
Chapter 2
Oscillation of Delay Logistic Models

On earth there is nothing great but man, in man there is nothing
great but mind.

William R. Hamilton (1805–1865).

Every problem in the calculus of variations has a solution,
provided the word solution is suitably understood.

David Hilbert (1862–1943).

The qualitative study of mathematical models is important in applied mathematics,
physics, meteorology, engineering, and population dynamics. In this chapter, we are
concerned with the oscillation of solutions of different types of delay logistic models
about their positive steady states. One of the main techniques that we will use in the
proofs is the so-called linearized oscillation technique. This technique compares
the oscillation of a nonlinear delay differential equation with its associated linear
equation with a known oscillatory behavior.

In this chapter we establish oscillation results for a variety of autonomous and
nonautonomous delay models. It is possible to extend the theory in this chapter
to other models, for example, models with impulses and models with distributed
delays. Results for other models (which are based on the ideas in this chapter) can be
found in the reference list. Chapter 2 presents the current approach in the literature
on oscillation of delay equations.

2.1 Models of Hutchinson Type

In this section, we are concerned with the oscillation of an equation of Hutchinson
type about the positive equilibrium point. First, we consider the equation

N
0

.t/ D rN.t/

�
1 � N.t � �/

K

�
; (2.1)
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10 2 Oscillation of Delay Logistic Models

whereN.t/ is the population at time t , r is the growth rate of the species, andK > 0

is called the carrying capacity of the habitat (note that here there is no immigration
or emigration). The solution N.t/ of (2.1) is said to be oscillatory about the positive
steady state K if N.tn/ � K D 0; for n D 0; 1; 2; :: and limn!1 tn D 1. The
solution N.t/ of (2.1) is said to be nonoscillatory about K if there exits t0 � 0 such
that jN.t/ �Kj > 0 for t � t0. A solution N.t/ is said to be oscillatory (here we
mean oscillatory about zero) if there exists a sequence ftng such that N.tn/ D 0; for
n D 0; 1; 2; ::. and limn!1 tn D 1: A solution N.t/ is said to be nonoscillatory if
there exits t0 � 0 such that jN.t/j > 0 for t � t0:

Together with (2.1), we consider solutions of (2.1) which correspond to the initial
condition

�
N.t/ D �.t/ for � � � t � 0;

� 2 C.Œ��; 0�; Œ0;1//; and �.0/ > 0:
(2.2)

Clearly the initial value problem (2.1), (2.2) has a unique positive solution for all
t � 0: This follows by the method of steps. We begin with the usual result in any
book on oscillation and we quote here the linearized oscillation theorem taken from
[30].

Theorem 2.1.1. Consider the nonlinear delay differential equation

x
0

.t/C
nX
iD1

pifi .x.t � �i // D 0; (2.3)

where for i D 1; : : : ; n;

pi 2 .0;1/; �i 2 Œ0;1/; fi 2 C ŒR;R�; (2.4)

ufi .u/ > 0 for u ¤ 0 and lim
u!0

fi .u/

u
D 1; (2.5)

and there exits a positive constant ı such that

either fi .u/ � u for 0 � u � ı and i D 1; 2; : : : ; n;

or fi .u/ � u for � ı � u � 0 and i D 1; 2; : : : ; n:

�
(2.6)

Then every solution of (2.3) oscillates if and only if every solution of the linearized
equation

y
0

.t/C
nX
iD1

piy.t � �i / D 0 (2.7)

oscillates.
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Corollary 2.1.1 ([30]). Assume that (2.4)–(2.6) hold. Then each one of the
following two conditions is sufficient for the oscillation of all solutions of (2.3):

.a/
nP
iD1

pi �i >
1
e
I

.b/

�
nQ
iD1

pi

� 1
n
�

nP
iD1

�i

�
> 1

e
I

and when n D 1 the condition p� > 1=e is necessary and sufficient for oscillation.

Now, we establish necessary and sufficient condition for the oscillation of all
positive solutions of the delay logistic model (2.1) about the positive steady stateK.

Theorem 2.1.2. Every solution of (2.1) oscillates about K if and only if r� > 1=e:

Proof. The change of variables

N.t/ WD Kex.t/ (2.8)

reduces Eq. (2.1) to the nonlinear delay equation

x
0

.t/C rf .x.t � �// D 0; (2.9)

where

f .u/ D eu � 1: (2.10)

Clearly f .u/ satisfies the conditions (2.4)–(2.6). Corollary 2.1.1 completes the
proof. �

We now consider a generalization of the delay logistic equation (2.1) with several
delays of the form

N
0

.t/ D N.t/

"
˛ �

nX
iD1

ˇiN.t � �i /
#
; (2.11)

where

˛; ˇ1; ˇ2; : : : ; ˇn 2 .0;1/ and 0 � �1 < �2 < �3 : : : < �n � �: (2.12)

Again with (2.11), we associate the initial condition (2.2) and then it follows by the
method of steps that (2.2), (2.11) has a unique solution N.t/ and remains positive
for all t � 0:

Theorem 2.1.3. Assume that (2.12) holds. Then each one of the following condi-

tions implies that every solution of (2.11) oscillates about N� D ˛=
nP
iD1

ˇi W
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.i/ ˛e

�
nP
iD1

ˇi �i

�
>

�
nP
iD1

ˇi

�
I

.i i/ ˛e

�
nQ
iD1

ˇi

� 1
n
�

nP
iD1

�i

�
>

�
nP
iD1

ˇi

�
:

Proof. Set

N.t/ D N �ex.t/:

Then x.t/ satisfies Eq. (2.3), where

pi D ˇiN
�; for i D 1; 2; : : : ; n and fi (u/ D eu � 1: (2.13)

Clearly fi .u/ for i D 1; 2; ::; n satisfy the conditions (2.4)–(2.6). The proof follows
from Corollary 2.1.1. �

2.2 Models with Delayed Feedback

In order to observe the influence of a feedback mechanism on fluctuations of a
population density N.t/ around an equilibrium K via a constant �; Olach [53]
considered a modified nonlinear delay logistic model of the form

N
0

.t/ D rN.t/

ˇ̌̌
ˇ1 � N.�.t//

K

ˇ̌̌
ˇ
�

sgn

�
ln

K

N.�.t//

�
; t � 0; (2.14)

where r; K; � 2 .0;1/ and the term 1�N.�.t//=K denotes a feedback mechanism.
We consider those solutions of (2.14) which correspond to the initial condition

�
N.t/ D �.t/; for �.0/ � t � 0;

� 2 C.Œ�.0/; 0�; Œ0;1//; �.0/ > 0:
(2.15)

It follows by the method of steps that (2.14), (2.15) has a unique positive solution
N.t/ for all t > 0:

We discuss in this section the nonoscillation of positive solutions of (2.14) around
the positive equilibrium point K: We begin with the following lemma.

Lemma 2.2.1. Consider the nonlinear retarded differential equation

x
0

.t/C p.t/f .x.�.t/// D 0; t � t0 � 0; (2.16)



2.2 Models with Delayed Feedback 13

such that for t � t0;

p 2 C.Œt0;1/;RC/; � 2 C.Œt0;1/;RC/; �.t/ < t; lim
t!1 �.t/ D 1; (2.17)

f 2 C.R;R/; uf .u/ > 0 for u ¤ 0; (2.18)

and
Z 1

t0

p.t/ D 1: (2.19)

Then every nonoscillatory solution x.t/ of (2.16) satisfies limt!1 x.t/ D 0:

Proof. Suppose that (2.16) has a nonoscillatory solution x.t/which we shall assume
to be eventually positive (if x.t/ is eventually negative the proof is similar). Since
uf .u/ > 0, we note that x

0

.t/ < 0 eventually for t � t1 � t0: Thus

lim
t!1 x.t/ D L � 0, exists:

We claim L D 0: If L > 0; we have

x.t1/ � LC
Z 1

t1

p.s/f .x.�.s///ds;

which with (2.19) gives a contradiction. Thus limt!1 x.t/ D 0: The proof is
complete. �

To prove the main oscillation results for Eq. (2.14) we need some oscillation
results for the equation

x
0

.t/C p.t/ jx.�.t//j� sgnx.�.t// D 0; t � t0 � 0: (2.20)

Let Cloc.Œt0;1/;R/ denote the space of continuous functions x W Œt0;1/ ! R
endowed with the topology of local uniform convergence.

Theorem 2.2.1. Suppose that (2.17) holds, � > 1 and for some ˛ 2 .0; �/

lim
t!1 sup t Œ�.t/��˛ Œp.t/�.��˛/=� < 1: (2.21)

Then (2.20) has a nonoscillatory solution.

Proof. According to (2.21) there is a c > 0 such that

t Œ�.t/��˛ Œp.t/�.��˛/=� < c; for t � t0:
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Set

v.t/ D c0t
˛=.˛��/; for t � t0; where c0 D

h ˛

� � ˛ c
.��˛/=�i1=.��1/

:

Let S � Cloc.Œt0;1/;R/ be the set of functions which satisfy

0 � x.t/ � v.t/, for t � t0

and define the operator

F W S ! Cloc.Œt0;1/;R/

by

F.x/.t/ D
� R1

t
p.s/Œx.�.s//��ds; for t � t1;

v.t/ � v.t1/C F.x/.t1/ for t 2 Œt0; t1/;

where t1 > t0 is such that �.t/ � t0 for all t � t1: Note F.S/ � S; to see this note if
x 2 S and t � t1 then

F.x.t// �
Z 1

t

p.s/Œv.�.s//��ds D
Z 1

t

p.s/ c�0 Œ�.s/�
˛ �
˛�� ds

� c�0 c
�

��˛

Z 1

t

s
�

˛�� ds D v.t/:

We note that S is a nonempty closed convex subset of Cloc.Œt0;1/;R/ and the oper-
ator F is continuous. The functions belonging to the set F.S/ are equicontinuous
on compact subintervals of Œt0;1/: The Tychonov–Schauder Fixed Point Theorem
guarantees that the operator F has an element y 2 S such that y D F.y/. The proof
is complete. �

Theorem 2.2.2. Suppose that (2.17)–(2.19) hold, and

lim
u!0

f .u/

juj� sgn u
D 1; � > 1: (2.22)

If (2.20) has a nonoscillatory solution then (2.16) also has a nonoscillatory solution.

Proof. Assume that v.t/ is a nonoscillatory solution of (2.20) such that v.�.t// > 0
for t � t0: According to (2.22) there is a c1 > 1 and ı > 0 such that f .u/ � c1u�

for u 2 Œ0; ı�: From Lemma 2.2.1 we have

v.t/ D
Z 1

t

p.s/Œv.�.s//��ds; t � t0:
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Now choose T0 > t0 such that v.t/ < ı for t � T0: Let S � Cloc.Œt0;1/;R/ be the
set of functions satisfying

0 � x.t/ � c2v.t/, for t � T0;

where c1c�2 < c2 < 1; and define the operator

F W S ! Cloc.Œt0;1/;R/

by

F.x/.t/ D
� R1

t
p.s/ f .x.�.s/// ds; for t � t1;

c2Œv.t/ � v.t1/�C F.x/.t1/; for t 2 ŒT0; t1/;

where t1 > T0 is such that �.t/ � T0 for all t � t1: Note F.S/ � S; to see this note
if x 2 S and t � t1 then

F.x.t// �
Z 1

t

p.s/ c1 Œx.�.s//�
� ds � c1c

�
2

Z 1

t

p.s/ Œv.�.s//�� ds � c2 v.t/:

The remainder of the proof is similar to that of Theorem 2.2.1. �

Consider (2.14) about the positive steady state K: The transformation N.t/ D
Kex.t/ transforms Eq. (2.14) to Eq. (2.16) with

f .u/ D j1 � euj sgn u:

Clearly the function f .u/ satisfies the hypothesis (2.18) and (2.22) so the above
results apply to (2.14).

2.3 ˛-Delay Models

Aiello [2] considered the nonautonomous delay logistic model

N
0

.t/ D r.t/N.t/

�
1 � N.�.t//

K

� ˇ̌̌
ˇ1 � N.�.t//

K

ˇ̌̌
ˇ
˛�1

; t > 0; (2.23)

where K, ˛ are positive constants, ˛ ¤ 1; r.t/ and �.t/ are positive continuous
functions defined on Œ0, 1/ such that

�.t/ � t; and lim
t!1 �.t/ D 1: (2.24)
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Our aim in this section is to study the oscillation and nonoscillation of all positive
solutions of (2.23) about the positive steady state K: We consider (2.23) with an
initial condition

�
N.t/ D �.t/; for �.0/ � t � 0;

� 2 C.Œ�.0/; 0�; Œ0;1//; �.0/ > 0:
(2.25)

The change of variables

y.t/ D N.t/

K
� 1 (2.26)

in (2.23) gives us the nonlinear delay equation y
0

.t/ D �r.t/y.�.t//Œ1 C
y.t/� jy.�.t//j˛�1. Since N.t/ > 0 in (2.23) then y.t/ > �1.

In this section we consider

y
0

.t/ D �r.t/y.�.t//Œ1C y.t/� jy.�.t//j˛�1 ; t � t0: (2.27)

Assume that
Z 1

t0

r.s/ds < 1 (2.28)

or
Z 1

t0

r.s/ds D 1: (2.29)

From the change of variables (2.26), we see that the oscillation or nonoscillation of
(2.23) aboutK is equivalent to the oscillation or nonoscillation of (2.27) about zero.
In the following, we are concerned with the existence of a nonoscillatory solution
of (2.27) and the results in this section are adapted from [2].

First, we consider the case when (2.28) holds. Note for t � t0 the function r.t/
is positive and

Z 1

t0

r.s/ds D R; where 0 < R < 1: (2.30)

Theorem 2.3.1. Assume that (2.24), (2.28), and (2.30) hold. Then (2.27) has a
positive, nonoscillatory solution bounded away from zero.

