
Chapter 2
Theoretical Background and Literature
Overview

As stated in the introduction, the present thesis is based on a combination of
reversible-deactivation radical polymerization via the RAFT process and supramole-
cular CD host/guest complexes. The RAFT process provides the opportunity to gen-
erate polymers with specific endgroups, e.g. guest functionalities for CD. These
polymers can subsequently be exploited for the formation of novel complex macro-
molecular architectures, e.g. block copolymers, star polymers or miktoarm star poly-
mers. The underlying theoretical background is described in the following sections
as well as an overview of CD mediated complex macromolecular architectures that
have been published in the literature so far.

2.1 Reversible Addition-Fragmentation Chain Transfer
Polymerization

2.1.1 Living Polymerization

A living polymerization is strictly speaking a chain propagation reaction that—after
full monomer conversion—is still capable of propagation via addition of further
monomer [2]. In an ideal case this occurs in polymerization reactions without any
chain transfer and termination [3, 4]. Furthermore, the rate of initiation should be fast
compared to the rate of propagation, which results in the synthesis of polymer chains
with an overall similar degree of polymerization (Dp) [5]. Anionic and some cationic
polymerizations are treated as classical/truly living polymerization, while the more
recent atom transfer radical polymerization (ATRP) [6–8], nitroxide-mediated poly-
merization (NMP) [4, 9–11] and the RAFT polymerization [12–16] are treated as
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Fig. 2.1 General structure of a CTA/RAFT agent

polymerization with living characteristics, as controlled radical polymerization [17]
or reversible-deactivation radical polymerization. All living polymerization tech-
niques have in common that Dp increases linearly with monomer conversion, block
copolymers canbe formedvia sequentialmonomer addition and lowÐm are achieved.

In the case of ATRP, radical chain ends are generated via a transition metal cat-
alyzed one electron redox-process that leads to halide terminated dormant chains or
radical bearing active chains [6]. An equilibrium between dormant and active species
that is centered on dormant species controls the reaction. In NMP, the persistent rad-
ical effect is utilized [4]. A nitroxide acts as a radical trap for active chains. As the
process of chain termination via a nitroxide is reversible, an activation/deactivation
equilibrium is formed. In both processes, ATRP and NMP, a small amount of active
species leads to the minimization of radical termination events. The RAFT process is
an alternativemethod to control radical polymerizations and achieves living behavior.
Macromolecular design via the interchange of xanthates (MADIX) has an identical
mechanism to RAFT yet uses slightly different controlling agents. Both methods
were patented in 1998 [18, 19] and are utilized in polymer research very often since
then [13, 14]. The RAFT process will be described in detail in the next sections.

RAFT and MADIX differ substantially from the other controlled radical poly-
merizations, as for the control of the polymerization no persistent radical effect is
utilized (refer to Sect. 2.1.2), leading to an increase in propagation rate compared
to the other controlled radical polymerization techniques. The process is tolerant to
functional monomers, e.g. acrylic acid or vinyl acetate (refer to Sect. 2.1.3), and is
especially useful for the preparation of water-soluble polymers (refer to Sect. 2.1.4).
The RAFT process, as the other living polymerization techniques, is a tool for the
synthesis of complex macromolecular architectures, e.g. block copolymers or star
polymers (refer to Sect. 2.1.5).

2.1.2 Mechanism and Kinetics

The central element in the RAFT process is the chain transfer agent (CTA) that allows
for control on the polymerization.

The CTA is typically a thiocarbonyl thio compound featuring two substituents that
are usually abbreviated as R- and Z-group (refer to Fig. 2.1). These two substituents
have a profound influence on the reactivity of the CTA and the RAFT process can
be varied via the modification of these substituents. The R-group is also called the
radical leaving group and the Z-group is also called the stabilizing group [20, 21].

As depicted in Scheme 2.1 the RAFT equilibria do not create or terminate
radicals. Except of the termination reactions, every reaction in the RAFT process
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Scheme 2.1 Basic mechanism of the RAFT process

generates a radical. There are only bimolecular cooperative chain transfer reactions
[22] and—in contrast to ATRP and NMP—no persistent radicals are involved that
are endfunctionalizing polymers in a monomolecular process. Thus, no decrease in
the polymerization rate should ideally occur from the RAFT process itself under the
assumption that fragmentation and reinitiation are not rate defining. Nevertheless,
often inhibition or slower propagation rates compared to conventional free radical
polymerization are observed [13, 23]. The RAFT process can be divided into five dis-
tinct reaction sequences: Initiation, pre-equilibrium, reinitiation, main-equilibrium
and termination. The mechanism of the RAFT process is depicted in Scheme 2.1.

The initiation occurs via the formation of primary radicals I· that form during
the decay of a radical initiator I2 with the rate coefficient kde. The formed radicals
react with monomers to short oligomeric chains Pn · with the rate coefficient kini
until a radical reacts with a CTA molecule. The ratio of CTA to initiator should be
high, especially when high endgroup functionalization is necessary, e.g. for chain
extensions or complex macromolecular architecture formation. Furthermore, a high
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Scheme 2.2 Reversible chain
transfer in the RAFT process
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initiator concentration has the drawback of an increased probability of termination
reactions due to higher radical concentration [22].

The initiator derived chain adds to a CTA molecule with the rate constant kadd.
Subsequently the thiocarbonyl centered radical undergoes β-fragmentation with the
rate coefficient kβ , which leads to the formation of a free radical R· and a thiocarbonyl
thio capped chain. The reaction of the formed radical R· with the rate coefficients
kaddR and k−addR with another CTAmolecule (refer to Scheme 2.2) is usually neglible
due to the short life time of the intermediate. In the case of slow fragmentation and
side-reactions of the intermediate the reaction should be taken into account [13].

For the description of the chain transfer, the chain transfer constants Ctr and C−tr
are defined:

Ctr = ktr
kp

= kadd
kp

· kβ

k−add + kβ
(2.1)

and

C−tr = k−tr

ki
= k−β

ki
· k−add

k−add + kβ
(2.2)

The transfer constants depend strongly on the R- and Z-group present in the CTA.
The higher the value of Ctr , the better is the control of the polymerization [13, 21].
The formed R· radical should reinitiate the polymerization effectively. Furthermore,
the R-group has to be a good homolytic leaving group and especially a better leaving
group than the radical of the monomer so that fragmentation towards the R-group is
preferred. Thus, a balance between reinitiation and leaving group ability has to be
found for an effective RAFT process.

The main equilibrium starts when all CTAmolecules have reacted. In the equilib-
rium, the intermediate fragments with the rate coefficient k−addP to the macroradical
Pn · or Pm · and a thiocarbonyl thio chain end. With the rate coefficient kaddP, the thio-
carbonyl thio chain end adds a macroradical again. Whenever a fragmentation takes
place, the macroradical can add new monomers with the propagation rate constant
kp. The kinetics of the main equilibrium can be described with the chain transfer
constant CtrP, which can differ slightly from the chain transfer constant of the pre-
equilibrium Ctr . If the polymer fragments Pn · or Pm · are treated as identical, the
following assumption can be made:

k−addP = kβ (2.3)

which effects the chain transfer constant of the main equilibrium CtrP as follows:

CtrP = kaddP
2 · kp

(2.4)
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For optimal control of the polymerization, CtrP should be high [13, 21], i.e. the
higher CtrP the closer is the plot of DP against conversion to linearity. Furthermore,
Ðm is decreasing with higher CtrP. In the ideal case, there is the same probability
for chain growth for all propagating chains, which leads to narrow molecular weight
distributions. Following this mechanism a large quantity of the formed polymers
should bear the thiocarbonyl thio Z-group on one end and the R-group on the other
end. Furthermore initiator derived chains are formed in minor amounts.

