
Chapter 1
Introduction

Abstract This chapter deals with a brief review of fractal electrodynamics including
fractal antenna, fractal frequency selective surface and metamaterials. A brief review
of different classes’ of aperture coupling problems inwaveguides, conducting screens
and cavities has also being reported here. Based on the review work, several aper-
ture coupling problems involving rectangular waveguides, conducting screens and
cavities are identified.

1.1 Introduction

The rapid growth in the wireless systems during the past several years has set new
demands on electromagnetic engineers. There is a trend to integrate the entire system,
including antennas, on a single chip. This requires the design of miniaturized, power
efficient, and low profile antennas. Further, multiband operation of wireless systems
has been receiving considerable attention during the last decade. This requirement
has initiated research in various directions, especially, in the design of compact
multiband antennas and filters. One of the promising area of research for multiband
operation is fractal electrodynamics, in which the fractal geometry is combined
with electromagnetics for the purpose of investigating a new class of radiation and
scattering problems. Fractals are complex shapes which contain an infinite number
of scaled copies of the geometry and resonate at different frequencies. This property
has been successfully used in the design of multiband antennas, frequency selective
surfaces (FSS) and electromagnetic band gap (EBG) structures.

A survey of the large body of literature on fractal electromagnetics shows that
no effort has been made so far, to exploit the multiband properties of fractals in
aperture problems. Apertures in conducting screens, waveguides, and cavities con-
stitute an important class of boundary value problems and find many applications in
electromagnetic systems. The aim of the present study is to initiate research in the
investigation of the properties of fractal apertures.
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2 1 Introduction

To lay an understanding on the behavior of fractal geometries in the aperture
coupling problems, a brief review of fractal geometries and their applications in the
electromagnetic engineering is presented. This is followed by a brief review on the
study and analysis of different aperture coupling problems inwaveguides, conducting
screens and cavities.

1.2 Fractal Electrodynamics

1.2.1 Fractal Geometries

Many patterns in the nature are so irregular and fragmented that they exhibit not
only a higher degree, but also a higher level of complexity. The number of distinct
scales required to describe the natural phenomenon are infinite. Hence, it was gener-
ally believed by scientists and mathematicians that these natural phenomenon were
beyond rigorous explanations before Mandelbrot [1] proposed a new geometry and
its use in various diverse fields. The geometry describes many of the irregular and
fragmented patterns of nature around us. Mandelbrot coined the term ‘fractal’from
theLatinword ‘frangere’whichmeans to break, to create irregular fragments.He used
the term fractal to describe some complex and convoluted objects such as mountains,
coastlines and many other natural phenomenon.

An iteration algorithm such as multiple reduction copy machine (MRCM) is
applied in order to construct the ideal fractal geometries [2]. Basically, the process
consists of an initiator and a generator. Based upon the nature of the iteration process,
theremay be deterministic and random fractals. Also, depending upon themass ratio,
the fractals may be homogeneous or heterogeneous [3]. Some of the most commonly
used fractal geometries, such as Sierpinski gasket, Sierpinski carpet, Hilbert curve,
Koch curve are shown in Fig. 1.1. The generation procedure of all the geometries
follows the same rule and starts with an initiator and a generator. For example, as
shown in Fig. 1.2, an equilateral triangle is taken as the initial geometry for the
generation of Sierpinski gasket fractal. The mid points of each sides are connected
and the initial triangle is subdivided into four triangles. The center triangle is removed
and this gives the generator of the Sierpinski gasket fractal. In the next iteration, the
same process is repeated on the remaining three triangles and if this iteration process
is continued for an infinite number of times, then one can obtain an ideal Sierpinski
gasket geometry.

The important properties of the fractal geometries are self-similarity, space-filling
ability, and lacunarity. When an object is composed of smaller copies of the original
geometry, it is said to be self-similar. A self-similar object can be described as a
cluster, which is again made up of smaller clusters that are identical to the entire
geometry. Thus, within the whole geometry, an infinite number of similar copies can
be found.Hence, fractal geometries are said to have no characteristic size. The scaling
factors in two orthogonal directions can be same or different. The former gives a
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Sierpinski Gasket Sierpinski Carpet

Hilbert Curve

Koch Curve

Fig. 1.1 Some of the most commonly used fractal geometries. Credit note First published at [2]

Iteration0 Iteration1 Iteration2

Fig. 1.2 Generation steps of Sierpinski gasket fractal. Credit note First published at [2]

self-similar geometry and the later produces a self-affine geometry. Geometries like
Hilbert curve or Peano curve, when iterated for large number of times, fill a two
dimensional area with the curve length tending to infinity which describes the space-
filling property of the fractal geometries. Lacunarity is a term which describes the
hollow space in a fractal geometry [1].