Proof. Note if y is a positive solution of (2.27) then

y
0

.t/ D �r.t/Œ1C y.t/�.y.�.t///˛: (2.31)
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Let ' denote the locally convex space of continuous functions on Œt0;1/ with the
topology of uniform convergence on compact sets of R. Define the set S � ' as

S WD

8̂̂
ˆ̂<
ˆ̂̂̂:

y is nonincreasing
y.t/ D C˛; t0 � t < T

y 2 ' W C˛ � y.t/ � C˛ exp
�
� R t

T
r.s/ds

	
; t � T

y.�.t//

y.t/
� exp

�R t
t0
r.s/ds

	
; t � T I

here C˛ > 0 is defined so that

ŒC˛ C 1�C ˛�1
˛ � exp

�
�
Z t

T

r.s/ds

�
;

and T is sufficiently large so that �.t/ � t0 for all t � T . Such a constant C˛ exists
since the function

h.u/ WD .u C 1/u˛�1

is monotone increasing and

h.0/ D 0 and h.1/ D 2:

Since 0 < e�R < 1 (here R is as in (2.30)) there is a u0 such that h.u0/ D e�R:
Then let C˛ be any constant satisfying the inequality 0 < C˛ < u0; and

ŒC˛ C 1�C ˛�1
˛ � e�R

necessarily follows. Let R.t/ D R t
t0
r.s/ds. Note that, since r.t/ � 0 and T � t0,

we have

Z t

T

r.s/ds � R.t/:

We can easily see that S � ' is nonempty, since y.t/ D C˛ is in S. In addition, S is
a closed convex subset of ': Let y 2 S and define the map

F y.t/ D
(

C˛; for t0 � t < T;

C˛ exp
�
� R t

T
r.s/.1Cy.s//.y.�.s///˛

y.s/
ds
	
; for t � T:

Clearly F y.t/ is continuous, nonincreasing and satisfies

F y.t/

� D C˛; for t0 � t < T;

� C˛; for t � T;
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and since y.t/ � C˛; we have by definition that

.1C y.s//.y.�.s///˛�1 � e�R < 1; and
y.�.t//

y.t/
� eR.t/ � eR:

Then

Z t

T

r.s/.1C y.s//.y.�.s///˛ds

y.s/
�
Z t

T

e�R r.s/y.�.s//ds
y.s/

�
Z t

T

e�ReR.s/r.s/ds �
Z t

T

r.s/ds;

so,

F y.t/ � C˛ exp

�
�
Z t

T

r.s/ds

�
; for t � T:

Also for t � T

F y.�.t//

F y.t/
D exp

�Z t

�.t/

r.s/.1C y.s//.y.�.s///˛

y.s/
ds

�

� exp

�Z t

�.t/

e�R r.s/y.�.s//
y.s/

ds

�

� exp

�Z t

�.t/

e�ReR.s/r.s/ds
�

� exp

�Z t

�.t/

r.s/ds

�
� exp

�Z t

t0

r.s/ds

�
;

so,

F y.�.t//

F y.t/
� eR.t/; for t � T:

Thus, F.S/ � S: Note S is bounded above by C˛ and bounded below by C˛e�R.
We now prove that fF y W y 2 Sg is equicontinuous on compact sets of Œt0;1/: Let
T1 and T2 be elements in R and let T �

i D maxfT; Tig for i D 1; 2. Then

jF y.T1/ � F y.T2/j D jF y.T �
1 / � F y.T �

2 /j

D C˛

ˇ̌̌
ˇ̌exp

 
�
Z T �

1

T

r.s/.1C y.s//.y.�.s///˛

y.s/
ds

!
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� exp

 Z T �

2

T

�r.s/.1C y.s//.y.�.s///˛

y.s/
ds

!ˇ̌̌
ˇ̌

� C˛

ˇ̌
ˇ̌̌
1 � exp

 Z T �

2

T �

1

�r.s/.1C y.s//.y.�.s///˛

y.s/
ds

!ˇ̌ˇ̌̌

� C˛

ˇ̌̌
ˇ̌1 � exp

 Z T �

2

T �

1

�r.s/ds
!ˇ̌̌
ˇ̌ ! 0; as T1 ! T2;

uniformly so fF y W y 2 Sg is equicontinuous on every compact set in Œt0;1/:

Apply the Arzela–Ascoli Theorem to conclude that F S is compact in S. The
Tychonov-Schauder Fixed Point Theorem guarantees a fixed point y� of F . This
y� solves (2.31) from the definition of F . The proof is complete. �

Now, we consider the case when (2.29) holds. First, we prove that every
nonoscillatory solution of (2.27) tends to zero as t tends to infinity.

Theorem 2.3.2. Assume that the conditions of Theorem 2.3.1 hold, except that con-
dition (2.28) is replaced by (2.29) and (2.30) is removed. Then every nonoscillatory
solution of (2.27) will satisfy limt!1y.t/ D 0:

Proof. First, we consider the case when y.t/ > 0 for all t > t1 > 0: Let

v�.t/ D supfs W �.s/ D tg;

and since limt!1 �.t/ D 1 there exists T D v�.t1/ such that y.t/ > 0 and
y.�.t// > 0 for all t � T: From (2.27) we have

y
0

.t/ D �r.t/Œ1C y.t/�.y.�.t///˛ � 0: (2.32)

Thus,

lim
t!1 y.t/ D � � 0 exists.

Suppose � > 0. For all t � T , y.t/ � � and y.�.t// � � and so (2.32) implies that

y
0

.t/ � �r.t/Œ1C ���˛;

so integration and (2.29) implies that y.t/ is negative, and this is a contradiction.
Thus � D 0: Next, we consider the case when y.t/ is negative. Let y.t/ be an
eventually negative solution of (2.27), such that

�1 < y.t/ < 0 and y.�.t// < 0;
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for t � T0 sufficiently large. Let T1 > T0 be such that �.t/ � T0 for all t � T1:

Now, since y.�.t// < 0 for t � T1; we have from (2.27) that

y
0

.t/ D �r.t/Œ1C y.t/�y.�.t// jy.�.t//j˛�1 > 0; t � T1: (2.33)

Then

lim
t!1 y.t/ D �ˇ exists, where 0 � ˇ < 1:

Suppose that ˇ ¤ 0. Since y
0

.t/ > 0 and

y.�.t// � �ˇ; t � T1;

we have

y
0

.t/ � �r.t/Œ1C y.t/�ˇ˛; t � T1: (2.34)

Now, since y.t/ is nonincreasing and limt!1 y.t/ D �ˇ then there exists T" � T1
such that

Œ1C y.t/� � 1 � ˇ � " > 0;

so with (2.34) we have

y
0

.t/ � �r.t/Œ1 � ˇ � "�ˇ˛; t � T";

which by integration gives a contradiction. Then ˇ D 0 and this completes the
proof. �

Now, we give sufficient conditions for the existence of nonoscillatory solutions
of (2.27) when (2.29) holds and ˛ ¤ 1.

Theorem 2.3.3. Assume that (2.24) and (2.29) hold and ˛ ¤ 1. Furthermore
suppose that

lim
t!1 sup

Z t

�.t/

r.s/ds < „; where 0 < „ < 1:

Then (2.27) has a nonoscillatory solution.

Proof. Let ' denote the locally convex space of continuous functions on Œt0;1/

with the topology of uniform convergence on compact sets of R. Define the set
S � ' as
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S D

8̂̂
<̂
ˆ̂̂:

y is nonincreasing
y.t/ D C˛; t0 � t < t1

y 2 ' W C˛ � y.t/ � C˛ exp
�
� R t

t1
r.s/ds

	
; t1 � t < 1

y.�.t//

y.t/
� e„; t � t1

where 0 < C˛ < 1 is defined so that

ŒC˛ C 1�C ˛�1
˛ � 1=e„;

and t1 is sufficiently large so that

Z t

�.t/

r.s/ds < „; for t � t1:

The remainder of the proof is similar to that of Theorem 2.3.1 and hence is omitted.
�

From the change of variables y.t/ D N.t/=K � 1 and Theorems 2.3.1–2.3.3 we
have the following results on the delay logistic Eq. (2.23).

Theorem 2.3.4. Assume that (2.24), (2.28), and (2.30) hold. Then (2.23) has a
positive, nonoscillatory solution bounded away from K.

Theorem 2.3.5. Assume that (2.24) and (2.29) hold. Then every nonoscillatory
solution of (2.23) will satisfy limt!1N.t/ D K:

Theorem 2.3.6. Assume that (2.24) and (2.29) hold and ˛ ¤ 1. Furthermore
suppose that

limt!1 sup
Z t

�.t/

r.s/ds < „; where 0 < „ < 1:

Then (2.23) has a nonoscillatory solution.

The following examples illustrate the theory.

Example 1. Consider the nonlinear delay logistic equation

N
0

.t/ D 1

t2
N.t/.1 �N.t � �/=K/ j1 �N.t � �/=Kj2 ; t > t0;

where K is a positive constant: Here r.t/ D 1=t2; and for t0 > 0;

Z 1

t0

.1=s2/ds D 1=t0 < 1:

The conditions of Theorem 2.3.4 are satisfied, so there exists a nonoscillatory
solution to this equation which is bounded away from K:
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Example 2. Consider the nonlinear delay logistic equation

N
0

.t/ D rN.t/.1 �N.t � �/=K/ j1 �N.t � �/=Kj2 ; t > t0;

where K is a positive constant: Here r.t/ D r > 0 satisfies

Z 1

t0

rds D 1:

The conditions of Theorem 2.3.5 are satisfied, so there exists a nonoscillatory
solution to this equation for any � > 0 and by Theorem 2.3.5 it tends to K when t
tends to infinity.

It is important to establish necessary conditions for the existence of nonoscil-
latory solutions to (2.23). Li [38] considered this problem and established these
conditions by analyzing the generalized characteristic equation corresponding to
(2.27). These conditions are equivalent to the sufficient and necessary conditions
for the existence of positive solutions of (2.23).

We begin with the following theorem which gives the characteristic equation of
(2.27).

Theorem 2.3.7. A necessary and sufficient condition for the existence of a
nonoscillatory solution of (2.27) is that there exist a constant C˛; a function �.t/,
and t1 such that

�.t/ D jC˛j˛�1
�
1C C˛ exp

�
�
Z t

t1

r.s/�.s/ds

��

� exp

 Z t

�.t/

r.s/�.s/ds C .1 � ˛/
Z �.t/

t1

r.s/�.s/ds

!
: (2.35)

Theorem 2.3.8. Assume that ˛ 2 .0; 1/: Then (2.29) is a necessary and sufficient
condition for every solution of (2.27) to be oscillatory.

Proof. .i/ Necessity. If (2.29) does not hold, we can assume that there exists a
constant

k DW 1

.2 � ˛/.1C C˛/C ˛�1
˛

;

where C˛ is a positive number, such that

Z 1

t0

r.s/ds � k:
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Let T0 D inft�t0 �.t/ and let C.ŒT0;1/;R/ denote the locally convex space of
continuous functions on ŒT0;1/ with the topology of uniform convergence on
compact sets of ŒT0;1/. Define the subset � of C.ŒT0;1/;R/ by

� D fx 2 C.ŒT0;1/;R/ W x.t/ � 0; jx.t/j � e.1C C˛/C
˛�1
˛ ; t � T0g:

Let x 2 � and define a mapping F on � by

.F x/.t/D

8̂̂
<
ˆ̂:

jC˛j˛�1 �1C C˛ exp
�
� R t

T0
r.s/x.s/ds

		
� exp

�R t
�.t/
r.s/x.s/ds C .1 � ˛/ R �.t/

T0
r.s/x.s/ds

	
; t � t0;

.F x/.t0/; t0 � t � T0:

Then as in the proof of Theorem 2.3.1 we have F x.t/ is continuous and
F.�/ � �: Also fF x W x 2 �g is equicontinuous and uniformly bounded.
Apply the Arzela–Ascoli Theorem to conclude that F� is compact in�. Now,
by using the Tychonov–Schauder Fixed Point Theorem, we see that there exists
a � 2 � such that for t � t0 we have

�.t/ D jC˛j˛�1 �1C C˛e
� R t

T0
r.s/�.s/ds

	

� exp

 Z t

�.t/

r.s/�.s/ds C .1 � ˛/
Z �.t/

T0

r.s/�.s/ds

!
: (2.36)

By Theorem 2.3.7, (2.27) has a nonoscillatory solution.
.ii/ Sufficiency. If (2.27) has an eventually positive solution, by Theorem 2.3.7

there exit C˛; t1, and a continuous function �.t/ satisfying

�.t/ D
�
1C C˛e

� R t
t1
r.s/�.s/ds

	

� jC˛j˛�1 exp

 Z t

�.t/

r.s/�.s/ds C .1 � ˛/
Z �.t/

t1

r.s/�.s/ds

!

� jC˛j˛�1 exp

 Z t

�.t/

r.s/�.s/ds C .1 � ˛/
Z �.t/

t1

r.s/�.s/ds

!

� jC˛j˛�1 exp

�
.1 � ˛/

Z t

t1

r.s/�.s/ds

�
:

Set

z.t/ D exp.�.1 � ˛/
Z t

t1

r.s/�.s/ds/
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and note

z
0

.t/ � � jC˛j˛�1 .1 � ˛/r.t/z.t1/:

Integrate and we have by (2.29) that

lim
t!1 z.t/ D �1;

a contradiction. Similarly, we can show that (2.27) has no eventually negative
solution y.t/ with 1C y.t/ > 0. The proof is complete. �

Now, we consider the case when ˛ > 1.

Theorem 2.3.9. Assume that ˛ > 1: Then a necessary and sufficient condition for
the existence of a nonoscillatory solution of (2.27) is that there exists a positive
continuous function �.t/ such that for t � T

exp

 Z t

�.t/

r.s/�.s/ds C .1 � ˛/
Z �.t/

T

r.s/�.s/ds

!
� m�.t/; (2.37)

where m and T are some positive constants.