Termination reactions occur intrinsically, as in free radical polymerization, radical
recombination with ktrec and disproportionation with ktd.

As with all living polymerization techniques, Dp and the number average molecu-
lar mass Mn can be calculated from the conversion and the concentrations of initiator
and monomer. Dp is based on the concentration of monomer [M], the concentration
of CTA [CTA], the average number of chains that are formed in a termination reaction
d, the initiator efficiency f and the initiator concentration [I2]:

Dp = [M]0 − [M]t

[CTA]0 + d · f ([I2]0 − [I2]t )
(2.5)

With a large excess of CTA compared to initiator follows:

Dp ≈ [M]0 − [M]t

[CTA]0 (2.6)

Mn can be calculated analogously with the molar mass of the monomer mM and the
molar mass of the CTA mCTA:

Mn =
( [M]0 − [M]t

[CTA]0 + d · f ([I2]0 − [I2]t )
· mM

)
+ mCTA (2.7)

A simplification analogous to the calculation of Dp leads to:

Mn ≈
( [M]0 − [M]t

[CTA]0 · mM

)
+ mCTA (2.8)

In this case a linear relation between Mn or Dp and the monomer conversion is evi-
dent, which is characteristic for polymerizations with living character. In an ideal
RAFT process the formed thiocarbonyl thio functionalized macromolecule can be
reinitiated for chain extension. Too high initiator concentrations lead to the formation
of unreactive chains, as the degree of initiator functionalized polymers is increasing.
Asmentioned earlier, CTAs are often sulfur containing thiocarbonyl thio compounds
that have to be chosen according to the monomer. For an efficient RAFT polymer-
ization, the choice of the respective R- and Z-group are crucial. The RAFT agent
needs a reactive C–S double bond, which results in high kadd values. The intermedi-
ate radicals should ideally fragment rapidly, based on a weak S–R bond which leads
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Fig. 2.2 Different types of CTAs [13]
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Fig. 2.3 Commonly utilized CTAs (CPDB 2-cyano-2-propyl benzodithioate; Dopat 2-
((dodecylsulfanyl)carbonothioyl)sulfanyl propionic acid; DMP 2-(dodecylthiocarbonothioylthio)-
2-methylpropionic acid; EPX ethyl 2-((ethoxycarbonothioyl)thio)propanoate)

to a large kβ value. Furthermore, the intermediate should partition in favor of the
products, i.e. kβ > k−add and R· should effectively reinitiate the polymerization:

In Fig. 2.2 different Z-groups for CTAs are presented, e.g. aromatic (a) or aliphatic
(d) dithioesters, trithiocarbonates (b), xanthates (e) and dithiocarbamates (c and f).
The rate coefficients for addition and the transfer constants decrease from left ot right
[20, 22, 24]. Via the Z-group, the addition and fragmentation rates are modified. The
R-group has to be a good radical leaving group that is able to reinitiate the polymer-
ization. Common R-groups include tertiary carbon atoms, e.g. in a cyanoisopropyl
group, a cumyl group or an iso-butyric acid, or secondary carbon atoms, e.g. in a
benzylic group or a iso-propionic acid.

2.1.3 Applicability of the Method and Reaction Conditions

The RAFT process gives the opportunity to perform reversible-deactivation
radical polymerizations with a large variety of monomers, e.g. styrenic monomers,
(meth)acrylates, (meth)acrylamides, vinyl acetate and N-vinyl monomers. A tertiary
cyanoalkyl dithiobenzoate can act as CTA for styrene (Sty) and methyl methacrylate
(MMA) (refer to compound CPDB in Fig. 2.3).

Another common class of CTAs are trithiocarbonates connected to tertiary or
secondary carboxylic acids or esters (refer to the compounds Dopat or DMP in
Fig. 2.3) that can be used to polymerize styrenics, acrylates or acrylamides. Xanthates
(refer to compound EPX in Fig. 2.3) or cyanoalkyldithiocarbamates can be utilized
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in the polymerization of vinyl acetate or N-vinyl monomers, e.g. N-vinylpyrrolidone
or N-vinylcarbazole.

The reaction conditions can usually be adopted from the corresponding conven-
tional free radical polymerizationwith a commonly used polymerization temperature
ranging from ambient temperature to 140 ◦C. Usually, organic solvents are utilized,
yet protic solvents such as alcohols orwater can be utilized aswell. Furthermore, bulk
or emulsion polymerizations are described in the literature [13]. For the initiation
every radical source is in principle utilizable [18], but in most cases thermal initiators
are employed, e.g. 2,2′-azo-bis-(isobutyronitril) (AIBN). Other initiation methods
are self-initiation [25, 26], UV-irradiation [27], γ irradiation [28] or a plasma field
[29].

2.1.4 Preparation of Water-Soluble Polymers via RAFT
Polymerization

RAFT polymerization is arguably the most useful controlled radical polymeriza-
tion technique for the synthesis of water-soluble polymers [30]. In principle a poly-
merization in organic solvents or directly in water is possible. For the polymer-
ization in water several water-soluble CTAs and initiators are available (refer to
Fig. 2.4). In the case of organic solvents as reaction media a usual RAFT polymer-
ization can be conducted as long as the monomer and polymer are soluble in the
respective organic solvent. This is true for some of the mostly used monomers, e.g.
N-isopropylacrylamide (NIPAAm),DEAAm,N,N-dimethylacrylamide (DMAAm)
or N,N-dimethylaminoethyl methacrylate (DMAEMA). Nevertheless, problems
arise when ionic or very hydrophilic monomers are considered that are only solu-
ble in water or at least their corresponding polymers, e.g. styrene sulfonate [31],
2-acrylamido-2-methylpropansulfonic acid (AMPS) [32], (3-methacryloylamino-
propyl)-(2-carboxy-ethyl)-dimethyl-ammonium (carboxybetaine methacrylamide)
(CBMAA-3) [33] or acrylamide (AAm) [34]. Apart from the monomer choice,
water as reaction solvent can have several advantages, when compared to organic
solvents. Water is non-toxic, relatively cheap and has a high heat capacity. Some
drawbacks are its high boiling point, thus water is not easy to recycle or to remove.

The CTA should be water-soluble in an aqueous polymerization, e.g. 4-cyano-4-
(phenylcarbonothioylthio)pentanoic acid (CTP), 2-(((ethylthio)carbonothioyl)thio)-
2-methylpropanoic acid (EMP) or 2-(1-carboxy-1-methylethylsulfanylthiocarbonyl
sulfanyl)-2-methylpropionic acid (CMP). Nevertheless some side reactions are
known that lead to less well defined polymers. McCormick and coworkers spent
significant effort to study RAFT polymerization in water. At high temperatures and
under neutral or basic conditions the CTA can undergo hydrolysis [30, 35, 36]. In
the case of the polymerization of acrylamides, aminolysis can happen after hydrol-
ysis of the respective monomer [30, 35]. Of course, hydrolysis of an amide is not
a preferred process, yet when the equivalents of CTA to monomer are considered,
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-4-(phenylcarbonothioylthio)pentanoic acid; EMP 2-(((ethylthio)carbonothioyl)thio)-2-
methylpropanoic acid; CMP 2-(1-carboxy-1-methylethylsulfanylthiocarbonylsulfanyl)-2-
methylpropionic acid; VA-044 2,2′-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride; V-501
4,4’-azobis(4-cyanovaleric acid))

already a small portion of hydrolysis can lead to loss of CTA and thus control of the
polymerization. Usually a higher molecular mass than expected and broader mole-
cular mass distributions are observed. A possibility to overcome these issues is to
polymerize in slightly acidic media, e.g. acetic acid buffer, at low temperatures or at
best in acidic media and at low temperatures. In these cases even controlled RAFT
polymerizations of acrylamides in water are possible [34, 37, 38].

