

Taking value of crustal thickness as 40 km, density as 2,800 kg m-3 and
acceleration due to gravity as 9.80 ms-2, the pressure at the base of the crust is
P � 1:1 GPa � 11 kbar: For some geological problems it would be desirable to
know both hydrostatic (given above) and deviatoric stresses, required for both
compressive and extensional regimes. We would then need to know all compo-
nents of stress regime which requires much more involved process of calculations.

4 Degree of Partial Melting

As a parcel of rock rises upward, it experiences a decrease in pressure but its
temperature does not get equilibrated with the surrounding material. This adiabatic
decompression leads to partial melting as the rock parcel crosses the solidus curve.
The slope of the solidus curve or of any equilibrium boundary for a reaction is
defined by the Claussius-Clayperon relation (Ganguly and Saxena 1987). This
relationship is derived for one component system in two phases by equating Gibbs
free energy of both phases, G1 and G2 at pressures and temperatures P; Tð Þ and
(P + dP, T + dT). We, thus, have along the phase separation boundary:

G1 ¼ G2 and G1 þ dG1 ¼ G2 þ dG2; ð17Þ

which gives:

dG1 ¼ dG2: ð18Þ

Change in the Gibbs free energy (defined as G = E + PV - TS) is obtained as:

dG ¼ dE þ PdV þ VdP� TdS� SdT : ð19Þ

Here, E is internal energy, V is volume and S is entropy. Using first and second
laws of thermodynamics (dE = TdS - PdV), we get

dG ¼ VdP� SdT : ð20Þ
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From Eqs. (18) and (20), we get:

V1dP� S1dT ¼ V2dP� S2dT : ð21Þ

This gives the Claussius-Clayperon relation as:

dP

dT

� �
¼ S2 � S1

V2 � V1
� DS

DV
: ð22Þ

where DS and DV represent change in the entropy and volume, respectively, due
to reaction which in this case is the transformation of a solid assemblage to melt
(Ganguly and Saxena 1987). For olivine taking the values of DV and DS as
0.434 J/MPa/g and 0.362 J/K/g, respectively, we get dT/dP as *120 K/GPa. This
needs to be compared with the adiabatic gradient followed by a parcel of mantle
material ascending to the surface. Under equilibrium condition in which the
entropy of a system is conserved:

dS ¼ oS

oT

� �
P

dT þ oS

oP

� �
T

dP: ð23Þ

Partial derivatives in the above equation can be written in terms of heat capacity
CP and coefficient of thermal expansion a as:

dS ¼ CP

T

� �
dT � aVdP ¼ CP

T

� �
dT � a

q
dP: ð24Þ

Equating dS as zero, the adiabatic gradient can be obtained as:

dT

dP
¼ aT

qCP
; ð25Þ

where a is the coefficient of thermal expansion. This is sometimes referred as
isentropic gradient to distinguish it from adiabatic gradient of system that is
subjected to internal entropy production (Ganguly 2008). Using Eq. (16), this
equation can be reduced to:

dT

dz
¼ gaT

CP
: ð26Þ

The above equation is used to find the adiabatic gradient for a given rock type and,
thus, the depth at which partial melting starts once the solidus curve is intersected.
We can estimate the adiabatic gradient for olivine using the values of a; Cp; V and T
as 2:7� 10�5 K�1; 193J/ (K-mol); 43:8 J/ (MPa-mol); and 1650 K; respectively.
This gives the adiabatic gradient as *10 K GPa-1, which is much smaller than
inverse of the Claussius-Clayperon slope obtained earlier. Thus, a parcel of the
mantle material rising along the adiabatic gradient will experience partial melting.
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Partial melting of the rock adds another effect, the release of latent heat due to which
further rise of the rock parcel deviates from the adiabatic path given by Eq. (26).
Some parameterized models for partial melting taking into consideration these
effects have been proposed (Fig. 1).