Proof. .i/ Sufficiency. We only consider the case (since the other case is similar)
when

Z 1

t0

r.s/�.s/ds < 1:

Then there exist %, T and C˛ > 0 such that

Z 1

T

r.s/�.s/ds < %; .1C C˛/C
˛�1
˛ <

1

m%
:

Let T0 D inft�t0 �.t/. Define a mapping F on C.ŒT0;1/;RC/ as follows

.F y/.t/ W D

8̂<
:̂

R1
t
r.s/.1C y.s//y˛.�.s//ds; t � T

.F y/.T /C C˛ exp.� R t
T0
r.s/�.s/ds/

�C˛ exp.� R T
T0
r.s/�.s/ds/; T0 � t � T:

Clearly F is an increasing operator. Set

y0 WD C˛ exp.�
Z t

T

r.s/�.s/ds/; ynC1 D F yn; n D 1; 2; : : : .
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Then we have that

y0.t/ � y1.t/ � : : : � yn.t/ � : : : � 0; for t � T0: (2.38)

In fact

y1.t/ D .F y0/.t/ �
Z 1

t

r.s/

�
1C C˛ exp.�

Z s

T

r.u/�.u/du/

�

�
 
C˛
˛ exp.�˛

Z �.s/

T

r.u/�.u/du

!
ds

� C˛
˛ .1C C˛/m

Z 1

t

r.s/�.s/ds exp

�
�
Z t

T

r.s/�.s/ds/

�

� C˛ exp

�
�
Z t

T

r.s/�.s/ds/

�
D y0.t/; t � T:

Continue to obtain (2.38). Then limn!1 yn.t/ D y.t/ � 0, t � T0, exists.
From the Lebesgue’s Dominated Convergence Theorem

y.t/ W D

8̂
ˆ̂<
ˆ̂̂:

R1
t
r.s/.1C y.s//y˛.�.s//ds; t � T

.F y/.T /C C˛ exp.� R t
T0
r.s/�.s/ds/

�C˛ exp.� R T
T0
r.s/�.s/ds/; T0 � t � T:

It is easy to see that y.t/ > 0 on ŒT0; T � and hence y.t/ > 0 for all t � T0:

Therefore, y.t/ is a positive solution of (2.27) on ŒT;1/:

.i i/ Necessity. If (2.27) has an eventually positive solution then from Theo-
rem 2.3.7 there exists a continuous positive function �.t/ such that

�.t/ D
�
1C C˛ exp

�
�
Z t

t1

r.s/�.s/ds

��

�C˛�1
˛ exp

 Z t

�.t/

r.s/�.s/ds C .1 � ˛/
Z �.t/

t1

r.s/�.s/ds

!

� C˛�1
˛ exp

 Z t

�.t/

r.s/�.s/ds C .1 � ˛/
Z �.t/

t1

r.s/�.s/ds

!
: (2.39)

Let m D 1=C˛�1
˛ : Then (2.39) implies (2.37). If (2.27) has an eventually

negative solution, then
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�.t/ � .1�jC˛j/ ˇ̌C˛�1
˛

ˇ̌
exp

 Z t

�.t/

r.s/�.s/ds C .1 � ˛/
Z �.t/

t1

r.s/�.s/ds

!
;

where jC˛j < 1: Thus (2.37) is also true. The proof is complete. �

From Theorems 2.3.8 and 2.3.9 one can immediately derive some explicit neces-
sary and sufficient conditions for the oscillation and the existence of nonoscillatory
solutions of (2.23) about the positive steady state K.

2.4 ˛-Models with Several Delays

In this section, we consider the nonlinear delay logistic equation with several delays
of the form

N
0

.t/ D
mX
kD1

rk.t/N.t/

�
1 � N.hk.t//

K

� ˇ̌̌
ˇ1 � N.hk.t//

K

ˇ̌̌
ˇ
˛k�1

; t > 0; (2.40)

where ˛k < 1; k D 1; : : : ; m or ˛k > 1; k D 1; : : : ; m under the conditions:

(b1/ rk; k D 1; 2; : : : ; m, are Lebesgue measurable functions essentially bounded
in each finite interval Œ0; b�, rk � 0;

.b2/ hk W Œ0;1/ ! R are Lebesgue measurable functions, hk.t/ � t;

limt!1 hk.t/ D 1; k D 1; 2; : : : ; m.

The case ˛k D 1; k D 1; : : : ; m, will be considered in detail in Sect. 2.6.
We consider positive solutions of (2.40) with an initial condition

�
N.t/ D �.t/; for �� � t � 0;

� 2 C.Œ��; 0�; Œ0;1//; �.0/ > 0;
(2.41)

where

�� D min
1�k�m

�
inf
t�0fhk.t/g

�
:

Clearly the initial value problem (2.40), (2.41) has a unique positive solution for all
t � 0: This follows from the method of steps. In this section we consider

x
0

.t/ D � Œx.t/C 1�

mX
kD1

rk.t/x.hk.t// jx.hk.t//j˛k�1 ; t � 0; (2.42)
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and it is also possible to consider

x
0

.t/ D � Œx.t/C 1�

mX
kD1

rk.t/x.hk.t// jx.hk.t//j˛k�1 ; t � t0;

x.t/ D '.t/; t < t0; and x.t0/ D x0 > �1;

where
.b3/ ' W .�1; t0/ ! is a Borel measurable bounded function.
We also consider the delay differential inequalities

x
0

.t/ � � Œx.t/C 1�

mX
kD1

rk.t/x.hk.t// jx.hk.t//j˛k�1 ; t � 0; (2.43)

x
0

.t/ � � Œx.t/C 1�

mX
kD1

rk.t/x.hk.t// jx.hk.t//j˛k�1 ; t � 0: (2.44)

In the following we discuss the nonoscillation of solutions of (2.42) which is
equivalent to the nonoscillation of positive solutions of (2.40) about K: The results
in this section are adapted from [5].

In the following we assume ˛k < 1; k D 1; 2; : : : ; m, and that .b1/ � .b2/ hold
and we consider solutions of (2.42), (2.43), and (2.44) for which 1C x.t/ > 0:

We prove the following comparison theorem.

Theorem 2.4.1. The following statements are equivalent:

.1/ Either inequality (2.43) has an eventually positive solution or inequality (2.44)
has an eventually negative solutions.

.2/ There exist t0 � 0; ' W .�1; t0/ ! R; with either '.t/ � 0; C > 0, or
'.t/ � 0; �1 <C < 0; such that the inequality

u.t/ �
�
1C C exp

�
�
Z t

t0

u.s/ds

�� mX
kD1
.Fku/.t/; (2.45)

where

.Fku/.t/ D

8̂
<
:̂

jC j˛k�1 rk.t/ � expfR t
hk.t/

u.s/dsg
� expf.1 � ˛k/

R hk.t/
t0

u.s/dsg; if hk.t/ � t0
rk.t/

jC j expfR t
t0

u.s/dsg j'.hk.t//j˛k ; if hk.t/ < t0

has a nonnegative locally integrable solution on Œt0;1/:

.3/ Equation (2.42) has a nonoscillatory solution.
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Proof. 1/ ) .2/ Let x be a solution of (2.43) and x.t/ > 0 for t � t1: Then there
exists t0 > t1 such that hk.t/ � t1 for t � t0; k D 1; : : : ; m. Denote '.t/ D x.t/;

t < t0, and C D x.t0/: Let

u.t/ D �x0

.t/

x.t/
; t � t0:

Then u.t/ � 0 and

x.t/ D
(
C expf� R t

t0
u.s/dsg; t � t0;

'.t/; t < t0:
(2.46)

Then by substituting x in (2.43) we obtain inequality (2.45). Similarly (2.45) can be
obtained, if x.t/ < 0 is a solution of (2.44).
2/ ) 3/: Let u0 be a nonnegative solution of inequality (2.45) with

'.t/ � 0; � 1 < C < 0:

Denote a sequence

un.t/ D
�
1C C exp

�
�
Z t

t0

un�1.s/ds
�� mX

kD1
.Fkun�1/.t/: (2.47)

Inequality (2.45) implies u1.t/ � u0.t/: By induction, we have

0 � un.t/ � un�1.t/ � u0.t/:

Then there exits a pointwise limit of the nonincreasing nonnegative limit un.t/: Let

lim
n!1 un.t/ D u.t/:

Then by the Lebesgue Convergence Theorem

lim
n!1.Fkun/.t/ D .Fku/.t/; k D 1; 2; : : : ; m:

Thus (2.47) implies that

u.t/ D
�
1C C exp

�
�
Z t

t0

u.s/ds

�� mX
kD1
.Fku/.t/:

Hence the function x.t/ defined by (2.46) is an eventually negative solution of
(2.42). Now let u0 be a nonnegative solution of inequality (2.45) with '.t/ � 0;

C > 0: Let C1 D �C; '1.t/ D �'.t/: Then u is also a solution of (2.45) with
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C1 (respectively '1.t/) instead of C (respectively, '.t/). As in the previous case
it follows that there exists an eventually negative solution of (2.42). Implication
3/ ) 1/ is evident. The proof is complete. �

Corollary 2.4.1. Suppose there exist t0 and A > 1 such that the inequality

u.t/ � A

mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

�
� exp

(
.1 � ˛k/

Z hk.t/

t0

u.s/ds

)
(2.48)

has a nonnegative, locally integrable solution, where the sum contains only such
terms for which hk.t/ � t0. Then (2.42) has a nonoscillatory solution.

In the following we give some necessary and sufficient conditions for the
existence of nonoscillatory solutions of (2.42).

Theorem 2.4.2. There exists a nonoscillatory solution of (2.42) if and only if

Z 1

0

rk.t/dt < 1; k D 1; 2; : : : ; m: (2.49)

Proof. First, suppose that (2.49) holds. Then there exist t0 and A > 1 such that

A exp

(
2

Z 1

t0

mX
kD1

rk.t/dt

)
< 2:

For any nonnegative u

A

mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

�
� exp

(
.1 � ˛k/

Z hk.t/

t0

u.s/ds

)

� A

mX
kD1

rk.t/ exp

�Z t

t0

u.s/ds

�
:

Let

u.t/ D 2

mX
kD1

rk.t/:

From the above inequalities we see that u is a solution of inequality (2.48).
Corollary 2.4.1 implies that (2.42) has an eventually positive solution.

Suppose now that for some i , 1 � i � m; we have
R1
0
ri .t/dt D 1: Let x be

a positive or negative solution of (2.42) for t � t1: There exists t0 > t1 such that
hk.t/ � t1; for t � t0 and k D 1; 2; : : : m. Let

u.t/ D �x0

.t/

x.t/
; t � t0:
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Then u.t/ � 0 and x.t/ satisfies (2.46) where C D x.t0/: Substituting x in (2.42)
we obtain for t � t0

u.t/ D
( Pm

kD1 jC j˛k�1 rk.t/.1C C expf� R t
t0

u.s/dsg/
� expf�˛k

R hk.t/
t0

u.s/dsg expfR t
t0

u.s/dsg:

Then

u.t/ � minf1; 1C C g jC j˛k�1 ri .t/ expf.1 � ˛i /
Z t

t0

u.s/dsg:

Hence

ri .t/ � jC j1�˛i
minf1; 1C C g jC ju.t/ expf�.1 � ˛i /

Z t

t0

u.s/dsg

and so

Z t

t0

ri .s/ds � jC j1�˛i
minf1; 1C C g jC j

Z t

t0

u.s/ expf�.1 � ˛i /
Z s

t0

u.�/d�gds

D jC j1�˛i
minf1; 1C C g jC j

�
1 � expf�.1 � ˛i /

Z t

t0

u.s/dsg
�

� jC j1�˛i
minf1; 1C C g jC j :

Hence
Z 1

t0

ri .s/ds < 1;

which gives a contradiction. The proof is complete. �

It is also possible to establish results when ˛k D 1 for k D 1; 2; : : : ; m (see
Sect. 2.6 where a more general situation is considered).

Next, we consider the case when ˛k > 1 for k D 1; 2; : : : ; m.

Lemma 2.4.1. If h 2 L1Œa; b�; then the linear integral operator

.Hx/.t/ D
( R h.t/

a
x.s/ds; if h.t/ 2 Œa; b�

0; if h.t/ … Œa; b�

is a completely continuous operator in L1Œa; b�:
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Proof. Let � > 0 be given. Divide H.Œa; b�/ \ Œa; b� into a finite number of subsets
Fi , i D 1; : : : ; n, such that for every s1; s2 2 Fi we have js1 � s2j < �. Let

Ei D h�1.Fi /; i D 1; : : : ; n; E0 D ft 2 Œa; b� W h.t/ … Œa; b�g;

S D fx 2 L1Œa; b� W jjxjj D 1g and M D H.S/:

For dilatation Ei , i D 1; 2; : : :, we have

sup
t;s2Ei

j.Hx/.t/ � .Hx/.s/j D sup
t;s2Ei

j
Z h.s/

h.t/

x.w/dwj � sup
t;s2Ei

jh.t/ � h.s/j < �:

If i D 0 then supt;s2E0 j.Hx/.t/ � .Hx/.s/j D 0. Now Theorem 1.4.10 implies
M D H.S/ is a compact set. �

Theorem 2.4.3. Suppose for some " > 0; there exists a nonoscillatory solution of
the linear delay differential equation

x
0

.t/ D �"
mX
kD1

rk.t/x.hk.t//: (2.50)

Then there exists a nonoscillatory solution of (2.42).

Proof. Let t0 > 0; C , and ' W .�1; t0/ ! R be such that

�1 < C < 0; '.t/ � 0; j'.t/j < jC j < "1=.˛k�1/;

and hence C � '.t/ � 0: Now (2.50) with x.t/ D '.t/, t < t0, and x.t0/ D x0
with x0 D C has a negative solution x0.t/ < 0: Let

w0 D �x
0

0.t/

x0.t/
:

Then w0.t/ > 0 and

x0.t/ D C expf�
Z t

t0

w0.s/dsg; t � t0:

By substituting x0 in (2.50), we have

w0.t/ D "

mX
kD1

rk.t/ �
(

expfR t
hk.t/

w0.s/dsg; if hk.t/ � t0;

expfR t
t0

w0.s/dsg '.hk.t//C
; if hk.t/ < t0:
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Consider now two sequences

wn.t/ D
�
1C C exp

�
�
Z t

t0

wn�1.s/dsg
�� mX

kD1
rk.t/

�

8̂
ˆ̂<
ˆ̂̂:

jC j˛k�1 exp
nR t
hk.t/

wn�1.s/ds
o

� exp
n
�.˛k � 1/ R hk.t/

t0
vn�1.s/ds

o
; if hk.t/ � t0;

exp
nR t
t0

wn�1.s/ds
o j'.hk.t//j˛k

jC j ; if hk.t/ < t0;

vn.t/ D
�
1C C exp

�
�
Z t

t0

vn�1.s/dsg
�� mX

kD1
rk.t/

�

8̂
ˆ̂<
ˆ̂̂:

jC j˛k�1 exp
nR t
hk.t/

vn�1.s/ds
o

� exp
n
�.˛k � 1/ R hk.t/

t0
wn�1.s/ds

o
; if hk.t/ � t0;

exp
nR t
t0

vn�1.s/ds
o j'.hk.t//j˛k

jC j ; if hk.t/ < t0;

where v0 D 0: We have

j'.hk.t//j˛k�1 < jC j˛k�1 < ":

Then

w0.t/ � w1.t/; v1.t/ � v0.t/ D 0; and w0.t/ � v0.t/:

Hence by induction

0 � wn.t/ � wn�1.t/ � : : : � w0.t/; vn.t/ � vn�1.t/ � : : : � v0.t/ D 0;

and wn.t/ � vn.t/: There exist pointwise limits of the nonincreasing nonnegative
sequence wn.t/ and of the nondecreasing sequence vn.t/: If we denote

w.t/ D lim
n!1 wn.t/ and v.t/ D lim

n!1 vn.t/;

then by the Lebesgue Convergence Theorem, we conclude

w.t/ D
�
1C C exp

�
�
Z t

t0

w.s/dsg
�� mX

kD1
rk.t/

�

8̂
ˆ̂<
ˆ̂̂:

jC j˛k�1 exp
nR t
hk.t/

w.s/ds
o

� exp
n
�.˛k � 1/ R hk.t/

t0
v.s/ds

o
; if hk.t/ � t0;

exp
nR t
t0

w.s/ds
o j'.hk.t//j˛k

jC j ; if hk.t/ < t0;

(2.51)
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v.t/ D
�
1C C exp

�
�
Z t

t0

v.s/dsg
�� mX

kD1
rk.t/

�

8̂̂
<̂
ˆ̂̂:

jC j˛k�1 exp
nR t
hk.t/

v.s/ds
o

� exp
n
�.˛k � 1/ R hk.t/

t0
w.s/ds

o
; if hk.t/ � t0;

exp
nR t
t0

v.s/ds
o j'.hk.t//j˛k

jC j ; if hk.t/ < t0:

(2.52)

Fix b � t0 and denote the operator F W L1Œt0; b� ! L1Œt0; b� by

.F u/.t/ D
�
1C C exp

�
�
Z t

t0

u.s/dsg
�� mX

kD1
rk.t/

�

8̂̂
<̂
ˆ̂̂:

jC j˛k�1 exp
nR t
hk.t/

u.s/ds
o

� exp
n
�.˛k � 1/ R hk.t/

t0
u.s/ds

o
; if hk.t/ � t0;

exp
nR t
t0

u.s/ds
o j'.hk.t//j˛k

jC j ; if hk.t/ < t0:

Note for every function u from the interval v � u � w; we have v � F u � w:
Lemma 2.4.1 implies that the operator F is completely continuous on the space
L1Œt0; b� (for every b � t0). Then by the Schauder Fixed Point Theorem there
exists a nonnegative solution of equation u D F u. Let

x.t/ D
(
C expf� R t

t0
u.s/dsg; t � t0;

'.t/; t < t0:

Then x.t/ is a negative solution of (2.42), which completes the proof. �

2.5 Models with Harvesting

In this section we study the dynamics of a population affected by harvesting, i.e.,

dN

dt
D r.N.t/; t/N.t/ �E.N.t/; t/; (2.53)

where E.N; t/ is a harvesting strategy for the population.
We consider the delay model

N
0

.t/ D r.t/N.t/

"
a �

mX
kD1

bkN.hk.t//

#
�

nX
lD1

cl .t/N.gl .t//; t � 0; (2.54)
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with

N.t/ D '.t/; t < 0; N.0/ D N0; (2.55)

under the following conditions:

.a1/ a > 0; bk > 0;

.a2/ r.t/ � 0; cl .t/ � 0 are Lebesgue measurable and locally essentially bounded
functions;

.a3/ hk.t/; gl .t/ are Lebesgue measurable functions, hk.t/ � t; gl .t/ � t;

limt!1 hk.t/ D 1; limt!1 gl.t/ D 1;
.a4/ ' W .�1; 0/ ! R is a Borel measurable bounded function, '.t/ � 0; N0 > 0.

In this section we obtain sufficient conditions for positiveness, boundedness, and
extinction of solutions of equation (2.54). The results in this section are adapted
from [14]. An absolutely continuous function N (W R ! R) on each interval Œ0; b�
is called a solution of problem (2.54), (2.55), if it satisfies equation (2.54) for almost
all t 2 Œ0;1/ and equality (2.55) for t � 0.

First, we present some lemmas (the proofs can be found in [12, 13], and [30])
which will be used in the proof of the main results. Consider the linear delay
differential equation

x
0

.t/C
nX
lD1

cl .t/x.gl .t// D 0; t � 0; (2.56)

and a corresponding differential inequality

y
0

.t/C
nX
lD1

cl .t/y.gl .t// � 0; t � 0: (2.57)

Lemma 2.5.1. Suppose that for the functions cl , gl , hypotheses .a2/ � .a3/ hold.
Then

.1/ If y.t/ is a positive solution of (2.57) for t � t0, then y.t/ � x.t/, t � t0, where
x.t/ is a solution of (2.56) and x.t/ D y.t/; t � t0.

.2/ For every nonoscillatory solution x.t/ of (2.56), we have limt!1 x.t/ D 0.

.3/ If

sup
t�0

nX
lD1

Z
mink gk.t/

cl .s/ds � 1

e
; (2.58)

then equation (2.56) has a nonoscillatory solution.

If in addition, 0 � '.t/ � N0, then the solution of the initial value
problem (2.56)–(2.55), where N.t/ in (2.55) is replaced by x.t/, is positive.
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Consider also the linear delay equation

x
0

.t/C
nX
lD1

cl .t/x.gl .t// � a.t/x.t/ D 0; t � 0: (2.59)

A solution X.t; s/ of the problem

x
0

.t/C
nX
lD1

cl .t/x.gl .t// � a.t/x.t/ D 0; t � s;

x.t/ D 0; t < s; x.s/ D 1;

is called a fundamental function of (2.59).

Lemma 2.5.2. Suppose for the functions cl , gl , hypotheses .a2/� .a3/ hold, a is a
locally bounded function such that a.t/ � 0,

nX
lD1

cl .t/ � a.t/,
Z 1

0

"
nX
lD1

cl .t/ � a.t/
#

D 1; (2.60)

and

lim
t!1 sup

"
a.t/.t �G.t//C

nX
lD1

cl .t/.G.t/ � gl.t//
#
< 1; (2.61)

where G.t/ D maxl gl .t/. Then

.1/ If there exists a nonoscillatory solution of (2.59), then for some t0 and t � t0
we have X.t; s/ > 0 for t � s � t0, where X.t; s/ is a fundamental function of
(2.59).

.2/ For every nonoscillatory solution x.t/ of (2.59) we have limt!1 x.t/ D 0:

Let

h.t/ D min
k

fhk.t/g; g.t/ D min
l

fgl.t/g:

In addition to .a1/ � .a4/ consider the following hypothesis:
.a5/: h.t/ is a nondecreasing continuous function.

If in (2.54) we neglect harvesting terms, i.e., assume cl � 0, then the positive
equilibrium becomes a=

Pm
kD1 bk .

Theorem 2.5.1. Suppose .a1/ � .a5/ hold,

'.t/ � N0 <
aPm
kD1 bk

for t < 0; (2.62)
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and

sup
t>0

nX
lD1

Z t

g.t/

cl .s/ exp

�
~.t/

Z t

gl .t/

r.�/d�

�
ds � 1

e
; (2.63)

where

~.t/ D a

�
exp

�
a sup

t>0

Z t

h.t/

r.	/d	

�
� 1

�
:

Then for any solution of (2.54)–(2.55), we have

0 < N.t/ � aPm
kD1 bk

exp

�
a sup
t>0

Z t

h.t/

r.s/ds

�
: (2.64)

Proof. Suppose (2.64) is not valid. Then either there exists a Nt > 0 such that

0 < N.t/ � aPm
kD1 bk

exp

�
a sup
t>0

Z t

h.t/

r.s/ds

�
; 0 � t < Nt ;

N.Nt / D aPm
kD1 bk

exp

�
a sup
t>0

Z t

h.t/

r.s/ds

�
; N

0

.Nt / > 0; (2.65)

or there exists a Nt > 0 such that

0 < N.t/ � aPm
kD1 bk

exp

�
a sup
t>0

Z t

h.t/

r.s/ds

�
; 0 � t < Nt ; N.Nt / D 0: (2.66)

Suppose we have the first possibility for a solutionN.t/ of (2.54)–(2.55). Denote by

t1 < t2 < � � � < tk < : : : ;

a sequence of all points tk , such that

N.h.tk// D aPm
iD1 bi

; N
0

.h.tk// > 0:

Now

N.0/ D N0 <
aPm
kD1 bk

; N.Nt / > aPm
kD1 bk

;
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and .a5/ imply that the set ftkg is not empty. Suppose t� is a point where we have a
local maximum for N.t/. We prove that if

N.t�/ >
aPm
iD1 bi

; then t� 2
[
k

Œh.tk/; tk�:

Let tk be the greatest among all points of the sequence ftkg satisfying h.tk/ < t�.
Suppose first

N.t/ � aPm
iD1 bi

;

for some t and h.tk/ < t � tk . The definition of tk and t� imply t� < t and hence
t� 2 Œh.tk/; tk�:

Now suppose

N.t/ >
aPm
iD1 bi

, for h.tk/ < t � tk:

Suppose there exists a smallest point t 0 such that

N.t 0/ D aPm
iD1 bi

:

Then (2.54) implies N
0

.t/ < 0; tk � t < t 0: Hence in this interval N.t/ has no
maximal points. Thus h.tk/ < t� < tk .

If such a t 0 does not exist then N
0

.t/ � 0 for t > tk and so once again h.tk/ <
t� < tk .

Equation (2.54) implies now that

N
0

.t/ � ar.t/N.t/; h.tk/ � t � t�; N.h.tk// D aPm
iD1 bi

:

Then

N.t�/ � aPm
iD1 bi

exp

(
a

Z t�

h.tk/

r.s/ds

)

� aPm
iD1 bi

exp

�
a

Z tk

h.tk/

r.s/ds

�

� aPm
lD1 bi

exp

�
a sup
t>0

Z t

h.t/

r.s/ds

�
;

which contradicts our assumption (2.65).
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Suppose now there exists a Nt > 0 such that (2.66) holds. After substituting

N.t/ D exp

( Z t

0

r.s/

"
a �

mX
kD1

bkN.hk.s//

#
ds

)
x.t/; (2.67)

in (2.54)–(2.55), we have the system

x
0

.t/ D �
nX
lD1

cl .t/ exp

(
�
Z t

gl .t/

r.s/

"
a �

mX
kD1

bkN.hk.s//

#
ds

)
x.gl .t//;

(2.68)
for t > 0; and (we assume r.t/ D 0; t < 0/

x.t/ D '.t/; for t < 0; x.0/ D N0: (2.69)

Consider now the initial value problem

y
0

.t/ D �
nX
lD1

pl .t/y.gl .t//; t > 0; (2.70)

y.t/ D  .t/; t < 0; y.0/ D y0; (2.71)

where

pl.t/ D cl .t/ exp

(
�
Z t

gl .t/

r.s/

"
a �

mX
kD1

bkN.hk.s//

#
ds

)
:

It is evident that if  .t/ D '.t/; y0 D N0, then the solutions of (2.68)–(2.69) and
(2.70)–(2.71) coincide. Inequalities (2.64) and (2.63) imply that

nX
lD1

Z t

g.t/

pl .s/ds

D
nX
lD1

Z t

g.t/

cl .s/ exp

( Z s

gl .s/

r.�/

"
mX
kD1

bkN.hk.�// � a
#
d�

)
ds

� sup
t>0

nX
lD1

Z t

g.t/

cl .s/ exp

�
~.t/

Z s

gl .s/

r.�/d�

�
ds � 1

e
;

where

~.t/ D a

�
exp

�
a sup
t>0

Z t

h.t/

r.	/d	

�
� 1

�
:
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Note (2.62) which say '.t/ � N0. Thus Lemma 2.5.1 yields that if  .t/ D '.t/;

y0 D N0, then y.t/ > 0; t > 0. Hence x.t/ > 0; t > 0. Consequently by (2.67)
we have N.t/ > 0; t > 0, which contradicts assumption (2.66). The proof is
complete. �

Theorem 2.5.2. . Suppose .a1/ � .a5/ hold, then for every eventually positive
solution of (2.54)–(2.55) there exists t0 � 0 such that (2.64) holds for t � t0.

Proof. Suppose N.t/ is an eventually positive solution of (2.54)–(2.55). If

N.t/ � aPn
kD1 bk

;

for some t0 � 0 and t � t0, then the statement of the theorem is true.
Suppose now that

N.t/ >
aPn
kD1 bk

;

for some t1 � 0 and t � t1. Now (2.54) implies that

N
0

.t/ � �
nX
lD1

cl .t/N.gl .t//; t � t2;

for some t2 � t1. Lemma 2.5.1 implies that 0 < N.t/ � x.t/; t � t2, where x.t/ is
a solution of the equation

x
0

.t/C
nX
lD1

cl .t/x.gl .t// D 0; t � t1; x.t/ D N.t/; t � t2;

and limt!1 x.t/ D 0. Then limt!1N.t/ D 0. We have a contradiction with our
assumption.

Hence there exists a sequence ftng; limn!1 tn D 1, such that

N.h.tn// D aPn
kD1 bk

:

The end of the proof is similar to the corresponding part of the proof of
Theorem 2.5.1. �

Consider now

N
0

.t/ D r.t/N.t/

"
a � b0N.t/ �

mX
kD1

bkN.hk.t//

#
�

nX
lD1

cl .t/N.gl .t//: (2.72)
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Theorem 2.5.3. Suppose b0 > 0, hypotheses .a1/ � .a4/ hold,

'.t/ � N0 <
a

b0
; (2.73)

and

sup
t>0

nX
lD1

Z t

g.t/

cl .s/ exp

��
a
Pm

kD1 bk
b0

� Z s

gl .s/

r.u/du

�
ds � 1

e
: (2.74)

Then for any solution of (2.72)–(2.73) we have

0 < N.t/ � a

b0
: (2.75)

Proof. We follow the scheme of the proof in Theorem 2.5.1. Suppose (2.75) is not
true. Then either there exists Nt > 0 such that

0 < N.t/ � a

b0
; 0 � t < Nt ; N.Nt / D a

b0
;N

0

.Nt/ > 0; (2.76)

or there exists Nt > 0 such that

0 < N.t/ � a

b0
; 0 � t < Nt ; N.Nt / D 0: (2.77)

Suppose the first possibility (2.76) holds. Then for 0 < t < Nt we have

N
0

.t/ � r.t/N.t/Œa � b0N.t/�; N.0/ D N0:

Denote by x a solution of the problem

x
0

.t/ D r.t/x.t/Œa � b0x.t/�; x.0/ D N0: (2.78)

Then

N.t/ � x.t/ <
a

b0
; 0 � t � Nt ;

since the solution of (2.78) tends to a=b0 and is always less than a=b0. We have a
contradiction with assumption (2.76).

