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Abstract In this paper we introduce the concept of dual compatible (DC) splines
on nontensor product meshes, study the properties of this class, and discuss their
possible use within the isogeometric framework. We show that DC splines are linear
independent and that they also enjoy good approximation properties.

Keywords Isogeometric analysis · Spline theory · T-splines · Numerical methods
for partial differential equations

1 Introduction

Tensor productmultivariate spline spaces are easy to construct and theirmathematical
properties directly extend from the univariate case. However, the tensor product
construction restricts the possibility of local refinement which is a severe limitation
for their use within the isogeometric framework, i.e., as discretization spaces for
the numerical solution of partial differential equations. This is particularly true in
problems that exhibit solutionswith layers or singularities. In this paper,wediscuss an
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extension of splines spaces that go beyond the tensor product structure, and therefore
allow local mesh refinement.

Three approaches have emerged in the isogeometric community: T-splines,
Locally refinable (LR) splines, and hierarchical splines. T-splines have been proposed
in [1] for applications to CAGD and have been adopted for isogeometric methods
since [2]. Nowadays, they are likely the most popular approach among engineers:
for example, they have been used for shell problems [3], fluid–structure interaction
problems [4], and contact mechanics simulation [5]. The algorithm for local refine-
ment has evolved since its introduction (in [6]) and while the first approach was
not efficient in isogeometric methods (see for example [7]) the more recent devel-
opments (e.g., [8]) overcome the initial limitations. The mathematical literature on
T-splines is very recent and mainly restricted to the two-dimensional case. It is based
on the notion of Analysis-Suitable (AS) T-splines: these are a subset of T-splines,
introduced in [9] and extended to arbitrary degree in [10], for which fundamental
properties hold. LR-splines [11] and Hierarchical splines [12] have been proposed
more recently in the isogeometric literature and represent a valid alternative to T-
splines. However, for reasons of space and because of our expertise, we restrict the
presentation to T-splines.

This paper is organized as follows. First, we set up our main notation of Sect. 2.
Then, we introduce the notion of Dual-Compatible (DC) set of B-splines. This is a
set of multivariate B-splines without a global tensor product structure but endowed
with a weaker structure that still guarantees some key properties. Themain one is that
their linear combination spans a space (named DC space) that can be associated with
a dual space by a construction of a dual basis. The existence of a “good” dual space
implies other mathematical properties that are needed in isogeometric methods: for
example, (local) linear independence and partition of unity of the DC set of B-spline
functions, and optimal approximation properties of the DC space. The framework
we propose here is an extension of the one introduced in [10], and covers arbitrary
space dimension.

2 Preliminaries

Given two positive integers p and n, we say that � := {ξ1, . . . , ξn+p+1} is a p-open
knot vector if

ξ1 = · · · = ξp+1 < ξp+2 ≤ · · · ≤ ξn < ξn+1 = · · · = ξn+p+1,

where repeated knots are allowed. Without loss of generality, we assume in the
following that ξ1 = 0 and ξn+p+1 = 1.

We introduce also the vector Z = {ζ1, . . . , ζN } of knots without repetitions, also
called breakpoints, and denote by m j , the multiplicity of the breakpoint ζ j , such that

� = {ζ1, . . . , ζ1
︸ ︷︷ ︸

m1 times

, ζ2, . . . , ζ2
︸ ︷︷ ︸

m2 times

, . . . , ζN , . . . , ζN
︸ ︷︷ ︸

m N times

}, (1)
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with
∑N

i=1 mi = n + p +1. We assume m j ≤ p +1, for all internal knots. Note that
the points in Z form a partition of the unit interval I = (0, 1), i.e., a mesh, and
the local mesh size of the element Ii = (ζi , ζi+1) is called hi = ζi+1 − ζi , for
i = 1, . . . , N − 1.

From the knot vector �, B-spline functions of degree p are defined following
the well-known Cox-DeBoor recursive formula; we start with piecewise constants
(p = 0):

̂Bi,0(ζ ) =
{

1 if ξi ≤ ζ < ξi+1,

0 otherwise,
(2)

and for p ≥ 1 the B-spline functions are defined by the recursion

̂Bi,p(ζ ) = ζ − ξi

ξi+p − ξi

̂Bi,p−1(ζ ) + ξi+p+1 − ζ

ξi+p+1 − ξi+1

̂Bi+1,p−1(ζ ), (3)

where it is here formally assumed that 0/0 = 0.
This gives a set of n B-splines that, amongmany other properties, are non-negative

and form a partition of unity. They also form a basis of the space of splines, that is,
piecewise polynomials of degree p with k j := p − m j continuous derivatives at
the points ζ j , for j = 1, . . . , N . Therefore, −1 ≤ k j ≤ p − 1, and the maximum
multiplicity allowed, m j = p + 1, gives k j = −1 which stands for a discontinuity
at ζ j .