Recently, Ganguly (2005) has derived the following expression for temperature
gradient for the irreversible adiabatic decompression of isoviscous materials rising
from great depths in the mantle:

dT

dz

� �
QðirÞ
¼ qr

q
dT

dz

� �
S

þ g

Cp
1� qr

q

� �
� 2

Cp

du

dz

� �
: ð27Þ

Here, qr is density of rising mantle rock and u is vertical velocity (positive
downward). Ganguly (2005) showed that the temperature of rising mantle rocks
will be higher than given by adiabatic gradient depending on the value of the ratio
qr=q. When qr=q\0:94 the ascending mantle rocks would be heated up instead of
cooling under adiabatic condition leading to increased melt productivity.

Equations (22) and (25) set the conditions for the onset of partial melting.
A quantity of interest is the amount of melt generated when the mantle material

Fig. 1 A sketch of solidus
and adiabatic curves
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rises after it intersects the solidus. For this, we follow the changes in the entropy as
the material moves along the solidus. It is given by:

dSs

dP
¼

Cs
p

T

dT

dP

� �
2£

�asVs: ð28Þ

Here, subscript 2[ indicates that the gradient is along the solidus and super-
scripts s and l refer to solid and liquid phase, respectively. If solid and melt
together have entropy S0, then we have:

S0 ¼ fSl þ ð1� f ÞSs; ð29Þ

where f is melt fraction. From the above equation, we get:

f ¼ S0 � Ss

Sl � Ss
¼ S0 � Ss

DS
: ð30Þ

Differentiating Eq. (30) with respect to P and substituting Eq. (28) we get:

of

oP

� �
S

¼ � 1
DS

Cs
p

T

oT

oP

� �
2£

�asVs

" #
: ð31Þ

This equation can further be evaluated by using solidus gradient equation as:

of

oP

� �
S

¼ � 1
DS

Cs
p

T

DV

DS
� asVs

� �
: ð32Þ

We can evaluate the changes in melt fraction with pressure using data for heat
capacity, change in volume and entropy at fusion, coefficient of thermal expansion and
temperature. Calculations show that melt fraction increases with decrease in pressure.

Besides above modelling, following relationship has been used in the literature
(Ahern and Turcotte 1979) to calculate the degree of partial melting, f:

f ¼ a exp b T � cz� dð Þð Þ � 1f g; ð33Þ

where a ¼ 0:4; b ¼ 3:65� 10�3K�1; c ¼ 3:0� 10�3K m�1; and d = 1,100 �C.
This relationship does not hold for very low degree (\5 %) of partial melting.
McKenzie and Bickle (1988) and Ellam (1992) have given the following
expression for calculating f:

f � 0:5 ¼ T
0 þ T

02 � 0:25
	 


0:4256þ 2:988T
0

	 

; ð34aÞ

f ¼ 2:7157� 10�7z3 � 5:0715� 10�5z2 � 3:7816� 10�4zþ 0:30929; ð34bÞ
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where T
0 ¼ T � Ts þ Tlð Þ=2ð Þ= Tl � TSð Þ � TS and Tl denote solidus and liquidus

temperatures. The second relationship has been used to quantify partial melting
due to rise of hot mantle plume (Ellam 1992).

There has been discussion in the literature on the variation of melting with
depth. McKenzie (1984) and McKenzie and Onions (1991) have argued for
decrease in degree of melting with decrease in pressure whereas Ahern and Tur-
cotte (1979) argue for increase in melting as pressure decreases. Asimov et al.
(1997) have argued for increase in melt productivity with decrease in pressure both
for batch and fractional melting under isentropic condition.

5 Changes in the Temperature After Melt Extraction

We shall take a simple two-layered model of lithosphere with no radiogenic heat
and thermal structure as discussed in Foucher et al. (1982):

T zð Þ ¼
Tmz
H ; 0� z�H

Tm þ G z� Hð Þ; z�H

�
: ð35Þ

In this thermal model, the lower region of the lithosphere has a constant thermal
gradient, denoted by G, connecting to adiabatic gradient of mantle instead of
having a constant temperature.

