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Abstract The chapter describes a new approach to solve problems of group
multiple criteria decision making. New methods for group sorting and ordering
objects, presented with many quantitative and qualitative attributes, are based on
the theory of multiset metric spaces. The suggested techniques were applied to the
expertise of R&D projects in the Russian Foundation for Basic Research. For
selection of competitive applications and multiple criteria evaluation of project
efficiency, several experts evaluated projects upon many verbal criteria.

1 Introduction

Sorting objects into several classes and ordering objects by their properties are the
typical problems of multiple criteria decision making (MCDM), pattern recogni-
tion, data mining, and other areas. These problems are formulated as follows. Let
A1, …, An be a collection of objects, which are described by m attributes Q1, …,
Qm. Every attribute has its own scale Xs ¼ fx1

s ; . . .; xhs
s g; s = 1, …, m, grades of

which may be numerical, symbolic or verbal, discreet or continuos, nominal or
ordinal. Ordinal grades are supposed to be ordered from the best to the worst.
Attributes may have different relative importance (weights). The attribute list
depends on the aim of decision analysis. It is required to range all multi-attribute
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objects or assign every object to one of the given classes (categories) C1, …, Cg,
describe and interpret the properties of these classes of objects. The number g of
object classes can be arbitrary or predefined, and the classes can be ordered or
unordered.

In the case of group decision making, one and the same multi-attribute object is
represented in k versions or copies, which are usually distinguished by attribute
values. For example, object characteristics have been measured in different con-
ditions or in different ways, either several experts independently evaluated objects
upon many criteria.

One of basis points in MCDM area [4–6, 8–11, 14–21] is preferences of
decision maker (DM) and/or expert. The person expresses his/her preferences
when he/she describes properties and characteristics of the analyzed problem,
compares decision alternatives, estimates the choice quality. Preferences may be
represented as decision rules of mathematical, logical and/or verbal nature and
explained with any language. While solving the problem, a person may behave
inconsistently, make errors and contradictions. In the case of individual choice, the
consistency of subjective preferences is postulated. In order to discover and correct
possible inconsistent and contradictory judgments of a single DM, special pro-
cedures have to be included in MCDM methods [10].

A collective choice of several independent actors is more complicate and
principally different due to a variety and inconsistency of many subjective pref-
erences. Every DM may have his/her own personal goals, interests, valuations and
information sources. As a result, individual subjective judgements of actors may
be similar, concordant or discordant. Usually, in MCDM techniques, one tries to
avoid possible inconsistencies and contradictions between judgements of several
persons. Often many diverse points of view are replaced with a single common
preference that is aggregated mostly all individual opinions. But individual pref-
erences may be coordinated not always. Nevertheless, most of the decision
methods do not pay a consideration to contradictions and inconsistencies in DMs’
preferences.

In this chapter, we consider methods for group ordering and classifying objects,
which are presented with many numerical and/or verbal attributes and may exist in
several copies. These methods are based on the methodology of group verbal
decision analysis and the theory of multiset metric spaces [9, 10, 13–18]. The
suggested techniques were applied to real-life case studies in various practical
areas, where several experts estimated objects upon many qualitative criteria.

2 Representation of Multi-Attribute Objects

In MCDM problems, a multi-attribute object Ai is represented as a vector or tuple
(cortege) xi ¼ ðxe1

i1 ; . . .; xem
imÞ in the Cartesian m-space X1 9 ��� 9 Xm of attributes

scales. Often qualitative variables are transformed in the numerical ones by one or
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another way, for example, using the lexicographic scale or fuzzy membership
functions [6, 20, 21]. Unfortunately, the admissibility and validity of similar
transformations of qualitative data into quantitative ones are not always justified.
In methods of verbal decision analysis [9, 10], objects are described by qualitative
variables without a transformation into numerical attributes.

The situation becomes more complicated when one and the same object exist in
multiple versions or copies. Then, not one vector/cortege but a group of vectors/
corteges corresponds to each object. So, an object Ai is represented now as a

collection of k vectors/corteges x
ð1Þ
i ; . . .; x

ðkÞ
i

n o
where x

jð Þ
i ¼ðx

e1 jð Þ
i1 ; . . .; xem jð Þ

im Þ;
j ¼ 1; . . .; k: And this group should be considered and treated as a whole in spite of
a possible incomparability of separate vectors/corteges xi

(j). A collection of multi-
attribute objects can have an overcomplicated structure that is very difficult for
analysis.