Several monomer classes for water-soluble polymers are available (refer to
Fig. 2.5) and can be chosen for the respective application [30, 39]. There are anionic
monomers or monomers that can easily be deprotonated, e.g. styrene sulfonate [31],
AMPS [32] or acrylic acid (AA) [40]. Cationic monomers, monomers that can be
protonated or quaternized, e.g. 2-vinylpyridine (2VP) [41], 4-vinylpyridine (4VP)
[41, 42] or DMAEMA [43, 44], are available as well. Furthermore, zwitterionic
monomers, e.g. CBMAA-3 [33] or 3-dimethyl(methacryloyloxyethyl) ammonium
propane sulfonate (DMAPS) [45], have been utilized in RAFT polymerizations. A
very frequently employed class of monomers are non-ionic monomers, which are
mostly acrylamides, e.g. AAm [34], DMAAm [34], DEAAm [46], NIPAAm [47]
and N-(2-hydroxypropyl)methacrylamide (HPMA) [33, 48].

2.1.5 Complex Macromolecular Architectures via RAFT
Polymerization

TheRAFTprocess is a tool to generate a broad range ofmacromolecular architectures
(refer to Fig. 2.6). As the structure of the CTA is retained in the formed polymer, a
modification of the CTA in the R- or Z-part provides the opportunity to incorporate
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specific endgroups into polymers [49], e.g. azides [50, 51], alkynes [50], amines [52],
alcohols [53] or carboxylic acids [54, 55]. The broad range of possible endgroups
leads to a braod range of applications and combinations. Furthermore, several reactive
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Fig. 2.6 Overview of macromolecular architectures that are accessible via RAFT polymerization
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endgroups can be utilized in the formation of complexmacromolecular architectures,
e.g. in modular ligation reactions [56–59].

An alternative possibility is an endgroup conversion of thiocarbonyl thio
endgroups, e.g. thermolysis [60], hydrolysis [61], aminolysis [54] or reduction [62].
Furthermore oxidation [63], radical- [60] and irradiation-induced [64] endgroup
removal have been reported in the literature.

Block copolymers can be generated via modular ligation reactions, e.g. CuAAc
[49, 50]. Another possibility is the utilization of a macro-CTA, i.e. a polymer that
contains a thiocarbonyl thio endgroup. These polymers can be reinitiated and chain
extended after initiator and monomer addition [65]. An alternative strategy is the
addition of further monomer after high conversion of the first monomer, but in that
case gradient block copolymers with tapered transition [17] are obtained [22]. These
gradient copolymers are usually not very well suited for microphase separations.
A drawback of block copolymer generation via macro-CTAs is that only monomers
with similar reactivity can be utilized [49]. A possibility to connect electron rich
monomers with electron deficient monomers is the utilization of N-(4-pyridinyl)-N-
methyldithiocarbamate [66]. With this CTA, the formation of block copolymers of
methyl methacrylate and vinyl acetate is possible via protonation of the pyridinyl
substituent.

Other complex structures can be formed via specially designedCTAs [13, 67], e.g.
star polymers [68], polymer brushes [69], dendritic structures [70] or amphiphiles
[71].

2.2 Cyclodextrins and Their Complexes

2.2.1 Supramolecular Chemistry

The term of supramolecular chemistry has been defined by Jean-Marie Lehn in
1978. The Nobel laureate of 1987 has defined it as chemistry of non-covalent inter-
actions between host and guest molecules [72, 73]. It can be viewed as chemistry
beyond the molecule: While molecular chemistry is based on intramolecular cova-
lent bonds, supramolecular chemistry is based on intermolecular non-covalent bonds
[74–76]. Several non-covalent interactions have proven to be versatile in supramole-
cular chemistry, e.g. hydrogen bonding, metal-ligand interactions or van der Waals
interactions [75]. Thus, supramolecular chemistry leads to the formation of
supramolecular objects that are defined by the nature of the molecular components
and furthermore by the type of interaction between them [75]. In recent years the
field of supramolecular chemistry has evolved into areas such as molecular devices
and machines or molecular recognition, such as self-assembly and self-organization.
One of the frequently utilized host compounds in supramolecular chemistry are CDs
that are the focus of the next sections.
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2.2.2 Structure and Properties of CDs

CDs are cyclic oligo saccharides of α-d-glucose that are formed through glycosidic
α-1,4 bonds [77]. CDs are synthesized in an industrial biochemical process from
starch via enzymatic pathways with CD glycosyl transferases, e.g. from bacillus
macerans [78]. The commonly utilized CDs, also called native CDs, are the ones
with n = 6 , 7 or 8 repeating units and are called α-CD, β-CD and γ-CD, respectively
(refer to Fig. 2.7 and Table 2.1).

The chemical structure of the CDs resolves in a shallow truncated cone shape of
the CD which forms a cavity with openings of two sizes. The exterior of the mole-
cule is very polar/hydrophilic due to many hydroxyl groups whereas the interior is
quite nonpolar/hydrophobic. The property of different polarity in different parts of
the molecule leads to the most important and utilized ability of CDs: They read-
ily form inclusion complexes with hydrophobic molecules that fit into the cavity in
polar environments, mainly in aqueous solution. The complex formation results in
several changes of the properties of the guest molecule. First of all, the water solubil-
ity of hydrophobic molecules rises significantly. Furthermore, the vapour pressure
decreases after complexation as well as the stability against oxidation under air or
light induced degradation [79]. In several cases CDs activate chemical reactions,
e.g. the hydrolysis of various phenylesters [79, 80]. As CDs are optically active,
they are also utilized in chiral catalysis [81]. Other applications include drug deliv-
ery [82–84], catalysis [84], chromatography (also for chiral separation) [85] or as
food ingredient to mask odours or protect food ingredients against decomposition
[84, 86].

CD host/guest complexes can be prepared in solution [87, 88], by coprecipitation
[88, 89] or in a slurry [88, 89] as well as in the solid state, e.g. cogrinding or milling
[87–89]. In the case of complex formation in solution, sometimes a cosolvent has to
be added to enhance the accessibility of the guest, which is depending on the water
solubility of the guest molecule.
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Table 2.1 Dimensions and water solubility of native CDs

Type of CD α-CD β-CD γ-CD

Number of glucose units 6 7 8
Cavity length (Å) 8 8 8
Approx. cavity diameter (Å) 5.2 6.6 8.4
Water solubility at 25 ◦C (mol L−1) 0.121 0.016 0.168

2.2.3 Thermodynamics and Theory of CD Inclusion Complexation

The complexation of CDs with guest (G) molecules can be considered as a
bimolecular process [77]:

G + CD � GCD

GCD + CD � GCD2

GCD + G � G2CD

These equilibria summarize the formation of CD:G 1:1, 1:2 or 2:1 complexes with
the following association constants:

K11 = [GCD]
[G][CD] (2.9)

K12 = [GCD2]
[GCD][CD] (2.10)