After stretching of the lithosphere by a factor b the thermal structure changes to:

T ¼ T
0

m b=Hð Þz; 0� z�H=b
T
0
m þ G z� H=bð Þ; z�H=b

�
; ð36Þ

where T
0
m ¼ Tm � G H � H=bð Þ. With partial melting, the above expression

modifies to:

T ¼ T
0

m b=Hð Þz� fL=C; 0� z�H=b
T
0

m þ G z� H=bð Þ � fL=C; z�H=b

�
: ð37Þ

Here, L and C are latent heat of fusion and specific heat, respectively. f is
function of temperature. After its substitution, we can obtain the thermal structure
of the stretched lithosphere.

6 Depth Distribution of Partial Melt

The distribution of degree of partial melt with depth can be calculated by substi-
tuting the expression for temperature T given by Eq. (36) into equation for degree
of partial melting given by Eqs. (33) and (34a ) (Foucher et al. 1982). This yields an
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equation for f as the function of depth. This calculation can be done numerically. It
is seen that the top of the melt zone is at the depth H/b and bottom is at the depth
where degree of partial melting is zero (z=Hf). This is given by:

Hf ¼
Tm � GH � d

c� G
for b [ H=Hf : ð38Þ

The degree of partial melting increases from zero at Hf to maximum at the
depth of H=b as:

f ¼ f0ð1�
z

Hf
Þ: ð39Þ

We can also calculate the thickness of the layer (Hb) formed by emplacement of
melts as liquid igneous body (density qal) as:

Hb ¼
qa

qal

ZHf

H=b

f0 1� z

Hf

� �
dz: ð40Þ

Here, qa is the density of asthenosphere. This expression is evaluated as:

Hb ¼
qa

2qal
1� bc

b

� �2

Hf f0z; ð41Þ

where bc = H/Hf.

7 Partition Coefficients for Trace Elements

Trace elements have been found to trace the melting processes. These elements
follow principles of dilute solutions. Their distributions amongst phases are easily
characterized as these elements do not interact with each other and follow Henry’s
law. The distribution in any two phases is described in terms of partition function.
The total mass of elements is conserved within all phases. Elements remaining in
solid or released in melt are characterized by their partition coefficient values. Shaw
(2006), Albarede (1995), and Ganguly (2008) can be referred for original references.

If mass of component i in a phase a is mi, with phase mass being Mi, the
concentration of component i in this phase is defined as ca

i ¼ mi=Mi. For total
number of components being p, we have:

Xp

i¼1

ca
i ¼ 1: ð42Þ
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Let concentration of a component i in phases a and b be denoted by ca
i and cb

i ,
respectively. The partition coefficient is defined as:

Db�a
i ¼ cb

i =ca
i : ð43Þ

A bulk partition coefficient can be defined for use in petrology as rocks contain
a large number of minerals which are involved in partial melting.

Let mineral proportions of a rock before partial melting be denoted by X0
i and

after melting by Xi. The concentration of element in the rock is defined as:

cS ¼
X

i

ciXi: ð44Þ

The concentration in the melt can be defined using partition coefficient
(Di-m)when mineral and melt are in equilibrium as:

cl ¼ ci=Di�m: ð45Þ

Combining the above two equations, we get:

cS ¼ cl

X
i

Di�mXi: ð46Þ

Considering total mass of rock before melting as M0, after melting the rock has
mass as M and melt as L. If f is the melt fraction, we have:

L ¼ f M0 and M ¼ 1� fð ÞM0: ð47Þ

We now write for each mineral:

MXi ¼ M0X0
i � Lpi; ð48Þ

where pi is the proportion of mineral i in the melt. Thus, total concentration of an
element in the solid is given by:

cS ¼ cl

X
i

Di�mX0
i � piDi�mf

� �
1� fð Þ : ð49Þ

Thus, the bulk partition coefficient D is given by:

D ¼ D0 � Pfð Þ= 1� fð Þ; ð50Þ

where D0 ¼
P

i
Di�mX0

i ;P ¼
P

i
piDi�m:
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The above formalism is for non-modal melting. For modal melting, we have
X0

i ¼ pi. In this case, we have D0 = P = D. Elements having small values of
D \1ð Þ, are called incompatible and others compatible elements. Incompatible and
compatible elements partition preferentially into melt and solids, respectively.