In many group decision methods, a collection of k vectors x
ð1Þ
i ; . . .; x

ðkÞ
i

n o
is

replaced usually by a single vector yi. Typically, this vector yi has the components
derived by averaging or weighting the values of attributes of all members of the
group, or this vector is to be the mostly closed to all vectors within a group or to be

the center of group. Note, however, that features of all initial vectors x
1ð Þ

i ; . . .; x
ðkÞ
i

could be lost after such replacement. The operations of averaging, weighing,
mixing and similar data transformations are mathematically incorrect and unac-
ceptable for qualitative variables. Thus, a group of objects, represented by several
tuples, can not be replaced by a single tuple. So, we need new tools of aggregation
and work with such objects.

Let us consider another way for representing multi-attribute objects. Define the
combined attribute scale or the hyperscale X = X1 [ ��� [ Xm that is a set con-
sisted of m attribute (criteria) scales Xs ¼ fxes

s g. Now represent an object Ai as the
following set of repeating attributes

Ai ¼ fkAi x1
1

� �
� x1

1; . . .; kAi xh1
1

� �
� xh1

1 ; . . .;

kAi x1
m

� �
� x1

m; . . .; kAi xhm
m

� �
� xhm

m g:
ð1Þ

Here kAiðxes
s Þ is a number of attribute xes

s , which is equal to a number of experts
evaluated the object Ai with the criterion estimate xes

s , or a number of different
conditions or instruments used to measure an attribute value xes

s ; the sign � denotes
that there are kAiðxes

s Þ copies of attribute xes
s 2 Xs within the description of object Ai.

Thus, the object Ai is represented now as a set of many repeating elements x (for
instance, attribute values xes

s ) or as a multiset Ai ¼ fkAi x1ð Þ � x1, kAi x2ð Þ � x2; . . .g
over the ordinal (crisp) set X = {x1, x2, …} that is defined by a multiplicity
function kA : X ! Zþ ¼ 0; 1; 2; 3; . . .f g [2, 7, 13]. A multiset Ai is said to be finite
when all numbers kAi(x) are finite. Multisets A and B are said to be equal (A = B),
if kA(x) = kB(x). A multiset B is said to be included in a multiset A (B ( A), if
kB(x) B kA(x), Vx[X.
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There are defined the following operations with multisets:

• union A[B, kA[B(x) = max[kA(x), kB(x)];
• intersection A\B, kA\B(x) = min[kA(x), kB(x)];
• arithmetic addition A + B, kA+B(x) = kA(x) + kB(x);
• arithmetic subtraction A- B, kA-B(x) = kA(x) - kA\B(x);
• symmetric difference ADB, kADB(x) = |kA(x) - kB(x)|;
• multiplication by a scalar b � A, kb�A(x) = b � kA(x), b [ 0;
• arithmetic multiplication A � B, kA�B(x) = kA(x) � kB(x);
• direct product A 9 B, kA9B(xi, xj) = kA(xi) � kB(xj), xi[A, xj[B.

A collection A1, …, An of multi-attribute objects may be considered as points in
the multiset metric space (L(Z), d) with the following types of distances

d1p A;Bð Þ ¼ ½mðADBÞ�1=p; d2p A;Bð Þ ¼½mðADBÞ=m Zð Þ�1=p;

d3p A;Bð Þ ¼ ½mðADBÞ=mðA [ BÞ�1=p;
ð2Þ

where p C 0 is an integer, the multiset Z is the so-called maximal multiset with
kZ(x) = maxAkA(x), and m(A) is a measure of multiset A.

Multiset measure m is a real-valued non-negative function defined on the algebra
of multisets L(Z). The maximal multiset Z is the unit and the empty multiset [ is
the zero of the algebra. A multiset measure m has the following properties:
m(A) C 0, m([) = 0; strong additivity m(

P
iAi) =

P
im(Ai); weak additivity

m([iAi) =
P

im(Ai) for Ai\Aj = [; weak monotony m(A) B m(B)()A ( B;
symmetry m(A) + m(A) = m(Z); continuity limi?? m(Ai) = m(limi?? Ai);
elasticity m(b � A) = bm(A).

The distances d2p(A, B) and d3p(A, B) satisfy the normalization condi-
tion 0 B d(A, B) B 1. d3p([, [) = 0 by the definition, while the distance
d3p(A, B) is undefined for A = B = [. For any fixed p, the metrics d1p and d2p are
the continuous and uniformly continuous functions, the metric d3p is the piecewise
continuous function almost everywhere on the metric space for any fixed p.