K21 = [G2CD]
[G][GCD] (2.11)

In general, the formation of more complicated CD host/guest complexes GmCDn
can be described by the following equilibrium

mG + nCD � GmCDn

and equation for the overall association constant βmn:

βmn = [Gm][CDn]
[G]m[CD]n

(2.12)

The driving force for the complex formation is not yet fully understood [77, 87].
Nevertheless, some contributing factors can be identified. The release of water mole-
cules from the cavity leads to an increase in entropy of the system. Furthermore van
der Waals interactions and hydrophobic interactions between guest and interior of
CD contribute to complex formation. In some cases hydrogen bonding between guest
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and the rim of CD takes place. From the temperature dependence of the association
constant, enthalpy (�H complex) and entropy (�Scomplex) of complexation are obtain-
able [79]. In most cases, �H complex is negative which leads to complex dissociation
at higher temperatures [77, 88, 90, 91], whereas �Scomplex can have negative or
positive values depending on the interactions that take place during complexation.
In the complex formation several steps have to be considered [79, 92]:

1. The guest molecule has to approach the CD
2. Enthalpy rich water molecules have to be released from the cavity (results in a

rising entropy of the system)
3. The hydration shell of the guest has to be removed at least partly
4. Interactions (mostly weak van der Waals attractions) of the guest molecule with

the rim of the CD and the inside (the guest molecule enters the cavity)
5. Possible formation of hydrogen bonds between CD and guest
6. Re-formation of the hydration shell of exposed parts of the guest molecule and

around the CD molecule

From the point of complex formation kinetics in steps 1, 4 and 5 the size of the
guest molecule plays an important role and no complex formation is observed for
guests that extend the cavity size. The assembly of water molecules relies on several
factors, e.g. pH value or ionic strength, which is independent from the respective
guest molecule. Most likely steps 3 and 4 can be considered rate determining [92].
The size of the guest group is not only a criterion whether it is possible for the guest
to enter but also for the stability of the complex. As the interactions between CD and
guest are rather weak and of a short range, the complex stability depends strongly on
a good fit between CD and guest. In some cases a weak fit between CD and guest can
be compensated with the formation of different complex geometries/stoichiometries
(refer to Sect. 2.2.4).

2.2.4 Complex Types, Common Host/Guest Pairs and Their
Stability

From the geometry of CD two complexation modes are possible. Depending of the
dimension of the guest, it can enter the cavity from the primary or the secondary side
of CD (refer to Fig. 2.8). The primary side is on the face of C6 and OH-6 and has a
slightly smaller opening.The secondary side is on the face ofC2andC3with a slightly
larger opening of the cavity. Complexes with different complexation modes can be
identified via multi dimensional NMR spectroscopy [93] and X-ray crystallography
[77, 94–96]. Furthermore, different complex stoichiometries are possible [84]. The
most common cases are 1:1CD/guest complexes but 2:1 and 1:2 are described aswell,
e.g. the complex 1-bromoadamantane with 2α-CDmolecules [97] or the complex of
γ-CDwith 2 pyrenemolecules [98, 99]. The complex stoichiometry can be identified
via the method of continuous variation, i.e. Job’s plot [93, 97, 100]. In this analysis
the product of mole fraction and complexation induced change in the chemical shift
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 2.8 Different types of complexation: a 1:1 CD/guest complex from the secondary side, b
1:1 CD/guest complex from the primary side, c 1:2 CD/guest complex, d 2:1 CD/guest complex,
e pseudo rotaxane, f rotaxane, and g catenane

in theNMR spectrum is plotted against themole fraction of guest or CD. The position
of the maximum of the obtained curve indicates the complex stoichiometry.

CD complexes with axial shaped guests are called pseudo rotaxanes if they are
not fixed via stopper groups (refer to Fig. 2.8) [101]. After fixation with large stopper
molecules that suppress the dethreading ofCD, complexes ofCDwith axial guests are
called rotaxanes [101, 102]. In that case the CD complexation loses its reversibility
and the formed bond between host and guest is a mechanical bond. Another class of
mechanically interlocked molecules are catenanes, which are the connection of two
or more rings via intertwining (Fig. 2.8) [103].

The different complex types can be transferred to polymers as well, e.g. in poly
pseudo rotaxanes [104, 105], polyrotaxanes [106], side chain pseudo polyrotaxanes
[107], side chain polyrotaxanes [108] or pseudo rotaxane star polymers [109, 110].
Rotaxane formation can be utilized, e.g. for the formation of supramolecular poly-
mers [111] or hydrogels [112]. The concept of mechanical bonds was utilized for
example in the synthesis of mechanically interlocked block copolymers [113, 114].

While the complex stoichiometry can be addressed via Job’s plot, the association
constant, and thus an equivalent for the complex stability, is accessible via isother-
mal titration calorimetry [115] or the Benesi-Hildebrand plot [116–118] for instance.
In isothermal titration calorimetry the evolution of heat is measured during the addi-
tion of guest or host to a host or guest solution, respectively. A fit of the plot of



22 2 Theoretical Background and Literature Overview

Table 2.2 Common guests for the native CDs and the respective association constants

Guest Structure Type of CD logβ (log m−1)

trans-Azobenzene
N

N
α 4.0 [119]

cis-Azobenzene
N

N

α 0.6 [120]

Indole
N
H

α 7.8 [121]

Phenol
HO

α 4.2 [121]

Adamantyl
β 4.6 [122]

trans-Azobenzene
N

N
β 2.7 [123]

cis-Azobenzene
N

N

β 0.4 [123]

tert-Butyl phenyl
β 4.4 [124]

Phenol HO

β 3.4 [121]

molar ratio against enthalpy leads to �Gcomplex and thus the association constant
can be derived, while the surface under the curve gives the complexation enthalpy
�H complex. The utilization of the Benesi-Hildebrand plot gives the opportunity to
obtain association constants via changes of absorption in UV spectra or the chemical
shift in NMR spectra.

Table 2.2 shows a selection of different guests with the respective association
constant. For, α-CD mono or para substituted aromatic structures are commonly
utilized, e.g. phenyl or azobenzene with association constants up to 104 m−1, as well
as aliphatic chains or poly(ethyleneglycol) (PEG). One of the strongest associations
are reported between α-CD and indole with an association constant of 107 m−1

probably due to the formation of additional hydrogen bonds. The adamantyl-group
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is a well-known guest group for β-CD with association constants up to 105 m−1.
Azobenzene and tert-butyl phenyl are also utilized in several examples. In the case of
γ-CD, very bulky guests are necessary, e.g. two pyrene molecules or cyclododecane.

2.3 Complex Macromolecular Architectures Governed by CD
Complexes

In recent years CD complexes have proven to be a perfect tool for the generation of
complex macromolecular architectures. Almost every conceivable architecture has
been described so far. Especially the development of controlled radical polymeriza-
tion techniques for the synthesis of endfunctionalized polymers had a very significant
impact on the research in this area.

Figure 2.9 shows a compilation of different architectures that were generated via
CD host/guest complexes so far. CDs have been utilized for the modification of poly-
mer functionality, polymer composition and polymer topology. CD functionalized
polymers are rather readily accessible via living/controlled radical polymerization
giving control of end chain and mid chain functionality. Diverse supramolecular
polymer compositions can be obtained via incorporation of CD complexes at the
interface between different blocks. To achieve more complex topologies, a combina-
tion of different functionalized building blocks is necessary, e.g. multi CD function-
alized polymer strands. In general, the control over polymer functionality gives rise
to the formation of complex supramolecular polymer compositions and topologies.