Suppose now that for Nt > t0 (2.77) holds. Substituting in (2.72),

N.t/ D exp

( Z t

0

r.s/

"
a � b0N.s/ �

mX
kD1

bkN.hk.s//

#
ds

)
x.t/; (2.79)
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we have the system

x
0

.t/ D �
nX
lD1

pl .t/x.gl .t//; t > 0; (2.80)

x.t/ D '.t/; t < 0; x.0/ D N0;

where

pl.t/ D cl .t/ exp

(
�
Z t

gl .t/

r.s/

"
a � b0N.s/ �

mX
kD1

bkN.hk.s//

#
ds

)
:

Inequalities (2.75) and (2.74) imply that

nX
lD1

Z t

g.t/

pl .s/ds

�
nX
lD1

Z t

g.t/

cl .s/

� exp

( Z s

gl .s/

r.�/

"
mX
kD1

bkN.hk.�//C b0N.�/ � a
#
d�

)
ds

� sup
t>0

nX
lD1

Z t

g.t/

cl .s/ exp

��
a
Pm

kD1 bk
b0

� Z s

gl .s/

r.�/d�

�
ds � 1

e
:

As in the proof of Theorem 2.5.1, Lemma 2.5.1 implies N.t/ > 0; 0 � t � Nt . This
contradiction proves the theorem. �

Similar reasoning to that in Theorem 2.5.2 yields the next result.

Theorem 2.5.4. Suppose b0 > 0, .a1/ � .a4/ hold. Then for every eventually
positive solution of (2.72)–(2.55) there exists a t0 � 0 such that (2.75) holds for
t � t0.

Now we obtain sufficient extinction conditions for solutions of the logistic
equation with harvesting. To this end consider the following equation which is more
general than (2.54):

N
0

.t/ D N.t/

"
a.t/ �

mX
kD1

bk.t/N.hk.t//

#
�

nX
lD1

cl .t/N.gl .t//; t � 0: (2.81)
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Theorem 2.5.5. Suppose a.t/ � 0, bk � 0 are locally essentially bounded
functions and for cl , hk , gl conditions .a2/; .a3/ hold. Suppose in addition (2.60)–
(2.61) hold. Then for any solution of (2.81)–(2.55) either

lim
t!1N.t/ D 0

or there exists Nt > 0 such that N.Nt / < 0.

Proof. It is sufficient to prove that for every positive solution N.t/ of (2.81)–(2.55)
we have limt!1N.t/ D 0.

Suppose N.t/ > 0 is a solution of (2.81)–(2.55). Equation (2.81) implies

N
0

.t/C
nX
lD1

cl .t/N.gl .t// � a.t/N.t/ � 0:

Lemma 2.5.2 guarantees that there exists t0 � 0, such that the fundamental function
X.t; s/ of the equation

x
0

.t/C
nX
lD1

cl .t/x.gl .t// � a.t/x.t/ D 0 (2.82)

is positive for t � s � t0: Then the variation of constant formula [30] implies

N.t/ D x.t/C
Z t

t0

X.t; s/f .s/ds;

where x.t/ is a solution of (2.82) with the initial condition x.t/ D N.t/; t � t0,
and f .t/ is a nonpositive function. Hence 0 < N.t/ � x.t/. Lemma 2.5.2 implies
that

lim
t!1 x.t/ D 0:

Thus limt!1N.t/ D 0. The proof is complete. �

2.6 Models with Nonlinear Delays

We return now to Sect. 2.4 when ˛k D 1, k D 1; : : : ; m. Consider the delay logistic
model with several delays

N
0

.t/ D N.t/

mX
kD1

rk.t/

�
1 � N.hk.t//

K

�
; hk.t/ � t: (2.83)
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Motivated by (2.83) in this section we consider first the scalar delay differential
equation

x
0

.t/ D �
mX
kD1

rk.t/x.hk.t// Œx.t/C 1� (2.84)

under the following conditions

.c1/ rk; k D 1; 2; : : : ; m, are Lebesgue measurable functions essentially bounded
in each finite interval Œ0; b�, rk � 0;

Z 1

t0

mX
kD1

rk.t/dt D 1; lim
t!1 inf

mX
kD1

Z t

maxk hk.t/
rk.s/ds > 0I

.c2/ hk W Œ0;1/ ! R are Lebesgue measurable functions, hk.t/ � t;

limt!1 hk.t/ D 1; k D 1; 2; : : : ; m.
Together with (2.84), we consider for each t0 � 0 an initial value problem

x
0

.t/ D �
mX
kD1

rk.t/x.hk.t// Œx.t/C 1� ; t � t0; (2.85)

x.t/ D '.t/; t < t0; and x.t0/ D x0 > �1; (2.86)

where
.c3/ ' W .�1; t0/ ! R is a Borel measurable bounded function.

Consider the linear delay differential equation

x
0

.t/C
mX
kD1

rk.t/x.hk.t// D 0 (2.87)

and the delay differential inequalities

x
0

.t/C
mX
kD1

rk.t/x.hk.t// � 0; t � 0; (2.88)

x
0

.t/C
mX
kD1

rk.t/x.hk.t// � 0; t � 0: (2.89)

The following Lemma follows a standard argument (see the proof of
Theorem 2.4.1).

Lemma 2.6.1. Assume that .c1/ � .c3/ hold. Then the following statements are
equivalent:
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(1) There exits a nonoscillatory solution of (2.87).
(2) There exists an eventually positive solution of t inequality (2.88).
(3) There exists an eventually negative solution of (2.89).
(4) There exists t0 � 0 such that the inequality

u.t/ �
mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

�
; t � t0; u.t/ D 0; t < t0; (2.90)

has a nonnegative locally integrable solution.

If x.t/, y.t/, z.t/, t � 0; are positive solutions of (2.87), (2.88), (2.89),
respectively, x.t/ D y.t/ D z.t/, t < 0; then y.t/ � x.t/ � z.t/ for t � 0:

Lemma 2.6.2. Assume that for the equation

x
0

.t/C
mX
kD1

ak.t/x.gk.t// D 0; t � 0; (2.91)

assumptions .c1/ � .c2/ hold.

.i/ If ak.t/ � rk.t/; gk.t/ � hk.t/; and (2.87) has a nonoscillatory solution, then
(2.91) has a nonoscillatory solution.

.ii/ If ak.t/ � rk.t/; gk.t/ � hk.t/; and all solutions of (2.87) are oscillatory, then
all solutions of (2.91) are oscillatory.

Theorem 2.6.1. Assume that .c1/ � .c3/ hold. Suppose that for every sufficiently
small " � 0 all solutions of the linear delay differential equation

x
0

.t/C .1 � "/
mX
kD1

rk.t/x.hk.t// D 0; t � t0; (2.92)

are oscillatory. Then all solutions of (2.85) are oscillatory.

Proof. Suppose (2.85) has a nonoscillatory solution. Then by the condition x.t/C
1 > 0 either there exists a positive solution x.t/ > 0 for all t � T � t0 or there
exists a solution x.t/ such that

�1 < x.t/ < 0; for t � T:

We can assume hk.t/ � t0 for all t � T; since limt!1 hk.t/ D 1:

First, we suppose that x.t/ > 0 for t � T: From (2.85), we have

x
0

.t/C
mX
kD1

rk.t/x.hk.t// � 0; t � t0:

Lemma 2.6.1 implies for " D 0 that (2.92) has a nonoscillatory solution, which
gives a contradiction.
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Suppose now

�1 < x.t/ < 0; for t � T:

Let us introduce the function u as a solution of

x
0

.t/ D �u.t/x.t/ Œx.t/C 1� ; x.T / D x0 < 0: (2.93)

Now, since x.t/C 1 > 0; we have x
0

.t/ > 0 and this implies that u.t/ � 0: From
(2.93) we obtain

x.t/ D �
exp

�
� R t

T
u.s/ds C c

	

1C exp
�
� R t

T
u.s/ds C c

	 ;

where c D ln Œjx0j =.1C x0/� : Substituting in (2.85) we have

u.t/
exp

�
� R t

T
u.s/ds C c

	

1C exp
�
� R t

T
u.s/ds C c

	 D
mX
kD1

rk.t/
exp

�
� R hk.t/

T
u.s/ds C c

	

1C exp
�
� R hk.t/

T
u.s/ds C c

	 :

Hence

u.t/ D
mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

� 1C exp
�
� R t

T
u.s/ds C c

	

1C exp
�
� R hk.t/

T
u.s/ds C c

	 : (2.94)

Equality (2.94) implies that u.t/ �
mP
kD1

rk.t/ and from .c1/ we have

Z 1

T

u.t/dt D 1:

Consequently there exists T1 � T such that

max
1�k�m

1C exp
�
� R t

T
u.s/ds C c

	

1C exp
�
� R hk.t/

T
u.s/ds C c

	 � .1 � "/; for t � T1:

Then,

u.t/ � .1 � "/
mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

�
:

From Lemma 2.6.1, (2.92) has a nonoscillatory solution, which is a contradiction.
The proof is complete. �
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From Lemma 2.6.2 and Theorem 2.6.1 we have the following oscillation
comparison theorem.

Theorem 2.6.2. Suppose ak.t/ � rk.t/; gk.t/ � hk.t/, and the assumptions of
Theorem 2.6.1 hold. Then all the solutions of the equation

x
0

.t/C
mX
kD1

ak.t/x.gk.t//Œ1C x.t/� D 0; t � 0; (2.95)

are oscillatory.

Theorem 2.6.3. Assume that .c1/ � .c3/ hold. Suppose for every sufficiently small
" � 0 there exists a nonoscillatory solution of the linear delay differential equation

x
0

.t/C .1C "/

mX
kD1

rk.t/x.hk.t// D 0; t � t0: (2.96)

Then (2.85) has a nonoscillatory solution.

Proof. From Lemma 2.6.1 for some T � t0 and for t � T there exists a nonnegative
solution u0 of

u.t/ � .1C "/

mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

�
; t � T: (2.97)

This inequality implies that u0.t/ �
mP
kD1

rk.t/; and hence by .c1/ we have that

Z 1

T

u0.s/ds D 1:

Let c be some negative number. Then there exists T1 � T such that

max
1�k�m

1 � exp
�
� R t

T1
u0.s/ds C c

	

1 � exp

�
� R hk.t/

T1

mP
kD1

rk.s/ds C c

� < .1C "/; for t � T1; (2.98)

and by .c1/ for t � T1, we have

min
1�k�m exp

"Z t

hk.t/

mX
kD1

rk.s/ds

# 1 � exp

�
� R hk.t/

T1

mP
kD1

rk.s/ds C c

�

1 � exp
�
� R t

T1
u0.s/ds C c

	 > 1:
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From (2.97) and (2.98), we have

u0.t/ �
mX
kD1

rk.t/ exp

�Z t

hk.t/

u0.s/ds

� 1 � exp
�
� R t

T1
u0.s/ds C c

	

1 � exp

�
� R hk.t/

T1

mP
kD1

rk.s/ds C c

� :

(2.99)

Let us fix t1 > T1 and consider the nonlinear operator

.F1u/.t/ D
mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

�

�
1 � exp

�
� R t

T1
u.s/ds C c

	

1 � exp

�
� R hk.t/

T1

mP
kD1

rk.s/ds C c

�

in the Banach space L1ŒT1; t1�. We have

.F1u/.t/ D
mX
kD1

rk.t/
exp

�R t
T1

u.s/ds
	

exp
�R t

T1

k.t; s/u.s/ds

	

�
1 � exp

�
� R t

T1
u.s/ds C c

	

1 � exp

�
� R hk.t/

T1

mP
kD1

rk.s/ds C c

� ; (2.100)

where 
k.t; s/ D 1, if s < hk.t/ < t , and 
k.t; s/ D 0, if hk.t/ < s. The operator
F1 is continuous. Consider all functions v 2 L1ŒT1; t1� such that

mX
kD1

rk.t/ � v.t/ � u0.t/:

We have .F1v/.t/ �
mP
kD1

rk.t/: Inequality (2.98) implies that

.F1v/.t/ �
mX
kD1

rk.t/ exp

�Z t

hk.t/

u0.s/ds

�

�
1 � exp

�
� R t

T1
u0.s/ds C c

	

1 � exp

�
� R hk.t/

T1

mP
kD1

rk.s/ds C c

�

� .1C "/

mX
kD1

rk.t/ exp

�Z t

hk.t/

u0.s/ds

�
� u0.t/:
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Hence for each v such that

mX
kD1

rk.t/ � v.t/ � u0.t/

we have

mX
kD1

rk.t/ � .F1v/.t/ � u0.t/:

Then by Knaster’s Fixed Point Theorem (see Sect. 1.4), there exists u1 such that

mX
kD1

rk.t/ � u1.t/ � u0.t/ and u1 D F u1:

This means that

u1.t/ D
mX
kD1

rk.t/ exp

�Z t

hk.t/

u1.s/ds

� 1 � exp
�
� R t

T1
u1.s/ds C c

	

1 � exp

�
� R hk.t/

T1

mP
kD1

rk.s/ds C c

� :

(2.101)

Consider the operator

.F2u/.t/ D
mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

� 1 � exp
�
� R t

T1
u.s/ds C c

	

1 � exp
�
� R hk.t/

T1
u1.s/ds C c

	 :

If

mX
kD1

rk.t/ � v.t/ � u1.t/;

then (2.101) and (2.98) imply

.F2v/.t/ �
mX
kD1

rk.t/ exp

�Z t

hk.t/

u1.s/ds

� 1 � exp
�
� R t

T1
u1.s/ds C c

	

1 � exp
�
� R hk.t/

T1
u1.s/ds C c

	

� u1.t/;
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and

.F2v/.t/

�
mX
kD1

rk.t/ exp

 Z t

hk.t/

mX
kD1

rk.s/ds

! 1 � exp

�
� R t

T1

mP
kD1

rk.s/ds C c

�

1 � exp
�
� R hk.t/

T1
u0.s/ds C c

	

�
mX
kD1

rk.t/:

Hence

mX
kD1

rk.t/ � .F2v/.t/ � u1.t/

and as in the previous case we obtain that there exists a solution u2 of the equation
u D F2u such that

mX
kD1

rk.t/ � u2.t/ � u1.t/:

By induction we prove that there exists a solution un of the equation u D Fn u which
satisfies

mX
kD1

rk.t/ � un.t/ � un�1.t/;

where

.Fnu/.t/ D
mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

� 1 � exp
�
� R t

T1
u.s/ds C c

	

1 � exp
�
� R hk.t/

T1
un�1.s/ds C c

	 :

A monotone bounded sequence fung has a limit u D limn!1 un.t/ and this limit is
a solution of the equation

u.t/ D
mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

� 1 � exp
�
� R t

T1
u.s/ds C c

	

1 � exp
�
� R hk.t/

T1
u.s/ds C c

	 :
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From this, we have that

x.t/ D �
exp

�
� R t

T
u.s/ds C c

	

1C exp
�
� R t

T
u.s/ds C c

	

(where c D ln Œjx.T1/j =.1C x.T1/�) is a positive solution of (2.85) for T1 � t � t1:

Since t1 is an arbitrary number, we have a positive solution for all t � T1: The proof
is complete. �

For the remainder of this section we consider

x
0

.t/C
mX
kD1

rk.t/fkŒx.hk.t//� D 0 (2.102)

under the following assumptions:

.a1/ rk.t/ � 0; k D 1; : : : ; m, are Lebesgue measurable locally essentially
bounded functions;

.a2/ hk W Œ0;1/ ! R, for k D 1; : : : ; m; are Lebesgue measurable functions
hk.t/ � t , lim tt!1hk.t/ D 1;

.a3/ fk W R ! R; k D 1; : : : ; m, are continuous functions, xfk.x/ > 0 for x ¤ 0.