We denote the univariate spline space spanned by the B-splines by

Sp(�) = span{̂Bi,p, i = 1, . . . , n}. (4)

Note that the definition of each B-spline ̂Bi,p depends only on p +2 knots, which
are collected in the local knot vector

�i,p := {ξi , . . . , ξi+p+1}.

When needed, we will stress this fact by adopting the notation

̂Bi,p(ζ ) = ̂B[�i,p](ζ ). (5)

Similarly, the support of each basis function is exactly supp(̂Bi,p) = [ξi , ξi+p+1].
Moreover, given an interval I j = (ζ j , ζ j+1) of the partition,which can also bewritten
as (ξi , ξi+1) for a certain (unique) i , we associate the support extension Ĩ j defined as

Ĩ j := (ξi−p, ξi+p+1), (6)

that is the interior of the union of the supports of basis functions whose support
intersects I j .
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We concentrate now on the construction of interpolation and projection operators
onto the space of splines Sp(�). There are several ways to define projections for
splines, and here we only describe the one that will be used in this paper.

We will often make use of the following local quasi-uniformity condition on
the knot vector, which is a classical assumption in the mathematical isogeometric
literature.

Assumption 1 The partition defined by the knots ζ1, ζ2, . . . , ζN is locally quasi-
uniform, that is, there exists a constant θ ≥ 1 such that the mesh sizes hi = ζi+1 −ζi

satisfy the relation θ−1 ≤ hi/hi+1 ≤ θ , for i = 1, . . . , N − 2.

Since splines are not in general interpolatory, a commonway to define projections
is by giving a dual basis, i.e.,

�p,� : C∞([0, 1]) → Sp(�), �p,�( f ) =
n

∑

j=1

λ j,p( f )̂B j,p, (7)

where λ j,p are a set of dual functionals verifying

λ j,p(̂Bk,p) = δ jk, (8)

δ jk being the standard Kronecker symbol. It is trivial to prove that, thanks to this
property, the quasi-interpolant �p,� preserves splines, that is,

�p,�( f ) = f, ∀ f ∈ Sp(�). (9)

Here, we adopt the dual basis defined in [13, Sect. 4.6]

λ j,p( f ) =
ξ j+p+1
∫

ξ j

f (s)D p+1ψ j (s) ds, (10)

where ψ j (ζ ) = G j (ζ )φ j (ζ ), with

φ j (ζ ) = (ζ − ξ j+1) · · · (ζ − ξ j+p)

p! ,

and

G j (ζ ) = g

(

2ζ − ξ j − ξ j+p+1

ξ j+p+1 − ξ j

)

,

where g is the transition function defined in [13, Theorem 4.37]. In the same
reference, it is proved that the functionals λ j,p(·) are dual to B-splines in the sense
of (8) and stable (see [13, Theorem 4.41]), that is
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|λ j,p( f )| ≤ C(ξ j+p+1 − ξ j )
−1/2‖ f ‖L2(ξ j ,ξ j+p+1)

, (11)

where the constant C grows exponentially with respect to the polynomial degree p
with the upperbound

C ≤ (2p + 3)9p, (12)

slightly improved in the literature after the results reported in [13]. Note that these
dual functionals are locally defined and only depend on the corresponding local knot
vector, that is, adopting a notation as in (5), we can write, when needed:

λi,p( f ) = λ[�i,p]( f ). (13)

The reasons for this choice of the dual basis are mainly historical (in the first
paper on the numerical analysis of isogeometric methods [14] the authors used this
projection), but also because it verifies the following important stability property:

Proposition 1 For any non-empty knot span Ii = (ζi , ζi+1) it holds that

‖�p,�( f )‖L2(Ii )
≤ C‖ f ‖L2( Ĩi )

, (14)

where the constant C depends only on the degree p, and Ĩi is the support extension
defined in (6). Moreover, if Assumption 1 holds, we also have

|�p,�( f )|H1(Ii )
≤ C | f |H1( Ĩi )

, (15)

with the constant C depending only on p and θ , and where H1 denotes the Sobolev
space of order one, endowed with the standard norm and seminorm.