Another unique feature of the fractal geometries is the fractional dimension. There
are different notations of the dimension of fractal geometries, such as topologi-
cal dimension, Hausdorf dimension, Box counting dimension, and self-similarity
dimension [2]. Among these, the self-similarity dimension is one of the most impor-
tant parameters for the characterization of the fractal geometries. The self-similarity
dimension of the fractal geometry is defined as
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Table 1.1 Self-similarity dimension of typical fractal geometries

Fractal geometry Scale factor (s) No. of self-similar copies Dimension Ds

Sierpinski gasket 1
2 3 1.5850

Sierpinski carpet 1
3 8 1.8927

Koch curve 1
3 4 1.2619

Hilbert curve 1
2 4 2

Ds = log(N )

log 1
s

(1.1)

where N is the number of self-similar copies and s is the scale factor. The dimensions
of some typical fractals are tabulated in Table 1.1. It should be noted here self-
similarity dimension of the fractal does not uniquely describe the fractal geometry [4].

Iterative function system (IFS)is an extremely versatile tool for convenient gener-
ation of fractal geometries. The iterative function system is a collection of self-affine
transformations [2] given by,
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where the parameters a, b, c and d are defined by scaling and rotation of initial
geometry and e and f denote the translation.

Let {wn, n = 1, 2, 3, ..., N } be a set of affine transformations defined in (1.2)
and let A denotes the initial image. The application of this set of transformations on
the initial image produces a set of self-affine copies {wn(A), n = 1, 2, 3, ..., N }.
Finally, a new image is obtained by collecting all these images as

W (A) = w1(A) ∪ w2(A) ∪ ... ∪ wN (A) (1.3)

where W is called the Hutchinson operator. By repeated application of W to the
previous geometry, an ideal fractal geometry can be obtained. That is,

A1 = W (A0), A2 = W (A1), ..., Ak = W (Ak−1) (1.4)

The IFS has proved to be a very powerful design tool for fractals because this provides
a general framework for the description, classification andmanipulation of the fractal
geometries.

In the following sections, a brief review is provided on the applications of fractals
in electromagnetics.



1.2 Fractal Electrodynamics 5

1.2.2 Fractal Antenna Elements

The scattering and reflection from fractal screens have been studied extensively and
a good review on the radiation and scattering from fractal surfaces can be found in
[4]. It has been shown that the diffracted field in Franhauffer zone is self-similar.
The interesting feature of fractal screens is that the scattered patterns from these
fractal geometries contain the fractal pattern imprinted on these. Several self-similar
geometries are used in the design of multiband antennas like Sierpinski gasket, Koch
curve, Hilbert curve etc. A comprehensive review on the fractal antenna and fre-
quency selective surface elements can be found in [5]. Sierpinski gasket is the most
popular in fractal antenna engineering. The behavior of Sierpinski gasket mono-
pole and dipole antennas have been investigated in [6, 7]. It has been found that
the antenna exhibits a log periodic behavior with a periodicity of 2. A downward
shift of resonant frequencies has been observed as the order of iteration increases.
Also, the radiation patterns at different resonant frequencies of the antenna show a
large degree of similarity, although some side lobes are generated at higher resonant
frequencies. The behavior of the Sierpinski gasket antenna was explained in terms
of an iterative network model in [8, 9], where the scattering matrices for the initiator
and generator were used to predict the behavior of fractal antenna by cascading the
scattering matrices. It was demonstrated in [10] that the location of different reso-
nant frequencies of the antenna can be controlled by changing the scale factor of
the fractal geometry. The flare angle of the initial triangle affects the antenna input
characteristics [11]. The resonant frequencies shift downward as the flare angle of
the initial triangle is increased. Also, too small a flare angle causes the multiband
fractal antenna to operate as a simple monopole antenna. Several modifications of
the Sierpinski gasket antenna and its effects on the radiation pattern of the antenna
have been investigated [12–14]. Design equations for determining the resonant fre-
quencies of Sierpinski modes and for the side length of the Sierpinski gasket antenna
is proposed in [15].

An important property of fractal curves is that the length of the curve tends to
infinity, although the overall height of the curve remains same. Hence, fractal curves
are very useful in reducing the resonant frequencies of the wire antenna. One of the
widely used fractal geometry in the design of wire antennas is the Koch curve. The
behavior of Koch curve fractal antenna has been presented in [16, 17] where, a fifth
iteration Koch monopole antenna has been investigated and it has been found that
the Koch curve effectively reduces the resonant frequency of the wire antenna. Addi-
tionally, the resonant frequencies are more closely spaced for higher order iterations
of the fractal. A rigorous comparison of Koch curve fractal antenna and their Euclid-
ean counterpart has been reported in [18, 19]. The effect of indentation angle on the
performance of the monopole and dipole antenna has been investigated in [20]. It
was found that the indentation angle plays an important role in locating the resonant
frequency of the antenna. Also, the resonant frequencies decrease with the increase
in the indentation angle and this decrement is much more dominant in higher order
resonant frequencies than at the primary resonance.
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Hilbert curve is widely used in the miniaturization of antenna element because of
its space-filling property. The advantage of Hilbert curve antenna is that it offers a
higher frequency compression factor as compared to the Koch curve fractal antenna,
since the length of the Hilbert curve is much larger than that of the Koch curve for
a given 2D area [21, 22]. Hilbert curve fractal is also widely used in the design of
reconfigurable antennas [23].