2.3.1 Common CD Containing Building Blocks

Although CDs possess a large number of functional groups, the reactivity of the
primary and secondary hydroxyl groups differs significantly, which gives the oppor-
tunity to exclude some of the hydroxyl groups in specific reactions [125, 126].
Nevertheless, at least 6 hydroxyl groups with the same reactivity exist in a CDmole-
cule. To obtain mono functionalization, the reaction conditions have to be monitored
carefully. The most commonly used intermediate is the mono tosylate at C6, which
can be synthesized in pyridine for all native CDs [127–129] or in aqueous NaOH
solution for β-CD andα-CD [130, 131]. The tosylate can be transformed into several
useful building blocks, e.g. azide [128, 129], thiol [132] or amine via nucleophilic
substitution with a diamine [133]. The azide is available via a nucleophilic substitu-
tion of the tosylate with sodium azide [128, 129, 131], whereas the thiol is formed
via a nucleophilic substitution with thiourea and subsequent hydrolysis [132, 134].
The azide can be further converted into an amine via reduction [127–129]. With
these 3 substituents a large variety of modern polymer conjugation reactions can be
utilized, e.g. CuAAc [130, 135] and thiol-ene reactions [136]. CD-functionalized
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Polymer Functionality

Polymer Composition

Polymer Topology

α-functionality α−ω-functionality side chain functionality mid chain functionality

block copolymer multi-segment block copolymerhomopolymer

linear star miktoarm star

brush / comb cyclicbranched / gel

Fig. 2.9 Complex macromolecular architectures via CD-driven supramolecular complexation and
macromolecular building blocks with CD moieties (CD is depicted in orange; guest groups are
depicted in blue)
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polymerization mediators, e.g. for NMP [137], ATRP [138] or RAFT [139] have
been described in the literature as well as post-polymerization conjugation reactions
with CDs [138, 140]. Mono functionalizations at C2 are described in the literature
as well [141, 142], yet C2 or C3 derivatives are not utilized as frequent as the C6
derivatives. Certainly an esterification of the hydroxyl groups is possible as well,
yet the selectivities are usually low. Either full conversions are initially targeted or
lower substitution grades are targeted and the obtained mixtures have to be purified
in inconvenient procedures.

2.3.2 Block Copolymers

The formation of block copolymers via CD complexes is mainly restricted to AB
diblock copolymers so far. Almost exclusively β-CD has been utilized in that regard.
The synthesis of supramolecular diblock copolymers is straight forward as only two
components are needed: a CD-functionalized polymer and a guest functionalized
polymer. These building blocks are commonly obtained via controlled radical poly-
merization techniques yet in some cases cationic or anionic polymerization have
been utilized as well.

One of the first examples is an AB diblock copolymer of PNIPAAm and P4VP
synthesized via RAFT polymerization by Zhang and coworkers that has proven to be
pH and thermoresponsive [143]. This block copolymer was exploited in temperature-
and pH-induced micellization and vesicle formation which was observed via DLS,
SLS, fluorescencemeasurements and TEM.At a pH value over 4.8 and a temperature
of 25 ◦C vesicles were formed and at a pH value of 2.5 and a temperature of 60 ◦C
micelles were formed. Another example of double stimuli responsive block copoly-
mers, i.e. with schizophrenic behavior, has been described by Liu et al. [138]. Again
pH- and thermoresponsive behaviour was combined but this time via PDMAEMA
and PNIPAAm blocks synthesized via ATRP. Vesicle formation was observed at low
pH values and high temperatures (pH 4 and 50 ◦C), whereas micelles were formed at
high pH values and low temperatures (pH 9 and 25 ◦C), which was proven via TEM,
DLS and SLS. Voit and coworkers described a supramolecular diblock copolymer
consisting of PNIPAAm synthesized via ATRP and poly(2-methyl-2-oxazoline) syn-
thesized via cationic ring-opening polymerization [144]. The temperature-responsive
PNIPAAm block was utilized for temperature-induced aggregation. These examples
evidence the impact that CD-based supramolecular chemistry can have in the area
of macromolecular architectures.

CD complexes provide another possibility for stimuli response. Not only different
polymer types can be utilized in the area of stimuli-responsive materials, yet the
supramolecular connection is addressable via external stimuli as well. One of the
first examples is the utilization of a voltage responsive connection via a ferrocene
endgroupwhichwas described byYan et al. [145]. A β-CD functionalized PSty and a
ferrocene functionalized PEG were utilized. The connection between the blocks can
be disrupted, as ferrocene molecules can be oxidized reversibly and the ferrocene
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cation does not fit into the β-CD cavity. At first, block copolymer vesicles were
obtained that dissociated upon application of an electric current. The rate of disso-
ciation and the release of a test molecule could be adjusted via the amount of the
voltage. Another example of diblock copolymers with stimuli responsive linkagewas
described by the same group [146]. Supramolecular based nanotubes were formed
(length ∼220 nm and diameter ∼90 nm) via a supramolecular poly(ε-caprolactone-
b-AA) (PCL-b-PAA) diblock copolymer. The supramolecular complex was formed
between azobenzene and α-CD that leads to a light responsive linkage between the
blocks. Furthermore, the nanotubes were loaded with Rhodamine B that could be
released via light induced disassembly of the nanotubes. Stenzel and coworkers pre-
pared supramolecular core shell nanoparticles with a PMMA core and poly(hydroxy
ethylacrylate) (PHEA) shell [136]. The guest functionalized PHEA building block
was obtained directly via RAFT polymerization, whereas the CD functionalized
PMMA block was obtained via RAFT polymerization of MMA, a Chugaev ther-
molytic endgroup conversion and a subsequent thiol-ene reaction with mono thiol
functionalized β-CD. Core shell nanoparticles (diameter ∼150 nm) were obtained
after mixing of the building blocks in DMF and subsequent water addition or by
the generation of core PMMA nanoparticles in water and addition of the water sol-
uble building blocks. The addition of free β-CD led to the disassembly of the com-
plexes and aggregation of the water insoluble blocks. Recently Yuan and coworkers
described a biodegradable diblock copolymer of P(lactide) (PLA) and PEG with a
β-CD and ferrocene governed connection [147]. Cyclovoltammetry was utilized to
study the redox response of the block copolymer. Furthermore micelles were formed
and characterized via TEM and DLS. Cytotoxity and drug-release was investigated
with regard to the redox stimulus as well. A block copolymer with pH-responsive
supramolecular linkage between β-CD and benzimidazole was described by Zhang
et al. [148]. Thus, a diblock copolymer of PCL and dextran was synthesized and
supramolecular micelles were formed. The micelles were utilized for in vitro dox-
orubicin delivery that was supported by the difference of intra and extracelluar pH.

A diblock copolymer with a special linking moiety was described by Quan et
al. [130]. In this case a dilinker consisting of α-CD and β-CD connected with a short
spacerwas utilized to forma diblock copolymer of PNIPAAmandPCL. Furthermore,
cell targeting ligands were introduced to enhance cell uptake efficacy. To protect the
formed core shell nano-sized assemblies in body fluids, PEG moieties were incor-
porated as well. The formed assemblies were utilized in drug delivery experiments
that showed tumor-triggered release of loaded molecules. This particular example
shows how powerful CD complexes are as a tool for the formation of macromolec-
ular architectures with regard to the specific application, e.g. drug delivery [130] or
the formation of nano objects [145, 146]. Especially the stimuli-responsive nature
of several CD/guest pairs gives the opportunity to disassemble the block copolymer
at the junction of the different blocks. Thus, the distinct properties of block copoly-
mers can be utilized but with the additional property of disassembling the blocks.
This concept has been utilized recently by Hawker and coworkers in block copoly-
mer lithography with block copolymers that are coupled via hydrogen bonds. This



2.3 Complex Macromolecular Architectures Governed by CD Complexes 27

example shows that supramolecular bonded block copolymers can indeed mimick
the behavior of their covalent analogues [149].