Proof We first show (14). There exists a unique index j such that Ii = (ζi , ζi+1) =
(ξ j , ξ j+1), and using the definition of B-splines at the beginning of Sect. 2, and in
particular their support, it immediately follows that

{

� ∈ {1, 2, . . . , n} : supp(̂B�,p) ∩ Ii 
= ∅} = { j − p, j − p + 1, . . . , j}. (16)

Let hi denotes the length of Ii and ˜hi indicates the length of Ĩi . First by definition
(7), then recalling that the B-spline basis is positive and a partition of unity, we get

‖�p,�( f )‖L2(Ii )
=

∥

∥

∥

j
∑

�= j−p

λ�,p( f )̂B�,p

∥

∥

∥

L2(Ii )
≤ max

j−p≤�≤ j
|λ�,p( f )|

∥

∥

∥

j
∑

�= j−p

̂B�,p

∥

∥

∥

L2(Ii )

= h1/2
i max

j−p≤�≤ j
|λ�,p( f )|.

We now apply bound (11) and obtain
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‖�p,�( f )‖L2(Ii )
≤ Ch1/2

i max
j−p≤�≤ j

(ξ�+p+1 − ξ�)
−1/2‖ f ‖L2(ξ�,ξ�+p+1)

≤ Ch1/2
i max

j−p≤�≤ j
(ξ�+p+1 − ξ�)

−1/2‖ f ‖L2( Ĩi )
,

that yields (14) since clearly hi ≤ (ξ�+p+1 − ξ�), for all � in { j − p, . . . , j}.
We now show (15). For any real constant c, since the operator �p,� preserves

constant functions and using a standard inverse estimate for polynomials on Ii , we get

|�p,�( f )|H1(Ii )
= |�p,�( f ) − c|H1(Ii )

= |�p,�( f − c)|H1(Ii )

≤ Ch−1
i ‖�p,�( f − c)‖L2(Ii )

.

We now apply (14) and a standard approximation estimate for constant functions,
yielding

|�p,�( f )|H1(Ii )
≤ Ch−1

i ‖ f − c‖L2( Ĩi )
≤ Ch−1

i
˜hi | f |H1( Ĩi )

.

Using Assumption 1, it is immediate to check that ˜hi ≤ Chi with C = C(p, θ) so
that (15) follows.

The operator�p,� can bemodified in order tomatch boundary conditions.We can
define, for all f ∈ C∞([0, 1]):

�̃p,�( f ) =
n

∑

j=1

λ̃ j,p( f )̂B j,p with (17)

λ̃1,p( f ) = f (0), λ̃n,p( f ) = f (1), λ̃ j,p( f ) = λ j,p( f ), j = 2, . . . , n − 1.

3 Dual Compatible B-Splines

Consider a set of multivariate B-splines

{

̂BA,p, A ∈ A}

, (18)

where A is a set of indices. This is a generalization of the tensor product set of
multivariate splines where the functions in (18) have the structure

̂BA,p(ζ ) = ̂B[�A,1,p1 ](ζ1) · · · ̂B[�A,d,pd ](ζd) (19)

and have in general uncorrelated local knot vectors, that is, two different local knot
vectors �A′,�,p�

and �A′′,�,p�
in the �-direction are not in general sub-vectors of a

global knot vector. This is equivalent to the definition of point-based splines in [1].
We assume that there is a one-to-one correspondence between A ∈ A and ̂BA,p.
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Fig. 1 Overlapping (left) and
nonoverlapping (right) local
knot vectors in one dimension

We say that the two p-degree local knot vectors �′ = {ξ ′
1, . . . , ξ

′
p+2} and �′′ =

{ξ ′′
1 , . . . , ξ ′′

p+2} overlap if they are subvectors of the same knot vector (that depends
on �′ and �′′), that is there is a knot vector � = {ξ1, . . . , ξk} and k′ and k′′ such that

∀i = 1, . . . , p + 2, ξ ′
i = ξi+k′

∀i = 1, . . . , p + 2, ξ ′′
i = ξi+k′′ ,

(20)

see Fig. 1.
We now define for multivariate B-splines, the notions of overlap and partial

overlap are as follows.

Definition 1 Two B-splines ̂BA′,p ̂BA′′,p in (18) overlap if the local knot vectors in
each direction overlap. Two B-splines ̂BA′,p ̂BA′′,p in (18) partially overlap if, when
A′ 
= A′′, there exists a direction � such that the local knot vectors �A′,�,p�

and
�A′′,�,p�

are different and overlap.

From the previous Definition, overlap implies partial overlap. Examples of
B-splines overlapping, only partially overlapping, and not partially overlapping are
depicted in Fig. 2.

Definition 2 The set (18) is a DC set of B-splines if each pair of B-splines in it
partially overlaps. Its span

Sp(A) = span
{

̂BA,p, A ∈ A}

, (21)

is denoted as DC spline space.