Together with (2.102), we consider for each t0 � 0 an initial value problem

x
0

.t/C
mX
kD1

rk.t/fkŒx.hk.t//� D 0; t � t0; (2.103)

x.t/ D �.t/; t < t0; x.t0/ D x0: (2.104)

We also assume that the following hypothesis holds:

.a4/ � W .�1; t0/ ! R is a Borel measurable bounded function.

We will also use the following lemma (whose proof is standard) which can be
found in [33].

Lemma 2.6.3. Suppose there exists an index k such that
Z 1

0

rk.t/dt D 1 (2.105)

and x.t/ is a nonoscillatory solution of (2.103). Then limt!1 x.t/ D 0.

Theorem 2.6.4. Assume that .a1/ � .a4/ and (2.105) hold. Furthermore assume
that

lim
u!1

fk.u/

u
D 1; k D 1; 2; : : : ; m: (2.106)
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If for some " > 0 all solutions of the linear equation

x0.t/C .1 � "/
mX
kD1

rk.t/ x.hk.t// D 0; t � t0; (2.107)

are oscillatory, then all solutions of (2.103) are also oscillatory.

Proof. Assume (2.103) has a nonoscillatory solution x.t/. Then, by Lemma 2.6.3
we have that limt!1 x.t/ D 0:

Assume that there exists t1 � t0 sufficiently large such that x.t/ > 0 for t � t1
and hk.t/ � t1 for t � t2: From condition (2.106) there exists t3 � t2 such that

fk.x.hk.t/// � .1 � "/x.hk.t//; t � t3:

Hence

x
0

.t/C .1 � "/
mX
kD1

rk.t/x.hk.t// � 0; t � t3:

Now Lemma 2.6.1 implies that (2.107) has a nonoscillatory solution. This is a
contradiction.

Suppose now, x.t/ < 0 for t � t1 for some t1 sufficiently large such that hk.t/ �
t1 for t � t2: Let

y.t/ WD �x.t/; gk.y/ D �fk.�y/

and the functions gk satisfy all the assumptions for fk; and y.t/ is an eventually
positive solution of the equation

y
0

.t/C
mX
kD1

rk.t/gk.y.hk.t/// D 0:

As was shown above, we have

y
0

.t/C .1 � "/
mX
kD1

rk.t/y.hk.t// � 0;

for t2 � t1. Now Lemma 2.6.1 implies that (2.107) has a nonoscillatory solution.
This contradiction proves the theorem. �

Theorem 2.6.5. Assume that .a1/�.a4/ hold. Suppose for all k D 1; : : : ; m, either

fk.x/ � x for x > 0 or fk.x/ � x for x < 0; (2.108)

and there exists a nonoscillatory solution of the linear delay differential
equation (2.87).
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Then there exists a nonoscillatory solution of (2.103).

Proof. Suppose fk.x/ � x for x > 0, k D 1; : : : ; m. By Lemma 2.6.1 there exist
t0 > 0 and u0.t/ � 0, t � t0, u0.t/ D 0, t < t0, such that

u0.t/ �
mX
kD1

rk.t/ exp

�Z t

hk.t/

u0.s/ds

�
; t � t0:

Let us fix b > t0 and consider the nonlinear operator F W L1Œt0; b� ! L1Œt0; b�
given by

.F u/.t/ D
mX
kD1

rk.t/fk

 
exp

 
�
Z hk.t/

t0

u.s/ds

!!
exp

�Z t

t0

u.s/ds

�
:

For any function u from the interval 0 � u � u0 we have

0 � .F u/.t/ �
mX
kD1

rk.t/ exp

 
�
Z hk.t/

t0

u.s/ds

!
exp

�Z t

t0

u.s/ds

�

�
mX
kD1

rk.t/ exp

�Z t

hk.t/

u0.s/ds

�
� u0.t/:

Hence 0 � F u � u0: Lemma 2.4.1 implies that the operator F is completely
continuous in L1Œt0; b�. Then by the Schauder Fixed Point Theorem, there exists a
nonnegative solution of the equation u D F u. Let

x.t/ D
(

exp
�
� R t

t0
u.s/ds

	
; t � t0;

0; t < t0:

Then x.t/ is an eventually positive solution of (2.87).
If fk.x/ � x, x � 0, k D 1; : : : ; m, then (2.87) has an eventually negative

solution, which completes the proof of the theorem. �

Consider (2.83). Let N.t/ D Kex.t/. Then x is a solution of (2.102) with

fk.x/ D f .x/ D ex � 1:

Note fk.u/ � u for u � 0 and ufk.u/ > 0 for u ¤ 0.
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2.7 Hyperlogistic Models

In this section, we are concerned with the oscillation of the delay hyperlogistic
models. First, we consider an autonomous delay hyperlogistic model of the form

N
0

.t/ D rN.t/

mY
jD1

�
1 � N.t � �j /

K

�˛j
; t � 0; (2.109)

where r; K; �j 2 .0;1/; and ˛j D pj =qj are rational numbers with qj odd, pj and
qj are co-prime, 1 � j � m; and

mY
jD1

.�1/˛j D �1:

By making a change of variables

x.t/ D N.t/

K
� 1;

Eq. (2.109) becomes

x
0

.t/C r Œ1C x.t/�

mY
jD1

x˛j


t � �j

� D 0: (2.110)

We are interested in those solutions x.t/ of (2.110) satisfying x.t/ � �1 which
correspond to solutions N.t/ of (2.109) satisfying N.t/ � 0: Thus we consider the
initial condition �

x.t/ D �.t/ � �1; t 2 Œt0 � �; t0� ;
� 2 C .Œt0 � �; t0� ; Œ�1;1// and �.t0/ > �1; (2.111)

where � D maxf�1; : : : ; �mg: Now (2.110), (2.111) has a unique solution x.t I t0; �/
on Œt0 � �;1/ and x.t/ > �1 for t � t0: We will show that all solutions of (2.110)

and (2.111) are oscillatory when
mX
jD1

˛j < 1; but at least one nonoscillatory solution

exists when
mX
jD1

˛j > 1: For the case where
mX
jD1

˛j D 1; we will establish an

equivalence, as far as oscillation is concerned, between (2.110) and its so-called
quasilinearized equation

y
0

.t/C r

mY
jD1

y˛j .t � �j / D 0: (2.112)

The results in this section are adapted from [84].
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The case
mX
jD1

˛j < 1.

Theorem 2.7.1. If ˛ D
mX
jD1

˛j < 1, then every solution of (2.110)–(2.111)

oscillates.

Proof. Assume that (2.110)–(2.111) has a nonoscillatory solution x.t/: We first
suppose that x.t/ is eventually positive. Then, by (2.110), we eventually have

x
0

.t/ D �r.1C x.t//

mY
jD1

x˛j .t � �j / < 0;

which implies that x.t/ is eventually decreasing. Thus

x.t � �j / � x.t/; eventually, for j D 1; : : : ; m;

and hence (note ˛ D
mX
jD1

˛j )

x
0

.t/C r.1C x.t//x˛.t/ � x
0

.t/C r.1C x.t//

mY
jD1

x˛j .t � �j / D 0:

Thus

d

dt
x1�˛.t/ � �.1 � ˛/r Œ1C x.t/� � �.1 � ˛/r;

which implies that

x1�˛.t/ ! �1; as t ! 1:

This is impossible since x.t/ > 0 eventually and 1 � ˛ > 0:
We next suppose that x.t/ is eventually negative. Noting that x.t/ > �1 for

t � 0; we have eventually

x
0

.t/ D �r.1C x.t//

mY
jD1

x˛j .t � �j /

D r.1C x.t//

mY
jD1

��x.t � �j /

˛j

> 0;
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which implies that x.t/ is eventually increasing, so there exists T1 > 0 such that
x.t � �j / � x.t/ < 0 for j D 1; : : : ; m and

1C x.t/ > 1C x.T1/ > 0; for all t > T1.

Therefore

x
0

.t/C r.1C x.t//x˛.t/

� x
0

.t/C r.1C x.t//

mY
jD1

x˛j .t � �j / D 0; t > T1;

and hence

d

dt
x1�˛.t/ � �r.1 � ˛/.1C x.t//

< �r.1 � ˛/.1C x.T1// < 0; t > T1:

Integrating the above inequality from T1 to t > 0 and letting t ! 1; we get
x1�˛.t/ ! �1; as t ! 1: This is a contradiction to the fact that x.t/ > �1 for
t � 0 and completes the proof. �

The case
mX
jD1

˛j > 1.

We now recall the following well-known result.

Lemma 2.7.1. Every solution of (2.112) with
mX
jD1

˛j D 1 oscillates if and only if

r

mX
jD1

˛j �j >
1

e
:

Moreover, the above inequality holds if and only if

y
0

.t/C r

mY
jD1

y˛j .t � �j / � 0; has no eventually positive solution,

y
0

.t/C r

mY
jD1

y˛j .t � �j / � 0; has no eventually negative solution.

Theorem 2.7.2. If ˛ D
mX
jD1

˛j > 1, then (2.110) has a nonoscillatory solution.



56 2 Oscillation of Delay Logistic Models

Proof. Choose rational numbers ˇj D rj
sj

2 Œ0;1/ with sj odd, 1 � j � m;

such that

ˇj � ˛j ; for j D 1; : : : ; m;

mX
jD1

ˇj D 1;

mY
jD1

.�1/ˇj D �1:

Let � > 0 satisfy

r�

mX
jD1

ˇj �j � 1

e
:

Then, by Lemma 2.7.1, the equation

x
0

.t/C r�

mY
jD1

xˇj .t � �j / D 0 (2.113)

has a positive solution x.t/ defined on Œt0;1/ for some t0 � 0: It is clear that
x.t/ ! 0 as t ! 1: Since ˇj � ˛j and

mX
jD1

ˇj <

mX
jD1

˛j ;

we have

lim
t!1.1C x.t//

mY
jD1

x˛j .t � �j /
mY
jD1

xˇj .t � �j /
D 0:

Thus, there exists t1 > t0 such that

.1C x.t//

mY
jD1

x˛j .t � �j / < �
mY
jD1

xˇj .t � �j /; for t � t1;

and hence for t � t1, we see that

x
0

.t/C r .1C x.t//

mY
jD1

x˛j .t � �j / < x0

.t/C � r

mY
jD1

xˇj .t � �j / D 0: (2.114)
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Set y.t/ D ln.1C x.t//: Then, from (2.114), we have

y
0

.t/C r

mY
jD1

�
ey.t��j / � 1
˛j < 0; for t � t1;

which yields

y.t/ > r

1Z
t

mY
jD1

�
ey.s��j / � 1
˛j ds; for t � t1: (2.115)

Define X to be the set of piecewise continuous functions z W Œt1 � �;1/ ! Œ0; 1�

and endow X with the usual pointwise ordering �, that is,

z1 � z2 , z1.t/ � z2.t/; for t � t1 � �:

Then .X I �/ becomes an ordered set. It is obvious that for any nonempty subset
M of X , inf.M/ and sup.M/ exist. Thus .X I �/ is a complete lattice. Define a
mapping ‰ on X as follows:

.‰ z/.t/ D
( r
y.t/

1Z
t

mY
jD1

�
ey.s��j /z.s��j / � 1
˛j ds; t � t1;

t
t1
.‰ z/.t/C

�
1 � t

t1

	
; t1 � � � t � t1:

For each z 2 X; we see that

0 � .‰ z/.t/ � r

y.t/

1Z
t

mY
jD1

�
ey.s��j / � 1
 ds < 1; for t � t1;

and

0 � .‰ z/.t/ � 1; for t 2 Œt1 � �; t1� :

This shows that ‰X 	 X: Moreover, it can be easily verified that ‰ is a monotone
increasing mapping. Therefore, by the Knaster–Tarski Fixed Point Theorem (see
Sect. 1.4), we have that there exists a z 2 X such that ‰ z D z; that is,

z.t/ D
( r
y.t/

1Z
t

mY
jD1

�
ey.s��j /z.s��j / � 1
˛j ds; t � t1;

t
tj
.‰ z/.t1/C .1 � t

t1
/; t1 � � � t � t1:

(2.116)
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By (2.116), z.t/ is continuous on [t1 � �;1/: Moreover, since z.t/ > 0 for t 2
Œt1 � �; t1/, we must have z.t/ > 0; for all t � t1: Set w.t/ D y.t/z.t/: Then w.t/ is
positive, continuous on Œt1 � �;1/, and satisfies

w.t/ D r

1Z
t

mY
jD1

�
ew.s��j / � 1
˛j ds; for t � t1: (2.117)

Differentiating (2.117) yields

d

dt
w.t/C r

1Z
t

mY
jD1

�
ew.s��j / � 1
˛j D 0; for t � t1;

which shows that ew.t/�1 is a positive solution of (2.110) on Œt1;1/: This completes
the proof. �

The case
mX
jD1

˛j D 1:

The following theorem establishes an equivalence between the oscillation of
(2.110)–(2.111) and the oscillation of (2.112).

Theorem 2.7.3. When
mX
jD1

˛j D 1; every solution of (2.110)–(2.111) oscillates if

and only if every solution of (2.112) oscillates.