The proposed metric spaces are the new types of spaces that differ from the
well-known ones [3]. The general distance d1p(A, B) is analogues of the Ham-
ming-type distance between objects, which is traditional for many applications.
The completely averaged distance d2p(A, B) characterizes a difference between
two objects related to common properties of all objects as a whole. And the locally
averaged distance d3p(A, B) reflects a difference related to properties of only both
objects. In the case of sets for p = 1, d11(A, B) = m(ADB) is called the Fréchet
distance, d31(A, B) = m(ADB)/m(A[B) is called the Steinhaus distance [3].

The measure m(A) of multiset A may be determined in the various ways, for
instance, as a linear combination of multiplicity functions: m Að Þ ¼

P
s wskAðxes

s Þ,
ws [ 0. In this case, for example, the Hamming-type distance for p = 1 has the
form
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d11 A;Bð Þ ¼ m ADBð Þ ¼
Xm

s¼1

ws

Xhs

es¼1

jkAðxes
s Þ � kBðxes

s Þj;

where ws [ 0 is a relative importance of the attribute Qs. Various properties of
multisets and multiset metric spaces are considered and discussed in [13].

3 Method of Group Ordering Multi-Attribute Objects

The method ARAMIS (Aggregation and Ranking Alternatives nearby the Multi-
attribute Ideal Situations) is developed for group ordering multi-attribute objects
that is based on preference aggregation [14, 17]. This method does not require pre-
construction of individual rankings objects. Let us represent an object Ai that is
described by many repeated quantitative and/or qualitative attributes as a multiset
(1). Consider multi-attribute objects A1, …, An as points of multiset metric space
(L(Z), d).

There are two (may be hypothetical) objects with the highest and lowest esti-
mates by all attributes/criteria Q1, …, Qm. These are the best object A+ and the
worst object A-, which can be represented as the following multisets in a metric
space

Aþ ¼ k � x1
1; 0; . . .; 0; k � x1

2; 0; . . .; 0; . . .; k � x1
m; 0; . . .; 0

� �
;

A� ¼ f0; . . .; 0; k � xh1
1 ; 0; . . .; 0; k � xh2

2 ; . . .; 0; . . .; 0; k � xhm
m g;

ð3Þ

where k is a number of experts or instrument techniques. These objects are called
also as the ideal and anti-ideal situations or referent points. So, all objects may be
arranged with respect to closeness to the best object A+ or the worst object A- in
the multiset metric space (L(Z), d).

The descending arrangement of multi-attribute objects with respect to closeness
to the best object A+ is constructed in the following way. An object Ai is said to be
more preferable than an object Aj (Ai � Aj), if a multiset Ai is closer to the multiset
A+ than a multiset Aj, that is d(A+, Ai) \ d(A+, Aj) in the multiset metric space
(L(Z), d). The ascending arrangement of multi-attribute objects with respect to
farness to the worst object A- is constructed analogously. The final ranking multi-
attribute objects is constructed as a combination of the descending and ascending
arrangements. All objects can be also ordered in accordance with the index
lþ Aið Þ ¼ d Aþ;Aið Þ= d Aþ;Aið Þ þ d A�;Aið Þ½ � of relative closeness to the best
object.
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4 Method of Group Clustering Multi-Attribute Objects

Cluster analysis is a widely used approach to study the natural grouping large
collections of objects and relationships between them. In clustering or classifying
multi-attribute objects without a teacher, the association of objects into groups is
based on their differences or similarities, which are estimated by a proximity of
objects considered as points of attribute space. The principal features of cluster
analysis are as follows: the choice of distance between objects in the attribute space;
the choice of algorithm for grouping objects; a reasonable interpretation of the
formed groups. A selection of the attribute space and the metric type depends on the
properties of the analyzed objects. For the objects with manifold attributes, the most
adequate is a representation as multisets and use of the metric space (L(Z), d) of
measurable multisets with the basic, completely or locally averaged metric.

Traditionally, a cluster is formed as a set-theoretic union of the closest objects
[1]. New operations under multisets open new possibilities for aggregation of
multi-attribute objects. For example, a group (class) Ct, t = 1, …, g of objects can
be obtained as the sum Yt =

P
iAi, kYt(xj) =

P
ikAi(xj), union Yt = [iAi,

kYt(xj) = maxikAi(xj) or intersection Yt = \iAi, kYt(xj) = minikAi(xj) of multisets Ai

describing the objects, either as a linear combination of multisets Yt =
P

ibi � Ai,
Yt = [ibi � Ai or Yt = \ibi � Ai. When a group Ct of objects is formed by addition
of multisets, all of the properties of all objects within a group are aggregated.
While forming group Ct of objects by union or intersection of multisets, the best
properties (maximal values of attributes) or, respectively, the worst properties
(minimal values of attributes) of individual members of a group are strengthened.