Note that the partially overlapping condition in Definition 2 needs to be checked
only for those B-spline pairs that have nondisjoint support. Indeed, by Definition 1,
any two B-splines with disjoint supports are clearly partially overlapping.

A tensor product space is clearly a DC spline space, since every pair of its
multivariate B-splines always overlaps by construction. The next proposition shows
how the notion of partial overlap is related with the construction of dual basis.
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Fig. 2 Example of
overlapping, partially
overlapping, and not partially
overlapping B-splines; knot
lines are drawn in blue a
Overlapping
B-splines, b partially
overlapping B-splines, c
not partially overlapping
B-splines

(a) (b)

(c)

Proposition 2 Assume that (18) is a DC set where each ̂BA,p is defined as in (19),
i.e., on the local knot vectors �A,1,p1 , . . . , �A,d,pd . Consider an associated set of
functionals

{

λA,p, A ∈ A}

, (22)

where each λA,p is

λA,p = λ[�A,1,p1] ⊗ · · · ⊗ λ[�A,d,pd ], (23)

and λ[�A,�,p�
] denotes a univariate functional defined in (10). Then (22) is a dual

basis for (18).

Remark 1 The set of dual functionals (10) can be replaced by other choices, see,
e.g., [15].

Proof Consider any ̂BA′,p and λA′′,p, with A′, A′′ ∈ A. We then need to show that

λA′′,p(̂BA′,p) =
{

1 if A′′ = A′,
0 otherwise.

(24)

Clearly, if A′ = A′′, then we have λA′′,p(̂BA′,p) = 1 from the definition of dual basis.
If A′ 
= A′′, thanks to the partial overlap assumption, there is a direction �̄ such that
the local knot vectors �A′,�,p�

and �A′′,�,p�
differ and overlap, and then

λ[�A′′,�,p�
](̂B[�A′,�,p�

]) = 0,
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and from (23),

λA′′,p(̂BA′,p) =
d

∏

�=1

λ[�A′′,�,p�
](̂B[�A′,�,p�

]) = 0.

The existence of dual functionals implies important properties for a DC set (18)
and the related space Sp(A) in (21). We list such properties in the following propo-
sitions and remarks.

The first result is the linear independence of set (18), therefore forming a basis;
they are also a partition of unity.

Proposition 3 The B-splines in a DC set (18) are linearly independent. Moreover,
if the constant function belongs to Sp(A), they form a partition of unity.

Proof Assume
∑

A∈A
CÂBA,p = 0

for some coefficients CA. Then for any A′ ∈ A, applying λA′,p to the sum, using
linearity and (24), we get

CA′ = λA′,p

(

∑

A∈A
CÂBA′,p

)

= 0.

Similarly, let
∑

A∈A
CÂBA,p = 1

for some coefficients CA. For any A′ ∈ A, applying λA′,p as above, we get

CA′ = λA′,p

(

∑

A∈A
CÂBA,p

)

= 1.

To a B-spline set (18), we can associate a parametric domain

̂Ω =
⋃

A∈A
supp(̂BA,p)

Moreover, we give the following extension of the notion of Bézier mesh.

Definition 3 A parametric Bézier mesh in the parametric domain, denoted by ̂M,
is the collection of the the maximal open sets Q ⊂ ̂Ω such that for all A ∈ A, ̂BA,p
is a polynomial in Q; these Q are denoted (Bézier) elements.
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Proposition 4 In a DC set (18) there are at most (p1 + 1) · · · (pd + 1) B-splines
that are non-null in each element Q ∈ ̂M.

Proof Given any point ζ = (ζ1, . . . , ζd) ∈ ̂Ω , denote by A(ζ ) the subset of A ∈ A
such that ̂BA,p(ζ ) > 0. It can be easily checked thatA(ζ ) only depends on Q, for all
ζ ∈ Q. Recalling (19) and introducing the notation �A,�,p�

= {ξ�,1, . . . , ξ�,p�+2},
to each A ∈ A(ζ ) we can associate a multi-index (iA,1, . . . , iA,d) such that

∀� = 1, . . . , d, 1 ≤ iA,� ≤ p� + 1 and ξ�,iA,�
≤ ζ� < ξ�,iA,�+1. (25)

From the DC assumption, any two ̂BA′,p and ̂BA′′,p with A′ 
= A′′ partially overlap,
that is, there are different and overlapping �A′,�,p�

and �A′′,�,p�
; then the indices in

(25) fulfill

∀A′, A′′ ∈ A(ζ ), A′ 
= A′′ ⇒ ∃� such that iA′,� 
= iA′′,�. (26)

The conclusion follows from (26), since by (25) there are atmost (p1+1) · · · (pd +1)

distinct multi-indices (iA,1, . . . , iA,d).