Proof. )W Assume that (2.112) has a nonoscillatory solution y.t/. Since �y.t/ is
also a solution of (2.112), we may assume that y.t/ is eventually positive. We, will
prove that (2.110)–(2.111) has a nonoscillatory solution for some t0: To this end, we
only need to prove that the equation

z
0

.t/C r

mY
jD1

.1 � e�z.t��j //˛j D 0 (2.118)

has an eventually positive solution. Let t0 be such that y.t � �/ > 0 for t � t0:

Using the inequality 1 � e�x � x for x � 0; we have for t � t0 that

y
0

.t/C r

mY
jD1

.1 � e�y.t��j //˛j � y
0

.t/C r

mY
jD1

y˛j .t � �j / D 0: (2.119)

It can be easily shown that y.t/ ! 0; as t ! 1: Integrating the above inequality
from t to 1, we obtain

y.t/ � r

1Z
t

mY
jD1

.1 � e�y.t��j //˛j ; for t � t0:



2.7 Hyperlogistic Models 59

Now an argument similar to the proof of Theorem 2.7.2 shows that (2.119) would
have an eventually positive solution z.t/ on Œt0;1/ satisfying z.t/ > 0 for all t � t0:

(W Assume, for the sake of contradiction, that (2.110)–(2.111) has a non-
oscillatory solution x.t/ for every t0. Then 1 C x.t/ > 0; for t � t0. We now
distinguish two cases:

Case (i): x.t/ is eventually positive.
Then there exists T � t0 such that x.t/ > 0; for t � T . From (2.110) it follows
that

x
0

.t/C r

mY
jD1

x˛j .t � �j / � x
0

.t/C r.1C x.t//

mY
jD1

x˛j .t � �j / D 0: (2.120)

This, together with Lemma 2.7.1, implies that (2.112) has a nonoscillatory
solution, contrary to the assumption that every solution of (2.112) oscillates.

Case (ii): x.t/ is eventually negative.
Since 1C x.t/ > 0 for t � t0 and x.t/ < 0 for t � T for some T � t0; we have

x
0

.t/ D r.1C x.t//

mY
jD1

Œ�x.t � �j /�˛j > 0; for t � T;

from which we can easily see that x.t/ ! 0 as t ! 1: On the other hand, in
view of Lemma 2.7.1, we can choose � 2 .0; 1/ such that

r.1 � �/
mX
jD1

˛j �j >
1

e
: (2.121)

Now, let T1 > T be sufficiently large such that 1 > 1C x.t/ > 1� �; for t � T:

Then by (2.110), we have for t � T C � that

x
0

.t/C r.1 � �/
mY
jD1

x˛j .t � �j /

� x
0

.t/C r.1C x.t//

mY
jD1

x˛j .t � �j / D 0; (2.122)

which is also a contradiction since, by Lemma 2.7.1, (2.122) implies that the
inequality

x
0

.t/C r.1 � �/
mY
jD1

x˛j .t � �j / � 0

cannot have an eventually negative solution. This completes the proof. �



60 2 Oscillation of Delay Logistic Models

The following corollary is an immediate result from Theorem 2.7.3 and
Lemma 2.7.1.

Corollary 2.7.1. If
mX
jD1

˛j D 1; then every solution of (2.110)–(2.111) oscillates

(or every positive solution of (2.111) oscillates about the steady state K) if and
only if

r
mX
jD1

˛j � >
1

e
:

Next, in the following we consider the nonautonomous hyperlogistic delay model

N
0

.t/ D r.t/N.t/

mY
jD1

�
1 � N.t � �j /

K

�ˇj
; for t � 0; (2.123)

where 0 < �1 � �2 � : : : � �m, ˇ1; : : : ; ˇm are rational numbers with denominators
that are positive odd integers, and

r 2 C.Œt0;1/; Œ0;1//; K > 0:

We will establish some sufficient conditions for the oscillation of all positive
solutions of (2.123) about K. The results are adapted from [71]. To prove the main
results we study the oscillation of the equation

x
0

.t/C p.t/

mY
jD1

ˇ̌
x.t � �j /

ˇ̌˛j signŒx.t � �j /� D 0; t � t0; (2.124)

where

p 2 C.Œt0;1/; Œ0;1//; 0 < �1 � �2 � : : : � �m; ˛j > 0; j D 1; 2; : : : ; m;

and then apply the obtained results on the hyperlogistic model (2.123).
We will consider the equation

x
0

.t/C p.t/f .x.t � �1/; : : : ; x .t � �m// D 0; for t � t0; (2.125)

where the function f satisfies the following condition .H/:
.H/: f 2 C.Rm;R/; f .x1; : : : ; xm/ is nondecreasing on each xi ; i D 1; : : : ; m;

and

xi > 0, for i D 1; : : : ; m ) f .x1; : : : ; xm/ > 0;

xi < 0; for i D 1; : : : ; m ) f .x1; : : : ; xm/ < 0;
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and

lim
.x1;:::;xm/!.0;:::;0/

jf .x1; : : : ; xm/j
mY
jD1

ˇ̌
xj
ˇ̌˛j D M > 0:

We will apply the results on the equation

x
0

.t/C
mX
jD1

pj .t/ x
ˇj


t � �j

� D 0; for t � t0; (2.126)

where ˇ1; : : : ; ˇm are rational numbers with denominators that are positive odd
integers and

pj 2 C.Œt0;1/; Œ0;1//; for j D 1; 2; : : : ; m:

In the following, we consider the case when

mX
jD1

˛j > 1 (2.127)

and study the oscillatory behavior of (2.124) in terms of p.t/ and the delays
�1; : : : ; �m:

The following lemma whose proof is standard (see [21]) will be needed to prove
the main results.

Lemma 2.7.2. Assume that .H/ holds, and for large t ,

p.s/ ¤ 0; for s 2 Œt; t C ��; (2.128)

where � D maxf�1; �2; : : : ; �mg: Then (2.125) has an eventually positive solution if
and only if the corresponding inequality,

x
0

.t/C p.t/f .x.t � �1/; : : : ; x .t � �m// � 0; t � t0; (2.129)

has an eventually positive solution.

Associated with (2.125), we consider the equation

x
0

.t/C q.t/f .x.t � �1/; : : : ; x .t � �m// D 0; for t � t0; (2.130)

where q 2 C.Œt0;1/; Œ0;1//: Applying Lemma 2.7.2, we have the following
lemma.
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Lemma 2.7.3. Assume that .H/ and (2.128) hold, and that for large t

p .t/ � q .t/: (2.131)

If every solution of (2.125) oscillates, then every solution of (2.130) oscillates.

Theorem 2.7.4. Assume that (2.127) holds. Then the following conclusions hold:

.i/ If there exists � > 0 such that

mX
jD1

˛j e
���j < 1; (2.132)

and

lim
t!1 inf

�
p.t/ exp


�e�� �
 > 0; (2.133)

then every solution of (2.124) oscillates.
.ii/ If (2.128) holds and there exists � > 0 such that

mX
jD1

˛j e
���j > 1; (2.134)

and

lim
t!1 sup Œp.t/ exp .�e�� /� < 1; (2.135)

then (2.124) has an eventually positive solution.

Proof. (i) From (2.132) and (2.133), we may choose �2 < �1 < � and T > t0
such that

mX
jD1

˛j e
���j <

mX
jD1

˛j e
��1�j <

mX
jD1

˛j e
��2�j < 1; (2.136)

and

p.t/ � �1e
�1t exp

2
41
2

0
@ mX
jD1

˛j � 1
1
A e�1t

3
5 ; t � T: (2.137)

Set

q.t/ D �1e
�1t exp

2
41
2

0
@ mX
jD1

˛j � 1
1
A e�1t

3
5 : (2.138)



2.7 Hyperlogistic Models 63

By Lemma 2.7.3, it suffices to prove that every solution of the equation

x
0

.t/C q.t/

mY
jD1

ˇ̌
x.t � �j /

ˇ̌˛j
sign Œx.t � �1/� D 0; t � t0; (2.139)

oscillates. Assume the contrary, and let x.t/ be an eventually positive solution
of (2.139). Then there exists a T1 > T such that

1 > x.t � �m/ > 0 and x
0

.t/ � 0; for t � T1:

Let y.t/ D � ln x.t/ for t � T1 � �m: Then y.t/ > 0 for t � T1 � �m; and from
(2.139) we have

y0.t/ D q.t/ exp

2
4y.t/ �

mX
jD1

˛j y.t � �j /
3
5 ; for t � T1: (2.140)

Set l D
mX
jD1

˛j e
��2�j : Then 0 < l < 1: We consider the following three

possible cases.

Case (1): Consider the case when y.t/ �
mX
jD1

˛j e
.�1��2/�j y.t � �j / eventu-

ally holds.

Choose T2 > T1 such that

y.t/ �
mX
jD1

˛j e
.�1��2/�j y.t � �j /; for t � T2:

Consequently, we have for t � T2 that

y.t/

e�1t
�

mX
jD1

˛j e
�1t��2�j
e�1t

y.t � �j /
e�1.t��j /

D
mX
jD1

˛j e
��2�j y.t � �j /

e�1.t��j /
:

Set z.t/ D y.t/e��1t : Then

z.t/ �
mX
jD1

˛j e
��2�j z.t � �j /; for t � T2: (2.141)

This implies that

lim
t!1z.t/ D 0: (2.142)
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From (2.142), it follows that there exists a T3 > T2 such that

y.t/ <
1

2
e�1t ; t � T3; (2.143)

which, together with (2.140), implies for t � T3 that

y
0

.t/ � q.t/ exp

2
4
0
@1 �

mX
jD1

˛j

1
Ay.t/

3
5

� q.t/ exp

2
41
2

0
@1 �

mX
jD1

˛j

1
A e�1t

3
5 D �1e

�1t :

It follows that

y.t/ � y.T3/C e�1t � e�1T3 ; t � T3;

which contradicts (2.143).

Case (2): Consider the case when y.t/ �
mX
jD1

˛j e
.�1��2/�j y.t � �j / is oscil-

latory.

In this case, there exists an increasing infinite sequence ftng of real numbers
with T3 < t1 < t2 < : : : such that

y.tn/ D
mX
jD1

˛j e
.�1��2/�j y.tn � �j /; n D 1; 2; : : : ; (2.144)

and

y.t/ >

mX
jD1

˛j e
.�1��2/�j y.t � �j /; t 2 .t2n�1; t2n/; n D 1; 2; : : : (2.145)

Set

u.t/ D y.t/ �
mX
jD1

˛j e
.�1��2/�j y.t � �j /:

Then u.t/ is oscillatory and there exists an increasing infinite sequence f	ng of
real numbers such that

u.	n/ D maxfu.t/ W t2n�1 � t � t2ng;
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and u0.	n/ D 0, n D 1; 2; : : : : Note

u0.	n/ D y0.	n/ �
mX
jD1

˛j e
.�1��2/�j y0.	n � �j /;

and for t � T1

y
0

.t/ D q.t/ exp

2
4u.t/C

mX
jD1

˛j .e
.�1��2/�j � 1/y.t � �j /

3
5 : (2.146)

It follows that

q.	n/ exp

2
4u.	n/C

mX
jD1

˛j .e
.�1��2/�j � 1/y.	n � �j /

3
5

D
mX
iD1

˛i e
.�1��2/�i q.	n � �i /

� exp

2
4u .	n � �i /C

mX
jD1

˛j .e
.�1��2/�j � 1/y.	n � �i � �j /

3
5

< �1e
�1	n exp

2
41
2

0
@ mX
jD1

˛j � 1
1
A e�1.	n��1/

3
5

� exp

2
4 max
1�i�mfu.	n � �i /g C

mX
jD1

˛j .e
.�1��2/�j � 1/y.	n � �1 � �j /

3
5 :

Consequently, we have

u .	n/C
mX
jD1

˛j .e
.�1��2/�j � 1/y.	n � �j /

< max
1�i�mfu.	n � �i /g C

mX
jD1

˛j .e
.�1��2/�j � 1/y.	n � �1 � �j /

� 1

2

0
@ mX
jD1

˛j � 1
1
A .1 � e��1�1/e�1	n ; n D 1; 2; 3; : : : . (2.147)
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If

lim sup
t!1

u.t/ D lim sup
n!1

u.	n/ D 1;

then there exists a subsequence f	nk g of f	ng such that

u


	nk
� D maxfu.t/ W T2 � t � 	nk g; k D 1; 2; : : : .

Hence, from (2.147), we have

0 <

mX
jD1

˛j .e
.�1��2/�j � 1/ �y.	nk � �j / � y.	nk � �1 � �j /




< �1
2

0
@ mX
jD1

˛j � 1
1
A .1 � e��1�1/e�1	nk < 0; k D 1; 2; : : : :

This is a contradiction. If

lim sup
t!1

u.t/ D lim sup
n!1

u.	n/ < 1;

then from (2.147),

0 < lim sup
n!1

.u.	n/

C
mX
jD1

˛j .e
.�1��2/�j � 1/ �y.	nk � �j / � y.	nk � �1 � �j /



/

� lim sup
n!1

8<
: max
1�i�mfu.	n � �i /g

�1
2

0
@ mX
jD1

˛j � 1
1
A .1 � e��1�1/e�1	n

9=
; D �1:

This is also a contradiction.

Case (3): Consider the case when y.t/ �
mX
jD1

˛j e
.�1��2/�j y.t � �j / eventu-

ally holds.

Let T4 > T3 be such that

y.t/ �
mX
jD1

˛j e
.�1��2/�j y.t � �j /; t � T4:
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It follows from (2.140) that

y
0

.t/ D q.t/ exp

2
4y.t/ �

mX
jD1

˛j y.t � �j /
3
5

� q.t/ exp
�

1 � e.�2��1/�1� r.t/
 ; for t � T4:

Set c D 1 � e.�2��1/�1 : Then 0 < c < 1, and the above inequality reduces to

y
0

.t/e�cy.t/ � q.t/; for t � T4:

Integrating the above inequality from T4 to 1, we obtain

1Z
T4

q.t/dt �
1Z
T4

y
0

.t/e�cy.t/dt � 1

c
e�cy.T4/ < 1;

which contradicts the definition of q.t/.
Cases 1, 2, and 3 complete the proof of .i/.