In order to generate groups of objects, the following typical approaches are used
in clustering techniques: (1) minimize the difference (maximize the similarity)
between objects within a group (2) maximize the difference (minimize the simi-
larity) between groups of objects. We assume, for simplicity, that distinctions
between objects within the group, between some object and the group of objects,
between groups of objects are determined in the same manner and given by one of
the above distances d (2).

Consider basic ideas of cluster analysis of multi-attribute objects A1,…,An

represented as multisets A1, …, An. Hierarchical clustering, when a number of the
generated clusters is not defined in advance, consists of the following major stages.

Step 1 Put g = n, g is the number of clusters, n is the number of objects Ai. Then
each cluster Ci consists of a single object Ai, and multisets Yi = Ai for all
i = 1,…,g.

Step 2 Calculate the distances d(Yp, Yq) between all possible pairs of multiset
represented clusters Cp and Cq for all 1 B p, q B g, p 6¼ q using one of
the metrics d (2).

Step 3 Find the closest pair of clusters Cu and Cv such that d(Yu, Yv) =
minp,qd(Yp, Yq), and form a new cluster Cr, which represented as a sum
Yr = Yu + Yv, union Yr = Yu[Yv, intersection Yr = Yu\Yv of corre-
spondent multisets or a linear combination of one of these operations.

24 A. B. Petrovsky



Step 4 Reduce the number of clusters per unit: g = n - 1. If g = 1, then output
the result and stop. If g [ 1, then go to Step 5.

Step 5 Calculate the distances d(Yp,Yr) between pairs of new multisets
represented clusters Cp and Cr for all 1 B p, r B g, p 6¼ r. Go to Step 3.

The algorithm builds a hierarchical tree or dendrogram by a successive
aggregation of objects into groups. New objects/clusters Cp and Cq appear, while
moving from the root of the tree by its branches, going at each step in one of the
closest clusters Cr. The process of hierarchical clustering ends when all the objects
are grouped into several classes or a single class. The procedure can also be
interrupted at some stage in accordance with any rule, for instance, when the
difference index exceeds the given threshold level [11].

The nature of cluster formation and results are largely depended on the type of
used metric. The basic metric d11 and completely averaged metric d21 give almost
identical results. In the process of clustering, ‘small’ objects (with small numbers
of attributes) are merged firstly, and more ‘large’ objects are aggregated later. The
resulted groups are comparable to the number of included objects, but very differ
from each other by sets of characterizing attributes. The clustering with locally
averaged metric d31 starts from combining similar objects of ‘medium’ and ‘large’
sizes with significant ‘common’ sets of attributes. Different ‘small’ objects are
joined later. The final grouping objects obtained in the first and second cases can
be strongly varied.

In the methods of non-hierarchical cluster analysis, the number of clusters is
considered as fixed and specified in advance. For multi-attribute objects described
by multisets, a generalized framework of nonhierarchical clustering includes the
following stages.

Step 1 Select an initial partition of collection A1, …, An of n objects in g clusters
C1, …, Cg.

Step 2 Distribute all of the objects A1, …, An by clusters C1, …, Cg according to
some rule. For example, calculate the distances d(Ai, Yt) between
multisets Ai (i = 1, …, n) represented objects Ai and multisets Yt

represented clusters Ct (t = 1, …, g). Place the object Ai in the nearest
cluster Ch with the distance d(Ai, Yh) = mintd(Ai, Yt). Or determine the
center A�t of each cluster Ct, for instance, by solving the optimization task
JðA�t ;YtÞ¼ minp

P
i d Ai;Ap

� �
. Place each object Ai in the cluster Cr with

the nearest center A�r given by the condition dðAi;A
�
r Þ ¼ mintdðAi;A

�
t Þ.

The center A�t of cluster Ct can coincide with one of the really existing
objects Ai or be a so-called ‘phantom’ object that is absent in the original
collection of objects but constructed as multiset.

Step 3 If all objects A1, …, An do not change their cluster membership that was
given by the initial partition in clusters C1, …, Cg, then output the result
and stop. Otherwise return to Step 2.
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The results of object classification can be estimated by a quality of the partition.
The best partition can be found, in particular, as a solution of the following
optimization problem:

P
t JðA�t ;YtÞ !min, where the functional JðA�t ;YtÞ is

defined above. In general, the solution of optimization problem is ambiguous since
the functional H(Yopt) is a function with many local extrema. The final result
depends also on the initial (near or far from optimal) allocation of objects into
classes.