2.3.3 Brush Polymers

The synthesis of supramolecular brush polymers can be conducted via two pathways.
Either CD molecules are connected to a backbone or surface and a guest endfunc-
tionalized polymer is added or guest molecules are connected to a polymer backbone
or surface and CD-endfunctionalized polymers are added. The forming complexes
lead to brush-like architectures. Of course the complex formation is governed by
equilibria and thus the obtained grafting density strongly depends on the association
constants. Furthermore, steric factors play an important role as CDs have a very
bulky structure that can suppress high grafting densities.

A supramolecular brush formation in solution has been described byBernard et al.
[140]. A CD-containing backbone was synthesized in a two step procedure. Firstly,
trimethyl silyl protected propargyl methacrylate was polymerized via RAFT, subse-
quently the terminal alkyne groups were deprotected and conjugated with β-CD-N3
in a CuAAc reaction. Short PAA chains endfunctionalized with an adamantyl-group
were synthesized and brushes were formed in aqueous solution. The brush formation
was proven via DLS and NOESY (nuclear Overhauser enhancement spectroscopy).
Although a dodecyl functional RAFT agent was utilized, no competing complex
formation was evident, which was proven via comparison of dodecyl-functional
chains with chains after RAFT endgroup removal. Jiang and coworkers presented a
supramolecular brush with a copolymer of N-vinylpyrolidone and a CD functional
monomer and doubly adamantyl endfunctionalized PCL [150]. Interestingly, micel-
lar aggregates were obtained, as shown by TEM and DLS, and no gel formation
was observed, although a doubly guest functional polymer was utilized. Later Zhang
and coworkers presented a supramolecular brush consisting of a CD-functionalized
polymer backbone and adamantyl functionalized oligo ethylene glycol dendrons.
The thermoresponsive behavior was studied as a function of several factors, e.g.
dendrimer generation or hydrophobicity of the dendrimer endgroups [151]. In that
way the LCST could be tuned from 34 to 56 ◦C. It was found that the dehydra-
tion and collapse of the oligo ethylene glycol chains leads to disassembly of the
host/guest complexes, which was studied via NMR and ITC. Frey and coworkers
investigated the binding strength of PHPMA featuring pendant β-CD functionali-
ties with adamantyl-functionalized hyperbranched and linear poly(glycerols) as well
as their block copolymers with PEG [152]. The complex formation was monitored
via diffusion-ordered NMR spectroscopy (DOSY), ITC and fluorescence correla-
tion spectroscopy. The steric effect of the hyperbranched grafts resulted in decreased
association constants, while the incorporation of PEG spacers led tomore stable com-
plexes. Very recently Hetzer et al. [153] showed a supramolecular brush formation
of CD end-functionalized PDEAAmwith a copolymer consisting of DMAAm and a
phenolphthalein-functionalized acrylamide. Due to the complex formation with the
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dye functionalized side-chains a color change in the solution was observable dur-
ing complexation. Another stimuli responsive supramolecular brush polymer was
described by Yuan et al. [154]. PEG-b-P(glycidyl methacrylate) was prepared via
RAFT polymerization and the glycidyl containing block was decorated with β-CD.
Addition of a ferrocene endfunctionalized PCL led to the formation of supramole-
cular brushes that showed redox responsive brush formation coupled with redox
responsive micelle formation.

Apart from solution studies several reports regarding surface brushes exist in
the literature. Li and coworkers studied the grafting of doubly adamantyl endfunc-
tionalized polymers on CD modified cellulose [155]. After the formation of the
supramolecular complexes the grafting was proven via XPS, ellipsometry, TGA
and FT-IR. Thus, a supramolecular grafting on the renewable resource cellulose
was achieved. Reinhoudt and Huskens introduced the concept of molecular print-
boards, i.e. mono layers of CD host molecules on a planar surface that are capable of
the stable attachment of guest molecules [156]. This concept has been exploited to
generate different grafted structures, e.g. on gold [156] or SiO2 [157]. Furthermore,
patterns on the surface have been generated via micro contact printing [157–159].
These molecular printboards have been utilized to immobilize proteins [160, 161],
fluorescent dyes [159] or Eu3+ luminescent complexes [158]. A similar approach
was utilized to graft an azobenzene functionalized cell recognition peptide onto an
α-CD functionalized gold surface that showed reversible and photocontrolable cell
attachment [162].

2.3.4 Star Polymers

CD-based star polymers can be divided into two categories. Star polymers with
CD as a core moiety due to its high concentration of functionality, which is the
most frequent utilization of CDs for star polymers. The other possibility is to utilize
host/guest complexes to obtain supramolecular star polymers, e.g. via a coremolecule
with several CD moieties and guest functionalized polymers.

One of the first reports of CD-centered stars is from the work of Haddleton
and coworkers, where a 21 arm star polymer consisting of PMMA or PSty arms
was synthesized via ATRP with a grafting-from approach [163]. Furthermore, block
copolymer stars were formed from the obtainedmacro initiators. A similiar approach
was conducted by Stenzel et al., who described a CD-centered 18 arm PSty star
synthesized via living radical polymerization mediated by a half-metallocene iron
carbonyl complex [164] and a CD-centered 7 arm star formed via RAFT polymer-
ization of Sty [26, 165], as well as block copolymers with ethyl acrylate [165].
The range of utilized monomers for the arm-forming polymers was subsequently
extended later to tert-butyl acrylate [166], oligo ethyleneimine [167], azobenzene
monomers [168], 2-ethyl-2-oxazoline [169], glycomonomers [170], HEA [170],
NIPAAm [171], PNIPAAm-b-PDMAAm [172], PS-b-P(3-hexylthiophene) [173]
and P(l-lysine) dendrons [174] by several research groups. Kakuchi and coworkers
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utilized mono amino β-CD to attach a NMP initiator, followed by a living/controlled
radical polymerization of Sty [175]. The remaining hydroxyl groups were utilized to
attach ATRP initiator via esterification and subsequently MAA or tert-butyl acrylate
was polymerized to form a CD centeredmiktoarm structure. Recently Haddleton and
coworkers introduced 7 thiols on the secondary face of β-CD for subsequent thiol-
ene reactions, e.g. with oligo ethylene glycol methacrylate (OEGMA), and utilized
the remaining 14 hydroxyl functions as initiator for the ring-opening polymerization
of CL, which leads to the formation of a CD-centered miktoarm star polymer [176].
These examples are of particular interest because the different reactivities of the
β-CD hydroxyl groups were utilized to generate a complex macromolecular archi-
tecture. A different asymmetric β-CD based star architecture has been described
recently by Liu et al. [177]. The primary face of CD was grafted with PDMAEMA,
while the secondary face was utilized to attach a magnetic resonance imaging con-
trast agent. The poly-cationic PDMAEMA was subsequently used to promote poly-
plex formation with plasmid DNA. Finally in vitro DNA delivery, cytotoxity and
magnetic resonance imaging was probed. Moreover, another asymmetric β-CD
based star architecture was described by Shen et al. [178]. While the primary
face was decorated with PEG, the secondary face of β-CD was grafted with
2-[(methacryloyl)oxy]ethyl acrylate / cysteamine dendrimers that showed the for-
mation of well-defined aggregates in aqueous solution. A γ-CD centered oligo
ethyleneimine star was prepared by Li et al. [179]. The γ-CD core was utilized to
encapsulate the drug paclitaxel. Furthermore a cell targeting ligand was attached and
a polyplex was formed with plasmid DNA. Finally cell viability and gene transfec-
tion efficiency were studied. A dumbell-shaped architecture containing of two β-CD
centered PNIPAAm stars connected covalently via a PEG backbone was described
by Zhang et al. [180]. The thermoresponsive characteristics were studied showing
the formation of flower like micelles. An alternative architecture involving CD-core
star polymers has been published recently by Wenz and coworkers which is a com-
bination of rotaxane and star architectures [181]. Here α-CD centered PMMA stars
were threaded onto a PEG backbone and fixed via large stopper molecules. PMMA
chains were grafted from ATRP initiators connected to the threaded α-CD moieties
on the rotaxane and were characterized via DOSY, SEC and AFM. An interesting
feature of the thus formed brushes is their sensitivity to mechanical forces during
SEC measurement, which led to the scission of the PEG thread. A similar approach
was followed by Nagahama et al. [182]. PEG was threaded with α-CD to form a
polyrotaxane. The remaining hydroxyl groups of the α-CD threads were utilized to
grow PLA. Continuous anisotropic phases were formed in the bulk state. The crys-
tallization behavior was studied via DSC, X-ray diffraction and polarized optical
microscopy. An accelerated stereo complex formation was found that was attributed
to the enhanced moveability due to the rotaxane structure.