.ii/ By (2.134) and (2.135), we may choose �1 > � and T > t0 such that

mX
jD1

˛j e
���j >

mX
jD1

˛j e
��1�j > 1; (2.148)

and

p.t/ � �1e
�1t exp

2
4
0
@ mX
jD1

˛j e
��1�j � 1

1
A e�1t

3
5 ; t � T: (2.149)

Set '.t/ D e�1t and x.t/ D e�'.t/: Then for t � T ,

x
0

.t/C p.t/

mY
jD1

ˇ̌
x.t � �j /

ˇ̌˛j
sign Œx.t � �1/�

D �'.t/e�'.t/ C p.t/

mY
jD1

e�˛j '.t��j /

D
mY
jD1

e�˛j '.t��j /
8<
:p.t/ � �1e�1t exp

2
4
0
@ mX
jD1

˛j e
��1�j � 1

1
A e�1t

3
5
9=
; � 0:
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This shows that the inequality

x0.t/C p.t/

mY
jD1

ˇ̌
x.t � �j /

ˇ̌˛j
sign Œx.t � �1/� � 0; t � t0;

has an eventually positive solution. In view of Lemma 2.7.2, the corresponding
equation (2.124) also has an eventually positive solution. The proof is com-
plete. �

Applying Theorem 2.7.4 on the special form

x
0

.t/C p.t/
ˇ̌
x.t � �j /

ˇ̌˛
sign Œx.t � �/� D 0; t � t0; (2.150)

where

p 2 C.Œt0;1/; Œ0;1//; � > 0; ˛ > 0;

we have immediately the following result.

Corollary 2.7.2. Assume that ˛ > 1: Then the following conclusions hold:

(i) If there exists � > ��1 ln˛ such that (2.133) holds, then every solution of
(2.150) oscillates.

(ii) If p.t/ ¤ 0 on any interval of length � , and there exists � < ��1ln˛ such that
(2.135) holds, then (2.150) has an eventually positive solution.

Note that if
mX
jD1

˛j > 1; then it follows that there exists a unique �0 > 0 such

that

mX
jD1

˛j e
��0�j D 1:

Therefore, applying Theorem 2.7.4 to the following equation which is a special form
of (2.124)

x0.t/C C exp.e�t /
mY
jD1

ˇ̌
x.t � �j /

ˇ̌˛j
sign Œx.t � �1/� D 0; t � t0; (2.151)

where C > 0, we have that every solution of (2.151) oscillates if � > �0 and (2.151)
has an eventually positive solution in � < �0.

In the following, we apply Theorem 2.7.4 to (2.125), (2.126), and (2.123).
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Theorem 2.7.5. Assume that .H/ holds and
mX
jD1

˛j > 1: Then the following

conclusions hold:

(i) If there exists � > 0 such that (2.132) and (2.133) hold, then every solution of
(2.125) oscillates.

(ii) If (2.128) and

1Z
t0

p.t/dt D 1 (2.152)

hold and there exists � > 0 such that (2.134) and (2.135) hold, then (2.125)
has an eventually positive solution.

Proof. (i) Assume the contrary, and let x.t/ be an eventually positive solution of
(2.125). Then from (2.125) and (2.133), we easily see that lim

t!1x.t/ D 0: Then

from (2.125) and .H/ there exists a T1 > t0 such that

1 > x.t � �m/ > 0; and x
0

.t/ � 0; for t � T1;

and

f .x.t � �1/; : : : ; x.t � �m// � 1

2
M

mY
jD1

�
x.t � �j /


˛j
; t � T1: (2.153)

Substituting (2.153) into (2.125), we have

x0.t/C 1

2
Mp.t/

mY
jD1

�
x.t � �j /


˛j � 0; for t � T1: (2.154)

This shows that the inequality (2.154) has an eventually positive solution. In
view of Lemma 2.7.2, the corresponding equation,

x0.t/C 1

2
Mp.t/

mY
jD1

jx.t � �j /j˛j sign Œx.t � �1/� D 0; t � t0; (2.155)

also has an eventually positive solution. But, by Theorem 2.7.4, (2.132) and
(2.133) imply that every solution of (2.155) oscillates, and this contradiction
completes the proof of (i).
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(ii) In view of Theorem 2.7.4, (2.128), (2.134), (2.135), and (2.152) imply that the
equation

x0.t/C 2Mp.t/

mY
jD1

jx.t � �j /j˛j sign Œx.t � �1/� D 0; t � t0; (2.156)

has an eventually positive solution x.t/ with limt!1 x.t/ D 0: From this,
.H/, and (2.156), there exists a T2 > t0 such that

x.t � �m/ > 0, and x
0

.t/ � 0 for t � T2;

and

f .x.t � �1/; : : : ; x.t � �m// � 2M

mY
jD1

jx.t � �j /j˛j ; t � T2: (2.157)

Substituting (2.157) into (2.156), we have

x
0

.t/C p.t/f .x.t � �1/; : : : ; x.t � �m// � 0; t � T2: (2.158)

This shows that inequality (2.158) has an eventually positive solution. In view
of Lemma 2.7.2, the corresponding equation (2.125) also has an eventually
positive solution. The proof is complete. �

Theorem 2.7.6. Assume that
mX
jD1

ˇj > m; and that there exists � > 0 such that

mX
jD1

ˇj e
���j < m; (2.159)

and

lim
t!1 inf

8<
:
2
4 mY
jD1

pj .t/

3
5 exp


�me�t �
9=
; > 0: (2.160)

Then every solution of (2.126) oscillates.

Proof. Assume the contrary, and let x.t/ be an eventually positive solution of
(2.126). It follows from (2.126) that there exists a T > t0 such that

x.t � �m/ > 0; and x
0

.t/ � 0; for t � T:
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From (2.126), we have

x
0

.t/Cm

2
4 mY
jD1

pj .t/

3
5

1
m mY
jD1

�
x.t � �j /


 ˇj
m � 0; t � T: (2.161)

This shows that inequality (2.161) has an eventually positive solution. In view of
Lemma 2.7.2, the corresponding equation,

x
0

.t/Cm

2
4 mY
jD1

pj .t/

3
5

1
m mY
jD1

jx.t � �j /j
ˇj
m sign Œx .t � �1/� D 0; t > t0; (2.162)

also has an eventually positive solution. But Theorem 2.7.4, (2.159), and (2.160)
imply that every solution oscillates. This contradiction completes the proof. �

Now, we consider equation (2.123). Note that if

mY
jD1

.�1/ˇj D �1;

then by making a change of variables,

x.t/ D ln

�
N.t/

K

�
;

one can write (2.123) as

x
0

.t/C r.t/

mY
jD1

�
ex.t��j / � 1
ˇj D 0; for t � 0: (2.163)

Set

f .x1; : : : ; xm/ D
mY
jD1

.exj � 1/ˇj :

Then f satisfies condition .H/ for ˇ1; : : : ; ˇm:
Hence, in view of Theorem 2.7.5, we have immediately the following result.

Theorem 2.7.7. Assume that

mY
jD1

.�1/ˇj D �1 and
mX
jD1

ˇj > 1:
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Then the following conclusions hold:

.i/ If there exists � > 0 such that

mX
jD1

ˇj e
���j < 1; (2.164)

and

lim
t!1 inf

�
r.t/ exp


�e�t �
 > 0; (2.165)

then every positive solution of (2.123) oscillates about K.
.ii/ If r.t/ ¤ 0 for any interval of length � , where � D max f�1; : : : ; �mg;

1Z
0

r.s/ds D 1; (2.166)

and there exists � > 0 such that

mX
jD1

ˇj e
���j > 1; (2.167)

and

lim
t!1 sup

�
r.t/ exp


�e�t �
 < 1; (2.168)

then (2.123) has a solution greater than K eventually.

2.8 Models with a Varying Capacity

In the delay logistic equations we assumed that the carrying capacity K > 0

is a constant. The variation of the environment plays an important role in many
biological and ecological dynamical systems. It is realistic to assume that the
parameters in the models are positive periodic functions of period !:

Consider the nonautonomous delay logistic model

N
0

.t/ D r.t/N.t/

�
1 � N.t �m!/

K.t/

�
; (2.169)
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where m is a positive integer and ! > 0: Assume r and K are positive periodic
functions of period !. We consider solutions of (2.169) corresponding to the initial
condition

�
N.t/ D '.t/; for m! < t < 0;
' 2 C ŒŒ�m!; 0�;RC�; '.0/ > 0: (2.170)

It is easy to see that there exist a unique positive periodic solution N �.t/ of (2.169).

Theorem 2.8.1. If

Z 1

0

r.t/N �.t/
K.t/

dt D 1; (2.171)

then every nonoscillatory solution N.t/ of (2.169) satisfies

lim
t!1N.t/ D N �.t/: (2.172)

Proof. Assume that N.t/ > N �.t/ for t sufficiently large (the proof when N.t/ <
N �.t/ is similar and will be omitted). Set

N.t/ D N �.t/ez.t/: (2.173)

Then z.t/ > 0 for t sufficiently large, and for t large

z
0

.t/C r.t/N �.t/
K.t/



ez.t�m!/ � 1� D 0; (2.174)

so

z0.t/ D �r.t/N
�.t/

K.t/



ez.t�m!/ � 1� < 0:

Thus, z.t/ is decreasing, and therefore

lim
t!1 z.t/ D ˛ 2 Œ0;1/:

We claim ˛ D 0: If ˛ > 0; then there exist " > 0 and T" > 0 such that for t � T";

0 < ˛ � " < z.t/ < ˛ C ":

However, then from (2.174), we find

z0.t/C r.t/N �.t/
K.t/

.e˛�" � 1/ � 0; t � T";
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By integrating from T" to 1 and using (2.171) we immediately get a contradiction.
Hence ˛ D 0. Thus

lim
t!1.N.t/ �N �.t// D lim

t!1N �.t/.ez.t/ � 1/ D 0:

This completes the proof. �

Theorem 2.8.2. Assume that r and K are positive periodic functions of period !
such that (2.171) holds. Suppose for every sufficiently small " � 0 all solutions of
the linear delay differential equation

x
0

.t/C .1 � "/r.t/N
�.t/

K.t/
x.t �m!/ D 0; t � t0; (2.175)

are oscillatory. Then all solutions of (2.169) are oscillatory about N �.t/:

Proof. Assume that (2.169) has a solution which does not oscillate about N �.t/:
Without loss of generality we assume that N.t/ > N �.t/; so that z.t/ > 0; here
z is defined in Theorem 2.8.1. (The case N.t/ < N �.t/ implies that z.t/ < 0 and
the proof is similar. In fact, we will see below that if z.t/ is a negative solution
of (2.176) then U.t/ D �z.t/ is positive solution of (2.176)). It is clear that N.t/
oscillates about N �.t/ if and only if z.t/ oscillates about zero. Also

z0.t/C r.t/N �.t/
K.t/

f .z.t �m!// D 0; (2.176)

where

f .u/ D .eu � 1/:

Note that

lim
u!0

f .u/

u
D 1:

Then by Theorem 2.6.4, since every solution of (2.175) oscillates, then every
solution of (2.176) oscillates. Thus every positive solution of (2.169) oscillates about
N �.t/: The proof is complete. �

Next we discuss the oscillation of (2.169) about the positive periodic function
K.t/: The result is adapted from [86].

Theorem 2.8.3. Assume the following:

.i/ K is a nonconstant positive differentiable periodic function of period !:
(ii) r is positive and continuous for t � 0 such that
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lim inf
t!1 r.t/ > 0, and lim inf

t!1

Z t

t�m!
r.s/ds >

1

e
: (2.177)

Then every positive solution of (2.169) is oscillatory about K:

Proof. If we define y.t/ D lnŒN.t/=K.t/�; then y is governed by

y
0

.t/ D r.t/
�
1 � ey.t�m!/
 � K

0

.t/

K.t/
; (2.178)

and the oscillation of N about K is equivalent to that of y about zero and thus it is
sufficient to consider the usual oscillation of y: We simplify (2.178) by letting

Q.t/ D ln.
K.t0/

K.t/
/ (2.179)

and note that (2.178) becomes

y
0

.t/C r.t/
�
ey.t�m!/ � 1
 D Q

0

.t/: (2.180)

Suppose now the conclusion of the theorem is false. Then there exists an eventually
positive or eventually negative solution for (2.180).

Let us first assume that (2.180) has an eventually positive solution y: Since Q is
a nonconstant periodic function, there exist two sequences ft 0

ng and ft 00

n g such that
limn!1 t

0

n D 1, limn!1 t
00

n , and

�1 < q1 � Q.t/ � q2 < 1;

q1 D Q.t
0

n/ and q2 D Q.t
00

n /, n D 1; 2; : : : . (2.181)

Let

u.t/ D y.t/ �Q.t/; for t � T;

(where y.t �m!/ > 0 for t � T /: Note that (2.180) becomes

u
0

.t/ D r.t/
�
1 � ey.t�m!/
 < 0: (2.182)

We claim u.t/C q1 > 0. Suppose for some t � T , u.t/C q1 � 0: Since y.t/ > 0,
we have u.t/CQ.t/ D y.t/ > 0 and hence u.t

0

n/C q1 D y.t
0

n/ > 0 showing that
u.t/C q1 � 0 is not possible. Therefore,

u.t/C q1 > 0, for large t � T: (2.183)
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Let z.t/ D u.t/C q1 and we see that

z
0

.t/ D u
0

.t/ D y
0

.t/ �Q0

.t/

D r.t/
�
1 � ey.t�m!/


D r.t/
�
1 � eu.t�m!/CQ.t�m!/


� �r.t/ Œu.t �m!/CQ.t �m!/� � �r.t/z.t �m!/: (2.184)

Note that (2.184) has an eventually positive solution and this is impossible due to
(2.177) (a standard argument is used here).

Let us now consider the case when y.t/ is an eventually negative solution of
(2.169). This implies that

N.t/

K.t/
< 1; for large t: (2.185)

The boundedness of K (due to periodicity) and (2.185) imply that N.t/ is bounded.
It follows from (2.169) that N

0

.t/ > 0 eventually and this implies that

lim
t!1N.t/ D l > 0: (2.186)

Integrating (2.169), we have

ln
l

N.t0/
D
Z 1

t0

r.t/

�
1 � N.t �m!/

K.t/

�
dt < 1: (2.187)

Hence

lim
t!1 inf r.t/

�
1 � N.t �m!/

K.t/

�
D 0:

But lim inft!1 r.t/ > 0, so

lim
t!1 sup

N.t �m!/
K.t/

D 1;

i.e., there exists a sequence ftkg such that

lim
k!1

N.tk �m!/
K.tk/

D 1:
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Since N.t/ < K, we see that limt!1N.t/ D l D mint2Œ0;!� K.t/: But then

Z 1

t0

r.t/

�
1 � N.t �m!/

K.t/

�
dt

� inf r.t/

maxt2Œ0;!� K.t/

Z 1

t0

.K.t/ �N.t �m!// dt

� inf r.t/

maxt2Œ0;!� K.t/

Z 1

t0

�
K.t/ � min

t2Œ0;!� K.t/
�
dt D 1;

which contradicts (2.187). This completes the proof. �
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