Often in clustering procedures, a maximization of various indicators of objects’
similarity is used instead of a minimization of distance between objects that
characterizes their differences. The following indexes of objects’ similarity can be
introduced

s1 A;Bð Þ ¼ 1� m ADBð Þ=m Zð Þ; s2 A;Bð Þ ¼ mðA \ BÞ=m Zð Þ;
s3 A;Bð Þ ¼ mðA \ BÞ=mðA [ BÞ:

In the case of multisets, the functions s1, s2, s3 generalize the known indexes of
similarity such as, respectively, the simple matching coefficient, Russell-Rao
measure of similarity, Jaccard coefficient or Rogers-Tanimoto measure [1]. The
simple matching coefficient s1 and Russell-Rao measure s2 of similarity are con-
nected with the expression s1(A, B) = s2(A, B) + s2(A, B), which is one of the
possible binary decompositions of maximal multiset Z on blocks of coverings and
overlapping multisets [12].

5 Method of Group Sorting Multi-Attribute Objects

Consider a problem of group classification of multi-attribute objects with teachers
as follows. Several experts evaluate each object from the collection A1, …, An

upon all criteria Q1, …, Qm and make a recommendation rt for sorting the object
into one of the classes Ct, t = 1,…,g. Need to find a simple general group rule,
which aggregates a large family of inconsistent individual expert-sorting rules and
assigns objects to the given classes taking into account inconsistent opinions.

The method MASKA (abbreviation of the Russian words Multi-Attribute
Consistent Classification of Alternatives) is used for group sorting multi-attribute
objects [14–16]. An object Ai with a multiple criteria estimates Xs ¼ fxes

s g, s =
1, …, m may be represented as the following multiset of the type (1)

Ai ¼ fkAi x1
1

� �
� x1

1; . . .; kAiðxh1
1 Þ � xh1

1 ; . . .;

kAi x1
m

� �
� x1

m; . . .; kAiðxhm
m Þ � xhm

m ; kAi r1ð Þ � r1; . . .; kAi rf

� �
� rgg;

ð4Þ

which is drawn from the domain P = X1[…[Xm[R = X[R. The part of sorting
attributes R = {r1,…,rg} is the set of expert recommendations. Here kAiðxes

s Þ and
kAi(rt) are equal to numbers of experts who gives the estimate xes

s and the
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recommendation rt to the object Ai. Obviously, judgments of many experts may be
similar, diverse, or contradictory. These inconsistencies express subjective pref-
erences of individual experts and cannot be considered as accidental errors.

The representation (4) of object Ai can be written as a collective sorting rule

IF conditionsh i; THEN decisionh i;

which is associated with arguments in the formula (4) as follows. The antecedent
term hconditionsi includes the various combinations of criteria estimates xes

s ,
which describes the object features. The consequent term hdecisioni denotes that
the object Ai belongs to the class Ct, if some conditions are fulfilled. The object Ai

is assigned to the class Ct in accordance with the rule of voices majority that is, for
instance, the relative majority if kAi(rt) [ kAi(rp) for all p 6¼ t, or the absolute
majority if kAiðrtÞ [

P
p 6¼ t kAiðrpÞ.

In order to simplify the problem, let us assume that the collection of objects
A1, …, An is to be sorted only into two classes Ca (say, more preferable) and Cb

(less preferable) that is g = 2. This demand is not the principle restriction.
Whenever objects are to be sorted into more than two classes, it is possible to
divide the object collection into two classes, then into subclasses, and so on. For
instance, competitive projects may be classified as projects approved and not
approved, then the not approved projects may be sorted as projects rejected and
considered later, and so on.

Let us correspond to each class Ca and Cb multisets Ya and Yb, which are
formed as sums of multisets represented multi-attribute objects. In this case,

Yt ¼ fkYt x1
1

� �
� x1

1; . . .; kYtðxh1
1 Þ � xh1

1 ; . . .;

kYt x1
m

� �
� x1

m; . . .; kYtðxhm
m Þ � xhm

m ; kYt rað Þ � ra; kYt rbð Þ � rbg;

where kYtðxes
s Þ ¼

P
i2It kAiðxes

s Þ; kYt rtð Þ ¼
P

i2It kAi rtð Þ, t = a, b, the index subsets
Ia[Ib = {1, …, n}, Ia\Ib = [. The above expression represents the collective
decision rule of all experts for sorting multi-attribute objects to the class Ct.