Due to the low input resistance of the small loop antenna, fractal loops have proved
to be very efficient in increasing the input resistance of the antenna. A fractal loop
antenna based on the Koch snow flake geometry is reported in [24, 25]. The input
resistance of the antenna was found to increase with increase in the order of iteration.
However, the fractal loop antenna exhibits a multilobe pattern due to the increased
length of the antenna.Another kind of fractal loop antenna based upon theMinkowski
fractal has been investigated in [18, 26, 27]. Also, the performance of Minkowski
fractal antenna has been compared with another fractal curve known as 3/2 curve
fractal antenna in [26]. A fractal loop antenna based on modified Minkowski fractal
geometry has been investigated in [28] which has a better space-filling characteristics
as compared to the conventional Minkowski fractal geometry. Several combinations
of regular and fractal elements are reported in [29–31] which exhibit a considerable
degree of improvement in the antenna performance. A small size patch antenna
combining the Koch and Sierpinski carpet fractals is analyzed in [32].

Fractal antennas are not limited tomonopole and dipole antennas; they can also be
implemented in the design of microstrip patch antennas. Several fractal geometries
are used to obtain multiband fractal patch antennas and a stacked arrangement has
been shown to have a broadband response [33, 34].Microstrip antennas having fractal
boundaries and mass distribution are illustrated as antennas supporting localized
modes. These localizedmodes are very useful to obtain a broadside and very directive
pattern [35, 36]. Recently, a reactively loaded stacked patch antenna with fractal
radiating edge has been investigated in [37] which gives a considerable amount of
bandwidth enhancement. Comprehensive analysis on the resonance and radiation
behavior of the conformal antenna based on the Sierpinski gasket is reported in
[38, 39]. A printed log-periodic Koch dipole antenna is investigated in [40] which
offers 12 % reduction of the antenna size with a minimal degradation in impedance
and bandwidth. The characteristics of a CPW-fed planar antenna based on the Koch
fractal loop are presented in [41, 42]. A radial stub has been used in [41], whereas
a stub embedded with U-slot has been used in [42] to obtain the impedance match.
Two other fractal antenna based on circular fractal and Sierpinski carpet are also
reported in [43, 44]. Several compact and multiband fractal patch antenna based on
Sierpinski gasket, Sierpinski carpet, Koch curve, Hilbert curve, Minkowski curve are
reported in [45–56]. Some arbitrary shaped fractal geometries are also reported in the
design of patch antennas such as Spidron fractal [57], octagonal fractal patch antenna
[58], and circular [59]. Hybrid or combination of two or more fractal geometries can
also be very efficient in the design of miniaturized multiband antennas [60, 61].
Nowadays the fractal antennas are optimized using genetic algorithm and particle
swarm optimization techniques. One such optimized antenna using particle swarm
optimization is reported in [62]. The radiation from photoconductive fractal antenna
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on a simi-insulating gallium arsenide substrate is reported in [63]. Recently, a fractal
photoconductive antenna based on Sierpinski fractal has been reported for terahertz
radiation in [64]. A CPW fed slotted koch snowflake monopole antenna is presented
in [56]. The proposed antenna operates at WLAN/WiMAX frequency band and in
combination with a U slot, the proposed geometry was shown to be very compact
in size.

Recently, fractal geometries are efficiently used in the design of implanted and
wearable antenna for medical applications. An antenna based onHilbert curve geom-
etry for dental applications is reported in [65]. It was shown that a high compression
factor and gain can be achieved using a combination archimedean spiral and Hilbert
curve geometry. Another novel antenna based on the Koch curve has been fabri-
cated on a jeans substrate [66] which was shown to be very efficient in realizing a
miniaturized antenna.

1.2.3 Fractal Frequency Selective Surfaces and Filters

Space-filling and multiband properties of fractal geometries are also used in the
design of size miniaturized and multiband FSS. A dual-band fractal FSS based upon
the Sierpinski gasket geometry has been reported in [67–69]. It was shown that the
fractal FSS offers two stopbands with an attenuation level of 30 dB. A tri-band FSS
designed with cross bar fractal tree has been reported in [70, 71]. The characteristics
of the FSSwere shown to remain unchanged for both TE and TMpolarizations. Also,
it was shown that the ratio between the successive resonant frequencies of the FSS can
be changed by changing the scale factor of the geometry. Several fractal frequency
selective surfaces based upon Sierpinski carpet, Minkowski island and inset crossed
dipole elements are reported in [72], which present dual-band and dual-polarized
characteristics. A novel fractal frequency selective surface based on the Sierpinski
tripole elements is presented in [73]. The fractal geometry is optimized in order to
obtain a dual-polarized and dual-band frequency selective surface.

Recently, several fractal geometries are used in the design of microstrip filters.
A dual mode bandpass filter based on the Sierpinski carpet fractal geometry with a
perturbation at the corner of fractal element is reported in [74]. In [75], a wideband
microstrip bandpass filter using a triangular patch element is analyzed. It is shown
that introducing fractal defection in the patch, a wider bandwidth can be achieved.
A low pass filter using Koch fractal geometry is reported in [76].