Assume that each λA,p is defined on L2( ̂Ω). An important consequence of
Proposition 2 is that we can build a projection operator �p : L2( ̂Ω) → Sp(A) by

�p( f )(ζ ) =
∑

A∈A
λA,p( f )̂BA,p(ζ ) ∀ f ∈ L2( ̂Ω), ∀ζ ∈ ̂Ω. (27)

This allows us to prove the approximation properties of Sp(A). The following result
will make use of the notion of support extension ˜Q associated to an element Q ⊂ ̂Ω

(or a generic open subset Q ⊂ ̂Ω) and to the B-spline set (18):

˜Q =
⋃

A∈A
supp(̂BA,p)∩Q 
=∅

supp(̂BA,p).

Furthermore, we will denote by Q̄, the smallest d-dimensional rectangle in ̂Ω con-
taining ˜Q. Then the following result holds.

Proposition 5 Let (18) be a DC set of B-splines, then the projection operator �p
in (27) is (locally) h-uniformly L2-continuous, that is, there exists a constant C only
dependent on p such that

||�p( f )||L2(Q) ≤ C || f ||L2(˜Q) ∀Q ⊂ ̂Ω, ∀ f ∈ L2( ̂Ω).
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Proof Let Q be an element in the parametric domain. Since Proposition 4 and since
each BA,p ≤ 1 we have that, for any ζ ∈ Q,

∑

A∈A

∣

∣

∣
̂BA,p(ζ )

∣

∣

∣ ≤ C.

Therefore, given any point ζ ∈ Q, denote by A(ζ ) the subset of A ∈ A such that
̂BA,p(ζ ) > 0, and denote by QA the common support of ̂BA,p and λA,p, by |QA| its
d-dimensional measure, using (11) it follows that

∣

∣�p( f )(ζ )
∣

∣
2 =

∣

∣

∣

∑

A∈A(ζ )

λA,p( f )̂BA,p(ζ )

∣

∣

∣

2 ≤ C max
A∈A(ζ )

∣

∣λA,p( f )
∣

∣
2

≤ C max
A∈A(ζ )

|QA|−1|| f ||2L2(QA)
(28)

≤ C |Q|−1|| f ||2
L2(˜Q)

,

where we have used in the last step that ∀A ∈ A(ζ ), Q ⊂ QA (and therefore
|Q| ≤ |QA|) and that QA ⊂ ˜Q. Since the bound above holds for any ζ ∈ Q,
integrating over Q and applying (28) yields

||�p( f )||2L2(Q)
≤ C || f ||2

L2(˜Q)
.

The continuity of �p implies the following approximation result in the L2-norm:

Proposition 6 Assume that the space of global polynomials of degree p = min1≤�≤d

{p�} is included into the space Sp(A) and that ̂Ω = [0, 1]d . Then there exists a
constant C only dependent on p such that for 0 ≤ s ≤ p + 1

|| f − �p( f )||L2(Q) ≤ C(hQ̄)s | f |Hs (Q̄) ∀Q ⊂ ̂Ω, ∀ f ∈ Hs( ̂Ω),

where hQ̄ represents the diameter of Q̄.

Proof Let π be any p-degree polynomial. Since π ∈ Sp(A) and �p is a projection
operator, using Proposition 5 it follows that

|| f − �p( f )||L2(Q) = || f − π + �p(π − f )||L2(Q)

≤ || f − π ||L2(Q) + ||�p(π − f )||L2(Q)

≤ (1 + C)|| f − π ||L2(˜Q) ≤ (1 + C)|| f − π ||L2(Q̄).

The result finally follows by a standard polynomial approximation result.

We conclude this section with a final observation: the notion and construction
of Greville sites are easily extended to DC sets of B-splines, and the following
representation formula holds:
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Proposition 7 Assume that the linear polynomials belong to the space Sp(A). Then
we have that

ζ� =
∑

A∈A
γ [�A,�,p�

]̂BA,p(ζ ), ∀ζ ∈ ̂Ω, 1 ≤ � ≤ d, (29)

where γ [�A,�,p�
] denotes the average of the p� internal knots of �A,�,p�

.

Proof The identity (29) easily follows from the expansion of �p(ζ�) and the
definition of dual functionals which is the same as in the tensor product case, yielding
λA,p(ζ�) = γ [�A,�,p�

].
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