The problem of object classification may be considered as the problem of
sorting multisets in a metric space (L(Z), d). The main idea of aggregating a large
family of discordant individual expert-sorting rules in a generalized group decision
rule is formulated as follows. Let us introduce a set of new attributes Y = {ya, yb},
which elements related to the classes Ca and Cb, and construct the following new
multisets

Ra ¼ fkRa yað Þ � ya; kRa ybð Þ � ybg;Rb ¼ fkRb yað Þ � ya; kRb ybð Þ � ybg;
Qj ¼ fkQj yað Þ � ya; kQj ybð Þ � ybg

drawn from the set Y. Here kRa(yt) = kYt(ra), kRb(yt) = kYt(rb), kQj ytð Þ ¼ kYtðx j
sÞ,

j = 1, …, hs. We shall call the multisets Ra, Rb as ‘categorical’ and the multisets
Qj as ‘substantial’ multisets.
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Note that the distance d(Ra, Rb) between multisets Ra and Rb is the maximal
distance between objects belonging to the different classes Ca and Cb. So, the
categorical multisets Ra and Rb correspond to the best binary decomposition of the
objects collection into the given classes Ca and Cb according to primary sorting
rules of experts

IF kAi rað Þ[ kAi rbð Þð Þh i; THEN Object Ai 2 Cah i;
IF kAi rað Þ\kAi rbð Þð Þh i; THEN Object Ai 2 Cbh i:

ð5Þ

Thus, it is necessary to construct a pair of new substantial multisets Qsa
� and

Qsb
� for every attribute group Qs, s = 1, …, m such that these multisets as points

of multiset metric space are to be placed at the maximal distance. The multisets
Qsa and Qsb aggregate groups of multisets Qj as the sums: Qsa =

P
j[JsaQj,

Qsb =
P

j[JsbQj, where the index subsets Jsa[Jsb = {1, …, hs}, Jsa\Jsb = [. The
substantial multisets Qsa

� and Qsb
�, which correspond to the best binary decom-

position of objects for the s-th attribute Qs and are the mostly coincident with
primary expert-sorting objects into the given classes Ca and Cb, are a solution of
the following optimization problem:

d Qsa;Qsbð Þ ! maxd Qsa;Qsbð Þ ¼ d Qsa
�;Qsb

�ð Þ:

The set of attributes Q1, …, Qm can be ranged by the value of distance
d Qsa

�;Qsb
�ð Þ or the level of approximation rate Vs ¼ d Qsa

�;Qsb
�ð Þ=d Ra;Rbð Þ. We

shall call an attribute value x j
s 2 Qst

�, j[Jst, t = a, b that characterizes the class Ct

as a classifying attribute for the correspondent class. The classifying attribute that
provides the acceptable level of approximation rate Vs C V0 is to be included in
the generalized decision rule for group multicriteria sorting objects. The level of
approximation rate Vs shows a relative significance of the s-th property Qs within
the generalized decision rule.

Various combinations of the classifying attributes produce the generalized
decision rules for group sorting objects into the classes Ca and Cb as follows

IF ðx j
u 2 Qua

�Þ AND ðx j
v 2 Qva

�Þ AND. . .AND ðx j
w 2 Qwa

�Þ
� �

;

THEN Object Ai 2 Cah i;
ð6Þ

IF ðx j
u 2 Qub

�Þ AND ðx j
v 2 Qvb

�Þ AND. . .AND ðx j
w 2 Qwb

�Þ;
� �

THEN Object Ai 2 Cbh i:
ð7Þ

Remark, generally, that these generalized group decision rules are quite different.
Among the objects, which have been assigned to the given class Ca or Cb in

accordance with the generalized decision rule (6) or (7), there are the correctly and
not correctly classified objects. So, a construction of collective decision rules for
sorting multi-attribute objects, which aggregate a large number of inconsistent
individual expert-sorting rules, includes not only a selection of the classifying

28 A. B. Petrovsky



attributes x j
s 2 Qsa

�; x j
s 2 Qsb

�, but also a determination of the correctly and con-
tradictory classified objects.

Let us find such attribute values that maximize numbers Na and Nb of the
correctly classified objects, and minimize numbers Nac and Nbc of the not correctly
classified objects. We can find, step by step, a single criterion Qua

�, then a couple
of criteria Qua

� and Qva
�, three criteria Qua

�;Qva
�;Qwa

�, four criteria and so on,
which are included in the generalized decision rules (6) or (7), and provide the
minimal difference Na - Nac or Nb - Nbc. Finally, we obtain the aggregated
decision rules for consistent sorting the objects

IF
X

x2Qua�
kAi xð Þ[

X
x2Qub�

kAi xð Þ
� 	

AND
D

X
x2Qva�

kAi xð Þ[
X

x2Qvb�
kAi xð Þ

� 	
AND. . .

AND kAi rað Þ[ kAi rbð Þð Þi; THEN Object Ai 2 CanCach i;

ð8Þ

IF
X

x2Qua�
kAi xð Þ\

X
x2Qub�

kAi xð Þ
� 	

AND
D

X
x2Qva�

kAi xð Þ\
X

x2Qvb�
kAi xð Þ

� 	
AND. . .