1.2.4 Fractal Electromagnetic Band Gap Structures
and High Impedance Surfaces

Electromagnetic bandgap structures and high impedance surfaces have attracted con-
siderable amount of attention due to the growing interest in improving the antenna
gain, reducing the mutual coupling and restricting the propagation of higher order
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modes. Three different fractal geometries have been investigated in [77] which are
capable of producing a wider stopband along with additional new stopband. A cir-
cularly polarized compact and dual band GPS patch antenna has been investigated
in [78] which is placed over a fractal EBG surface. The antenna exhibits wider axial
ratio bandwidth. A high impedance metamaterial surface based on the Hilbert curve
and Peano curve inclusions has been shown to offer a reflection coefficient � � +1,
when illuminated by a plane wave [79, 80]. Kern et al. [81] proposed several design
methodologies for multiband artificial magnetic conductors using Minkowski frac-
tal geometry. An electromagnetic bandgap structure based on a novel fractal similar
to that of a crown square fractal has been analyzed in [82]. Several other fractal
geometries are employed in the design of frequency selective surfaces and electro-
magnetic bandgap structures like Durer pentagon prefractal [83], Gosper fractal [84],
Minkowski fractal [85], Vicsek fractal [86], T-shaped fractal [87], Sierpinski carpet
[88, 89], H-fractal [90], Sierpinski gasket [91]. In [92], a defected ground structure
employing fractal has been reported.

Recently, extensive research is directed to theminiaturization and implementation
of the completemicrowave circuit in a single chip and substrate integratedwaveguide
(SIW) is a major step forward in this direction. Fractal geometries especially Hilbert
curve fractals are employed in the SIW structure for extremely smaller antenna and
filter circuits which operated below the cut off frequency of the waveguide [93, 94].

1.3 Aperture Problems in Electromagnetics

Coupling through apertures is a classical problem in electromagnetic field theory and
finds wide applications in microwave technology ranging from waveguide passive
components, slottedwaveguide antenna arrays, slotted conducting screens, frequency
selective surfacesfrequency selective surfaces (FSS) to cavity-backed slot antennas.
Aperture coupling problems have been exhaustively investigated during the past
50 years and a large amount of literature exists on their analysis and applications.
In the following sections, we present a brief review of the various types of aperture
coupling problems.

1.3.1 Apertures in Waveguide Transverse Cross-Section

Aperture in the transverse cross-section is one of the most common type of dis-
continuity in waveguides. When waveguides are used in practice, it is necessary
to introduce some discontinuities to produce waveguide filters, matching networks,
and power dividers. The presence of discontinuities basically modifies the propa-
gation characteristics of the waveguide but the end result depends upon the type
and dimension of discontinuity. Various types of discontinuities are incorporated
into the waveguide, among which aperture type discontinuities in the transverse
plane of the rectangular waveguide is an important problem. Inductive or capacitive
discontinuities in the transverse cross-section of the waveguide are widely used in the
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design of matching networks due to the weak dependence of their parameters on fre-
quency. Traditionalwaveguide filters use inductive or capacitive elements or a combi-
nation of these in order to produce the desired filter response [95]. Largely, these filter
elements consist of aperture irises of rectangular or circular shapes [96–99] and are
located in the transverse cross-section of the waveguide. The filter response improves
with the increase in number of waveguide sections which makes the waveguide filter
very large and bulky. Instead of using a non-resonant aperture, a resonant aperture
can be used as a classical element. A waveguide filter with such resonant elements
has been shown to have better out-of-band characteristics in [100, 101]. The filter
response can be further improved by using multi-slot iris due to the formation of
rejection resonance. The formation of such rejection frequency was first mentioned
in [102] with a five aperture iris. Later in [103], the existence of total rejection
frequency using two slots was explained by simultaneous excitation of two natural
oscillations of the iris. It was shown in [104], along with [103], that to form a rejec-
tion resonance, it is necessary to have at least a pair of natural oscillations with close
real parts of eigen frequencies and essentially different Q factors, determined by
the imaginary parts and the number of zeros and poles in the frequency response
depend upon the number of slots with different electromagnetic properties. Also,
the number of sections needed to obtain the desired out-of-band rejection decreases
with multi-aperture iris as compared to the single aperture iris [105]. Recently, fre-
quency selective surfaces have been used to realize elliptical function filter with
multiple attenuation poles in the stop band [106]. A much compact and light weight
waveguide filter using two closely spaced array of rectangular resonant apertures is
reported in [107].

Several numerical and analytical methods are used to analyze the transverse dis-
continuity in a waveguide. Among all these methods, the most popular and powerful
technique is the formulation of the problem in terms of an integral equation which is
then solved using MoM. In 1972, VuKhac [108] described the waveguide coupling
problems by an integral equation. He solved this integral equation by expanding
the field in terms of pulse functions and using point matching technique. Auda and
Harrington [97] presented a solution for multiple inductive posts and diaphragms
of arbitrary shape in a rectangular waveguide using moment method. The obstacles
were approximated by a finite number of constant current strips or filaments. Electric
dyadic Green’s function was used to represent the field. Point matching technique
was used in this analysis. In 1983, Auda and Harrington [109] used the equiva-
lence principle to solve the waveguide junction problems. The fields were expressed
usingwaveguidemodes and a generalized network representation of the problemwas
obtained by using moment method. Sinha [110], in 1986, adopted the same proce-
dure to analyze the discontinuities formed by multiple strips and apertures. A MoM
analysis of two thick apertures in rectangular waveguide has been reported in [111].
In [112], a nonconventional T junction with thick apertures has been investigated
using MoM. Later, in 1993, Yang and Omar [105] used a TEx

mn modal expansion
approach alongwithMoMto solve the scattering frommultiple rectangular apertures.
Recently, multilayered planar structures in the transverse cross-section of waveguide
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have been analyzed using generalized scattering matrix (GSM) in conjunction with
MoM [113, 114].