Fewer reports are in the literature on star architectures governed by host/guest
complexes. An interesting architecture in that regard is the connection of two
CD-centered stars with a doubly guest functional polymer, which leads to a dumb-
bell shape in solution that has been described in two studies [183, 184]. In the first
reportβ-CDcentered PNIPAAmwith 4 armswas connectedwith a doubly adamantyl
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functionalized PEG, the complex formation was proven via NOESY and the change
in the LCST was monitored depending on host/guest ratio or the molecular weight
of the employed PEG [183]. Later, β-CD centered PNIPAAm was connected with a
doubly adamantyl functionalized poly(propylene glycol) (PPG) [184]. As this system
contains two thermoresponsive polymer types, the aggregation behavior was studied
depending on the temperature viaDLS,NMR, fluorescencemeasurements, AFMand
TEM. The formation of supramolecular block copolymers was evident in cold water,
whereas micelle formation was observed at temperatures over 8 ◦C and above 22 ◦C
micelle destabilization was observed. A similar structure was described by Allcock
et al. [185]. A β-CD centered POEGMA star was complexed with an adamantyl
endfunctionalized P(bis-(trifluoroethoxy)phosphazene). The formation of micelles
was monitored via DLS, TEM and AFM. Furthermore β-CD moieties were intro-
duced into P(phosphazene) side-chains to obtain multiple β-CD grafted polymers.
Multiple adamantyl functionalizedP(phosphazene)swere prepared aswell ansfinally
the gelation behavior was studied. The formation of an ABC miktoarm star polymer
was published recently by Zhu and coworkers that required several functionalization
reaction with β-CD [135]. In brief, β-CD was mono tosylated, converted into the
azide and mono tosylated again. PEG was conjugated via CuAAc, the remaining
tosylate was converted into the azide and subsequently an ATRP initiator was added
via CuAAc. DMAEMA was polymerized via ATRP to obtain a miktoarm star with
two different arms. A third arm consisting of adamantyl functional PMMAwas con-
nected via supramolecular complex formation. Due to the hydrophobic character of
PMMA,micelles were obtained in solution and characterized via DLS and TEM.Wu
and coworkers utilized a threefold β-CD core to connect three guest functionalized
oligo ethylene glycol dendrimer arms [186]. The thermoresponsive behavior of the
formed dendrimer stars was investigated showing a variation in the LCST from 43
to 72 ◦C depending on dendrimer generation, dendrimer endgroup (ethyl or methyl)
and ratio of different dendrimer types (with ethyl or methyl endgroup). Furthermore,
the effect of salt concentration was investigated as well as the thermally induced
decomposition of the supramolecular complexes. An interesting combination of CD-
based host/guest chemistry and a protein (concavalin A (ConA))/mannopyranoside
interaction was shown by Chen et al. [148]. An α-mannopyranoside and β-CD func-
tionalized dilinker was synthesized and subsequently the supramolecular recognition
was probed via ITC. An association constant of 8.4× 103 m−1 was found for the
ConA dilinker complex. Addition of adamantyl functionalized PEG showed a further
recognition of theβ-CDmoiety and the adamantyl groupwith an association constant
of 1.1× 105 m−1. The complex formation was additionally investigated via DLS and
SEC evidencing a strong dependence of the number of attached PEG chains on the
concentration of the solution. Addition of free α-CD molecules lead to hydrogel
formation via a supramolecular interaction of the PEG chains and α-CD. Recently
Schmidt et al. showed the formation of supramolecular X- and H-shape star block
copolymers. The complex formation was investigated via DLS, NOESY and tur-
bidimetry. Additionally, the temperature induced aggregation behavior was studied
via temperature sequenced DLS measurements. A similar aggregation and micelle
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destabilization behavior as in the earlier described dumbbell shaped aggregates was
found [184].

Jiang and coworkers utilized host guest complexes to formbrush-like star architec-
tures with different spherical cores, e.g. SiO2 nanoparticles [187], CdS quantum dots
[188, 189] or gold [190]. In the case of SiO2 nanoparticles, PEG arms were utilized
and subsequently α-CD was added to induce hydrogel formation. In another work
quantum dots were utilized as a core for azobenzene or ferrocene endfunctionalized
PDMAAm-b-PNIPAAmblock copolymers [188, 189]. The thermoresponsive nature
of the PNIPAAm blocks was utilized to induce hydrogel formation above the LCST.
The hydrogels showed a variation of photoluminescence depending on the temper-
ature and thus the gel formation, which can be attributed to the confinement of the
quantum dots in the gel. Furthermore, UV-light and electrochemical response was
probed. CD-functionalized gold nanoparticles were grafted with azobenzene end-
functionalized PNIPAAm-b-PDMAAm, which gave the opportunity to disrupt the
supramolecular complex upon UV-irradiation [190]. Heating above the LCST of the
PNIPAAm block led to the formation of vesicles. A similar approach was described
earlier [191]. In this case gold nanoparticle cores with α-CD shell were utilized
as well. Azobenzene endfunctionalized PNIPAAm homopolymer was supramolecu-
larly attached. Subsequently the photoresponsive behavior and the thermal behavior
of the aggregates were studied in detail.

2.3.5 Branched Polymers and Gels

The probably most intensively studied field in CD driven macromolecular architec-
tures is the formation of branched structures and hydrogels. Several reviews based
on these materials can be found elsewhere [192–196]. Nevertheless, in this section a
short overview on polymeric CD-based hydrogels and branched structures that have
been synthesized via controlled radical polymerization is presented. In general, the
formation of branched structures and hydrogels can be conducted via different path-
ways. A large amount of host and/or guest functionalities can be incorporated into
the side chain of the polymers or as endgroup to induce supramolecular crosslinking.
Furthermore, single CDmolecules can be utilized as crosslinkers if the guest group is
small and two guests can be included, which leads to single-CD crosslinking points.
Alternatively CDs can act as crosslinker via aggregation/crystallization.