AND kAi rað Þ\kAi rbð Þð Þi; THEN ObjectAi 2 CbnCbch i:

ð9Þ

These aggregated decision rules define the specified classes Ca\Cac (say,
completely preferable) and Cb\Cbc (completely not preferable) of the correctly
classified objects. These aggregated rules for consistent sorting approximate the
family of initial sorting rules of many individual experts.

Simultaneously the specified class Cc = Cac[Cbc of the contradictory classified
objects is built. Such objects satisfy the aggregated decision rule for inconsistent
sorting

IF
X

x2Qua�
kAi xð Þ[

X
x2Qub�

kAi xð Þ
� 	

AND
hD

X
x2Qva�

kAi xð Þ[
X

x2Qvb�
kAi xð Þ

� 	
AND. . .

AND kAi rað Þ\kAi rbð Þð Þ OR� ½
X

x2Qua�
kAi xð Þ\

X
x2Qub�

kAi xð Þ
� 	

AND
X

x2Qva�
kAi xð Þ\

X
x2Qvb�

kAi xð Þ
� 	

AND. . .

AND kAi rað Þ[ kAi rbð Þð Þ�; THEN Object Ai 2 Cch i:
ð10Þ

This aggregated rule helps a DM to discover possible inconsistencies of individual
expert rules and analyze additionally the contradictory classified objects.
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6 Case Studies: Multiple-Criteria Expertise of R&D
Projects

The developed techniques were applied to real-life expertise of R&D projects in
the Russian Foundation for Basic Research (RFBR). RFBR is the Federal agency
that organizes and funds basic research, and exams their practical applications. In
RFBR, there is the special peer review system for a selection of the applications
and assessment of the completed projects—the original multi-expert and multi-
criteria expertise, similar to that found nowhere else in the world.

Several independent experts estimated each project using special question-
naires, which include specific qualitative criteria with detailed verbal rating scales.
Additionally, experts give the recommendations on whether to support the appli-
cation (at the competition stage) or to continue the project (at the intermediate
stage). Experts estimate the scientific and practical values of the obtained results
(at the final stage when the project is ended). On the basis of expert judgments, the
Expert Board of RFBR decides to approve or reject the new project, to continue
the project implementation, and evaluates the efficiency of the completed project.
Finally, the Expert Board of RFBR determines the size of financing the supported
project.

The most of methodologies, which are applied for expert estimation in different
areas, uses quantitative approaches that are based on a numerical measurement of
object characteristics. However, such approaches are not suitable for the expertise
in RFBR, where projects are evaluated by several experts on many qualitative
criteria with verbal scales.

To select the best competitive applications, the Expert Board of RFBR is need
in a simple collective decision rules, which aggregate many contradictory decision
rules of individual experts described with non-numerical data. These aggregated
decision rules for sorting applications have been constructed by the MASKA
method, and could not been found with other known MCDM techniques.

During the RFBR expertise of the goal-oriented R&D projects, several experts
(usually, three) evaluate the applications upon 11 qualitative criteria presented in
the expert questionnaire. These criteria are combined in two groups such as
‘Scientific characteristics of the project’ and ‘Evaluation of possibilities for the
practical implementation of the project’. The first group includes 9 criteria. These
are as follows: Q1. Fundamental level of the project; Q2. Directions of the project
results; Q3. Goals of research; Q4. Methods of achievement of the project goals;
Q5. Character of research; Q6. Scientific value of the project; Q7. Novelty of the
proposed solutions; Q8. Potential of the project team; Q9. Technical equipment for
the project realization. The second group consists of 2 criteria: Q10. Completion
stage of basic research suggested in the project, and Q11. Applicability scope of the
research results.

Each criterion has nominal or ordered scale with verbal grades. For instance,
the scale X7 of the criterion Q7. ‘Novelty of the proposed solutions’ looks as
follows; x1

7—the solutions were formulated originally and are undoubtedly
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superior to the other existing solutions; x2
7—the solutions are on the same level as

other existing solutions; x3
7—the solutions are inferior to some other existing

solutions.
Additionally, every expert gives a recommendation on the feasibility of the

project support using the following scale: r1—unconditional support (grade ‘5’),
r2—recommended support (grade ‘4’), r3—possible support (grade ‘3’), r4—
should not be supported (grade ‘2’).

The proposed approach to a competitive selection of the goal-oriented R&D
projects has been tested on the real database. This base included the expert
evaluations of the supported and rejected applications in the following fields:
‘Physics and astronomy’ (totally 127 projects, including 39 supported and 88
rejected applications); ‘Biology and medical science’ (totally 252 projects
including 68 supported and 184 rejected applications).