It has been observed that MoM and mode matching methods exhibit an inherent
phenomenon known as ‘relative convergence’, when used to solve waveguide dis-
continuity problems. Lee et al. [115], Mittra et al. [116] and Aksun and Mittra [117]
have reported a detailed study of the phenomenon and have proposed some useful
guidance to solve this problem.

1.3.2 Coupling Through Apertures in an Infinite Conducting
Screen

A thin conducting screen perforated with multiple apertures has a bandpass char-
acteristic when illuminated by a plane wave of varying frequency and makes it
a useful candidate for the design of frequency selective surfaces, electromagnetic
band gap structures, bandpass radoms, artificial dielectric and antenna reflector or
ground planes [118]. In some applications, aperturesmay cause undesirable coupling
such as a crack or slit in the door of microwave oven or any RF transmitting equip-
ment leading to the problems of electromagnetic compatibility and electromagnetic
interference. A rejection band in the frequency response can also be realized using
multiple apertures of different electromagnetic properties [119].

Photonic band gap structures are capable of reflecting the electromagnetic waves
at a selected frequency and are conveniently constructed by using a periodic arrange-
ment of dielectric materials. The dimension of the photonic band gap structures has
to be a few times the wavelength of the point of total reflection which makes it very
large for larger wavelength applications. Frequency selective surfaces are also capa-
ble of totally reflecting the incident electromagnetic wave. However, the frequency
of total reflection is determined by the lateral dimension of unit cell and hence, it
requires a larger surface area. It was shown in [120, 121] that the planar metallic
fractal based upon H shape fractal geometry can reflect electromagnetic wave at a
wavelength much larger than the dimension of sample size. The fractal pattern shows
a quasi log periodic behavior for lower order iterations of fractal geometry, and the
response becomes log periodic for large number of iterations. It was pointed out in
[122] that the increase in number of iterations downshifts the passbands, as well
as, the stop bands. A fractal slit based on the same fractal geometry was analyzed
in [123], where, it was pointed out that the fractal slit supports the subwavelength
transmission of electromagnetic waves.

The general and rigorous formulation of coupling through apertures in conducting
screen was made through the use of equivalence principle and equivalent magnetic
currents [124]. The coupling through rectangular apertures in infinite screen was
reported in [125]. An integral equation was obtained by using equivalence principle
and image theory. The equation obtained in terms of the equivalent magnetic sur-
face currents was solved using MoM. The aperture characteristics were presented
in terms of transmission coefficient and transmission cross-section. Harrington and
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Aukland [126] analyzed the electromagnetic transmission through an aperture in a
thick conducting screen using equivalence principle and MoM. The problem was
decoupled into three independent problems consisting two half space regions and
a closed cavity region. It was found that the apertures offer an exceptionally large
transmission of electromagnetic energy at the resonant condition. Later, in 1982,
Chih-Lin and Harrington [127] analyzed the problem of electromagnetic transmis-
sion through an arbitrary shaped aperture in a thin conducting screen using the RWG
functions [128]. The problem was solved using MoM and transmission through var-
ious arbitrarily shaped apertures were investigated.

Several other methods have also been investigated to analyze these problems. Lin
et al. [129] used Babinet’s principle in order to find the electric field distribution
on the surface of aperture, as well as, in the far field region. Gluckstern et al. [130]
obtained the potential distribution on the surface of aperture using variational tech-
nique, where the effect of aperture in conducting screen was expressed in terms of
electric polarizability and magnetic susceptibility, using small aperture approxima-
tions. An approximate expression for the field distribution on the surface of a circular
aperture was obtained in terms of circular aperture dimensions in [131]. Savov [132]
analyzed the coupling between two circular apertures in an infinite screen using
Fourier transform method and the reaction theorem. The effect of different polar-
izations on the coupling was also investigated. In 1994, Hajj and Kabalan [133]
presented a characteristic mode solution of coupling through a rectangular aperture
in an infinite conducting screen. The solution was obtained in terms of eigenvalues
and eigenvectors usingMoM.Kim andEom [134] used the Fourier transformmethod
in conjunction with mode matching technique to obtain the field distribution on the
aperture surface. A rigorous analysis of coupling through apertures in conducting
screen was analyzed using finite difference time domain (FDTD) method in [135].