8 Batch Melting

Consider mass of solid M0 with concentration of some element as c0
S. After partial

melting, let the volume of the melt be L with concentration of the element as cl and
in the residual solid cS with mass as M. Total melt fraction attains equilibrium with
the solid and only then it is extracted fully. Thus, we have the following rela-
tionship (Shaw 2006; Ganguly 2008):

M0 ¼ LþM; c0
SM0 ¼ clLþ cSM: ð51Þ

Let us now define melt fraction and partition coefficient as:

f ¼ L

M0
; D ¼ cS

cl
: ð52Þ

Using these relationships, we find the concentrations in liquid and residual solid
as (Fig. 2):

cl ¼
c0

s

f þ D 1� fð Þ ; cS ¼
Dc0

S

f þ D 1� fð Þ : ð53Þ

This is also called equilibrium melting. Figure 2 shows graphically the rela-
tionship (Eq.53(i)) for various values of D. Here total melt remains in contact with
matrix. For non-modal melting, above equations are changed as:

cl ¼
c0

S

D0 þ f 1� Pð Þ ; cS ¼
c0

S D0 � Pfð Þ
1� fð Þ D0 þ f 1� Pð Þð Þ : ð54Þ

9 Fractional Melting

In this case, melt fraction is extracted from the solid as soon as it is formed or exceeds
a critical limit. Here we treat the first case. Let the mass of solid converted to melt be
given by dM with concentration cl. We can then write (Shaw 2006; Ganguly 2008):

cldM ¼ d cSMð Þ; cSdM

D
¼ cSdM þMdcS;

dcS

cS
¼ 1

D
� 1

� �
dM=M: ð55Þ

Models for Quantifying Mantle Melting Processes 35



Integrating the above equation, we get:

cl ¼
c0

S

D

� �
1� Xð Þ

1�Dð Þ
D ; cS ¼ c0

S

� �
1� Xð Þ 1�Dð Þ=D: ð56Þ

Here X = L/M0. This is the amount of melt fraction extracted from the sources.
Average concentration in melt is obtained by averaging over 0–X (Fig. 3):

�cl ¼ 1=Xð Þ Z
X

0

cldX ¼ c0
S 1� 1� Xð Þ1=D
	 


=X: ð57Þ

These two melting models, batch and fractional, are the end member models.
For non-modal melting, we get:

cl ¼ c0
S=D0

� �
1� PX=D0ð Þ 1�Pð Þ=P; cS ¼ c0

S 1� PX=D0ð Þ1=P= 1� Xð Þ: ð58Þ

The average concentration over all X is given by:

�cl ¼ c0
S 1� 1� PX=D0ð Þ1=P
	 


=X: ð59Þ

Fig. 2 Relative concentration of trace elements in liquid for partial melting by batch melting
model described by Eq. (53)
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10 Continuous Melting Model

McKenzie (1985) and Williams and Gill (1989) discussed a model wherein a
fraction of partial melt remains always within the matrix. Let m be the melting rate,
i.e., the amount of the matrix transformed into melt per unit time. We then have;

d

dt
ql/clð Þ ¼ csm;

d

dt
qS 1� /ð ÞcSð Þ ¼ �clm: ð60Þ

Combining these two equations, we get:

dcl

dt
¼ �acl: ð61Þ

where

a ¼ 1� Dð ÞmF

/qlð Þ ; F ¼ 1þ DqS 1� /ð Þ
ql/ð Þ

� ��1

:

We then have:

cl ¼ c0
l e�at: ð62Þ

Fig. 3 Relative average concentration of trace elements in liquid for partial melting by fractional
melting model described by Eq. (57)
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Here, c0
l is the initial composition of the melt. McKenzie (1985) has shown that

the extracted melt, denoted by X, is related to the melt production rate as:

X ¼ 1� exp �rtð Þ; r ¼ m= ql/þ qS 1� /ð Þð Þ: ð63Þ

From here, one can get expression for t as:

t ¼ � log 1� Xð Þ=r: ð64Þ

Thus, the concentration cl is written as:

cl ¼ c0
l 1� Xð ÞG 1�Dð Þ; G ¼ ql/þ qS 1� /ð Þ

ql/þ qS 1� /ð ÞD : ð65Þ

It can also be shown that:

c0
l ¼ Gc0; ð66Þ

where c0 is the initial concentration in the source. We then get:

cl ¼ c0D 1� Xð ÞG 1�Dð Þ: ð67Þ

This is the expression for the continuous melt. This can be integrated over [0, X]
to get an expression for aggregated continuous melt as:

�cl ¼ c0G
1� 1� Xð ÞG 1�Dð Þþ1

X 1þ G 1� Dð Þð Þ : ð68Þ

From above two equations expressions for batch melting (X = 0 and /
= f) and fractional melting (/ = 0) can be derived.

11 Fractionation of Radioactive Elements

We shall now present expressions for the radioactive element distributions in melts
and matrix following McKenzie (1985) and Williams and Gill (1989). Let the
concentration and half-life of elements be denoted by c and k respectively. Let
cP

S cP
l

� �
represent concentration of parent element in solid (melt). We have the

following equations for distribution of parent element in solid and melt as:

d

dt
1� /ð ÞqScP

S

� �
¼ �cP

l m;
d

dt
/qlc

P
l

� �
¼ �cP

S m: ð69Þ
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Combining these two equations, we get:

1� /ð ÞqSDP þ /ql

� � dcP
l

dt
¼ DP � 1
� �

mcP
l ; ð70Þ

where DP ¼ cP
S=cP

l . This equation can be further simplified to:

dcP
l

dt
¼ �aPcP

l ; ð71Þ

where

aP ¼
1� DPð ÞmFP

ql/ð Þ ; FP ¼ 1þ 1� /ð ÞqS

/ql
DP

� ��1

: ð72Þ

For daughter element, cD
S cD

l

� �
, it is necessary to include the decay as its life is

small compared to the half-life of the parents. We have:

d

dt
1� /ð ÞqScD

S þ /qlc
D
l

� 

¼ cD

S m� cD
l mþ kP 1� /ð ÞqScP

S þ /qlc
P
l

� 

� kD 1� /ð ÞqScD

S þ /qlc
D
l

� 

:

ð73Þ

This equation can further be reduced to:

d

dt
cD

l ¼ �kDcD
l þ kPaP � aD; ð74Þ

where

kD ¼
1� DDð ÞmFD

/ql
; aP ¼

kPcD
l FP

FD
; aD ¼ kDcD

l : ð75Þ

We have now two equations for both parent and daughter elements distribution
in the melt. We can derive from them equations for batch and continuous melting.

11.1 Batch Melting

Here, m = 0. Thus, we have in terms of activity ap ð¼ kpcpÞ:

daP

dt
¼ 0;

daD

dt
¼ kD

FD

FP
aP � aD

� �
: ð76Þ
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The solutions of the above equations are:

aP ¼ A; aD ¼ Be�kDt þ FD

FP
aP: ð77Þ

For r = aD/aP, we have the following expression from above equations:

r ¼ Be�kDt þ FD=FP: ð78Þ

At t = 0 we have:

r t ¼ 0ð Þ ¼ r0 ¼
A

aP
þ re

� �
; re ¼ FD=FP ð79Þ

We thus get:

r ¼ r0e�kDt þ re 1� e�kDt
� �

: ð80Þ

Thus, constant of decay of r depends upon kD. When t tends to infinity, r = re.
This value will be 1 only if DD = DP.