An example of the latter category utilizes OEGMA based polymers with side
chains of POEGMA as a double brush structure that was formed via ATRP. The
formation of a hydrogel was induced via addition of α-CD [107]. Interestingly, the
formation of hexagonal crystals was observed in the hydrogel which is due to the for-
mation of columnar microcrystalline domains of α-CD. Later P(EG-co-DMAEMA)
brushes were utilized to form thermo- and pH-responsive gels after α-CD addition
[197]. The gelation behavior was altered via copolymer concentration, pH value,
PEG branch density and the chain uniformity of the copolymers.With these gels drug
release at different pH values and temperatures was studied. The same crosslinking
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method was employed with PEG-b-PDMAEMA block copolymers, which lead to a
series of different microgel morphologies depending on pH value or ionic strength,
e.g. hexagonal, bowl or spherical structures that could be visualized via TEM [198].
A recent utilization of α-CD based crosslinking via a poly pseudo rotaxane forma-
tion is the supramolecular anchoring of DNA polyplexes in hydrogels formed from
PEG-b-PCL-b-PDMAEMA block copolymers and α-CD [199]. The polymers were
synthesized via a combination of ATRP and ring-opening polymerization. Subse-
quently, DNA polyplexes were formed from blockcopolymer micelles and plasmid
DNA. The addition of free PEG chains and α-CD leads to hydrogel formation.
The following studies on the release of the incorporated DNA showed sustained
release of stable polyplexes with high bioactivity. Yuan and coworkers synthesized a
PCL-b-POEGMAwith pyrene endgroup via a combination of ROP and ATRP [200].
The amphiphilic block copolymer was assembled into micelles and α-CDwas added
to obtain gelation. Viscoelastic behavior, temperature response and in vivo drug-
release were studied with these gels. Furthermore Ji and coworkers described a
PEG-b-PNIPAAm block copolymer that was utilized to form micelles in solution
via heating above the LCST of the PNIPAAm block [201]. Moreover α-CD was
added at ambient temperature to induce crystallization due to interactions with the
PEG blocks leading to reverse micelles.

Aβ-CD centered star polymer of PDMAEMAwas protonated and utilized to form
networks with polyanionic PAA-b-PEG di- and triblock copolymers [202]. Depend-
ing on the structure of the polyanionic block, fibrillar or spherical microstructured
gels were obtained. SEM, TEM, DLS and rheological measurements were carried
out to study the obtained materials. Furthermore, the remaining cavity in the β-CD
moiety was utilized to include a model drug and study the release behavior. Another
example is the temperature induced formation of PNIPAAm hydrogels from a β-CD
centered PNIPAAm-b-PDMAAm three arm star polymer [172]. Again, the β-CD
cavity was utilized for small molecule release. As described before in Sect. 2.3.4,
quantum dot centered hydrogels formed due to the LCST of PNIPAAm blocks have
been generated as well [188, 189].

Kang and coworkers presented the synthesis of a doubly β-CD functionalized
poly(2-(methacryloyloxy)ethyl succinate) via RAFT polymerization [139]. This
polymer was utilized in the formation of poly pseudo rotaxanes with an acrylate
endfunctionalized PEG-b-PPG-b-PEG. The acrylate functions were subsequently
reacted in a thiol-ene reaction with a multifunctional thiol to form permanent
crosslinking points. Thus, a sliding hydrogel was obtained evidencing pH response
(from the succinate) and thermoresponse (from the PEG and PPG blocks). Swelling
ratios and thermal properties could be adjusted via different chain lengths of the
β-CD functionalized polymer which is rather easy via changing the conditions of the
RAFT polymerization. Recently Hetzer et al. [203] showed the network formation of
a doubly adamantyl functionalized PDMAAm and a three-fold β-CD functionalized
linker molecule. Rheological investigations showed increasing viscosities depending
onCD/guest ratio, chain length and concentration. Furthermore the viscosity could be
reduced drastically via addition of free CDmolecules or free guest molecules. Zhang
et al. [204] described a redox sensitive network utilizing two- or three-fold β-CD
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linker molecules and three- or four-fold ferrocene-functionalized P(ethylene imine).
The formed material was analyzed via 2D correlation FT-IR spectroscopy and mea-
surements of the mechanical material properties. Furthermore the addition of oxi-
dants led to dissolution of the material. A redox responsive hydrogel was described
by Yuan et al. [205]. DMAAm-based β-CD and ferrocene-containing polymers were
formed via RAFT polymerization. A mixture of both polymer types gave a hydro-
gel that proved to be redox responsive. A photoresponsive hydrogel based on β-CD
and azobenzene interactions was described by Guan et al. [206]. A copolymer of
NIPAAm and an azobenzene monomer was interacted with a difunctional β-CD
containing molecule that has a disulfide connection between the CD moieties. Dou-
ble stimuli responsive gels were obtained. The azobenzene guest groups allowed
for photoresponsive sol-gel transition, where as the disulfide bonds facilitated redox
responsive sol-gel transition. Moreover, Gao and coworkers prepared a P(glycidyl
methacrylate) via ATRP that was subsequently transformed with diethylenediamine
to obtain amine functional polymers [207]. Afterwards β-CD was introduced and
complexes with insulin formed. Finally in vitro release of insulin was probed that
increased upon addition of competing guests.

2.3.6 Other Architectures

Jiang and coworkers presented a block copolymer-like structure consisting of
Frechét-type benzyl ether dendrons (generations 1, 2, and 3) with an azobenzene at
the apex and a β-CD functionalized PNIPAAm [208]. These supramolecular block
copolymer amphiphiles formed vesicles or micelles in aqueous solution depending
on dendron generation. Furthermore, UV-irradiation lead to the disassembly and for-
mation of irregular particles which could be reversed via irradiation of visible light.
Heating above the LCST of the PNIPAAm block leads to reversible aggregation of
the particles. Vesicles of a doubly CD endfunctionalized P(ether imide) were pre-
pared by Guo et al. [209]. β-CD cavities were present on the inner and outer walls
of the vesicle that could be addressed via guest functionalized PEGs depending on
the molecular weight, e.g. with 1 and 2 k PEG inner and outer surface was modified,
whereas with 5 k PEG the inner surface was modified only partially. Giacomelli et al.
[137] formed PSty centered micelles with β-CD surface. The underlying β-CD func-
tionalized PSty was prepared via NMP. The formation of a supramolecular cyclic
polymer was described by Inoue et al. [210]. A PEG with azobenzene and β-CD
endgroup was utilized in that regard. The formation of cycles could be performed
in high dilution, whereas intermolecular complexes were formed at higher concen-
tration. The azobenzene moiety was exploited for UV-light triggered dethreading
of the complex. Between the PEG and β-CD a aromatic unit was incorporated that
was competing in complexation with the azobenzene depending on the temperature,
which was shown via temperature dependent NOESY.

A supramolecular enzyme polymer conjugate was described by Felici et al. [211].
β-CD functionalized PSty was prepared via ATRP that formed vesicles in aqueous
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solution. These vesicles bear CD-units on the outer and inner surface. The β-CD
moieties were subsequently utilized to conjugate adamantyl-PEG-functionalized
horseradish peroxidase that showed catalytical activity although it was connected
supramolecularly to the PSty vesicle.
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