The reflection and transmission coefficient characteristics of an infinite conducting
screen perforated with multiple apertures have been investigated by many authors in
the past. Chen [118] used MoM in conjunction with the Floquet space harmonics in
order to solve the integral equation. The treatment of finite structure is also of practical
interest. Early in 1984, Sarkar et al. [136] analyzed the problem of electromagnetic
transmission through wire mesh covered aperture arrays by using MoM. Truncated
periodic structures have been analyzed in [137, 138]. Recursive schemes have been
successfully applied to analyze finite and non-periodic structures [139, 140]. In 1999,
Park and Eom [141] presented a Fourier transform and mode matching method to
analyze the electromagnetic scattering frommultiple apertures of rectangular shapes.
The numerical results were obtained for different number of apertures and angles of
incidence.A similar analysis formultiple circular apertureswere investigated in [142]
using integral transform and superposition principle. Anderson [143] carried out a
method of moment formulation of electromagnetic transmission through multiple
apertures using singular basis functions which greatly improved the convergence
rate of the solution.
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1.3.3 Rectangular Waveguide-Fed Aperture Antennas

Waveguide-fed aperture antennas are widely used in radars, satellites, and phased
arrays and as primary feed to parabolic reflectors. For an open-ended waveguide, the
input matching is very poor. The input matching can be improved by either using
a dielectric plug at the open end of the waveguide [144] or by using a resonant
aperture [145]. Here, also multiple apertures of different dimension can be used to
realize multiband waveguide radiators.

Severalmethods are used for the analysis of the rectangularwaveguide fed aperture
antennas. In [146], variational principle was used to analyze the radiation from aper-
ture fed by a rectangular waveguide. Themethod proposed in this article was compli-
cated even with the assumption of a single TE10 mode field distribution and numer-
ical results were given only for guide wavelength up to 1λ0. Das [147] computed
the admittance of an open-ended rectangular waveguide without flange. Jamieson
and Rozzi [148] have given an nth order Rayleigh-Ritz variational solution to the
flangedwaveguide problem using longitudinalmodes, LSEy and LSEx.MacPhie and
Zaghloul [149] investigated the radiation from a rectangular waveguide terminated
by an infinite flange and radiating into half space. The correlation functions of the
TE and TM mode electric fields on the aperture and the conservation of complex
power were used to obtain a correlation matrix from which the scattering matrix of
the problem was derived. Baudrand et al. [150] presented a method based on the
transverse operator. The boundary condition in spectral domain was used to relate
the electric and magnetic fields and the expansion of fields in TE and TM modes
were used to obtain the admittance matrix. Mongiardo and Rozzi [151] analyzed the
problem of radiation from flanged waveguide using singular integral approach. They
used a basis function which satisfies the edge condition and therefore, improves the
convergence of solution. Shen and MacPhie [152] presented a simple and effective
method based on the extrapolation method. The half-space was approximated by
a large waveguide with homogeneous filling with lossy dielectric and convergence
data was obtained for different loss tangents. Based on the data, an extrapolation
method was used to calculate the solution of original problem.

Many authors have used the integral equation approachwithMoMormodematch-
ing method to solve the aperture radiation from a flanged rectangular waveguide.
The generalized network formulation for the aperture problem [124] based upon
the equivalence principle and MoM was applied to waveguide with a thin window
[153], finite phased arrays [154, 155], and reactively loaded waveguide arrays [156,
157]. Formulation in [153, 157] used rooftop basis function, whereas the piecewise
sinusoidal basis functions were used in [155]. In [154, 156] waveguide modes with
sinusoidal aperture function were used.

1.3.4 Cavity-Backed Aperture Antenna

In satellite communication, the antennas are generally designed to have the radiation
pattern directed towards the eostationary satellite. The antennas must be suitable
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for installation on mobile, as well as, stationary stations. Therefore, the antenna
should be flat and flush mounted. A typical antenna is a planar microstrip antenna
which suffers from feeder loss [158]. Slot antennas are used for their high efficiency
and flush mounting nature. However, the slot antennas suffer from their inherent
bidirectional radiation pattern. In many applications, the antenna needs to be located
in close proximity to earth, or conductive bodies, or to be integrated with the rest of
the transceiver in a multilayered structure. In order to alleviate the adverse effects
of the interaction between a slot antenna and the structure behind it, traditionally, a
shallow cavity is used due to the unidirectional nature of the cavity-backed aperture
antennas. When cavity-backed slot antenna is used as an array element, it produces
small mutual effects between the elements and this makes it a suitable element in the
design of large antenna array system, such as phased antenna array [159]. Also, the
metallic cavity can serve as a heat sink to improve the heat dissipation. Generally,
due to the resonance of the cavity, the cavity-backed aperture antenna suffers from
low bandwidth. In [160], it has been shown that using two arallel parasitic slots, the
bandwidth of the antenna can be increased. Several modifications have incorporated
in the slot geometry in order to widen the bandwidth, such as, an S-type slot [161],
meandered slot [162], rectangularly bent slots [163], and cross-loop slot [164]. Also,
it has been found that the miniaturized slot antennas have higher bandwidth and
efficiency compared to the electrically small wire antennas [165]. So, by using a
cavity backing, efficient slot antennas can be designed [166]. A dual band antenna
with three slots backed by a cavity has been proposed in [167] which uses a single
feed.