11.2 Continuous Melting

Here m and / are constant. We, therefore, have:

daP

dt
¼ �aPaP;

daD

dt
¼ �aDaD þ kD

FD

FP
aP � aD

� �
: ð81Þ

The solutions of these equations are:

aP ¼ aP 0ð Þ þ e�aPt

aD ¼ aD 0ð Þe� kDþaDð Þt þ kDFD

kD þ aD � aPð ÞFP
aP 0ð Þ e�aPt � e� kDþaDð Þt

	 

:

ð82Þ

Numerical applications of the above formalism have been given in Williams
and Gill (1989).
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12 Chemical Geodynamics

Chemical fractionations in the earth have involved major geodynamical phe-
nomena. Thus, trace element evolutions, which can characterize fractionation
phenomena, can also yield the nature of the geodynamical processes. Issues such
as mass, duration, and time of the crust extracted from the mantle can be estimated
using the evolution of trace elements in these reservoirs. Rb-Sr and Sm-Nd data in
the crust, MORB and OIBs can be used for this purpose. MORB and OIBs can
give estimates of depleted and undepleted reservoirs. Observations of isotopic
systems define normalized isotope ratio (e) and fractionation factor (f) as (Turcotte
and Schubert 2002):

e ¼ cD	=cD

cD	
S =cD

S

� �
� 1

� �
� 104; f ¼ cP=cD

cP
S=cD

S

� �
� 1: ð83Þ

Here, cP and CD	 refer to mole densities of parent and daughter isotope and cD

refers to reference isotope of daughter element. Normalization is done with respect
to bulk silicate earth (denoted by subscript S). The expressions for spontaneous
separation of crustal reservoir (sc) and ratio of mass of crust and mantle reservoirs
(Mc/Mm) are given (Turcotte and Schubert 2002) as:

sc ¼
emp

Qfmp
;

Mc

Mm
¼ Dsi 1� fcp

fmp

� �
� 1

� ��1

;

Q ¼ 104 cP
s0

cD	
s0

k;Dsi ¼
\cD	

c [
\cD	

s [
¼ \cD

c [
\cD

s0 [
:

ð84Þ

Here, p refers to present values and h…i refers to enrichment factor at the time
of crust separation from mantle. Subscripts c and m refer to crust and mantle,
respectively. k is the decay constant. This formalism has been applied using
Sm-Nd and Rb-Sr isotope systems.

13 Crustal Evolution

Crust has been generated by mantle melting. Further layered structure of the crust
has been formed due to intra-crustal melting. Attempts have been made to carry
out population dynamics of crustal elements which have been generated over the
earth’s history and survived in spite of ongoing erosion and subduction. We shall
give below a highly simplified treatment of the evolution of crust. Present volume
of the crust is 7 9 109 km3, having grown over time period of 3.8 Ga. Denoting
volume of crust as, V(t) at time t, the conservation equation for V can be written
as (Gurnis and Davis 1985):
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dV

dt
¼ _Vg � _Vr; ð85Þ

where _Vg and _Vr denote rates of growth and removal. We need to relate rates of
growth and removal with the existing volume of continental crust and other crust
modifying processes such as subduction and erosion. Following forms for these
two rates have been considered:

_Vg ¼ Cg
_Aa; _Vr ¼ Cr

_AbVm: ð86Þ

Here Cg; Cr; a; b; and m are constants and _A equals the average plate velocity

times ridge length. At present _A ¼ 3 km3/yr. Heat flow (q)is proportional to

square root of plate velocity. So we can take q /
ffiffiffi
_A
p

. Thus, the equation for V is:

dV

dt
¼ Cgq2a � Crq

2bVm: ð87Þ

Given the time dependence of q as:

q tð Þ ¼ exp �ktð Þ; k ¼ ln 2 s1=2

� �
; s1=2 ¼ 2� 4Ga, ð88Þ

the form of V(t), the volume of crust, can be determined. Following special cases
have been solved in Gurnis and Davis (1985):