Expert data was processed with the MASKA method. As a result in the fields
mentioned above, it was sufficient to use combinations of only several criteria,
namely Q6, Q10, and Q11, in order to construct the aggregated collective decision
rule for the unconditional support of project. So, this decision rule had the fol-
lowing form:

IF Object Ai is estimated with the criteria grades x1
6 or x2

6

� �
;

�

AND x1
10 or x2

10

� �
;AND x1

11 or x2
11

� ��
;

THEN Object Ai 2 CanCach i:

The aggregated rule for the project support can be rewritten with a natural
language as follows: ‘‘The project is unconditionally supported if the project has
the exceptional or very high value of scientific significance; basic research sug-
gested in the project are completed in the form of a laboratory prototype or key
elements of development; and the project has a large or interdisciplinary appli-
cability scope of the research results’’.

To evaluate efficiency of the goal-oriented R&D projects, we used the meth-
odology of group verbal decision analysis in the reduced attribute space. At the
first stage, the complex criterion of project efficiency is constructed with the
original interactive procedure HISCRA (HIerarchical Structuring CRiteria and
Attributes) for reducing the dimension of attribute space [18]. A construction of
complex criterion scale is considered as the ordinal classification problem, where
the classified alternatives are combinations of verbal grades of criteria scales. The
decision classes are verbal grades of the complex criteria. At the second stage,
grades of the complex criteria are composed, step by step, by using various verbal
decision methods [10]. Thus, each project is assigned into some class correspon-
dent to the grade of complex criterion, which are obtained with different methods.
At the third stage, all projects are ordered by the ARAMIS method [14, 17]. The
hierarchical aggregation of initial attributes allows to generate manifold collec-
tions of complex criteria, find the most preferable solution, and diminish essen-
tially time that a DM spends for solving a problem.
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During the RFBR expertise of the completed goal-oriented R&D projects, several
experts (usually, two, three or four) evaluate the obtained results upon 8 qualitative
criteria presented in the expert questionnaire. These criteria are as follows: Q1.
Degree of the problem solution; Q2. Scientific level of results; Q3. Appropriateness
of patenting results; Q4. Prospective application of results; Q5. Result correspon-
dence to the project goal; Q6. Achievement of the project goal; Q7. Difficulties of the
project performance; Q8. Interaction with potential users of results.

Each criterion has two or three-point scale of ordered verbal grades. For
example, the scale X1 of the criterion Q1. ‘Degree of the problem solution’ looks as
follows: x1

1—the problem is solved completely, x2
1—the problem is solved par-

tially, x3
1—the problem is not solved. The criterion Q6. ‘Achievement of the project

goal’ is rated as x1
6—really, x2

6—non-really.
The rates of project efficiency correspond to the ordered grades on a scale of the

top level complex criterion D. ‘Project efficiency’ as d1—superior, d2—high, d3—
average, d4—low, d5—unsatisfactory. These grades, which were considered as the
new attributes that characterize the projects, was formed with four different
combinations of verbal decision methods.

The real database included expert assessments of results of goal-oriented R&D
projects, which had been completed in the following fields: ‘Mathematics,
Mechanics and Computer Science’ (totally 48 projects), ‘Chemistry’ (totally 54
projects), ‘Information and telecommunication resources’ (totally 21 projects). For
instance, the obtained final ranking projects on Mathematics, Mechanics and Com-
puter Science in accordance with the index l+(Ai) of relative closeness to the best
object is as follows: 23 projects have the superior level of efficiency (l+(Ai) = 0,333),
1 project has the level of efficiency between superior and high (l+(Ai) = 0,429), 24
projects have the high level of complex efficiency (l+(Ai) = 0,500).

7 Conclusion

In this chapter, we considered the new tools for group ordering and sorting objects
described with many numerical, symbolic and/or verbal attributes, when several
copies of object may exist. These techniques are based on the theory of multiset
metric spaces. Underline that verbal attributes in these methods are not trans-
formed in or replaced by any numerical ones as, for instance, in MAUT and
TOPSIS methods [6], and in fuzzy set theory [21].

The multiset approach allows us to solve traditional MCDM problems in more
simple and constructive manner, and discover new types of problems never being
sold earlier, while taking into account inconsistencies of objects’ features and
preference contradictions of many actors. The ARAMIS technique is simpler and
easier than the other well-known approaches to ranking multiple criteria alterna-
tives. The MASKA technique is the unique method for group classification of
multi-attribute objects and has no analogues.
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