In the earlierworks presented in [168–170], the input characteristics of the antenna
were calculated assuming a sinusoidal variation of voltage across the slot and the
cavity was assumed as a short circuited section of rectangular waveguide. In 1989,
Hadidi and Hamid [159] first presented a full wave analysis of cavity-backed slot
antenna using MoM with the aid of dyadic Green’s function in spatial domain to
obtain the electric field on the aperture. In [171], the electric field and the current
distribution on a wide slot antenna backed by a cavity were analyzed using MoM.

The antenna fed by a coaxial probe is of practical interest and a detailed study of
a probe-fed cavity-backed aperture antenna has been presented in [172, 173]. The
effects of various parameters, such as, slot length and width, offset, probe locations
on the input characteristics of the antenna were also investigated. In [174], the radi-
ation pattern of a finite plane cavity-backed slot antenna was computed using MoM
in conjunction with uniform geometrical theory of diffraction. A comprehensive
comparison between the radiation pattern of cavity-backed antenna with infinite and
finite planes was presented.

Lee et al. [175] presented aMoM formulation of a cavity-backed aperture antenna
with dielectric overlay using the spectral domain Green’s function. The integral
equation was solved using both the entire domain and subdomain basis functions.
Later in [176], a similar analysis was presented for the case of a cavity-backed
aperture antenna with dielectric andmagnetic overlays. The problemwas formulated
using modified magnetic field integral equation. A dyadic Green’s function in space
domain was used for the cavity region, whereas, the Green’s function for overlayed
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medium was obtained in spectral domain. An MoM approach based on generalized
network formulation and equivalence principle for the analysis of single as well as
multiple apertures backed by cavity was proposed in [177].

In 1995, Despande and Reddy [178] analyzed the electromagnetic scattering by
cylindrical cavity recessed in 3D metallic object. The equivalence principle was
applied to decouple the problem and the field outside the cavity was expressed in
terms of free space Green’s function and equivalent surface magnetic currents. The
fields inside the cavity were expressed using waveguide modal expansion function.
MoM is used to solve the coupled integral equation.

An FDTD approach for the analysis of cavity-backed aperture antenna was pre-
sented in [179]. The paper also deals with the problems encountered in the formu-
lation and design of antennas using the FDTD method. The spectral leakage was
decreased by means of time windows. However, it does not reduce the computation
time and number of steps required for an estimation of input characteristics. The
problem was analyzed with accurate estimation of input characteristics in [180].

In 1998, Rao et al. [181] presented a finite integral technique for the analysis of
scattering from cavity-backed antennas. The cavity was subdivided into a number of
triangular cylinders and constitutive material property was assigned to each cylinder.
Unknown electric and magnetic fields were approximated by a specially designed
basis function.

Nowadays, hybrid techniques are widely used in the analysis of complex elec-
tromagnetic problems. FDTD methods are used to model complex cavity-backed
aperture geometries and the field radiated at a distance of few wavelengths is calcu-
lated using near-to-near field transformation. This requires a large amount of storage
and computation time. So, thismethod is only applicable to relatively smaller geome-
tries. On the other hand, finite element method (FEM) is simple and is very popular
in the analysis of complex penetrable structures. This method results in a sparse
matrix that can be stored efficiently and solved. However, it does not incorporate the
Sommerfeld radiation condition and hence requires discretization outside the source
region, which limits the application of FEM in large structures. As compared to this,
MoM incorporates the Sommerfeld radiation condition through the use of appropri-
ate Green’s function and as a result, domain discretization can be kept minimum.
However, this method is too complicated for penetrable structures. Also, the MoM
produces a dense matrix which requires a large storage for large complex struc-
tures. The unique feature of MoM is the knowledge of Green’s function which limits
its application to some regular shaped geometries whose Green’s function is known.
Additionally, the computation of admittancematrix involves slowly convergingmode
sum, which reduces the efficiency and increases the computation time. So, in order
to take the advantage of individual methods, hybrid techniques have become very
popular for the analysis of cavity-backed antennas. A hybrid FDTD-MoM method
of analysis electromagnetic radiation from cavity-backed aperture antenna was pro-
posed in [182]. The external and internal region of the cavity was modeled using
MoM and FDTD, respectively, and the external radiation was computed using the
reaction theory. In [183], a combined FEM-FDTD method was used to analyze the
coupling of cavity-backed slot antennas.
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The hybrid FEM-MoM [184–187] is a very useful method for the analysis of
cavity backed antennas. The problem is decoupled into two equivalent problems and
the field inside the cavity is formulated using the finite element method and the field
outside the cavity is calculated using the boundary integral approach. A detailed
formulation of feeding structures is presented in [188, 189]. These papers also deal
with the effect of finite ground plane on the antenna characteristics using geometrical
theory of diffraction.

Chang et al. [190] analyzed a coaxial fed cavity-backed slot antenna. The equiv-
alence principle was applied to find out the scattered field inside and outside of the
cavity. The half space Green’s function was used to calculate the field outside and
Green’s function inside the cavitywas calculated using a parameter like extrapolation
method. Complex Poynting theorem was used to calculate the input impedance.