(i) No recycling (Cr ¼ 0; a ¼ 1):

V tð Þ ¼ Cg=2k
� �

1� e�2kt
� �

: ð89Þ

(ii) Constant recycling rate (a ¼ 1; b ¼ 0 ¼ m):

V tð Þ ¼ Cg=2k
� �

1� e�2kt
� �

� Crt: ð90Þ

(iii) Rate dependent recycling (m ¼ 0; b 6¼ 0):

V tð Þ ¼ Cg � Cr

2k
1� e�2kt
� �

; for b ¼ 1: ð91Þ

V tð Þ ¼ Cg=2k
� �

1� e�2kt
� �

� Cr=4kð Þ 1� e�4kt
� �

; for b ¼ 2 ð92Þ

(iv) Volume dependent removal rate (a ¼ 1; m ¼ 1):
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V tð Þ ¼ Cg

2k� Cr
e�Crt � e�2kt
� �

; for b ¼ 0: ð93Þ

V tð Þ ¼ Cg

Cr
1� e�Crtexp

Cr

2k
e�2kt

� �� �
; for b ¼ 1: ð94Þ

These equations can be used to find evolution of the volume of the crust.

14 Melt Extraction Velocity

As pressure release melting is the main process for partial melt generation, it is
necessary to know how mantle upwells (passive, active or both). Melt distribution
and flow can be envisioned as porous flow or channel flow. In case of porous flow
models, the velocities are found to be of the order of few meters per year whereas
faster velocities are possible in the case of channel flows. Which one of these is
more reasonable for MORB or other types of melt sources can be determined by
looking into signatures of short time processes. Stracke et al. (2006) have analyzed
U-series decay isotopes in the Icelandic lavas and found evidences of short times
for melt transport to the surface. Thus, channel flow model fits better with
available data.

15 Mantle Heterogeneities

When we characterize mantle and crust as reservoirs, we take them to be homo-
geneous, ignoring small-scale heterogeneities. It has been shown that mantle
convection assimilates the subducted materials with chaotic mixing. Evidences of
such stirring have also been seen in the rocks brought at the surface. Quantification
of such processes will require constructing suitable mathematical models and
confronting with data. There are two ways to make progress. One can make fully
physics based models. But problem here is that there are too many physical and
chemical parameters to be known for making progress, the uncertainty of result
being decided by least known parameter. With current level of development this is
not profitable approach. Another approach is to use statistical methods. One can
here theoretically obtain the probability distribution of isotopic ratios and confront
them with observed data to know the nature of controlling parameters, such as
fraction of melt, average duration between melting and nature of mantle stirring.
Significant progress has been made in this direction. Rudge et al. (2005) have
derived a comprehensive statistical framework, extending formulations and ideas
of several previous workers (Allegre and Lewin 1995a, b; Slater et al. 2001;
Kelllog et al. 2002; Meinborn and Anderson 2003), and applied it to model the
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isotopic variability of MORB. Melt fraction is found to be 0.5 % and average time
since parcel last melted as 1.4–2.4 Ga.

16 Concluding Remarks

Modelling of the partial melting processes in general requires the study of mul-
tiphase media including matrix deformation. The detailed petrological modelling
will need to consider space- and time- variations of temperature, stress, fluid mass
and concentration of chemical species which are coupled (Sleep 1974; McKenzie
1984; Ribe 1987; Dobran 2001; Steefel et al. 2005). The physico-chemical pro-
cesses will be described by a coupled set of nonlinear partial differential equations.
It is seen that the nonlinear systems show extremely complex behavior such as
bifurcation, deterministic chaos, self-organization and spatio-temporal chaos.
Petrological complexity as observed in the field and also required to interpret the
geochemical and geophysical data needs an approach as mentioned above. Several
critical problems have been solved in the literature.
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