A circuital approach to predict the behavior of electromagnetic field backed by a
cavity has been proposed in [191]. The aperture is modeled as a stripline ended by
a short and the metallic cavity is modeled as short circuited waveguide. The voltage
on the apertures was calculated using Thevenen’s equivalent circuit approach.

1.4 Motivation for Present Research

From the discussion presented in the previous section, it is evident that aperture cou-
pling problem is an extremely important class of boundary value problem with wide
ranging applications in antennas, waveguide filters and power dividers, frequency
selective surfaces, andmetamaterials. Apertures of both regular and irregular shapes,
resonant and non-resonant, narrow and wide have been investigated.

In the past decade, application of fractal geometries has been proposed in the
design of antenna elements, frequency selective surfaces and metamaterials, and the
special characteristics offered by the fractals are widely acclaimed. Antennas using
some of these fractal geometries are already available commercially. It is found
that the use of fractal geometries leads to miniaturized, low profile antennas with
moderate gain as compared to their Euclidean counterparts and the self-similarity
property results in multiband antennas and FSS elements. What is missing, however,
is the study of fractal geometries in aperture coupling problems. The present research
work is primarily intended to initiate a study of the characteristics of fractal apertures
in waveguides, conducting screens, and cavities.

During the course of this research work, several questions about the properties
of fractal geometries are addressed and an effort has been made to answer these
questions by comparing the conventional fractal antennas and FSS elements with the
present observations. A number of fractal geometries have been investigated in order
establish the universal nature of the properties of fractal apertures. The investigations
have been further extended to correlate the response of fractal apertureswith different
geometrical parameters and modifications. Some observations have also been made
from an application point of view to show the effectiveness of the fractal apertures
as compared to the existing multi aperture geometries.
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1.5 Research Problems

The aim of the present research work is to investigate the properties of fractal aper-
tures in different types of aperture coupling problems. Based on the aforementioned
discussion on the requirement of multiband and reduced sized waveguide compo-
nents and aperture antennas, and the efficiency of fractal geometries in the design of
low profile, multiband and miniaturized antennas and FSS, the following problems
have been taken up in this research work:

• Analysis of fractal apertures in the transverse cross-sectionof rectangularwaveguide
• Electromagnetic transmission through fractal apertures in an infinite conducting
screen.

• Radiation fromfractal apertures in an infinite screen fedbya rectangularwaveguide.
• Analysis of cavity-backed fractal aperture antennas.

A major part of the analysis of above problems is the formulation using a suitable
numerical procedure. The first three problems have been formulated usingMoM and
a hybrid FEM/MoM method has been used to analyze the problem of cavity-backed
aperture antenna. Based on the formulation, MATLAB codes have been developed
to find out different near-field and far-field parameters. The final task is to validate
the numerical results which has been done by simulation on HFSS [192].

1.6 Organization of the Book

The work embodied in this book has been arranged as follows:
Chapter 2 presents the general MoM formulation of coupling between two arbi-

trary regions via multiple apertures of arbitrary shape and size. The formulation of
matrix equation, geometric discretization, and the types of basis functions used are
described. A detailed derivation of various matrix elements for different regions such
as rectangular waveguide and free space regions, are presented. The last section of
the chapter deals with computation of different measurement parameters.

In Chap. 3, properties of fractal apertures in the transverse cross-section of a
rectangular waveguide have been presented. Some self-affine fractal structures based
on the Sierpinski gasket and plus shape fractals are proposed and the effect of scale
factor on the response is investigated. Self-similar structures like Hilbert curve, Koch
curve and Minkowski fractals are shown to be efficient in reducing the resonant
frequency of the aperture.

Chapter 4 investigates the electromagnetic transmission through fractal apertures
in a thin infinite conducting screen. A number of fractal apertures, like Sierpinski
gasket, Koch curve, Hilbert curve, Sierpinski carpet andMinkowski fractal have been
investigated. Numerical results are presented in terms of transmission coefficient
and transmission cross-section for both parallel and perpendicular polarizations of
incidentwave.The effects of variationof angle of incidenceon the frequency response
of these fractal apertures are also investigated.

http://dx.doi.org/10.1007/978-3-319-06535-9_2
http://dx.doi.org/10.1007/978-3-319-06535-9_3
http://dx.doi.org/10.1007/978-3-319-06535-9_4
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Chapter 5 combines the problems of Chaps. 3 and 4 to analyze the problem
of radiation from waveguide-fed fractal apertures in an infinite screen. The self-
similarity and space-filling properties of fractals have been exploited to achieve
multi-band radiation. Some self-affine fractal geometries, suitable for waveguide-
fed apertures, have been proposed and investigated. It is shown that the scale factor
of the fractal geometry can be used as a design parameter for controlling the resonant
frequencies.

Chapter 6 dealswith the characteristics of probe-fed cavity-backed fractal aperture
antenna. A general formulation of the problem using hybrid FEM/MoM method is
presented. The numerical results for input reflection coefficients and the far-field
radiation pattern of the antenna are presented.

Chapter 7 summarizes theworkwith concluding remarks and outlines the possible
future research directions inspired by the work presented here.
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